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Abstract 15 
Demeter is a community spatial downscaling model that disaggregates land use and land cover 16 

changes projected by integrated human-Earth system models. Demeter has not been intensively 17 
calibrated, and we still lack a good knowledge about its sensitivity to key parameters and the parameter 18 
uncertainties. We used long-term global satellite-based land cover records to calibrate key Demeter 19 
parameters. The results identified the optimal parameter values and showed that the parameterization 20 
substantially improved the model’s performance. The parameters of intensification ratio and selection 21 
threshold were the most sensitive and needed to be carefully tuned, especially for regional applications. 22 
Further, small parameter uncertainties after calibration can be inflated when propagated into future 23 
scenarios, suggesting that users should consider the parameterization equifinality to better account for the 24 
uncertainties in the Demeter downscaled products. Our study provides a key reference for Demeter users, 25 
and ultimately contribute to reducing the uncertainties in Earth system model simulations. 26 
 27 
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1. Introduction 30 
Land Use and Land Cover Change (LULCC) represents one of the most important human impacts on 31 

the Earth system (Hibbard et al., 2017). Besides its socioeconomic effects, LULCC is directly linked to 32 
many natural land surface processes, such as land surface energy balance, carbon and water cycle (e.g., 33 
Piao et al 2007, Law et al 2018, Sleeter et al 2018, Pongratz et al 2006), and indirectly affects the climate 34 
system (e.g., Dickinson and Kennedy 1992, Findell et al 2017, Costa and Foley 2000). Thus, LULCC has 35 
been considered as a key process in simulating of Earth system dynamics, and LULCC inputs at 36 
appropriate time steps and spatial resolutions are required to match the setup of the Earth System Models 37 
(ESMs) and the nature of spatial heterogeneity of the Earth system processes (Brovkin et al., 2013; 38 
Lawrence et al., 2016; Prestele et al., 2017).  39 

While recent historical LULCC information can be obtained by ground investigation or satellite 40 
remote sensing (Friedl et al., 2002; Hansen et al., 2000; Loveland et al., 2000; Zhang et al., 2003), 41 
projections of future LULCC largely rely on mathematical models that bring socioeconomic and other 42 
diverse sectoral information together in a coherent framework to simulate the interactions between natural 43 
and human systems. However, these integrated models project LULCC at subregional level, i.e., the basic 44 
spatial units that have uniform properties for every sector (e.g., agricultural, energy and water etc.), 45 
typically ranging from a few hundred to millions of square kilometers (Edmonds et al., 2012). For 46 
example, the GCAM model has been widely used to explore future societal and environmental scenarios 47 
under different climate mitigation policies which provides LULCC projections at region-agroecological 48 
or water basin level (Edmonds et al., 1997; Edmonds and Reilly, 1985; Kim et al., 2006). ESMs divide 49 
the Earth surface into a number of grid cells and the forcing data have to be available at the same spatial 50 
resolution to drive the ESMs (Taylor et al., 2012). Therefore, spatial downscaling of the subregional 51 
LULCC becomes a critical step for linking models like GCAM and ESMs to investigate the effects of the 52 
LULCC on the processes in the natural world, and further the interactions between the human and natural  53 
systems (Hibbard and Janetos, 2013; Lawrence et al., 2012). 54 

There has been a few spatial disaggregation studies for LULCC, e.g., the Global Land Use Model 55 
(Hurtt et al., 2011) and a dynamic global land use model (Meiyappan et al., 2014) with various 56 
geographical and socioeconomic assumptions. In previous studies, we have developed a new simple and 57 
efficient LULCC downscaling model, named Demeter (version 1.0.0), to bridge GCAM and ESMs (Le 58 
Page et al., 2016; Vernon et al., 2018; West et al., 2014), and made it available online at 59 
http://doi.org/10.5281/zenodo.1214342 . Comparing to other models, Demeter makes minimal 60 
assumptions of the socioeconomic impacts. Instead, it uses a few parameters to implicitly characterize the 61 
spatial patterns of land use changes (See introductions in Section 2.1). Demeter has been successfully 62 
applied at both global (Le Page et al., 2016) and regional (West et al., 2014) levels for downscaling 63 
GCAM-projected land use and land cover changes, and has been further developed with an extensible 64 
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output module which streamlines producing specific output formats required by various ESMs (Vernon et 65 
al., 2018).  However, Demeter’s parameters (discussed in Section 2.1), which conclude many geographic 66 
patterns of long-term land cover changes such as intensification and expansion, are difficult to determine 67 
by either literature review or simple mathematical calculations. Therefore, Demeter’s parameter values 68 
were empirically determined and a complete analysis on Demeter’s parametric sensitivity and 69 
uncertainties as well as a rigorous model calibration has not been conducted to help minimize the 70 
propagation of downscaling errors. In recent years, a growing number of long-term global remote-71 
sensing-based LULCC datasets are made available (e.g., the Land Cover project of the European Space 72 
Agency Climate Change Initiative, MODIS Land Cover product collections 6), it becomes possible to use 73 
these datasets to calibrate Demeter parameters. The major objective of this study is to develop a 74 
framework for calibrating the key parameters of Demeter, testing and quantifying the parameter 75 
sensitivities and uncertainties, and demonstrating how the parameter uncertainties would affect 76 
downscaled products.    77 

