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Abstract. 

A new Feed-Forward Neural Network (FFNN) model is presented to reconstruct surface ocean partial 

pressure of carbon dioxide (pCO2) over the global ocean. The model consists of two steps: (1) 

reconstruction of pCO2 climatology and (2) reconstruction of pCO2 anomalies with respect to the 

climatology. For the first step, a gridded climatology was used as the target, along with sea surface salinity 

and temperature (SSS and SST), sea surface height (SSH), chlorophyll a (Chl), mixed layer depth (MLD), 

as well as latitude and longitude as predictors. For the second step, data from the Surface Ocean CO2 Atlas 

(SOCAT) provided the target. The same set of predictors was used during step 2 augmented by their 

anomalies. During each step, the FFNN model reconstructs the non-linear relationships between pCO2 and 

the ocean predictors. It provides monthly surface ocean pCO2 distributions on a 1ºx1º grid for the period 

2001-2016. Global ocean pCO2 was reconstructed with a satisfying accuracy compared to independent 

observational data from SOCAT. However, errors are larger in regions with poor data coverage (e.g. Indian 

Ocean, Southern Ocean, subpolar Pacific). The model captured the strong interannual variability of surface 

ocean pCO2 with reasonable skills over the Equatorial Pacific associated with ENSO (El Niño Southern 

Oscillation). Our model was compared to three pCO2 mapping methods that participated in the Surface 

Ocean pCO2 Mapping intercomparison (SOCOM) initiative. We found a good agreement in seasonal and 

interannual variability between the models over the global ocean. However, important differences still exist

at the regional scale, especially in the Southern Hemisphere and in particular, the Southern Pacific and the 

Indian Ocean, as these regions suffer from poor data-coverage. Large regional uncertainties in 

reconstructed surface ocean pCO2 and sea-air CO2 fluxes have a strong influence on global estimates of 

CO2 fluxes and trends.
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1. Introduction.

The global ocean is a major sink of excess CO2 emitted to the atmosphere since the beginning of the 

industrial revolution. In 2011, the best estimate of the ocean inventory of anthropogenic carbon (Cant) 

amounts to 155 ± 30 PgC or 28% of cumulated total CO2 emissions attributed to human activities since 

1750 (Ciais et al., 2013). Between 2000 and 2009, the yearly average ocean Cant uptake was 2.3 ± 0.7 PgC 

yr-1 (Ciais et al., 2013). However, these global estimates hide substantial regional and inter-annual 

fluctuations (Rödenbeck et al., 2015), which need to be quantified in order to track the evolution of the 

Earth’s carbon budget (e.g. Le Quéré et al., 2018).

 Until recently, most estimates of inter-annual sea-air CO2 flux variability were based on atmospheric 

inversions (Peylin et al., 2005, 2013; Rödenbeck et al., 2005) or global ocean circulation models (Orr et al.,

2001; Aumont and Bopp, 2006; Le Quéré et al., 2010). However, models tend to underestimate the 

variability of sea-air CO2 fluxes (Le Quéré et al., 2003), while atmospheric inversions suffer from a still 

sparse network of atmospheric CO2 measurements (Peylin et al., 2013). These approaches are increasingly 

complemented by data-based techniques relying on in situ measurements of CO2 fugacity or partial 

pressure (e.g. Takahashi et al., 2002, 2009; Nakaoka et al., 2013; Schuster et al., 2013; Landschützer et al., 

2013, 2016; Rödenbeck et al., 2014, 2015; Bitting et al., 2018;    Fay et al., 2014;). These techniques rely 

on a variety of data-interpolation approaches developed to provide estimates in time and space of surface 

ocean pCO2 (Rödenbeck et al., 2015) such as statistical interpolation, linear and non-linear regressions, or 

model-based regressions or tuning (Rödenbeck et al., 2014, 2015). These methods, their advantages and 

disadvantages are compared and discussed in Rödenbeck et al. (2015). This intercomparison did not allow 

identifying a single optimal technique but rather pleaded in favour of exploiting the ensemble of methods.

Artificial neural networks (ANN) have been widely used to reconstruct surface ocean pCO2 (open ocean: 

Lefèvre et al., 2005; Friedrich and Oschlies, 2009b; Telszewski et al., 2009; Landschützer et al., 2013; 

Nakaoka et al., 2013; Zeng et al. 2014; Bitting et al., 2018; coastal region: Laruelle et al., 2017). ANN fill 

the spatial and temporal gaps based on calibrated non-linear statistical relationships between pCO2 and its 

oceanic and atmospheric drivers. The existing products usually present monthly fields with a 1ºx1º spatial 

resolution and capture a large part of temporal-spatial variability. Methods based on ANN are able to 

represent the relationships between pCO2 and a variety of predictor combinations, but they are sensitive to 

the number of data used in the training algorithm and can generate artificial variability in regions with 

sparse data coverage (Bishop, 2006). 

This study proposes an alternative implementation of a neural network applied to the reconstruction of 

surface ocean pCO2 over the period 2001-2016. It belongs to the category of Feed Forward Neural 
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Networks (FFNN) and consists of a two-step approach: (1) the reconstruction of monthly climatologies of 

global surface ocean pCO2 based on data from Takahashi et al. (2009), and (2) the reconstruction of 

monthly anomalies (with respect to the monthly climatologies) on a 1°x1° grid exploiting the Surface 

Ocean CO2 Atlas (SOCAT) (Bakker et al., 2016). The model is easily applied to the global ocean without 

any boundaries between the ocean basins or regions. However, as mentioned before, it is still sensitive to 

the observational coverage. This limitation is partly overcome by the two-step approach as the 

reconstruction of monthly climatologies draws on a global ocean gridded climatology (Takahashi et al., 

2009), thereby keeping FFNN output close to realistic values. Furthermore, the reconstruction of monthly 

climatologies during the first step allows taking into account a potential change in seasonal cycle in 

response to climate change when applied to time slices or to model output providing the drivers, but no 

carbon cycle variables. 

