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Abstract.

We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the

Integrated Forecasting System (IFS) at ECMWF, and compare it to the established operational spectral-transform formulation.

The novel Finite-Volume Module of IFS (henceforth IFS-FVM) integrates the fully compressible equations using semi-implicit

time stepping and non-oscillatory forward-in-time (NFT) Eulerian advection, whereas the spectral-transform IFS solves the hy-5

drostatic primitive equations (optionally the fully compressible equations) using a semi-implicit semi-Lagrangian scheme. The

IFS-FVM complements the spectral-transform counterpart by means of the finite-volume discretisation with a local communi-

cation footprint, fully conservative and monotone advective transport, all-scale deep-atmosphere fully compressible equations

in a generalised height-based vertical coordinate, applicable on flexible meshes. Nevertheless, both the finite-volume and

spectral-transform formulations can share the same quasi-uniform horizontal grid with co-located arrangement of variables,10

geospherical longitude-latitude coordinates, and physical parametrisations, thereby facilitating their comparison, coexistence

and combination in IFS.

We highlight the advanced semi-implicit NFT finite-volume integration of the fully compressible equations of the novel IFS-

FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parametrisation by means of a

generic interface. These developments—including a new horizontal-vertical split NFT MPDATA advective transport scheme,15

variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and a computa-

tionally efficient coding implementation—provide a basis for the efficacy of IFS-FVM and its application in global numerical

weather prediction. Here, numerical experiments focus on relevant dry and moist-precipitating baroclinic instability at various

resolutions. We show that the presented semi-implicit NFT finite-volume integration scheme on co-located meshes of IFS-FVM

can provide highly competitive solution quality and computational performance to the proven semi-implicit semi-Lagrangian20

integration scheme of the spectral-transform IFS.
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1 Introduction

Notwithstanding the achievements made over the last decades (Bauer et al., 2015), numerical weather prediction (NWP)

faces the formidable challenge to resolve rather than parametrise essential small-scale forcings and circulations in the multi-

scale global flow—most notably processes associated with the surface, convective clouds, gravity waves and troposphere-

stratosphere interaction. While there is a need for advancement in many aspects of global NWP model infrastructures, prereq-5

uisite are the ability of the numerical model formulations to accurately predict atmospheric flows throughout the large-scale

hydrostatic and small-scale nonhydrostatic regimes, and to run efficiently on emerging and future high-performance computing

architectures.

The spectral-transform (ST)—also known as pseudo-spectral—method was introduced in NWP following the work by

Eliasen et al. (1970) and Orszag (1970). As a model representation entirely in spectral (i.e. wavenumber) space is imprac-10

tical for NWP, the ST method maps between spectral and grid-point space, in order to solve different parts of the governing

equations in the space where the computations can be performed most efficiently. Typically, nonlinear terms and the physical

parametrisations are computed in grid-point space 1. Horizontal derivatives are computed in spectral space with formally high

accuracy, as are linear terms of the discretised governing model equations—in particular the constant-coefficient Helmholtz

problem resulting from the semi-implicit time stepping (Robert et al., 1972) can be solved directly and accurately in spectral15

space. Facilitated by the ST method, the unconditional stability of the semi-implicit scheme combined with semi-Lagrangian

(SL) advection in grid-point space permits very long time steps 2 and high efficiency (Ritchie et al., 1995; Temperton et al.,

2001). In global models, the ST method typically uses a spherical harmonics representation in spectral space and (reduced, i.e.

quasi-uniform) Gaussian grids (Hortal and Simmons, 1991; Wedi et al., 2015).

At ECMWF, the first forecast model using the ST method became operational in 1983, and the technique is still successfully20

applied today with the efficient SISL integration of the hydrostatic primitive equations in the Integrated Forecasting System

(IFS) (Wedi et al., 2015). Recent advancements helped to sustain the performance of the ST method (for details see Wedi

et al. (2013); Wedi (2014); Wedi et al. (2015) and Section 2.2) and enabled real-time medium-range global weather forecasts

at ECMWF with ≈ 9 km horizontal grid spacings in 2016 (Malardel et al., 2016). Furthermore, current research advanced

the applicability of the ST method into the realm of global convection-permitting forecasts with kilometer-scale horizontal25

grid spacings (Wedi and Düben, 2017). While the viability of the ST method at ECMWF is ensured for the next decade,

uncertainties particularly concerning the scalability of the quasi-global data-rich parallel communications in the STs exist in

the longer term (Wedi et al., 2013, 2015). In addition, these scalability issues could be exacerbated from the time when the

increase in horizontal resolution makes the nonhydrostatic formulation based on the fully compressible equations (Bubnová

et al., 1995; Bénard et al., 2010) essential, because the associated solution procedure in IFS requires—at least in its current30

1Radiation schemes naturally use spectral approaches, but this is independent from the discretisation of the dynamical core.
2The SL schemes are subject to a topological realisability condition based on the Lipschitz number which is related to the flow deformation (Smolarkiewicz

and Pudykiewicz, 1992; Cossette et al., 2014). However, in NWP this condition is typically much less restrictive than the advective CFL stability condition of

Eulerian schemes, see e.g. Diamantakis and Magnusson (2016).
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implementation—a predictor- corrector approach in the semi-implicit integration scheme which, among others, involves a

considerably larger number of STs per model time step (Bénard et al., 2010; Wedi et al., 2015).

The uncertainties concerning the ST method with regard to emerging and future high-performance computing (HPC) archi-

tectures is one of the main reasons for ECMWF and its European partners to look into alternative nonhydrostatic, all-scale

global model formulations and discretisation schemes to be incorporated in IFS. With this objective in mind, the Finite-Volume5

Module of IFS (henceforth IFS-FVM) is currently under development at ECMWF (Smolarkiewicz et al., 2016; Kühnlein

and Smolarkiewicz, 2017; Smolarkiewicz et al., 2017). An important property of the finite-volume (FV) method applied in

IFS-FVM is a compact spatial discretisation stencil in "grid-point" space, associated with a local distributed-memory commu-

nication footprint that contrasts with the global character of the STs. In addition, advantages of the FV method are inherently

local conservation and the ability to operate in complex, unstructured-mesh geometries. The lack of conservation is a common10

issue with standard SL schemes and a shortcoming in the current operational IFS. Conservation errors are presumed to con-

tribute to significant (moisture and temperature) biases in the upper-troposphere lower-stratosphere region (Wedi et al., 2015),

and an albeit small but systematic drift in air mass and tracer fields may affect the forecast quality at longer (sub-)seasonal

forecast ranges (Thuburn, 2008; Diamantakis and Flemming, 2014). The ability of FV methods to operate in complex, unstruc-

tured mesh geometries is of high relevance to global NWP. In the global (spherical or spheroidal) domains, the FV technique15

provides ample freedom for implementing efficient quasi-uniform resolution meshes, which circumvent the stiffness associ-

ated with the converging meridians towards the poles of the classical regular longitude-latitude grids commonly employed

with finite-difference (FD) discretisation methods (Prusa et al., 2008; Wood et al., 2014). Flexibility with respect to the mesh

is also important for implementing variable and/or adaptive resolution in atmospheric modeling systems, where locally finer

mesh spacings in sensitive regions (e.g. along coastlines or in mountainous areas) may provide an efficient way towards a more20

accurate representation of multi-scale interactions (Bacon et al., 2000; Weller et al., 2010; Kühnlein et al., 2012; Zarzycki et al.,

2014).