 78 
2. Method 79 
2.1 Demeter 80 

Demeter is a land use and land cover change downscaling model, which is designed to disaggregate 81 
projections of land allocations generated by GCAM and other models. For example, GCAM projects land 82 
cover areas in each of its spatial units (e.g., region-agro-ecological zones, region-AEZ) for each land 83 
cover type, and Demeter uses gridded observational land cover data (e.g., satellite-based land cover 84 
product) as the reference spatial distribution of land cover types and allocates the GCAM-projected land 85 
area changes to grid level at a target spatial resolution, following some user-defined rules and spatial 86 
constraints (Figure S1). Below we briefly summarize the key processes of Demeter, and the detailed 87 
algorithms can be found in three earlier publications (Le Page et al., 2016; Vernon et al., 2018; West et 88 
al., 2014). 89 

 Demeter first reconciles the land cover classes defined in the parent model and the reference dataset 90 
to user-defined unified final land types (FLTs). Downscaled land cover types will be presented in FLTs. 91 
For example, if Demeter reclassifies the 22 GCAM land cover types and the 16 International Geosphere-92 
Biosphere Programme (IGBP) land cover types from the reference dataset into 7 FLTs (Forest, Shrub, 93 
Grass, Crops, Urban and Sparse), the 7 FLTs will be the land types represented in Demeter’s outputs by 94 
default. Demeter then harmonizes the GCAM-projected land cover areas and the reference dataset at the 95 
first time step (or ‘base year’) to make sure they are consistent with the GCAM spatial units and allocates 96 
the projected land cover changes by intensification and extensification. Intensification is the process of 97 
increasing a particular land cover in a grid cell where it already exists, while extensification creates new 98 
land cover in grid cells where it does not yet exist but is in proximity to an existing allocation. The order 99 
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of transitions among land cover types is defined by “transition priorities” during the processes of 100 
intensification and extensification. A parameter (r, from 0 to 1) is defined as the ratio of intensification, 101 
and thus 1-r of the land cover change is for extensification. Proximal relationships are defined by spatial 102 
constraints that determine the probability that a grid cell may contain a particular land use or land cover 103 
class. The current Demeter setup includes three spatial constraints: kernel density (KD), soil workability 104 
(SW) and nutrient availability (NA). KD measures the probability density of a land cover type around a 105 
given grid cell, and SW and NA are normalized scalars (0~1) for agricultural suitability.  For each land 106 
cover type and grid cell, KD is calculated by the spatial distance (D) at the runtime, and SW and NA are 107 
estimated from the Harmonized World Soil Database (HWSD, FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). 108 
A suitability index (SI) from 0 to 1 is defined as the weighted-average of the three spatial constraints to 109 
assess how suitable a grid cell is to receive a land cover type: 110 

SI = (wK*KD+wS*SW+wN*NA)/(wK+wS+wN)                                        (1) 111 

where wK, wS, and wN are the weights for KD, SW and NA, respectively, and the sum of them is 1. In the 112 
process of extensification, Demeter ranks candidate grid cells based on their suitability indices and selects 113 
the most suitable candidate grid cells following a user-defined threshold percentage (τ) for extensification. 114 
In other words, τ determines the number of grid cells to be selected and used for the tentative and actual 115 
conversion of land cover types. 116 
 117 
Table 1. Transition priorities by analyzing the 24-year global land cover records from the Land Cover 118 
CCI project of the European Space Agency Climate Change Initiative. The rows and columns represent 119 
the origins and destinations of the transitions, respectively. The smaller numbers indicate higher transition 120 
priorities. 121 