The remainder of this paper is structured as follows: section 2 introduces datasets used during this study 

and describes the neural network; section 3 presents results for its validation and qualification, as well as a 

comparison to three mapping methods part of the Surface Ocean pCO2 Mapping intercomparison 

(SOCOM) exercise (Rödenbeck et al., 2015). Results and perspectives are summarized in the last section.

2. Data and method.

2.1. Data.

The standard set of variables known to represent physical, chemical and biological drivers of surface ocean 

pCO2 – mean state and variability – (Takahashi et al., 2009; Landschützer et al., 2013) were used as input 

variables (or predictors) for training the FFNN algorithm. These are sea surface salinity (SSS), sea surface 

temperature (SST), mixed layer depth (MLD), chlorophyll a concentration (CHL), atmospheric CO2 mole 

fraction (xCO2,atm). Based on Rodgers et al. (2009) who reported a strong correlation between natural 

variations in dissolved inorganic carbon (DIC) and sea surface height  (SSH), SSH was added as a new 

driver to this list. First tests suggested that the inclusion of SSH does not significantly improve the accuracy

of reconstructed pCO2 at global scale. At basin and regional scale, however, adding SSH improves the 

spatial pattern of reconstructed pCO2 and the accuracy of our method.

For the first step, the reconstruction of monthly climatologies, the Takahashi et al. (2009) monthly pCO2 

gridded climatology (1°x1°) was used as the target. The original climatology was constructed by an 

advection-based interpolation method on a 4ºx5º grid. It was interpolated on the 1°x1° SOCAT grid which 

is also the resolution of the final output for the FFNN.  

For the second step, the target is provided by the observational database SOCAT v5 (Bakker et al., 2016). 

We used a gridded version of this dataset that was derived by combining all SOCAT data collected within a 

1ºx1º box during a specific month. SOCAT v5 represents global observations of sea surface fugacity of CO2

(fCO2) over the period 1970 to 2016. It includes data from moorings, ships and drifters. These data are 
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distributed irregularly over the global ocean with 188274 gridded measurements over the Northern 

Hemisphere and 76065 over the Southern Hemisphere. In order to ensure a satisfying spatial and temporal 

data coverage, we limited the reconstruction to the period 2001-2016, which represents ~77% of the 

database (Fig. 1(a)). 

The following formula is used to convert fCO2 to pCO2 (Körtzinger et al., 1999):

 ,  (1)

where fCO2 and pCO2 are in μatm, p is the total pressure (Pa), R=8.314 JK-1 is the gas constant, T is the 

absolute temperature (K). Parameter B (m3mol-1) is estimated as: B = (-1636.75 + 12.0408 T – 3.27957 * 

10-2 T2 + 3.16528 * 10-5 T3) 10-6 . The parameter δ is the cross virial coefficient (m3mol-1): δ = (57.7 – 

0.118T) 10-6. The total pressure is from the Jena database (6h, 5ºx5º) based on the NCEP reanalysis (Kalnay

et al., 1996) (http://www.bgc-jena.mpg.de/CarboScope/?ID=s). 

Monthly global reprocessed products of physical variables from ARMOR3D L4 distributed through the 

Copernicus Marine Environment Monitoring Service (CMEMS) (0.25ºx0.25º) 

(http://marine.copernicus.eu/services-portfolio/access-to-products/?

option=com_csw&view=details&product_id=MULTIOBS_GLO_PHY_REP_015_002) were used for SSS,

SST and SSH (Guinehut et al., 2012). The GlobColour project provided monthly CHL distributions at 1ºx1º

resolution (http://www.globcolour.info/products_description.html). For MLD, daily data from the 

“Estimating the Circulation and Climate of the Ocean” (ECCO2) project Phase II (Cube 92), at 0.25ºx0.25º 

resolution (Menemenlis et al., 2008) were used. For xCO2 atmospheric, the 6h data from Jena CO2 

inversion s76_v4.1 on a 5ºx5º grid were selected (http://www.bgc-jena.mpg.de/CarboScope/?ID=s). Finally,

an ice mask based on daily “Operational Sea Surface Temperature and Sea Ice Analysis” (OSTIA) with a 

gridded 0.05ºx0.05º resolution (Donlon et al., 2011) was applied.

MLD and CHL were log-transformed before their use in the FFNN algorithm because of their skewed 

distribution. In regions with no CHL data (high latitudes in winter) log(CHL) = 0 was applied. It does not 

introduce discontinuities since log(CHL) is close to zero in the adjacent region.

All data were averaged or interpolated on a 1ºx1º grid and, depending on the resolution of the dataset, 

averaged over the month. It is worth noting that all datasets have to be normalized (i.e. centered to zero-

mean and reduced to unit standard deviation) before their use in the FFNN algorithm, for example:

.

Normalization ensures that all predictors fall within a comparable range and therefore avoids giving more 

weight to predictors with large variability ranges (Kallache et al., 2011).

As surface ocean pCO2 also varies spatially, geographical positions (lat, lon) after conversion to radians 
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were included as predictors. In order to normalize (lat, lon) the following transformation is proposed:

 

Two functions sin and cos for longitudes are used to preserve its periodical 0 to 360 degrees behavior and 

thus to consider the difference of positions before and after the 0º longitude. For step 2, data required for 

training were co-located at the SOCAT data positions that are used as a target for the FFNN model. Details 

are provided in the next section.