By default, IFS-FVM employs 3D semi-implicit integrators for the nonhydrostatic fully compressible equations (Smo-

larkiewicz et al., 2014). The all-scale integrators in IFS-FVM are conceptually akin to the semi-implicit schemes in IFS-ST

but more general. In both formulations, accurate and robust integration with large time steps is achieved by 3D implicit rep-25

resentation of fast acoustic and buoyant modes supported by the fully compressible equations. Furthermore, fully implicit

representation of slow rotational modes is another common feature of both IFS-FVM and IFS-ST (Temperton, 2011; Smo-

larkiewicz et al., 2016). Although implicit time stepping is predominantly associated with the computational stability, there

are indications for favourable balance and accuracy in multi-scale flows (Knoll et al., 2003; Dörnbrack et al., 2005; Wedi and

Smolarkiewicz, 2006). In contrast to IFS-ST, IFS-FVM’s semi-implicit schemes do not rely on constant coefficients of the30

operator that is represented implicitly, as is required with the spectral space representation (Bénard et al., 2010). In IFS-ST, the

operator that is represented implicitly results from linearisation of the full nonlinear governing equations about a horizontal

reference state, and the semi-implicit integration then treats the nonlinear residual (i.e. full nonlinear equations minus the linear

operator) explicitly (see Section 2.2). Constant coefficients effectively exclude orographic forcing from the linear operator of
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the semi-implicit scheme 3, leaving the associated effects solely to the explicit nonlinear residual. Furthermore, in the constant-

coefficient semi-implicit scheme different (i.e. split) boundary conditions are applied in the linear operator and the nonlinear

residual. Albeit still a research issue, the constant-coefficient semi-implicit scheme may incur reduced stability under more

complex orography for future high-resolution forecasts in the nonhydrostatic regime.

At ECMWF, the reign of the ST method with the SISL integrators still continues, but future challenges especially with respect5

to HPC, nonhydrostatic modeling and complex orography can be foreseen. IFS-FVM represents an alternative dynamical

core formulation that can complement IFS-ST with regard to these issues. However, to make IFS-FVM a useful option for

global medium-range weather forecasting at ECMWF, it needs to be shown that the model formulation can provide (at least)

comparable solution quality to the established IFS. In particular, a fundamental scientific question is whether a second-order

FV method on the co-located meshes employed in IFS-FVM can sustain the accuracy of the ST method of IFS-ST. Another10

important question concerns the computational efficiency of IFS-FVM. At ECMWF and generally in NWP, tight constraints

exist with regard to the runtime of the forecast models on the employed supercomputers. Therefore, we will evaluate the basic

efficiency in terms of time-to-solution of the current IFS-FVM formulation relative to the operational hydrostatic IFS-ST and

its nonhydrostatic extension. In the present paper, these issues are investigated using relevant atmospheric flow benchmarks

such as those defined in the context of the Dynamical Core Model Intercomparison Project (DCMIP, Ullrich et al., 2017).15

The DCMIP-2016 benchmarks involve large-scale hydrostatic and small-scale nonhydrostatic flows on the sphere, and also

emphasise the interaction of the dynamical core with selected parametrisations of sub-grid scale physical processes. In the

present paper IFS-FVM is verified against the proven IFS-ST at ECMWF for the baroclinic instability benchmark in the

hydrostatic regime, considering specific configurations and parametrisations of interest at ECMWF. IFS-FVM also participates

in the wider DCMIP-2016 model intercomparison, and this includes the nonhydrostatic supercell test case (Zarzycki et al.,20

2018).

The paper is organised as follows. Section 2 addresses the IFS-FVM and IFS-ST model formulations, and juxtaposes their

main formulation features. In particular, while Section 2.1 provides a description of the advanced semi-implicit finite-volume

integration scheme of the novel IFS-FVM, Section 2.2 summarises briefly the established IFS-ST. Furthermore, Section 2.3

discusses some basic aspects of the coupling to physics parametrisations, and Section 2.4 describes the common octahedral25

reduced Gaussian grid applied at ECMWF. Having described the model formulations, the IFS-FVM and IFS-ST benchmark

simulations are then compared in Section 3. Section 4 concludes the paper.

2 IFS model formulations

The IFS comprises a comprehensive model infrastructure to perform data assimilation and to run deterministic and probabilistic

global weather forecasts with various ranges and resolutions, supplemented with pre- and post-processing capabilities. The30

dynamical core lies at the heart of the NWP model infrastructure.

3Including orography in the implicit part involves multiplications which are standardly performed in grid-point space in the context of the ST method. In

principle, one could carry out the necessary multiplications in spectral space but this is usually avoided because of computational complexity.
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Table 1. Summary of the main formulation features of IFS-FVM and IFS-ST. For IFS-ST, information about the hydrostatic formulation

and its nonhydrostatic extension are provided (see main text for description). Abbreviations are: finite-element (FE), finite-difference (FD),

spectral-transform (ST), finite-volume (FV), semi-implicit (SI), two-time-level (2-TL). A summary of variables is provided in Table D1.

Model aspect IFS-FVM IFS-ST IFS-ST (NH option)

Equation system fully compressible hydrostatic primitive fully compressible

Prognostic variables ρd, u, v, w, θ′, rv , rl, rr , ri, rs ps, u, v, Tv , qv , ql, qr , qi, qs πs, u, v, d4, Tv , qv , ql, qr , qi, qs

Horizontal coordinates λ, φ (lon-lat) λ, φ (lon-lat) λ, φ (lon-lat)

Vertical coordinate generalised height hybrid η-pressure hybrid η-pressure

Horizontal discretisation unstructured finite-volume (FV) spectral-transform (ST) spectral-transform (ST)

Vertical discretisation structured FD/FV structured FE structured FD/FE

Horizontal staggering co-located co-located co-located

Vertical staggering co-located co-located co-located/Lorenz

Horizontal grid octahedral Gaussian/arbitrary octahedral Gaussian octahedral Gaussian

Time-stepping scheme 2-TL SI 2-TL constant-coefficient SI 2-TL constant-coefficient SI

Advection conservative FV Eulerian non-conservative SL non-conservative SL

2.1 Finite-volume module of IFS

IFS-FVM solves the deep-atmosphere 4, non-hydrostatic, fully compressible equations with a generalised height-based terrain-

following vertical coordinate. Numerical integration of the governing equations employs a centred two-time-level semi-implicit

scheme that provides unconditional stability in 3D with respect to the fast acoustic and buoyant modes, as well as slower rota-

tional modes (Smolarkiewicz et al., 2014, 2016). In Section 2.1.2, we extend the IFS-FVM semi-implicit integration to com-5

prehensive moist-precipitating dynamics coupled to the IFS cloud physics parametrisations—this generalises the simplified

moist-precipitating dynamics with different cloud physics coupling described in Smolarkiewicz et al. (2017). The IFS-FVM

semi-implicit integration is combined with non-oscillatory forward-in-time (NFT) Eulerian advection based on MPDATA (Mul-

tidimensional Positive Definite Advection Transport Algorithm) (Kühnlein and Smolarkiewicz, 2017). In the present work,

new efficient horizontal-vertical split NFT advective transport schemes based on MPDATA are developed and applied (Sec-10

tion 2.1.2 and Appendix A). In addition, improved efficacy with the Eulerian NFT MPDATA advection is sought by rigorous

implementation of variable time stepping. As reviewed in Section 2.1.3, the unstructured horizontal spatial discretisation uses

the median-dual FV approach of Szmelter and Smolarkiewicz (2010), combined with a structured-grid FD/FV approach in

the vertical direction (Smolarkiewicz et al., 2016). In both the horizontal and the vertical discretisation all dependent vari-

ables are co-located. Improved efficacy further results from advanced preconditioning of the elliptic Helmholtz solver in the15

semi-implicit scheme addressed in Section 2.1.2 and Appendix B, and an efficient coding implementation with some aspects

4The shallow-atmosphere equations, the default in IFS-ST, are available by means of a simple switch (Appendix C).
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indicated in Section 2.1.3. To facilitate interoperability between the different numerical methods in IFS, IFS-FVM uses the

median-dual FV mesh about the nodes of the octahedral reduced Gaussian grid. However, the IFS-FVM numerical formulation

is not restricted to this grid and offers capabilities towards broad classes of meshes including adaptivity (Szmelter and Smo-

larkiewicz, 2010; Kühnlein et al., 2012). The IFS-FVM employs flexible parallel data structures provided by ECMWF’s Atlas

library (Deconinck et al., 2017). The main model formulation features of IFS-FVM are summarised in Table 1, and shown5

alongside the corresponding IFS-ST properties discussed below in Section 2.2.