Final Land Types 
(origins) 

Final Land Types (destinations) 

Forest Shrub Grass Crop Urban Snow Sparse 

Forest 0 2 3 1 4 5 6 

Shrub 2 0 3 1 4 5 6 
Grass 1 2 0 3 5 6 4 
Crop 2 3 1 0 5 6 4 
Urban 1 4 3 2 0 6 5 
Snow 2 3 4 1 5 0 6 
Sparse 2 3 4 1 5 6 0 

 122 
2.2 Calibrate Demeter with historical land cover record and sensitivity analysis 123 
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As indicated above, users should define a few parameters including the treatment order, the transition 124 
priorities for allocating the land cover changes, the intensification ratio r, the selection threshold τ, the 125 
radius for calculating kernel density D, and weights for the spatial constraints (wK, wS, and wN), in order to 126 
use Demeter for downscaling projected land cover change. These parameters were determined empirically 127 
in previous studies. Here we calibrated these parameters for Demeter using a time series of global land 128 
cover records from the Land Cover project of the European Space Agency Climate Change Initiative 129 
(referred to as CCI-LC products hereafter). The CCI-LC products have been generated by critically 130 
revisiting all algorithms required for the generation of a global land cover product from various Earth 131 
Observation (EO) instruments, thus provide a globally consistent land cover record over two decades 132 
(1992-2015). The CCI-LC products are available at 300 m spatial-resolution and annual time step and 133 
classify the global land cover into 38 groups. We reclassified the CCI-LC products into the default 7 134 
FLTs (Table S1) and resampled them into 0.25° resolution with the official software tools, following the 135 
description of CCI-LC products in the user guide 136 
(http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf). Figure 1 shows 137 
large interannual global changes for the 7 FLT areas, especially for the forests and croplands, which have 138 
decreased and increased over 0.6 million km2 over the past two decades, respectively. We used the 139 
gridded 0.25° CCI-LC over the 24-year period as the observational data (below referred to “LC-grid-140 
obs”) and aggregated them into GCAM’s region-AEZ level to produce a synthetic GCAM-projected land 141 
cover change (below referred to “LC-AEZ-syn”). In this way, we can apply Demeter to LC-AEZ-syn to 142 
calibrate Demeter with the LC-grid-obs by tuning the parameters of Demeter.  143 

 144 
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 145 
Figure 1. Interannual changes of global Final Land Types (FLTs) areas over 1992-2015 relative 146 

to 1992, as indicated by the ESA CCI-LC product. 147 

A preliminary sensitivity analysis of Demeter indicated that the downscaled results are not sensitive 148 
to treatment order and transition priorities (Le Page et al., 2016), thus we used the default treatment order, 149 
i.e., from least to greatest: Urban, Snow, Sparse, Crops, Forest, Grass, Shrub. We decided the transition 150 
priorities by sorting the probabilities of transitioning one FLT to another based on the 24-year CCI-LC 151 
record (Table 1). To calibrate the other six parameters (r, τ, wK, wS, wN and D), we sampled their values at 152 
equal intervals (Table 2) and generated all possible combination (23,100 in total) for a Monte-Carlo 153 
ensemble Demeter downscaling experiment, using LC-AEZ-syn as the input. The Monte-Carlo 154 
experiment generated 23,100 sets of downscaled 0.25-degree global land use and land cover areas, which 155 
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were compared against LC-grid-obs to calculate their similarities to the observational data, ranked by 156 
their discrepancies from the least to greatest to determine the likelihood of the parameters. We calculated 157 
the discrepancies as the root mean square error (Ey) between the downscaled and observed land cover 158 
areas for each year: 159 

                                                         (2) 160 
and the average of the discrepancies over the years (E): 161 

                                                                        (3) 162 
where g is the index for G grid cells over the globe (G = 265,852), l is the index for the L FLTs (L = 8), y 163 
is the index for Y years. We chose 1992, 2000, 2005, 2010 and 2015 to keep consistent with the GCAM 164 
time steps, thus Y = 5.  Ady,l,g and Aoy,l,g are the downscaled and observational land cover areas for grid 165 
cell g, FLT l and year y. The unit for Ey and E is km2. 166 