2.2. Method.

a) Network configuration and evaluation protocol

In this work, we use Keras, a high-level neural network Python library (“Keras: The Python Deep Learning 

library”, Chollet, 2015; https://keras.io) to build and train the FFNN models. The identification of an 

optimal configuration is the first step in the FFNN model building. This includes: the choice of number and

size of hidden layers (i.e., intermediate layers between input and output layers), connection type, activation 

functions, loss function and optimization algorithm, as well as the learning rate and other low-level 

parameters. Based on a series of tests and their statistical results (RMSE, correlation, bias) a hyperbolic 

tangent was chosen as an activation function for neurons in hidden layers, and a linear function for the 

output layer. As optimization algorithm, the mini-batch gradient descent or RMSprop was used (adaptive 

learning rates for each weight, Chollet, 2015; Hinton et al., 2012). The number of layers and neurons 

depends on the problem. For totally connected layers (i.e., a neuron in a hidden layer is connected to all 

neurons in the precedent layer and connects all neurons in the next one), that is the case here, it is enough to

have only one single hidden layer but two or more can help the approximation of complex functions (or 

complex relationships between the input and the output of the problem). 

The number of the FFNN layers and the number of neurons depends on one side on the complexity of the 

problem: the more layers and neurons, the better the accuracy of the output. However, the size also depends

on the number of patterns (data) used for training. The empirical rule advises to have a factor of 10 between

the number of patterns (data) and the number of connections, or weights to adjust (in line with Amari et al. 

(1997), we use a factor of 10 that necessitates a cross-validation to avoid overfitting). This limits the size, 

the number of parameters and incidentally the number of neurons, of the FFNN. This empirical rule was 

followed in this study.
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(1) Step 1: reconstruction of monthly climatologies

FFNN reconstructs a normalized monthly surface ocean pCO2 climatology as a nonlinear function of 

normalized SSS, SST, SSH, Chl, MLD climatologies and geographical position (longitude, latitude):

 (2)

Surface ocean pCO2 from Takahashi et al. (2009) provided the target. The dataset was divided into 50% for 

FFNN training and 25% for its evaluation. This 25% did not participate in the training. This set is used to 

monitor the performance of the training process and to drive its convergence. The remaining 25% (each 4th 

point) of the dataset were used after training for the FFNN model validation. More details about the FFNN 

training process can be found in Rumelhart et al. (1986) and Bishop (1995). Validation and evaluation 

datasets were chosen quasi-regularly in space and time to take into account all regions and seasonal 

variability. In order to improve the accuracy of the reconstruction, the model was applied separately for 

each month. We have developed a FFNN model with 5 layers (3 hidden layers). 12 models with a common 

architecture were trained. Tests with one model for 12 months showed a slight decrease in accuracy (not 

presented here). About 17500 data were available for each month to train the model, resulting in monthly 

FFNN models with about 1856 parameters. 

(2) Step 2: reconstruction of anomalies

During the second step, normalized pCO2 anomalies were reconstructed as a nonlinear function of 

normalized SSS, SST, SSH, Chl, MLD, xCO2 and their anomalies, as well as geographic position:

 (3) 

Surface ocean pCO2 anomalies computed as the differences between collocated pCO2 values based on 

SOCAT observations and monthly pCO2 climatologies reconstructed during the first step provided the 

targets: 

 (4) 

The set of target data was again divided into 50% for the training algorithm, 25% for evaluation and 25% 

for model validation. As in step (1) the model was trained separately for each climatological month. There 

were thus 12 models sharing a common architecture but trained on different data. At this step, in order to 

increase the amount of data during training and to introduce information on the seasonal cycle, the model 

was trained using as a target pCO2 data from the month in question as well as those from the previous and 

following month during the entire period 2001-2016. Figures 1 (b) and 1 (c) show an example of data 

distribution for the sole months of January over the period 2001-2016 (Fig. 1 (b)) and for the three months 

time-window December-January-February 2001-2016 used in the training algorithm of the January FFNN 

model (Fig. 1 (c)). In this particular example, the choice of three months provided a better cover of the 

region and doubled the number of data at high latitudes.  
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K-fold cross-validation was used for the evaluation and the validation of the FFNN architecture. Cross-

validation relied on K=4 different subsampling of the dataset to draw 25% of independent data for 

validation (Fig. S1). Each sampling fold was tested on 5 runs of the FFNN for each month. Each of these 5 

runs is characterized by different initial values that are chosen randomly. From these 5 results, the best was 

chosen based on root-mean-square-error (RMSE), r2 and bias. 

The final model architecture at step 2 had 3 layers (1 hidden layer). About 10000 samples were available 

for training for each month, thus, a model with 541 parameters was developed. Note that a higher number 

of parameters did not show a significant improvement of accuracy. 

b) Reconstruction of surface ocean pCO2

The previous section presented the development of the “optimal” architecture of a FFNN model for the 

reconstruction of global surface ocean pCO2, and the estimation of its accuracy.  This FFNN model was 

used to provide the final product for scientific analysis and comparison with other mapping approaches. In 

order to provide the final output, the selected FFNN architecture is trained on all available data: 100% of 

data for training, 100% for evaluation and 100% for validation. The network was executed 5 times 

(different initial values) and the best model was selected based on validation results considering root-mean-

square-error (RMSE), r2 and bias computed between network output and SOCAT derived surface ocean 

pCO2 data. The final model output is referred to as the LSCE-FFNN product.