2.1.1 Governing equations

Building on the formulation of moist-precipitating dynamics described in Smolarkiewicz et al. (2017), the fully compressible

equations considered in IFS-FVM are given as

∂Gρd

∂t
+∇ · (vGρd) = 0 , (1a)10

∂Gρdu
∂t

+∇ · (vGρdu) = Gρd

[
−θρG̃∇ϕ′ +g

(
1− ϑ

θρa
(θa + θ′)

)
− f ×

(
u− θρ

θρa
ua

)
+MMM′ + PPP u

]
, (1b)

∂Gρdθ
′

∂t
+∇ · (vGρd θ′) = Gρd

[
−G̃T u · ∇θa + P θ′]

, (1c)

∂Gρd rk

∂t
+∇ · (vGρd rk) = GρdP

rk , rk = rv , rl , rr , ri , rs (1d)

ϕ′ = cpd

[(
Rd

p0
ρd θ (1 + rv/ε)

)Rd/cvd

−πa

]
, (1e)

which describe the conservation laws of dry mass (1a), momentum (1b), dry entropy (1c) and water substance (1d). Dependent15

variables in (1) are dry density ρd, three-dimensional physical velocity vector u≡ (u,v,w), potential temperature perturbation

θ′, and a modified Exner pressure perturbation ϕ′ ≡ cpd π′, as well as the water substance mixing ratios rk = ρk/ρd (i.e. the

ratio of density of the individual water substance category ρk to the density of dry air ρd)—with the current cloud parametri-

sation of IFS (Forbes et al., 2010), five categories for water substance are considered (vapor rv , liquid rl, rain rr, ice ri, snow

rs), each described by the respective PDE (1d). An additional prognostic equation for cloud fraction Λa employed with the IFS20

cloud parametrisation is implemented as

∂Gρd Λa

∂t
+∇ · (vGρd Λa) = GρdP

Λa . (2)

Furthermore, the thermodynamic variables are related by the gas law (1e)—the Exner pressure is π = (p/p0)Rd/cpd and the

potential temperature is θ = T/π, where p is the total pressure, p0 ≡ 105 Pa, and T is the (absolute) temperature. A quantity

which appears in various rhs terms of the momentum equation (1b) is the density potential temperature θρ = θϑ, where ϑ≡25

(1 + rv/ε)/(1 + rt) (Emanuel, 1994) with ε = Rd/Rv and the total water mixing ratio rt represents the sum over all the

individual mixing ratios

rt =
∑

k

rk = rv + rl + rr + ri + rs . (3)

6

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-237
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 11 October 2018
c© Author(s) 2018. CC BY 4.0 License.



The multiplying factor ϑ appears explicitly in the buoyancy term of (1b), in order to expose the potential temperature pertur-

bation θ′ for implicit coupling to the thermodynamic equation (1c) (see Section 2.1.2). Note that a high-order approximation

of the buoyancy term applied in Kurowski et al. (2014); Smolarkiewicz et al. (2017) for consistency with soundproof mod-

els at mesoscales, has been replaced here by the full, unabbreviated form essential for the accurate representation of moist-

precipitating dynamics at planetary scales (Section 3).5

Another important aspect of the governing equations (1) is the underlying perturbation form. The perturbations of potential

temperature θ′ = θ−θa and Exner pressure π′ = π−πa correspond to deviations from an ambient state (denoted by the subscript

"a") that satisfies a general balanced subset of (1). A straightforward example applied in this paper is a stationary atmosphere

θa(x), ua(x), πa(x), rva(x) in thermal wind balance, which in terms of the momentum equation (1b) is

0 =−θρaG̃∇ϕa−g− f ×ua +MMM(ua) , (4)10

where ϕa ≡ cpdπa and θρa = θa (1 + rva/ε)/(1 + rva) . The perturbation form (1) is analytically equivalent to the corre-

sponding unperturbed form of the fully compressible equations but has favourable properties for numerical integration; see

Section 2.1.2 and Prusa et al. (2008); Smolarkiewicz et al. (2014). Moreover, there are other analytically equivalent pertur-

bation forms of the fully compressible equations implemented in IFS-FVM, which may differ in the degree of implicitness

permitted in the integration (Smolarkiewicz et al., 2018).15

The governing equations in (1)-(2) are formulated with respect to generalised curvilinear coordinates embedded in a geo-

spherical framework. At the most elementary level, the generalised curvilinear coordinate formulation can be used to implement

fixed terrain-following levels with appropriate boundary conditions, but the model formulation optionally permits quite general

moving meshes in the vertical and the horizontal directions. Symbols associated with the geometric aspects of the model are the

transformed curvilinear coordinates x≡ (x,y,z), the 3D nabla operator ∇ with respect to x, the Jacobian G of the coordinate20

transformations (i.e. the square root of the determinant of the metric tensor), a matrix of metric coefficients G̃, its transpose

G̃T , and the contravariant velocity v = ẋ = G̃Tu + vg where vg ≡ ∂x/∂t is the mesh velocity; see Prusa and Smolarkiewicz

(2003); Kühnlein et al. (2012) for extended discussion. Following Smolarkiewicz et al. (2017), further symbols on the rhs

of the momentum equation (1b) denote the gravity vector g = (0,0,−g), the Coriolis parameter f ≡ 2Ω with Ω the angular

velocity vector of the Earth’s rotation, and MMM′ subsumes the metric forces due to the curvature of the sphere25

MMM′(u,ua,θρ/θρa

)
=MMM(u)− (θρ/θρa)MMM(ua) . (5)

Explicit expressions for MMM are given in Eq. (C3) of Appendix C, that also provides details about the specification of the

curvilinear coordinate space in IFS-FVM. A summary of variables and physical constants is provided in Tables D1 and D2,

respectively. Last but not least, the symbols PPP u ≡ (Pu,P v,Pw), P θ′
, P rk on the rhs of (1) denote the respective forcings from

physical parametrisations.30

Note that additional rhs terms not explicitly provided in the governing equations (1) may describe Rayleigh-type damping

and/or Laplacian diffusion, applied especially to model wave-absorbing layers at the domain boundaries, see e.g. Prusa and

Smolarkiewicz (2003); Klemp et al. (2008).

7
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2.1.2 Semi-implicit numerical integration

To facilitate a compact description of the integration scheme, each of the governing equations of the system (1) is accommo-

dated in a generalised conservation law form

∂GΨ
∂t

+∇ · (VΨ) = G
(
RΨ + PΨ

)
, (6)

in which Ψ denotes the prognostic model variable, V the advector, G a generalised density, PΨ represents the forcing from5

physical parametrisation andRΨ the remaining right-hand-side; 5 see Table 2 for the respective specifications of Ψ, V, G. The

homogeneous mass continuity equation (1a) is a particular case of (6) and plays a fundamental role for the conservative advec-

tive transport of all other scalar variables. Note that because of the mass continuity equation (1a), the other scalar conservation

laws (6) are equivalent to the Lagrangian form dΨ/dt =RΨ +PΨ, where d/dt = ∂/∂t+v ·∇ represents the total derivative.