To test the model sensitivity to these key parameters, we conducted a sensitivity analysis using the 167 
results from the Monte-Carlo experiment. The first-order and total-order Sobol sensitivity indices were 168 
used to identify the model sensitivity to each of the six parameters (Saltelli et al., 2004). Let qi denotes the 169 

ith parameter (i=1,…,n, here n=6), e is the model outputs (i.e., the discrepancies between downscaled and 170 
observed land cover areas), the first-order Sobol index (Si) is defined as: 171 

                                                                      (4) 172 
Here Var and E are the statistical variance and expectation. And the total-order Sobol index (STi) is 173 

defined as the sum of sensitivity indices at any order involving parameter qi, where Sijk…n denotes the nth-174 
order sensitivity index: 175 

                                     (5) 176 
The first-order Sobol index represents the contribution to the output variance of the main effect of qi, 177 

therefore it measures the effect of varying qi alone; and the total-order Sobol index measures the 178 

contribution to output variance of qi and includes all variance caused by its interactions with other 179 
parameters. Larger Sobol indices indicate higher parameter sensitivities. 180 

 181 
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Table 2. Key parameters, and their sampling range and steps for calibration in this study.  184 

Name Definition Min Max Sampling step 

wN 
Weight of soil nutrient availability for calculating 

suitability index 
0 1 0.2 

wS 
Weight of soil workability for calculating 

suitability index 
0 1 0.2 

wK 
Weight of kernel density for calculating suitability 

index 
0 1 0.2 

r Intensification ratio 0 1 0.1 

τ Selection threshold 0 1 0.1 

D Kernel radius 10 100 10 

 185 
2.3 Propagate the parameter uncertainties to GCAM LULCC downscaling 186 

We selected parameter combinations which produced the smallest 5% Es based on their rankings 187 
from the Monte-Carlo experiment, and used them as ‘acceptable’ parameters to represent the parameter 188 
uncertainties after calibration. We used Demeter with these parameters to downscale the GCAM-189 
projected LULCC at 5-year time step from 2005 to 2100 under a reference scenario to examine the 190 
uncertainties of land cover areas for each FLT to demonstrate how different the downscaled LULCC can 191 
be induced by the uncertain parameters. The reference scenario is a business-as-usual case with no 192 
explicit climate mitigation efforts that reaches a higher radiative forcing level of over 7 W m-2 in 2100. 193 
We only saved the downscaling results in 2005, 2010, 2050 and 2100 considering the size of the output 194 
files and computational cost. Finally, we calculated the standard deviation across the downscaled land 195 
cover areas for each FLT driven by different parameter combinations, which indicates the parameter-196 
induced model uncertainties.  197 

 198 
3. Results 199 
3.1 Parameter estimation and sensitivity  200 

The Monte-Carlo Demeter experiment driven by the 23,100 ensemble parameter sets produced 201 
diverse downscaled LULCC realizations. As shown in Figure 2a, the disagreements between the 202 
downscaled FLT fraction and the reference record, measured by the average root mean square error (E, 203 
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Equation 3) for all the FLTs and grid cells over the five years (1992, 2000, 2005, 2010 and 2015), are 204 
mainly distributed between 8 and 17 km2 (about 1%-3% of the area of a 0.25-degree grid cell). 205 

 206 

Figure 2. (a) Histogram of the Es, i.e., the global average discrepancies between the downscaled 207 

and observed land cover areas with the 23,100 ensemble parameter sets; the vertical dashed line 208 

in (a) shows the interval of the ‘acceptable’ 5% parameters, as described in Section 2.3; (b) the 209 

probability density of each of the ‘acceptable’ 5% parameters, as shown by the violin plots; the 210 

black lines across the six parameters show all the ‘acceptable’ 5% parameter sets, and the red 211 

line indicates the global optimal parameter values; the box plots and horizontal bar inside the 212 

violin plots indicate the interquartile ranges and the mean of the parameter values, respectively. 213 

(c) same as (b) but shows the ‘best’ 10% parameter sets. Note that the values of D were divided 214 

by 100 for the purpose of illustration in (b) and (c). 215 

 Figure 3 shows the relationship between the values of the six parameters and their corresponding Es, 216 
resulted from the Monte-Carlo experiment. We found that the Es are significantly correlated to all the six 217 
parameters (p<0.01). The intensification ratio (r) has the strongest linear correlation with the Es 218 
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(R2=0.64), followed by the selection threshold (t) (R2 = 0.24). Overall, the parameters wK and t  are 219 
positively correlated with Es (positive slopes of the trendlines), while wN, wS , r and D hold negative 220 
correlations, indicating that smaller wK and t , and larger wN, wS , r and D are associated with smaller Es.  221 