2.3. Computation of sea-air CO2 fluxes.

Sea-air CO2 flux f was calculated following Rödenbeck et al. (2015) as:

  (5)

where k is the piston velocity estimated according to Wanninkhof (1992):

.    (6)

The global scaling factor was chosen as in Rödenbeck et al. (2014) with the global mean CO2 piston 

velocity equaling to 16.5 cm/h. Sc corresponds to the Schmidt number estimated according to Wanninkhof 

(1992). The wind speed was computed from 6-hourly NCEP wind speed (Kalnay et al., 1996). r  is 

seawater density in (5) and L is the temperature-dependent solubility (Weiss, 1974). pCO2 corresponds to 

the surface ocean pCO2 output of the mapping method.  was derived from the atmospheric CO2 

mixing ratio fields provided by the Jena inversion s76_v4.1 (http://www.bgc-jena.mpg.de/CarboScope/).
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3. Results.

3.1. Validation.

The subset of data used for network validation, that is 25% of the total, represents independent observations

as they did not participate in training during model development (see 2.2a). The skill of the FFNN to 

reconstruct monthly climatologies of surface ocean pCO2, was assessed by comparing collocated 

reconstructed pCO2 and corresponding values from Takahashi et al. (2009). The global climatology was 

reconstructed with a satisfying accuracy during step 1 with a RMSE of 0.17 μatm and r² of 0.93. Model 

output of step 2 was assessed by K-fold cross-validation as presented before: K=4 different subsets of 

independent data were drawn from the dataset and the network was run 5 times on each subset. From these 

20 results the best one was chosen based on RMSE, r2 and mean absolute error (MAE) (the bias is 

presented in Table S1). The combination of the four best model output was used for the statistical analysis 

summarized in Table 1. Metrics were computed over the full period (2001-2016) and with reference to 

SOCAT observations (independent data only). At the global scale, the analysis yielded a RMSE of ~17.97 

μatm, while the MAE was 11.52 μatm and r2 was 0.76.  These results are comparable to those obtained by 

Landschützer et al. (2013) for the assessment of a surface ocean pCO2 reconstruction based on an 

alternative neural network-based approach. The RMSE between SOCAT data and the climatology of pCO2 

from Takahashi et al. (2009) equals 41.87 μatm, larger than errors computed for the regional comparison 

between FFNN and SOCAT (Table 1). We also estimated the RMSE for the case of 100% data used for 

training. It equals 14.8 μatm and confirms the absence of overfitting.

 

Figure 2 (a) shows the time mean difference between the estimated pCO2 and pCO2 from SOCAT v5 data 

used for validation . Large differences occurred at high 

latitudes, in equatorial regions, along the Gulf Stream and Kuroshio currents – the regions with strong 

horizontal gradients of pCO2. Moreover, the standard deviation of residuals (Figure 2 (b)) in these regions 

was larger indicating that the model fails to accurately reproduce the temporal variability. The reduced skill 

of the model in these regions reflects the poor data coverage along with a strong seasonal variability (e.g. 

Southern Ocean) and/or high kinetic energy (e.g. Southern Ocean, Kuroshio and Gulf Stream currents) 

(Fig. 1 (a)). At the scale of ocean regions, (Table 1) the largest RMSE and MAE were computed for the 

Pacific Subpolar ocean (RMSE = 34.77 μatm, MAE = 23.12 μatm), while the lowest correlation coefficient 

was obtained for the equatorial Atlantic Ocean (r2 = 0.57). These low scores directly reflect low data 

density and are to be contrasted with those obtained over regions with better data coverage (e.g. Subtropical

North Pacific: RMSE = 15.86 μatm, MAE = 9.9 μatm, r2 = 0.77 or Subpolar Atlantic: RMSE = 22.99 μatm, 

MAE = 15.04 μatm, r2 = 0.76). Despite large time mean differences computed over the eastern Equatorial 

Pacific, scores are satisfying at the regional scale indicating error compensation by improved scores over 
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the western basin (RMSE = 15.73 μatm, MAE = 10.33 μatm, r2 = 0.79). Scores are low in the Southern 

Hemisphere (Table 1) and time mean differences are large (Fig. 2 (a)) reflecting sparse data coverage  (Fig. 

1 (a)). 

3.2. Qualification.

This section presents the assessment of the final time series of reconstructed surface ocean pCO2. The time 

series was computed using the best monthly models as described in section 2.2, as well as 100% of data for 

learning, evaluation and validation.

Results of the LSCE-FFNN mapping model were compared to three published mapping methods which 

participated in the “Surface Ocean pCO2 Mapping Intercomparison” (SOCOM) exercise presented in 

Rödenbeck et al. (2015) (http://www.bgc-jena.mpg.de/SOCOM/). These methods are: (1) Jena-MLS 

oc_v1.5 (Rödenbeck et al., 2014), a statistical interpolation scheme (data-driven mixed-layer scheme; 

principal drivers used in parametrisation: ocean-internal carbon sources/sinks, SST, wind speed, mixed-

layer depth climatology, alkalinity climatology); (2) JMA-MLR (updated version up to 2016) (Iida et al., 

2015), based on multi-linear regressions with SST, SSS and Chl a as independent variables, and (3) ETH-

SOMFFN v2016 (Landschützer et al., 2014), a two-step neural network model with SST, SSS, MLD, Chl a,

xCO2 as drivers. The time series of pCO2 and sea-air CO2 flux (f) were assessed over 17 biomes defined by 

Fay and McKinley (2014) (Fig. 3, Table 2). These biomes were derived based on coherence in SST, Chl a, 

ice fraction, maximum MLD and represent regions of coherent biogeochemical dynamics. 