Building on the earlier works by Smolarkiewicz et al. (2014, 2016), the two-time-level numerical integrators of IFS-FVM10

for (6) can be subsumed in the following template scheme

Ψn+1
i =Ai(Ψ̃,Vn+1/2,Gn,Gn+1, δt) + bΨ δtRΨ|n+1

i ≡ Ψ̂i + bΨ δtRΨ|n+1
i , (7)

where

Ψ̃ = Ψn + aΨ δtRΨ|n + δtPΨ|n . (8)

The n, n+1/2, n+1 indices denote full and half time levels, and δt = tn+1−tn the time step increment of the semi-implicit dy-15

namics. The vector index i = (k, i) marks the node positions k and i of the, respectively, vertical and horizontal computational

mesh, thereby revealing the 3D co-located spatial arrangement of all dependent variables underlying IFS-FVM’s discretisation.

The definitions of the weights aΨ and bΨ for the incorporation of the right-hand-side termsRΨ at tn and tn+1, respectively, are

given in Table 2. Apart from the incorporation of the physical parametrisation PΨ, the semi-implicit scheme (7) with weights

aΨ ≡ bΨ ≡ 0.5 is fully congruent with the second-order trapezoidal-rule trajectory integral of the corresponding ordinary dif-20

ferential equation

dΨ
dt

=RΨ (9)

of (6) (Smolarkiewicz and Margolin, 1993). In this paper and standardly in IFS-FVM, the operator Ψ̂i ≡Ai(Ψ̃,Vn+1/2,Gn,Gn+1, δt)

in (7) represents a flux-form Eulerian NFT advection scheme based on MPDATA methods (Smolarkiewicz and Szmelter, 2005;

Kühnlein and Smolarkiewicz, 2017), but it could equally be a SL scheme (Smolarkiewicz et al., 2014). The basic MPDATA25

is second-order accurate given the advector Vn+1/2 at the intermediate time level tn+1/2 is provided as an O(δt2) estimate.

Note that due to the congruency of (7) with the ODE (9), the operator Ψ̂i may equally represent second-order semi-Lagrangian

advection (Smolarkiewicz et al., 2014). In terms of the coupling to physics parametrisations, formally incorporated with first-

order accuracy, the associated forcing PΨ|n = PΨ(tphys,∆tphys) can optionally be evaluated with an equal or longer time

step ∆tphys = Nsδt (with integer Ns = 1,2,3, ..) than δt applied in (7); see Section 2.3 about physics-dynamics coupling.30

5As an example, Rθ′ ≡−G̃T u · ∇θa when considering (1c).
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In IFS-FVM, there two alternative implementations of the NFT advection transport operator Ai. Standard formulations of

MPDATA for integrating the fully compressible equations in the horizontally-unstructured vertically-structured discretisation

framework of IFS-FVM are described in Kühnlein and Smolarkiewicz (2017). These MPDATA formulations are fully multidi-

mensional (i.e. unsplit), equipped with non-oscillatory enhancement (Smolarkiewicz and Grabowski, 1990; Smolarkiewicz and

Szmelter, 2005), and qualify for implicit large-eddy simulation (ILES) of high-Reynolds number atmospheric flows, e.g. Do-5

maradzki et al. (2003); Piotrowski et al. (2009); Smolarkiewicz et al. (2013). In addition to the standard, fully multidimensional

advection schemes for Ai (7), a more efficient horizontal-vertical split implementation of MPDATA in IFS-FVM has been de-

veloped and it is outlined in Appendix A. All IFS-FVM results presented in Section 3 of this paper were obtained with this

horizontal-vertical split scheme.

Table 2. Specification of prognostic model variables and corresponding parameters in the template scheme (7)-(8). Columns represent the

dependent variable Ψ, the advector V, a generalised density G, and aΨ, bΨ the weights for the incorporation of the rhs forcings RΨ.

Variable Ψ V G aΨ bΨ

Dry density ρd vG G - -

Zonal physical velocity u vGρd Gρd 0.5 0.5

Meridional physical velocity v vGρd Gρd 0.5 0.5

Vertical physical velocity w vGρd Gρd 0.5 0.5

Potential temperature perturbation θ′ vGρd Gρd 0.5 0.5

Water vapor mixing ratio rv vGρd Gρd - -

Liquid water mixing ratio rl vGρd Gρd - -

Rain water mixing ratio rr vGρd Gρd - -

Ice mixing ratio ri vGρd Gρd - -

Snow mixing ratio rs vGρd Gρd - -

Cloud fraction Λa vGρd Gρd - -

Exner pressure perturbation ϕ′ vGρd Gρd 0 1.0

Given the preceding discussion, the semi-implicit solution procedure of the governing system (1) proceeds from an atmo-10

spheric state at tn to a state at tn+1 as described in the following. The solution procedure commences with the integration of

the mass continuity equation (1a) as

ρn+1
d i =Ai(ρn

d ,(vG)n+1/2,Gn,Gn+1, δt) , (10)

which straightforwardly returns the updated density ρn+1
d i . The O(δt2) estimate for the advector (vG)n+1/2 in (10) is imple-

mented here by linear extrapolation of the advective velocities from the previous time levels tn−1 and tn; see Appendix A15

of Kühnlein et al. (2012) for the procedure accounting for a variable time step δt. In addition, the algorithm (10) defines

the advector Vn+1/2 ≡ (vGρd)n+1/2—as face-normal mass fluxes to the dual cell (vGρd)⊥|n+1/2—for the advective trans-

9
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port of all other scalar variables (see Table 2), a common approach to enable mass-compatible and monotonic solutions; see

Smolarkiewicz et al. (2016) and Kühnlein and Smolarkiewicz (2017) for discussion in the context of IFS-FVM.

Given the tendencies from physical parametrisation P θ′
, Pu, P v , P rk , PΛa formally evaluated at tn, and the advective

transport of all scalar variables θ̂′i, ûi ≡ (ûi, v̂i, ŵi), rk
n+1
i ≡ r̂ki, Λa

n+1
i ≡ Λ̂ai—with the advected water content mixing

ratios r̂ki and cloud fraction Λ̂ai representing already the final solutions at tn+1—the scheme (7)-(8) for the thermodynamic5

(1c) and momentum (1b) equations is implemented as

θ′i = θ̂′i− 0.5δt
(
G̃T u · ∇θa

)
i

(11a)

ui = ûi + 0.5δt

[
−θ⋆

ρG̃∇ϕ′ +g
(
1− ϑn+1

θρa
(θa + θ′)

)
− f ×

(
u− θ⋆

ρ

θρa
ua

)
+MMM′(u⋆,ua,

θ⋆
ρ

θρa

)]

i

. (11b)

where10

θ⋆
ρ = θ⋆ϑn+1 ≡ θ⋆(1 + rn+1

v /ε)
(1 + rn+1

t )
. (12)

Due to the presence of nonlinear terms, the discrete system (11) is executed iteratively (Smolarkiewicz and Dörnbrack, 2008;

Smolarkiewicz et al., 2014), and lagged quantities from the previous iteration are simply denoted by the superscript ⋆ . With

the respective prognostic model variables θ′ and u in (11) the n+1 time level index has been dropped, but the n+1 time level

index is retained with the coefficient ϑn+1 defined in (12) that is composed of the already updated rn+1
k . At the beginning of15

the iterative execution of (11), a first guess θ0 for θ⋆ is provided as the explicit solution of full potential temperature

θ0
i = θ̂i =Ai

(
θn + δtP θ′ |n,(vGρd)⊥|n+1/2,(Gρd)n,(Gρd)n+1, δt

)
, (13)

whereas a first guess u0 for u⋆ is prescribed by linear extrapolation of u from the tn−1 and tn time levels (again, taking into

account the variable time step δt).