 222 

Figure 3. Relationships between the six Demeter parameters and the global average 223 

discrepancies between the downscaled and observed land cover areas (Es) resulted from the 224 

Monte-Carlo ensemble experiment. Box plots shows distributions of the Es and the solid lines 225 

show the linear trends. 226 

Figure 4 shows the first-order and total-order Sobol indices calculated with the parameter ensemble 227 
and the associated Es. As indicated by the first-order Sobol indices, the intensification ratio r directly 228 
contributes about 59% to the variability of the Es, followed by the selection threshold t and kernel radius 229 
D, which directly contribute 29% and 1% to the variability of the Es. The other parameters (wN, wS and 230 
wK) have little direct contributions to the E variability. The total-order Sobol indices showed similar order 231 
of parameter importance. r and its interactions with other parameters contributed about 70% of the E 232 
variability, t contributed about 40%, D contributed about 3%, and wN, wS and wK contributed 2% 233 
respectively. It is clear that the downscaling error is most sensitive to the intensification ratio, followed by 234 
the selection threshold, but not sensitive to the kernel radius and the weighting factors of the spatial 235 
constraints. 236 
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 237 

Figure 4. Sobol sensitivity indices for the six Demeter parameters. Higher indices indicate higher 238 

sensitivities. 239 

We identified the ‘best’ parameters, which are associated with the lowest E, and marked them as the 240 
red line in Figure 2b. We also selected ‘acceptable’ parameters that have Es lower than 5% quantile in 241 
Figure 2a (hereafter referred to as ‘top 5% parameters’) and thus have the similar performance as the 242 
‘best’ parameters (differences of E < 1%), and used them to represent the uncertainty of the parameters 243 
shown as the probability density distributions in Figure 2b. The best wN, wS, wK, r, t and D are 0, 0.6, 0.4, 244 
1, 0.6 and 100, respectively. All the parameters are constrained with the calibration comparing to their 245 
uniform prior distributions. The intensification ratio r has been constrained into a small range (0.9-1.0 and 246 
mostly 1.0) from 0-1.0. Constraining on the other parameters are relatively weaker: wN, wS, and wK have 247 
been narrowed to the ranges of 0-0.8, 0.2-1.0, and 0-0.8, and primarily distributed in 0-0.4, 0.2-0.6 and 0-248 
0.4 (the first and third quantiles), respectively; t and D have been constrained into the range of 0.2-1.0 249 
and 30-100 with the first and third quantiles being 0.2-0.8 and 40-90, respectively. This analysis again 250 
indicates that r is the most sensitive parameter, therefore its posterior distribution can be significantly 251 
narrowed through the calibration. In addition, we also selected the ‘acceptable’ parameters that have Es 252 
lower than 10% quantile (top 10% parameters), as shown in Figure 2a and 2c. Similar distribution of top 253 
10% parameters are found as that of the top 5% parameters, with some small extension on the ranges of 254 
5% parameters. 255 
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3.2 Performance of Demeter in downscaling LULCC   257 
Demeter generally performs well in downscaling the synthetic land use and land cover change with 258 

small disagreements with the reference data. For all FLTs, the disagreements between the downscaled 259 
FLT fraction and the reference record in 1992 (i.e., E1992 in Equation 2), are close to zero since we used it 260 
as the harmonization year. The disagreements in 2000 (E2000) are mainly distributed in a range between 5 261 
and 15 km2 (about 1%-2% of a 0.25-degree grid cell), with the median about 10 km2 and the mean 262 
slightly above 12 km2 (Figure 5h). The disagreements increase over years at a rate of about 1 km2 per 5-263 
year time step and reach 13-24 km2 (median: 15 km2; mean: 18 km2) in 2015. Overall, the average 264 
disagreements over the five years (E) mainly distributed in 8-17 km2 (also shown in Figure 2a), with the 265 
median of about 10 km2 and the mean of about 12 km2. 266 