We followed the protocol and diagnostics proposed in Rödenbeck et al. (2015) for the comparison of the 

mapping methods between each other, respectively to observations. The following diagnostics were 

computed: (1) the relative interannual variability (IAV) mismatch Riav (in %) and (2) the amplitude of 

interannual variations. The relative interannual variability (IAV) mismatch Riav (in %) is the ratio of the 

mismatch amplitude Miav of the difference between the model output and observations (its temporal 

standard deviation) and the mismatch amplitude Miav
benchmark of the “benchmark”. The latter was derived 

from the mean seasonal cycle of the corresponding model output where the trend of increasing yearly 

atmospheric pCO2 was added (see details in Rödenbeck et al., 2015). It corresponds to a climatology 

corrected for increasing atmospheric CO2, but without interannual variability. 

, (6)

where

,

,
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where “mean” is a mean over the region and year and

,

pCO2,SS is the seasonal cycle of pCO2 from the corresponding mapping method. CO2,atm estimates from 

xCO2 Jena CO2 inversion s76_v4.1 were used. 

Riav provides information on the capability of each method to reproduce the IAV compared to observations: 

a smaller Riav stands for better fit compared to the reference.  The amplitude of the interannual variations 

(Aiav) of sea-air flux of CO2 (its 2-month running mean) is estimated as the temporal standard deviation over

the period.   

3.2.1. Interannual variability.

The time series of globally averaged surface ocean pCO2 over the period 2001-2016 are presented in Figure

4 for LSCE-FFNN and the three other models. Surface ocean pCO2 (μatm) varied between the 4 mapping 

methods in the range of ±7 μatm (Fig. 4 (a)). Modeled pCO2 values were at the lower end for ETH-

SOMFFN and JMA-MLR, while LSCE-FFNN and Jena-MLS13 computed higher values. The same 

behavior was found for 12-month running mean time series (Fig. 4 (b)). Figure 4 (c) shows the 12-month 

running mean of the difference between computed pCO2 and SOCAT data (model – SOCAT) over the 

globe. JMA-MLR mostly underestimated observed pCO2 with a strong interannual variability of the misfit, 

especially at the end of the period with up to -5 μatm. The difference between ETH-SOMFFN output and 

SOCAT data fluctuated in the range of ±1 μatm, with an increase in amplitude up to -2 μatm from 2010 

onward. Jena-MLS13 overestimated observations with the difference in the range of 0-1 μatm. The 

difference between LSCE-FFNN and SOCAT varies around zero between -0.7 and 1 μatm. 

The model was assessed next at biome scale. Results for all biomes are presented in the supplementary 

material (Fig. S2, S3, S4). Two biomes with contrasting dynamics are discussed hereafter in greater detail: 

(1) the Equatorial East Pacific (biome 6) characterized by a strong IAV of surface ocean pCO2 and sea-air 

CO2 fluxes in response to ENSO, the El Niño Southern Oscillation (Feely et al., 1999; Rödenbeck et al., 

2015), and (2) the North Atlantic Permanently Stratified biome (biome 11) with a well-marked seasonal 

cycle, but little IAV (Schuster et al., 2013). Results for these biomes are presented in Figure 5.

Biome 6 is relatively well-covered by observations and represents a key region for testing the skill of the 

model to reproduce the observed strong IAV linked to ENSO. El Niño events are characterized by positive 

SST anomalies, reduced upwelling and decreased surface ocean pCO2 values. These episodes could be 

identified in all model time series (Fig. 5 (a)) with reduced pCO2 levels in 2004/2005 and 2006/2007 (weak 

El Niño), 2002/2003 and 2009/2010 (moderate El Niño), and 2015/2016 (strong El Niño). JMA-MLR (blue

curve) tended to underestimate pCO2 during weak El Niño events. It was underestimated during the La 
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Niña 2011-2012 event by Jena-MLS13. LSCE-FFNN and ETH-SOMFFN, both based on a neural network 

approach yielded similar results despite differences in network architecture and predictor datasets. 

Data coverage is particularly high over Biome 11 (Fig. 5 (b), (d), (f)). The seasonal cycle in this biome is 

dominantly driven by temperature. Modeled seasonal variability showed a good agreement across the 

ensemble of methods (Fig. 5(b)) with an increase in spring-summer and a decrease in autumn-winter. 

However, the amplitude can be different by up to 10 μatm between different models. The seasonal 

amplitude of pCO2 computed by JMA-MLR increased from smaller values at the beginning of the time 

series to higher ones in the middle of the period 2005-2012. The variability of seasonal amplitude was the 

highest for Jena-MLS13 in line with the 12-month running mean time series (Fig. 5 (d)). Again, similar 

seasonal amplitude and year-to-year variability of surface ocean pCO2 were obtained with LSCE-FFNN 

and ETH-SOMFFN (Fig. 5 (b), (d)). The yearly pCO2 mismatch (Fig. 5 (f)) shows that observed surface 

ocean pCO2 was underestimated by JMA-MLR at the beginning and at the end of the period by up to -6 

μatm, and overestimated during 2007-2011 by up to 8 μatm. Jena-MLS13 shows mostly positive 

differences in the range 0-2 μatm over the full period. LSCE-FFNN and ETH-SOMFFN vary around zero 

and between -2 – 2 μatm, being close to each other. 

3.2.2. Sea-air CO2 flux variability.

Sea-air exchange of CO2 was estimated using the same gas exchange formulation (4) and wind data speed 

(6-hourly NCEP wind speed) for each mapping data (Rödenbeck et al., 2005). It is worth noting that the 

sea-air flux is sensitive to the choice of the wind speed dataset (Roobaert et al., 2018).

Figure 6 (a) presents the global 12-month running mean of the sea-air CO2 flux for four mapping methods. 