From (11), closed-form expressions for the discrete velocity update are derived by eliminating (11a) for θ′i in the buoyancy20

term of (11b)—thereby implementing 3D fully implicit treatment of buoyant modes in a moist-precipitating atmosphere—and

gather the terms with linear dependence on ui on the lhs, which results in

u+ 0.5δt f ×u− (0.5δt)2
g
θa

G̃T u · ∇θa =

û− 0.5δt

(
g

θρa

[
θρa−ϑn+1θa−ϑn+1θ̂′

]
− f × θ⋆

ρ

θρa
ua−MMM′(u⋆,ua,

θ⋆
ρ

θρa

))
− 0.5δtθ⋆

ρG̃∇ϕ′ ≡ ̂̂u− 0.5δtθ⋆
ρG̃∇ϕ′ . (14)25

As all terms are co-located, the spatial mesh vector index i has been omitted in (14). The rhs of (14) is composed of all explicitly

known terms, summarised as ̂̂u, and the pressure gradient term with the lagged coefficient θ⋆
ρ. Defining L as the linear operator

acting on u on the lhs, and L−1 its inverse, (14) can be symbolised, respectively as

Lu = ̂̂u− 0.5δtθ⋆
ρG̃∇ϕ′ , (15)

10
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and

u = ˇ̌u−C∇ϕ′ , (16)

where ˇ̌u = L−1 ̂̂u, and C = L−10.5δtθ⋆
ρG̃ denotes a 3× 3 matrix of known coefficients. The solution algorithm presented up

to (16), still requires to specify the Exner pressure perturbation ϕ′. A straightforward computation may employ the gas law

(1e), using the updated variables ρd, θ, and rv . However, the resulting 3D explicit acoustic integration is subject to very small5

time steps in order to maintain numerical stability, and inefficient for NWP. Therefore, a final step in IFS-FVM’s numerical

solution procedure is to augment the fully compressible equations (1) with an auxiliary 3D implicit boundary value problem

for the pressure perturbation variable ϕ′ (Smolarkiewicz et al., 2014). The formulation of this implicit boundary value problem

originates from the advective (or Lagrangian) form of the gas law (1e), combined with the respective advective forms of the

mass continuity (1a), thermodynamic (1c) and water vapour (1d) equations, see Smolarkiewicz et al. (2014, 2017) for further10

details. The governing equation for ϕ′ is then implemented in conservation form consistent with (1), and reads

∂Gρdϕ
′

∂t
+∇ · (vGρdϕ

′) = Gρd

[
−Rd

cvd

ϕ

G∇ · (G G̃Tu)− 1
Gρd

∇ · (Gρd G̃Tuϕa) +
ϕa

Gρd
∇ · (Gρd G̃Tu) +

Rd

cvd
ϕΠ
]

, (17)

where ϕ = ϕa + ϕ′ and

Π =

(
P θ′

θ
+

P rv/ε

1 + rv/ε

)
. (18)

Implicit coupling with the solution procedure of (1) is performed by inserting (16) into the three occurrences of u on the15

rhs of (17). Interpreting (17) in terms of the generalised transport equation (6) for Ψ≡ ϕ′ (cf. Table 2), while setting Pϕ′ ≡
(Rd/cvd)ϕΠ andRϕ′

the remaining rhs consisting of the three divergence operators, the integration of (17) can be performed

using aϕ′
= 0 and bϕ′

= 1.0 in the template scheme (7), i.e. Euler backward scheme with regard toRϕ′
. This is combined with

a Euler forward scheme with regard to Pϕ′
implemented as ϕ̂′i =Ai(ϕ′n + δtPϕ′ |n,(vGρd)⊥|n+1/2,(Gρd)n,(Gρd)n+1, δt).

Reorganising terms finally yields the elliptic Helmholtz equation for the future pressure perturbation variable ϕ′, which can be20

written as (Smolarkiewicz et al., 2014, 2017)

0 =−
3∑

ℓ=1

(
A⋆

ℓ

ζℓ
∇ · ζℓ G̃T (ˇ̌u−C∇ϕ′)

)
−B⋆(ϕ′− ϕ̂′) , (19)

where again due to the co-location of variables and terms, the spatial grid index i has been omitted. The summation ℓ in (19) is

over the three divergence operators on the rhs of (17), respectively (7), while the coefficients A⋆
ℓ , B⋆ and ζℓ are defined accord-

ingly. In IFS-FVM, the 3D boundary value problem (19) is solved iteratively using a nonsymmetric preconditioned Generalised25

Conjugate Residual (GCR) approach—see Smolarkiewicz and Szmelter (2011) for a recent discussion and Smolarkiewicz and

Margolin (2000); Smolarkiewicz et al. (2004) for tutorials—while the dependence of the coefficients A⋆
ℓ and B⋆ on ϕ′ in (19)

is lagged behind. The preconditioning of GCR as applied in this paper employs a preconditioning operator P , that simplifies

the linear operator of (19) by discarding the off-diagonal entries of the matrix G̃T C. Inversion of P then utilizes a weighted

line Jacobi method, see Appendix B for details.30
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As far as the adiabatic dynamics is concerned, the O(δt2) integration of (17) with the Euler scheme maintains second-order

accuracy of all variables except ϕ′ over a single time step, because ϕ′ enters the pressure gradient term of the momentum

equation with the factor 0.5δt, hence resulting in an O(δt3) integral.6 An improved first guess for ϕ′ entering the elliptic

problem (19) can be achieved by employing a Euler forward scheme based on (17). The 3D implicit scheme with respect

to acoustic modes permits time steps equivalent to soundproof models (Kurowski et al., 2014; Smolarkiewicz et al., 2014;5

Kühnlein and Smolarkiewicz, 2017). Together with the full 3D implicit incorporation of buoyant modes described above, the

semi-implicit integration is unconditionally stable with respect to all waves supported by the fully compressible equations (1),

and thus the semi-implicit model time step δt can be selected according to the stability of the advective transport schemeAi in

(7).

2.1.3 Spatial discretization10

The discretisation framework of IFS-FVM combines a structured-grid FD method in the vertical with an unstructured 7 FV

approach in the horizontal (Smolarkiewicz et al., 2016). The FV discretisation and differentiation on the spherical surfaces

adopts the median-dual approach described in Szmelter and Smolarkiewicz (2010). All dependent variables are co-located

in the nodes in 3D. The consistent spatial discretisation of the applied MPDATA schemes in IFS-FVM, symbolised by the

operator Ai in (7), is described in Kühnlein and Smolarkiewicz (2017).15

The schematic in Fig. 1 illustrates an arbitrary unstructured mesh on a 2D horizontal plane. The median-dual FV approach

defines the control volume containing the node i by connecting the barycentres of polygonal mesh cells encompassing the node

i with the midpoints of the edges originating in the node i. All geometric elements such as cell volume, cell face area, and face

normals are evaluated from vector calculus in the computational space, i.e. in terms of x and y coordinates (see Section 2.1.1)

on a zonally-periodic horizontal plane (Szmelter and Smolarkiewicz, 2010). The FV approach in the horizontal is combined20

with standard second-order FDs on the vertical structured grid with independent coordinate z.

6Eventual accumulation of first-order errors in ϕ′ can be simply avoided by solving (17) with the implicit trapezoidal rule employing aϕ′
= bϕ′

= 0.5 in

the template scheme (7); see also Benacchio et al. (2014) for an alternative design and pertinent discussion.
7Note that although the presented IFS-FVM formulation assumes an unstructured mesh in the horizontal, the model may exploit structured or semi-

structured grids on future HPC architectures.
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! "#"

Figure 1. Schematic of the median-dual mesh in 2D. The edge connecting nodes i and j of the primary polygonal mesh pierces, precisely in

the edge centre, the face Sj shared by computational dual cells surrounding nodes i and j. Open circles represent geometrical barycentres of

the primary mesh, solid black lines mark the primary mesh and grey lines indicate dual cells with control volumes Vi and Vj , respectively.