 267 
Figure 5. Possibility densities for the Es between downscaled and observational Final Land Type 268 

areas for 1992, 2000, 2005, 2010, 2015 and the mean of the five time-steps. The box plots and 269 

horizontal bar inside the violin plots indicate the interquartile ranges and the mean of the 270 

parameter values, respectively. Note that the Es for Snow are close to 0 thus not visible in the 271 

figure. 272 
 273 

The errors for each of the FLTs follow the same increasing trend over the years. Forest and crop have 274 
the largest disagreements between the downscaled and reference distributions with the errors are 275 
primarily located in the range of 20-40 km2 in average over the five time steps (Figure 5a,d). The errors 276 
for sparse lands are relatively smaller, which mainly fall into the range of 10-20 km2 (Figure 5g), 277 
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followed by grass, shrub and urban, with the errors are mainly distributed in 0-10 km2 averagely over the 278 
five years. Errors for snow is near zero since there was little areal change for this FLT in the CCI-LC 279 
record (Figure 1) and little LULCC allocation was needed in the downscaling process over the years. 280 

 281 

Figure 6. Comparison between the observed and downscaled Final Land Type with optimal 282 

parameters over the 265,852 0.25-degree grid cells in 2015. The blue solid lines show the 1:1 283 

line, and the red dashed lines show the 95% confidence intervals. 284 

Figure 6 shows the comparison between reference gridded CCI-LC FLTs and the downscaled FLTs 285 
driven by the best parameters (see Section 3.1) among the 265,852 0.25-degree grid cells in 2015. Except 286 
for urban, the downscaled land cover of other FLTs match the reference record very well (all R2 are above 287 
0.98). The R2 is 1 for snow due to little change of snow and ice area in the CCI-LC record. Figure 7 288 
demonstrates the spatial distribution of FLT fraction from the reference data and best downscaled results, 289 
together with their differences, using crop as an example. We find that the downscaled results have 290 
successfully reproduced the spatial pattern of crops from the reference data, and similar conclusions can 291 
be drawn for other FLTs (see Figure S2-S6; figure for Snow was not shown because of little change for 292 
this FLT). However, misallocation of the land cover change takes places in most region-AEZs, especially 293 
where LULCC were significant (e.g., Brazil, Eastern China, temperate Africa and Northern Euroasia; 294 
Figure 7 and S1-S5) over the study years, likely due to the application of improper global ratio of 295 
intensification. For example, the Northern China plain has experienced extensive urbanization by 296 
converting a large area of cropland into urbans during the past few decades (Liu et al., 2010). However, 297 
since the calibrated intensification ratio is high (Figure 2), Demeter tends to underestimate the urban 298 
expansion and thus overestimate cropland area at where should be urbanized. Similarly, cropland has 299 
been largely expanded and thus applying a high intensification ratio could not capture such changes.     300 
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 301 

 302 

Figure 7. Spatial pattern of the observed and downscaled Crop density (measured by percentage 303 

fraction of the grid cell), and their differences in 2015. The grey dot-lines show the boundaries of 304 

the GCAM region-AEZs. 305 



 16 

3.3 Uncertainty propagation 306 
While applying the ‘acceptable’ parameters (top 5% and 10%) in downscaling GCAM projections of 307 

LULCC under the reference scenario, we found that these well-constrained parameters induced 308 
considerable uncertainties in the downscaled results. For each grid cell, we calculated the standard 309 
deviation (s) of the downscaled land cover areas with different parameters for each FLT. Figure 8 shows 310 

the mean s of the 265,852 0.25-degree grid cells over the globe for 2005, 2010, 2050 and 2100, as well as 311 

the spatial variability of s (calculated as the standard deviation over the grid cells and shown as the 312 
shaded area in Figure 8). As shown by the grey lines and shades in Figure 8, the uncertainty of top 5% 313 
parameters has minor effect on downscaled Urban and Snow areas, since GCAM projected little areal 314 
changes of urban and snow. Downscaled sparse areas were slightly affected by the choice of parameters, 315 
indicated by small mean s (about 2 km2 per grid cell). However, the other FLTs, including Forest, Shrub, 316 

Grass and Crop have larger ss, which also showed an increasing trend over time. The global mean s for 317 
Forest and Shrub reached about 3 to 4 km2 per grid cell and about 6 to 8 km2 for Grass and Crop in 2100. 318 
The spatial variability of s was also larger for these FLTs, for example, the standard deviation of s 319 

reached over 15 km2 per grid cell in 2100 for Crop, and the maximum s can be over 350 km2 per grid cell 320 
in some grid cells (Figure S7). Similar results can be found by using the top 10% parameters, but with 321 
slightly higher magnitudes (red lines and shaded areas in Figure 8 and Figure S8).  322 