All models showed an increase in CO2 uptake in response to increasing atmospheric CO2 levels, albeit with 

a strong between-model variability in multi-annual trends. There is less agreement between the methods 

compared to reconstructions of surface ocean pCO2 variability (Fig. 4 (b)). This results from the 

contribution of uncertainties in sea-air CO2 flux estimations over regions with poor data-coverage (mostly 

in the South Hemisphere: South Pacific, South Atlantic, Indian Ocean, South Ocean; see Fig. S5). 

Nevertheless, the relative IAV mismatch was less than 30% for all methods (Fig. 6 (b)), suggesting a 

reasonable fit to observational data. The relative IAV mismatch is, however, a global score and it is biased 

towards regions with good data coverage (Rödenbeck et al., 2015). The time series reconstructed in this 

study is too short to capture decadal variations and in particular the strengthening of the sink from 2000 

onward (Landschützer et al., 2016). LSCE-FFNN computed a slowdown of ocean CO2 uptake between 

2010 and 2013 with a flux of ~-1.8 GtC yr-1 compared to ~-2.2 GtC yr-1 for ETH-SOMFFN. A leveling-off 

was also found for JMA-MLR, albeit shifted in time. In general, the amplitudes of reconstructed CO2 fluxes
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across all four methods agreed within 0.2-0.36 PgC/yr. The weighted mean of IAV (horizontal line in Fig. 6

(b)) computed from the four methods included here was 0.25 PgC/yr. This value is close to the one of 

Rödenbeck et al. (2015) for the complete ensemble of SOCOM models (0.31 PgC/yr) estimated for the 

period 1992-2009. The largest amplitude was obtained for ETH-SOMFFN, ~0.35 PgC/yr. On the other 

hand, LSCE-FFNN has the smallest amplitude with 0.21 PgC/yr. Jena-MLS13 and JMA-MLR lie very 

close to the weighted mean value with 0.26 PgC/yr and 0.22 PgC/yr, respectively. The weighted mean and 

the dispersion of individual models around it, reflect the period of analysis (2001-2015, ETH-SOMFFN 

output provided up to 2015) and the total number of models contributing to it (see for comparison 

Rödenbeck et al., 2015). As such it does not provide information on the skill of any particular model.

The interannual variability of reconstructed sea-air CO2 fluxes (12-month running mean) showed a good 

agreement for biome 6 (East Pacific Equatorial, Fig. 7 (a)). A small discrepancy was found at the beginning

of the period. A strong increase was computed by Jena-MLS13 for 2010-2014 that was also identified on 

pCO2 variability (Fig. 5 (a)). Despite this, Jena-MLS13 has a low relative RIAV (26%), which confirms a 

tendency mentioned in Rödenbeck et al. (2015) that mapping products with a small relative IAV mismatch 

show larger amplitude. LSCE-FFNN and ETH-SOMFFN yielded comparable results (Fig. 7 (a), (c)) with 

relative IAV mismatches of 46% and 53%, respectively, and with amplitudes ~ 0.03 PgC/yr. Interannual 

variability reproduced by JMA-MLR falls within the range of the other models (Fig. 7 (c)), but with a RIAV 

of ~68%. 

Reconstructed sea-air CO2 fluxes over the North Atlantic Subtropical Permanently Stratified region (biome 

11) show large between model differences in amplitudes and variability. The two models based on a neural 

network show again a good agreement with RIAV of 17% for LSCE-FFNN and 20% for ETH-SOMFFN. 

Jena-MLS13 produced a strong seasonal variability (Fig. 7 (b)) up to 0.06 PgC/yr, and small RIAV of ~11%. 

Contrary to the other approaches, JMA-MLR did not reproduce a decrease in sea-air CO2 at the middle of 

the period by up to 0.02 PgC/yr (Fig. 7 (b)). The model is characterized by a RIAV of 46% and an amplitude 

of 0.013 PgC/yr.

3.3.3. Sea-air CO2 flux trend.

The long-term trend of sea-air CO2 fluxes is dominantly driven by the increase in atmospheric CO2 (see Fig.

S7). On shorter time scales, such as for the period 2001-2016, the interannual variability at regional scales 

reflects natural modes of climate variability and local oceanographic dynamics (Heinze et al., 2015).

Figure 8 shows the significant linear trends (p_val = 0.05) of sea-air CO2 fluxes for LSCE-FFNN (a), Jena-

MLS13 (b), ETH-SOMFFN (c) and JMA-MLR (d). A total (averaged over the globe) negative trend was 
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computed for all models, albeit with large regional contrasts, and LSCE-FFNN falls within the range: Jena-

MLS13, -0.0012 PgC/yr/yr (-0.0028 PgC/yr/yr, total value without significant t-test, Fig. S8); LSCE-

FFNN, -0.00087 PgC/yr/yr (-0.0032 PgC/yr/yr); JMA-MLR, -0.0013 PgC/yr/yr (-0.0037 PgC/yr/yr); ETH-

SOMFFN, -0.0025 PgC/yr/yr (-0.0059 PgC/yr/yr). LSCE-FFNN computed negative trends over most of the

Atlantic basin, Indian Ocean and South of 40oS, which contrasts with decreasing fluxes over the Pacific and

locally in the Antarctic Circumpolar Current. At first order, this broad regional pattern is found in all 

models. Regional maxima and minima are, however, more pronounced in Jena-MLS13 (Fig. 8 (b)) and 

ETH-SOMFFN (Fig. 8 (c)), while a patchy distribution at sub-basin scale is diagnosed for JMA-MLR.