For a differentiable vector field A, the Gauss divergence theorem
∫
Ω
∇ ·A =

∫
∂Ω

A ·n applied over the control volume

surrounding node i = (k, i) in 3D is given as

(∇ ·A)i =
1
Vi

l(i)∑

j=1

A⊥
k,jSj +

Az
k+1/2,i−Az

k−1/2,i

δz
, (20)

where l(i) numbers edges connecting node (k, i) with its horizontal neighbours (k,j), and Sj refers both to the face per

se and its surface area 8—the geometric quantities Sj , Vi and δz are independent of height. The fields A⊥
k,j and Az

k+1/2,i5

are interpreted as the mean normal components of the vector A at the horizontal and vertical cell faces, respectively. Basic

approximations applied in IFS-FVM are given as A⊥
k,j = 0.5nj · [Ak,i +Ak,j ] in the horizontal, where nj is the respective

mean outward unit normal to the face Sj , and the vertical Az
k+1/2,i = 0.5

(
Az

k,i + Az
k+1,i

)
. For a differentiable scalar field Ψ,

the 3D nabla operator ∇Ψ can also be interpreted in terms of the Gauss divergence theorem, leading to

(∇Ψ)k,i =


 1
Vi

l(i)∑

j=1

0.5(Ψk,i + Ψk,j)Sx
j ,

1
Vi

l(i)∑

j=1

0.5(Ψk,i + Ψk,j)S
y
j ,

Ψk+1,i−Ψk−1,i

2δz


 , (21)10

where Sx
j and Sy

j denote the x and y components of the oriented surface element Sj = Sjnj (Szmelter and Smolarkiewicz,

2010; Smolarkiewicz et al., 2016). Given (20) and (21) in the computational space, they are augmented with metrics of the

curvilinear framework to obtain the respective physical divergence and gradient appearing in the governing equations of the

previous Sections 2.1.1 and 2.1.2, respectively; details about the specification of the curvilinear space in IFS-FVM are reviewed

in Appendix C.15

For IFS-FVM, the mesh generation and mesh data structures as well as the nearest-neighbour distributed-memory communi-

cation, are handled by ECMWF’s Atlas library, comprehensively described in Deconinck et al. (2017). Atlas is also designed to

make use of specific programming models to support accelerators, although these have not been explored with IFS-FVM. For

the quasi-uniform octahedral reduced Gaussian grid (see Section 2.4) the parallelisation adopts the equal-regions horizontal

domain decomposition of IFS (Smolarkiewicz et al., 2016).20

8Note that in IFS-FVM, Sj and Vi have dimensions of length and area, and the actual face areas and volumes of prismatic cells are, respectively, Sjδz

and Viδz, in computational space (Smolarkiewicz et al., 2016).
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In the present work, the programming of the discrete differential operators (20) and (21) in the IFS-FVM modern Fortran

code has been augmented from earlier implementations in Smolarkiewicz et al. (2016). While Smolarkiewicz et al. (2016)

used a hybrid edge- and node-based programming, already different from the edge-based codes described in Szmelter and

Smolarkiewicz (2010), the current IFS-FVM programming represents effectively a node-based implementation. When evalu-

ating (20) and (21), outer loops over nodes of the co-located grid (re)compute the required quantities on edges "on the fly". The5

code based on the resulting longer, fused node-based loops perform a larger overall number of computations as quantities on the

edges are computed more than once, but it is overall more efficient as many intermediate memory stores are avoided and there

is a greater chance for data in cache to be reused. Due to the underlying FD/FV discretisation leading to stencil computations,

IFS-FVM is naturally cache and memory-bandwidth bound. The node-based programming improves flop-per-byte ratio and

relaxes the dependency on relatively (as compared to pure computation) slow memory access. As a consequence, it provides10

a significant gain in efficiency as compared to the hybrid edge- and node-based programming applied in Smolarkiewicz et al.

(2016). In addition, the fused loops and data locality in the node-based code effectively enabled the performance of the shared-

memory parallelisation with OpenMP, as the threads may operate on more local memory regions and avoid thread conflicts and

cache trashing. An overall speed-up of IFS-FVM by a factor of ∼3-4 has been found on ECMWF’s Cray XC40 by converting

from the hybrid edge- and node-based to the purely node-based code.15

2.2 Spectral-transform IFS

The spectral-transform IFS (simply denoted as IFS-ST in this paper) operational at ECMWF is based on the hydrostatic

primitive equations (HPEs) formulated in a hybrid η-pressure terrain-following vertical coordinate (Simmons and Burridge,

1981). The HPEs are integrated numerically using the efficient centred two-time-level SISL scheme, that permits long time

steps due to the unconditional stability provided by the fully implicit treatment of the fast acoustic 9 and buoyant modes, and20

the 3D semi-Lagrangian advection (Ritchie et al., 1995; Temperton et al., 2001; Hortal, 2002). Therefore, the global, constant

time step of the SISL integration in IFS-ST can be selected according to the optimal efficacy, rather than stability. The ST

method, which is applied along model levels in the horizontal, is combined with a finite-element (FE) approach to discretize

the integral operator in the vertical direction (Untch and Hortal, 2004) 10. In 2002, this vertical FE scheme of Untch and Hortal

(2004) with a co-located arrangement of prognostic variables replaced the former finite-difference scheme of Simmons and25

Burridge (1981) with the Lorenz staggering. Prognostic variables of the HPEs and other main formulation features of IFS-ST

are given in Table 1.

The IFS-ST uses a discrete spherical-harmonics representation of the spectral space (Wedi et al., 2013). At every time step,

the model fields are transposed between grid-point, Fourier and spherical-harmonics representation. General concerns about

the computational efficiency of the Legendre transforms between Fourier modes and spherical-harmonics (Williamson, 2007),30

could be mitigated by adopting a fast Legendre transform (FLT, Wedi et al., 2013), which is employed together with fast

Fourier transforms (FFTs). Furthermore, the increasing importance of nonlinearities of the rhs forcing terms in the governing

9The HPEs analytically filter internal acoustic modes but support the external Lamb mode.
10The FE implementation of the discrete vertical integral operator is based on the Galerkin method using cubic B-splines as basis functions.
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equations and aliasing at higher resolutions stimulated the adoption of a cubic truncation of the spherical harmonics in the

ST method (Wedi, 2014). The cubic versus the former linear truncation basically samples the highest wavenumber with four

instead of two grid points. Special treatment is required near the poles with the reduced grids where the ratio approaches that

of the linear truncation (Wedi, 2014). The extra sampling of a particular spectral resolution with a relatively larger grid size in

the cubic truncation led to substantial further improvement in efficiency and accuracy of the IFS-ST at ECMWF (Wedi et al.,5

2015). The cubic truncation in combination with the octahedral reduced Gaussian grid went operational at ECMWF in 2016.

The nomenclature for this grid configuration is defined as "TCo" (for "Triangular-Cubic" truncation and "octahedral" grid)

followed by the number of waves in spectral space (Malardel et al., 2016). The octahedral reduced Gaussian grid (or simply

"octahedral grid"), which is also employed with IFS-FVM, is reviewed in Section 2.4.

The semi-Lagrangian advection scheme in IFS-ST is based on Ritchie et al. (1995). The SL trajectories are computed with10

an iterative algorithm. At each iteration of the algorithm, the wind at the midpoint in time and space is re-evaluated using

the second order time-extrapolating algorithm SETTLS (Stable Extrapolation Two-Time-Level Scheme, Hortal, 2002). The

two-time-level semi-implicit integration of IFS-ST follows the template

Xn+1
A = Xn

D +Nn+1/2
M +

1
2
(
Ln

D +Ln+1
A

)
. (22)

Here, X represents the prognostic variables, the subscripts A, M and D denote, respectively, the arrival, mid- and departure15

points, while n and n + 1 again refer to the current and future time step. In addition, the operator L symbolises the linear

operator and N the nonlinear residual N =M−L, with M being the full nonlinear model. The operator L results from

linearisation of M with regard to a horizontally-homogeneous reference state. Before the final semi-implicit solution with

(22) at each time step, the explicit guess of the future model state X is computed by replacing Ln+1
A with Ln

A. Generally, Xn
D

is interpolated at the departure point by quasi-cubic interpolation. A horizontal quasi-monotonic interpolation is used for the20

horizontal wind, the temperature and the surface pressure and a 3D quasi-monotonic limiter is used for the specific humidity.