 323 
Figure 8. The Mean (shown as the solid lines) and standard deviations (s, shown as the shaded 324 

area) for the downscaled Final Land Type (FLT) areas, when propagating the parameter 325 

uncertainties into the GCAM-projected land use and land cover change downscaling in the 21st 326 

century. The black and red colors represent using the top 5% and 10% parameters, respectively. 327 
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4. Discussion 328 
To date, there has been only a handful of methods for downscaling projected global land use and land 329 

cover change. For example, Oskins et al (2016) fitted a statistical model relating coarse-scaled spatial 330 
patterns in land cover classes to finer-scaled land cover and other explaining variables. Many more 331 
studies used complex land use modeling approach (e.g., Houet et al 2017, Oskins et al 2016, Meiyappan 332 
et al 2014, Hurtt et al 2011, Souty et al 2012) that combines a variety of socioeconomic processes to 333 
provide global scale land use allocations. Our results demonstrated that Demeter is an effective tool for 334 
downscaling global land use and land cover change, although it adapts a relatively simpler approach. 335 
However, choices of parameter values are critically important for a simple model, since it is possible that 336 
some complicated processes are simplified to be represented by a single parameter. Although an 337 
uncalibrated Demeter can lead to noticeable errors and uncertainties in downscaled land cover areas, our 338 
results have shown the effectiveness of the calibration efforts in minimizing the downscaling errors and 339 
constraining the uncertainties.  340 

A central purpose of our study is to making suggestions for setting up parameters for Demeter’s 341 
global applications, shown as the global optimal values in Figure 2. Interestingly, we found that the 342 
parameters of intensification ratio (r) and selection threshold (t) strongly affected the downscaled results, 343 
while the weights of the spatial constraints and kernel radius showed small impacts on the results. This 344 
result indicates that the selected spatial constraints (soil workability and nutrient availability) and spatial 345 
autocorrelation (measured by kernel density) provide loose constrains on the land allocation in the 346 
downscaling process, therefore the users should focus more on the quality of other parameters such as r 347 
and t to which the model is more sensitive. In addition, the intensification ratio has been strictly 348 
constrained to a range close to 1.0, suggesting that the intensification of land cover, especially cropland, 349 
may be the major contributor to the global land use and land cover change, thus spatial constraints on 350 
extensification are not very effective. We also noticed that the optimal weight for soil nutrient availability 351 
for calculating the suitability indices is zero (Figure 2) and the model. A possible reason is that the soil 352 
nutrient availability has similar spatial distribution as the cropland in ESA-CCI data, thus provides little 353 
additional information in constraining the downscaling processes (Figure S10). This result suggests that 354 
the users could ignore the input of soil nutrient availability if it is not available or difficult to collect, and 355 
the quantification of the downscaling uncertainty is not required.  356 

There has been a number of numerical methods for model calibration, such as gradient methods 357 
(Ypma, 1995), evolutionary algorithms (Ashlock, 2006), and data assimilation techniques (Kalnay, 2002). 358 
Our calibration method is relatively simpler, and the sampling steps are relatively coarse. As a result, it is 359 
possible that the calibrated parameters can be further improved with a more rigorous calibration strategy, 360 
although these biases should be small since the sampling bins are narrow and the sensitive parameters are 361 
well constrained (Figure 2). However, our method has a few advantages for this particular global land use 362 
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and land cover change downscaling model calibration problem. First, we sampled the whole parameter 363 
space thus our Monte-Carlo downscaling experiments can well represent the parameter uncertainties. 364 
Second, the other methods mentioned above typically adjust model parameters and run the model 365 
iteratively to find the parameters to hit the local or global minimum cost function value (Chong and Zak, 366 
2013), and thus can be very time consuming due to the size of the datasets and the difficulty of algorithm 367 
parallelization. The Monte-Carlo ensemble runs of Demeter in our method can be easily parallelized and 368 
thus is computationally efficient. Finally, the saved downscaled results from the global Monte-Carlo 369 
downscaling experiment can be reused for regional applications. Our study provided an optimal set of 370 
Demeter parameters. It is worth noting that these parameters are optimized to minimize the average 371 
discrepancies between the downscaled and historically observed land cover areas at the global scale, thus 372 
they may need to be recalibrated when Demeter is applied to a particular region. For example, the best 373 
estimate of the intensification ratio is 1 for a global downscaling experiment, probably due to that 374 
intensification is a more common phenomena than extensification during the past land use and land cover 375 
change in the past two decades as recorded by the ESA-CCI data. However, this high intensification ratio 376 
for Crop may be more realistic for the regions with long-term agricultural history (e.g., India), while it 377 
should become lower for the United States (US) where cropland extensification rapidly happened in the 378 
past century. We extracted the grid cells in the conterminous US (grid cells between 25° N and 50° N, and 379 