The agreement in sign of computed linear trends from four models is presented in Fig. 9 (total linear trends 

without significant t-test). Over most of the ocean, all four models show very close sea-air CO2 tendency. In

the Indian Ocean (biome 14), on the other hand a positive trend was computed for JMA-MLR (0.0004 

PgC/yr/yr, and with t-test: 0.00006 PgC/yr/yr) while the three other models present a negative trend.  The 

differences between models were also found in the Pacific Ocean, especially the Southern Pacific. In the 

Eastern Equatorial Pacific region (biome 6) a total significant negative trend is presented by all models. All 

models reproduced a maximum in the southern part of biome 6 but they disagree about its amplitude and 

spatial distribution. Almost everywhere over the Atlantic Ocean the mapping methods produced the same 

sign of linear trend (Fig. 9). Only in the eastern part of the subtropical North Atlantic Jena-MLS13 gave a 

positive linear trend of fCO2 (Fig. 8 (b)).

According to LSCE-FFNN, the global ocean took up in average 1.55 PgC/yr between 2001-2015.This 

estimate is consistent with results from the other three models (Table 3) (see Table S2 for estimations per 

biomes). The spread between individual models falls in the range of the error reported in Landschützer et 

al. (2016), ±0.4-0.6 PgC/yr. Per biome, estimates of CO2 sea-air fluxes provided by LSCE-FFNN are 

similarly in good agreement with those derived from the other models.

4. Summary and conclusion.

We proposed a new model for the reconstruction of monthly surface ocean pCO2. The model is applied 

globally and allows a seamless reconstruction without introducing boundaries between the ocean basins or 

biomes. Our model relies on a two-step approach based on Feed-Forward Neural Networks (LSCE-FFNN). 

The first step corresponds to the reconstruction of a monthly pCO2 climatology. It allows to keep the output

of the FFNN close to the observed values in regions with poor data cover. At the second step, pCO2 

anomalies are reconstructed with respect to the climatology from the first step. The model was applied over

the period 2001-2016. Validation with independent data at global scale indicated a RMSE of 17.57 μatm, r2 

of ~0.76 and an absolute bias of 11.52 μatm. In order to assess the model further, it was compared to three 
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different mapping models: ETH-SOMFFN (self-organizing maps + neural network), Jena-MLS13 

(statistical interpolation), JMA-MLR (linear regression) (Rödenbeck et al., 2015). Network qualification 

followed the protocol and diagnostics proposed in Rödenbeck et al. (2015). 

Reconstructed surface ocean pCO2 distributions were in good agreement with other models and 

observations. The seasonal variability was reproduced satisfyingly by LSCE-FFNN, the yearly pCO2 

mismatch varied around zero, and relative IAV mismatch was 7%. LSCE-FFNN proved skillful in 

reproducing the interannual variability of surface ocean pCO2 over the Eastern Equatorial Pacific in 

response to ENSO. Reductions in surface ocean pCO2 during El Niño events were well reproduced. The 

comparison between reconstructed and observed pCO2 values yielded a RMSE of 15.73 μatm, r2 of 0.79 

and an absolute bias of 10.33 μatm over the Equatorial Pacific. The relative IAV misfit in this region was 

~17%. Despite an overall good agreement between models, important differences still exist at the regional 

scale, especially in the Southern Hemisphere and in particular, the Southern Pacific and the Indian Ocean. 

These regions suffer from poor data-coverage. Large regional uncertainties in reconstructed surface ocean 

pCO2 and sea-air CO2 fluxes have a strong influence on global estimates of CO2 fluxes and trends.     

 

Code and data availability.

Python code for pCO2 climatology reconstruction, 1st step of LSCE-FFNN model, python code for 

reconstruction of pCO2 anomalies, 2nd step of LSCE-FFNN model, are provided at the end of 

supplementary material. 

Time series of reconstructed surface ocean pCO2 and CO2 fluxes are distributed through the Copernicus 

Marine Environment Monitoring Service (CMEMS), http://marine.copernicus.eu/services-portfolio/access-

to-products/, search keyword: MULTIOBS.
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Figure 1: Spatial distribution of SOCAT data (number of measurements per grid point): (a) - period 2001-
2016; (b) - all months of January for period 2001-2016; (c) - all months of December-January-February for 
period 2001-2016.
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Figure 2: Time mean differences (μatm) between monthly LSCE-FFNN pCO2 and SOCAT pCO2 data used for 
evaluation of the model over the period 2001-2016 (a) and its std (b).

705
706
707
708

710



22

Figure 3: Map of biomes (after Rodenbeck et al. (2015); and Fay and McKinley (2014)) used for comparison. 
See table 2 for biome names.
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Figure 4: Global oceanic pCO2: black - LSCE-FFNN, blue - JMA, red - Jena, green - ETH-SOMFFN; (a) – global 
average monthly time series, (b) – global 12-month running mean average, (c) - yearly pCO2 mismatch (difference 
of mapping methods and SOCAT data).
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Figure 5: Surface ocean pCO2: Equatorial East Pacific (biome 6) (left) and Subtropical Permanently Stratified 
North Atlantic (biome 11) (right): black – FFNN, blue – JMA, red – Jena, green – ETH-SOMFFN; (a), (b) – 
monthly time series averaged over biome; (c), (d) – 12-month running mean averaged over biome; (e), (f) – yearly 
pCO2 mismatch (difference of mapping methods and SOCAT data).
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Figure 6: (a) – Interannual global ocean sea-air CO2 flux (12-month running mean); (b) – amplitude of interannual 
CO2 flux plotted against the relative IAV mismatch amplitude. The weighted mean is given as a horizontal line.
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Figure 7: Global ocean interannual sea-air CO2 flux (12-month running mean): (a) Equatorial East Pacific (biome 
6) and (b) Subtropical Permanently Stratified North Atlantic (biome 11). Amplitude of interannual CO2 flux plotted 
against the relative IAV mismatch amplitude: (c) Equatorial East Pacific (biome 6) (left) and (d) Subtropical 
Permanently Stratified North Atlantic (biome 11). The weighted mean is given as a horizontal line.
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Figure 8: Significant (p_val = 0.05) linear trend of fCO2 for common period 2001-2015: (a) – LSCE-FFNN; (b) – 
Jena-MLS13; (c) – ETH-SOMFFN; (d) – JMA-MLR.
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Table 1: Statistical validation of LSCE-FFNN. Comparison between reconstructed surface ocean pCO2 and 