All the other water content variables are estimated at the departure point using linear interpolation and thus no monotonic filter

is needed. The SL scheme in IFS-ST is applied to specific (per unit mass) variables whose equations are written in advective

form. It is then intrinsically non-conservative (Malardel and Ricard, 2015), but global mass-fixers have been developed for the

atmospheric composition applications (Diamantakis and Flemming, 2014; Diamantakis and Augusti-Panareda, 2017). Notably,25

with the cubic truncation and the octahedral reduced Gaussian grid, global mass conservation is nearly exact in IFS, see Wedi

et al. (2015).

The IFS also includes various research options which are not yet applied in the operational configuration. Most notably,

the nonhydrostatic (NH) formulation based on the fully compressible equations (Bubnová et al., 1995; Bénard et al., 2010),

which has been made available to ECMWF by Météo-France and the Aladin Consortium. The HPE and NH formulations30

of IFS-ST employ the same SISL integrators, but the NH extension requires a predictor-corrector approach—the so-called

iterative-centred-implicit scheme (Bénard et al., 2010)—for stability in global configurations. Prognostic variables and main

characteristics of the NH formulation are also given in Table 1. Furthermore, currently the NH formulation is restricted to

the vertical FD scheme by Bubnová et al. (1995). The HPE and NH formulations of IFS-ST standardly use the shallow-
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atmosphere approximation. In Section 3, we will compare the computational performance of the HPE and NH formulations of

IFS-ST against IFS-FVM.

2.3 Some aspects about physics-dynamics coupling

The IFS physics parametrisation package at ECMWF is applied in the same configuration throughout the medium-range,

sub-seasonal and seasonal forecasting systems. The physics package includes parametrisation of radiation, moist convection,5

clouds and stratiform precipitation, surface processes, sub-grid scale turbulence, as well as orographic and non-orographic

gravity wave drag.

In IFS-ST, the physics-dynamics coupling employs the SLAVEPP (Semi-Lagrangian Averaging of Physical Parametrisation)

scheme (Wedi, 1999). SLAVEPP targets second-order accuracy by averaging tendencies from selected physics parametrisations

along the SL trajectory, at the midpoint in space-time between the departure point at tn and arrival point at tn+1. 11 Thereby,10

the tendencies at tn+1 use a provisional first guess from the explicit dynamics as input, and the final tendencies are applied

at the arrival point of the SL trajectory, see Wedi (1999) for details. The basic approach of the physics-dynamics coupling

in IFS uses sequential splitting (or fractional stepping), i.e. the various processes are integrated one after another, and the

updated tendencies are used as input to the subsequent process, see Beljaars et al. (2018) for discussion. A more comprehensive

explanation of the IFS physics parametrisations can be found in the general IFS documentation.15

The physics-dynamics coupling in IFS-FVM differs from IFS-ST. As explained in Section 2.1.2, the current implementation

of IFS-FVM incorporates the tendencies from physics parametrisations PΨ by means of a first-order coupling at tn. Therefore,

the fields that enter the parametrisations are from tn, and there is no averaging between tendencies from tn and tn+1. While

the incorporation of the tendencies from physics parametrisation deviates from IFS-ST, the sequential splitting between the

various IFS physics parametrisations is kept exactly the same. Incorporating the physics parametrisations with first order at tn20

is motivated by the generally smaller time steps δt in IFS-FVM than in IFS-ST, and the desire to implement straightforward

options for subcycling of the dynamics (see below). In addition, numerical experimentation with IFS-FVM so far has shown

favourable results in terms of the incorporation of the physics at tn. Nevertheless, different forms of coupling IFS-FVM to the

physical parametrizations will be explored in the future.

The IFS-FVM code has its own interface to the IFS physics parametrisations. Among others, it involves conversion between25

IFS-FVM’s variables and those employed in IFS-ST (see Table 1) 12, interpolations to vertical interfaces, and provision of local

quantities describing the mesh geometry, but also a number of technical aspects due to some differences in the computational

design of IFS-FVM and IFS-ST. Some of these operations in the interface may be removed at a later stage when IFS physics

parametrisation package becomes more harmonised with IFS-FVM. However, generally the coupling is facilitated by common

features of IFS-FVM and IFS-ST, such as longitude-latitude coordinates, the octahedral grid, and co-located arrangement of30

11SLAVEPP is applied to tendencies from radiation, moist convection and the cloud scheme, whereas tendencies from turbulence and gravity wave drag

parametrisations are incorporated with first order at tn+1 (Wedi, 1999).
12Examples are conversions between mixing-ratios rk and specific water content variables qk , or between quantities in the height- versus pressure-based

coordinate systems.
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variables. The IFS-FVM interface to the physics parametrisations also includes an option for subcycling of the dynamics. The

template scheme (7) for one physics time step from tN to tN + ∆tphys ≡ tN + Nsδt, can be written as ℓ = 1,Ns :

Ψi

(
tN + ℓδt

)
=Ai

(
Ψ̃,V(tN + (ℓδt− 0.5)),G(tN + (ℓ− 1)δt),G(tN + ℓδt), δt

)
+ bΨ δtRΨ

i

(
tN + ℓδt

)
, (23)

where

Ψ̃ = Ψ
(
tN + (ℓ− 1)δt

)
+ aΨ δtRΨ

(
tN + (ℓ− 1)δt

)
+ δtPΨ

(
tN ,∆tphys

)
. (24)5

The physics tendency PΨ is evaluated with the physics time step ∆tphys and is then reused for the Ns subcycling steps with δt.

IFS-FVM has been coded rigorously with a variable time stepping capability (Kühnlein and Smolarkiewicz, 2017). In case of

the physics-dynamics coupling with subcycling (23), we adapt the semi-implicit time step δt only every Ns time steps with the

corresponding physics time step given as ∆tphys = Nsδt. Apart from radiation 13, the current operational IFS-ST evaluates the

physics parametrisations at every semi-implicit time step δt. However, due to the Eulerian versus SL advection, IFS-FVM uses10

considerably smaller time steps than IFS-ST, 14 and therefore physics-dynamics coupling may use some form of subcycling

as indicated above, or other approaches such as parallel splitting, to remain competitive. The cost per time step of the full IFS

physics parametrisation package can be up to 40 % of the forecast model. For the idealized DCMIP experiments considered in

the present work, we focus on the parametrisation of clouds and stratiform precipitation, incorporated by means of the general

IFS-FVM and IFS-ST interfaces described above.15

2.4 Octahedral reduced Gaussian grid

As with the classical reduced Gaussian grid of Hortal and Simmons (1991), the octahedral reduced Gaussian grid (or simply

"octahedral grid") (Wedi et al., 2015; Malardel et al., 2016; Smolarkiewicz et al., 2016) specifies the latitudes according to the

roots of the Legendre polynomials. The two grids differ in the arrangement of the points along the latitudes, which follows a

simple rule for the octahedral grid: starting with ∼ 20 points on the first latitude around the poles, four points are added with20

every latitude towards the equator, whereby the spacing between points along the individual latitudes is uniform and there

are no points at the equator. The octahedral grid is suitable for transformations involving spherical harmonics, and has been

introduced for operational weather prediction with IFS at ECMWF in 2016. Figure 2 depicts the ’O24’ octahedral grid nodes,

together with the edges of the primary mesh and dual resolution as applied in IFS-FVM. Compared to the classical reduced

Gaussian grid of Hortal and Simmons (1991), the octahedral grid provides a much more uniform dual mesh resolution in the25

FV context (Malardel et al., 2016). Negligible grid imprinting in IFS-FVM with the octahedral grid will be shown by means of

numerical experiments in Section 3.