125° W and 65° W) and India (grid cells between 7° N and 33° N, and 68° E and 98° E), and used them 380 
together with the same method as the global calibration to determine the optimal parameters for the US 381 
and India, which clearly showed that the intensification ratio remained 1 for India, but moved towards 382 
lower values for the US (Figure S9). Therefore, we recommend future efforts on examining reginal 383 
parameterization should be made for Demeter’s applications at specific regional/AEZ levels. Since some 384 
of the key parameters have clear physical definition (e.g., the intensification ratio), while the global 385 
optimal values could be used as a starting point, it would be helpful to review the local historical land use 386 
change to infer these parameters when applying Demeter to a specific region.  387 

In addition, although the downscaled urban land use can capture most of the variability in reality, it is 388 
clear that Demeter’s performance for urban is not as good as that for other land cover types (Figure 6). On 389 
the other hand, accurate projection of the spatial extent and pattern of urbanization is getting more 390 
important for better understanding its environmental, ecological and socioeconomic impacts in such an 391 
era of rapid urbanization (Georgescu et al., 2012; Jones et al., 1990; Merckx et al., 2018; Zhang et al., 392 
2018). Thus, a key future effort should be made for improving the downscaling accuracy of urban land 393 
use. The relative larger errors could be either due to the limited consideration of complex urbanization 394 
processes and the lack of specific parameterization of the urban land cover type. While incorporating 395 
better representation of urbanization in Demeter can be more complicated, it is possible to improve the 396 
model performance by further parameterizing the model with more historical urban data. For example, 397 
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global satellite-observed nightlights have been used for mapping urban area (Elvidge et al., 2009; Li and 398 
Zhou, 2017b; Zhou et al., 2014) and producing a global record of annual urban dynamics (1992-2013) (Li 399 
and Zhou, 2017a), which will be particularly useful for the future calibration of Demeter on urban 400 
dynamics. 401 

Model calibration usually can provide several sets of parameters to allow the calibrated model to give 402 
similar results, which is called equifinality (Beven and Freer, 2001). As a result, the calibrated parameters 403 
become another source of uncertainty in model-simulated results. The equifinality also exists in our 404 
calibrations. We have observed noticeable growing uncertainties in downscaled land cover areas while 405 
propagating the parameter uncertainties into the Demeter downscaling practices with GCAM projected 406 
LULCC in the 21st century. Therefore, while calibration can remarkably reduce the uncertainty of the 407 
parameters, it may be better to use sets of constrained parameters rather than a single set of ‘best’ 408 
parameters in the practice of Demeter, for the purpose of accounting for the parameter uncertainty and 409 
providing more reliable land use and land cover change downscaling. Moreover, it is worth noting that the 410 
calibrated parameters are tuned for FLTs, which we believe have covered most land cover types and are 411 
directly useful in most cases. When the users need to consider more FLTs in their global applications, the 412 
optimal values introduced in this study can be used as a starting point for further tuning.   413 

 414 
5. Conclusions 415 

We developed a Monte-Carlo ensemble experiment for Demeter, a land use and land cover change 416 
downscaling model of GCAM, analyzed the model’s sensitivity to its key parameters, and calibrated the 417 
parameters to minimize the mismatch between the model-downscaled and satellite-observed land use and 418 
land cover change in the past two decades. We identified the optimal parameter values for global 419 
applications of Demeter, and showed that the parameterization of Demeter substantially improved the 420 
model’s performance in downscaling global land use and land cover change. The intensification ratio and 421 
selection threshold turned out to be the most sensitive parameters, thus need to be carefully tuned, 422 
especially when Demeter is used for regional applications. Further, the small uncertainty of parameters 423 
after calibration can result in considerably larger uncertainties in the results when propagating them into 424 
the practice of downscaling GCAM projections, suggesting that Demeter users consider the 425 
parameterization equifinality to better account the uncertainties in the Demeter downscaled land use and 426 
land cover changes.  427 
 428 
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