pCO2 values from SOCAT v5 database not used in the training algorithm for the period 2001-2016 over the 
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Figure 9: Agreement between four mapping methods in their linear trend of sea-air CO2 flux. Color-bar represents 
the number of products that have the same sign of linear trend.
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global ocean (except for regions with ice-cover) and for large oceanographic regions. In round brackets: 

number of measurements per region

Model Latitude boundaries RMSE (μatm) r2 MAE (μatm)

FFNN Global 17.97 0.76 11.52 

Arctic (150) 76ºN to 90ºN 22.05 0.54 17.1 

Subpolar Atlantic 
(21903)

49ºN to 76ºN 22.99 0.76 15.04 

Subpolar Pacific 
(4529)

49ºN to 76ºN 34.77 0.65 23.12 

Subtropical Atlantic 
(41331)

18ºN to 49ºN 17.28 0.69 11.27 

Subtropical Pacific 
(41867)

18ºN to 49ºN 15.86 0.77 9.9 

Equatorial Atlantic 
(7300)

18ºS to 18ºN 17.27 0.57 11.44 

Equatorial Pacific 
(27092)

18ºS to 18ºN 15.73 0.79 10.33 

South Atlantic (3002) 44ºS to 18ºS 17.81 0.63 12.28 

South Pacific (12934) 44ºS to 18ºS 13.52 0.63 9.36 

Indian Ocean (2871) 44S to 30N 17.25 0.62 11.6 

Southern Ocean 
(16334)

90ºS to 44ºS 17.4 0.58 11.92 

Table 2: Biomes from Fay and McKinley (2014) used for time series comparison (Fig. 3)

Number Name

1 (Omitted) North Pacific Ice

2 Subpolar Seasonally Stratified North Pacific 

3 Subtropical Seasonally Stratified North Pacific 

4 Subtropical Permanently Stratified North Pacific 

5 Equatorial West Pacific 

6 Equatorial East Pacific 

7 Subtropical Permanently Stratified South Pacific 

8 (Omitted) North Atlantic Ice

9 Subpolar Seasonally Stratified North Atlantic 

10 Subtropical Seasonally Stratified North Atlantic 

11 Subtropical Permanently Stratified North Atlantic 

12 Equatorial Atlantic 

13 Subtropical Permanently Stratified South Atlantic 

14 Subtropical Permanently Stratified Indian Ocean 
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15 Subtropical Seasonally Stratified Southern Ocean 

16 Subpolar Seasonally Stratified Southern Ocean 

17 Southern Ocean Ice

Table 3: Mean of sea-air CO2 flux (PgC/yr) over the Global Ocean and per regions for period in common 

(2001-2015). Averages over the period 2001-2009 are presented between brackets. The last column 

presents a comparison to best estimates from Schuster et al. (2013) for the Atlantic Ocean (1990 – 2009). 

Region Latitude 

boundaries

LSCE-FFNN ETH-SOMFFN Jena-MLS13 JMA-MLR Schuster et al. 

(2013), 1990-2009

Global -1.55
(-1.44)

-1.67
(-1.47)

-1.55
(-1.41)

-1.74
(-1.62)

--- 

Arctic 76ºN to 90ºN -0.001 -0.001 -0.001 -0.001 -0.12±0.06

Subpolar 
Atlantic 

49ºN to 76ºN -0.15
(-0.15)

-0.14
(-0.12)

-0.15
(-0.15)

-0.16
(-0.15)

-0.21±0.06

Subpolar 
Pacific 

49ºN to 76ºN -0.003
(-0.005)

-0.009
(-0.004)

-0.006
(-0.004)

-0.027
(-0.021)

--- 

Subtropical 
Atlantic 

18ºN to 49ºN -0.21
(-0.19)

-0.21
(-0.19)

-0.2
(-0.18)

-0.21
(-0.2)

-0.26±0.06

Subtropical 
Pacific 

18ºN to 49ºN -0.45
(-0.46)

-0.49
(-0.48)

-0.47
(-0.46)

-0.49
(-0.47)

--- 

Equatorial 
Atlantic 

18ºS to 18ºN 0.085
(0.09)

0.085
(0.095)

0.08
(0.082)

0.1
(0.11)

0.12±0.04

Equatorial 
Pacific 

18ºS to 18ºN 0.42
(0.41)

0.4
(0.4)

0.44
(0.42)

0.38
(0.37)

--- 

South Atlantic 44ºS to 18ºS -0.17
(-0.16)

-0.18
(-0.16)

-0.18
(-0.17)

-0.23
(-0.22)

-0.14±0.04

South Pacific 44ºS to 18ºS -0.33
(-0.34)

-0.4
(-0.39)

-0.35
(-0.34)

-0.49
(-0.47)

--- 

Indian Ocean 44S to 30N -0.25
(-0.2)

-0.32
(-0.29)

-0.27
(-0.26)

-0.27
(-0.29)

--- 

Southern Ocean 90ºS to 44ºS -0.38 -0.29 -0.36 -0.26 --- 
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