13In the current high-resolution deterministic IFS forecasts on the O1280 grid, the radiation scheme is called every hour, compared to the semi-implicit

model time step δt = 450s, and is also run on the coarser O400 grid.
14Currently, the time step δt in IFS-FVM is typically about a factor of 6-7 smaller than in IFS-ST but research is ongoing to reduce this factor.
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We use two different sizes of the octahedral reduced Gaussian grid for comparing the solution quality of IFS-FVM and IFS-

ST. Considered are very coarse (O160,TCo159) and coarse (O320,TCo319) grids by current NWP standards, corresponding to

about 64 and 32 km nominal horizontal grid spacings, respectively; see Section 2.2 and 2.4 for the nomenclature that defines the

grids. For the two different horizontal grid sizes, both IFS-FVM and IFS-ST employ 60 stretched vertical levels with a similar

height distribution. The vertical spacing in terms of height between model levels ranges from about 12 meters near the ground5

to 4 km near to model top located at 48 km. For the comparison of computational efficiency in Section 3.3, we employ the

(O1280,TCo1279) grid, corresponding to about 9 km spacing, with 137 stretched vertical levels. With regard to the time step

size, IFS-ST uses constant increments δt of 1800, 1200, and 450 s for the TCo159, TCo319, and TCo1279 grids, respectively.

In contrast, IFS-FVM generally applies variable time stepping that targets a maximum horizontal advective Courant number of

0.95—the actual maximum 3D Courant number is significantly larger than 1 as this is permitted by the horizontal-vertical split10

NFT advection in IFS-FVM (Appendix A). All IFS-FVM and IFS-ST results presented in this section were obtained without

any explicit diffusion or regularization.

For the dry and moist configurations, the baroclinic instability evolution starts from two zonal jet flows in the mid-latitudes

of each global hemisphere, that are in thermal wind balance with the meridional temperature gradient. A local zonal velocity

perturbation in the form of a simple exponential bell (tapered to zero in the vertical) excites the instability, leading to eastward15

propagating Rossby modes (Ullrich et al., 2016). Here, we apply the triggering zonal velocity perturbation in both the northern

and southern global hemispheres. This dual triggering departs from (Ullrich et al., 2016), where the perturbation was only

applied in the northern hemisphere, but it permits a clean evaluation of kinetic energy spectra relatively early in the baroclinic

wave evolution, enables study of the solution symmetry about the equator and is more relevant to real weather. After an initial

period of linear growth, the instability enters the nonlinear stage from 6-7 days of simulation time. Our analysis will focus on20

simulation results at day 10 and day 15.

3.1 Results for dry simulations

Figures 3 and 4 present the results for the dry adiabatic simulations at day 10, when a large amplitude baroclinic wave has

developed and formed sharp fronts in the lower troposphere. Generally very close agreement is found between the finite-

volume (IFS-FVM) and spectral-transform (IFS-ST) solutions. This is emphasised by the difference plots in the bottom row25

of the horizontal and vertical cross sections in Figs. 3 and 4, respectively. The solutions show identical phase propagation and

amplitude of the baroclinic wave throughout the entire vertical depth of the simulation domain, which applies to the very coarse

(O160,TCo159) and coarse (O320,TCo319) grids. Where present, differences between IFS-FVM and IFS-ST become smaller

with the higher resolution. Figure 5 compares the pressure field much later into the nonlinear baroclinic instability 30 evolution

at day 15, for the finer of the two grids. This depiction shows close agreement between IFS-FVM and IFS-ST also at this later30

stage. There are no signs of any significant grid imprinting, and both dynamical core formulations provide visibly symmetric

solutions around the equator with the octahedral grid. Kinetic energy spectra evaluated at day 15 in Fig. 6 reveal a strikingly

similar distribution of variance across wave numbers from 1 to∼ 200. As all the simulations are without any explicit diffusion,

the IFS-FVM spectra at the high wave numbers attest to the implicit scale-selective regularisation with artificial viscosity
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provided by the nonoscillatory finite-volume MPDATA advection 15. The slope of the IFS-ST and IFS-FVM spectra with

respect to wavenumber l is somewhat shallower than l−3 at large scales. This is consistent with results from other dynamical

cores for this baroclinic instability test case studied in the context of the High-Impact Weather Prediction Project (HIWPP,

Whitaker, 2014). The spectra of IFS-ST feature some accumulation of energy near the truncation scale of the triangular-cubic

grid, corresponding to four times the grid spacing. This increased energy near the truncation scale does not grow and is to a5

large extent controlled by the spectral filtering at every time step of the nonlinear terms with the triangular-cubic grid, among

other mechanisms of implicit dissipation such as the semi-Lagrangian interpolation.

Figure 3. Baroclinic instability at day 10: the first two rows show pressure on the lowest full level (hPa) obtained with IFS-FVM and IFS-ST,

while the last row depicts the corresponding difference between the solutions. The left and right columns are for the (O160,TCo159) and

(O320,TCo319) horizontal grids, respectively.

15The unsplit NFT MPDATA advection (Kühnlein and Smolarkiewicz, 2017) features lower implicit diffusion near the grid scale than the split advection

applied here.
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Figure 4. Dry baroclinic instability at day 10: the first two rows show meridional wind v (m s−1) along a zonal-height cross section at 50◦ N

obtained with IFS-FVM and IFS-ST, while the last row depicts the difference of v (m s−1) between their solutions. The left and right columns

are for the (O160,TCo159) and intermediate (O320,TCo319) horizontal grids, respectively.

Figure 5. Dry baroclinic instability at day 15: pressure on the lowest full level (hPa) obtained with IFS-FVM and IFS-ST using the

(O320,TCo319) grid.
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near-surface

~ 500 hPa

day 15

Figure 6. Dry baroclinic instability at day 15: Kinetic energy spectra obtained with IFS-FVM and IFS-ST using the (O320,TCo319) grid.

The blue vertical line indicates the spatial scale corresponding to four times the nominal grid spacing of the O320 octahedral grid, which also

represents the cubic truncation scale with TCo319 applied in IFS-ST. The spectra are shown on models levels near the surface and at ∼ 500

hPa.

3.2 Simulation results for moist-precipitating configuration with IFS cloud parametrisation

Next we present results for the moist-precipitating baroclinic instability with coupling to the IFS cloud parametrisation. Fig-

ure 7 shows the instantaneous large-scale precipitation rate at the surface 16 for the (O160,TCo159) and (O320,TCo319) grids

at day 10. For any of these grids, both model formulations show five rainbands with essentially identical phase, as emphasized

by the overlay with the 0.5 mm/day black contour line of the corresponding other model formulation. The elongated rainbands5

are associated with the lifting along sharp frontal zones. Precipitation amounts are overall similar but somewhat higher local

values exist for IFS-FVM, particularly in the two easternmost rainbands when looking at the (O160,TCo159) grid. Figure 8 is

analogous to Fig. 7 but for day 15. As can be expected, the spread between the different model formulations becomes larger.

However, there is still reasonably close agreement, especially for the higher-resolution grid (O320,TCo319) in the right column

of Fig. 8. Here, the location of the easternmost frontal zone and associated rainband agrees closely considering the late stage of10

the baroclinic instability evolution. Figure 9 supplements the precipitation plots with the corresponding pressure field on day

15. In addition to to the standard configurations of IFS-FVM and IFS-ST where the physics parametrisation is evaluated every

dynamics time step Ns = 1, Fig. 9 also provides the IFS-FVM result with subcyling (middle panel) where the parametrisa-

tions are evaluated every Ns = 3 semi-implicit time steps δt; see 2.3 for discussion of the physics-dynamics coupling. Again,

the pressure fields of all three simulations resemble each other closely, often even in the location and magnitude of smaller15

structures, while the modified physics-dynamics coupling frequency Ns = 3 to the cloud parametrisation seems to have only

a small impact on the solution. Furthermore, none of the simulations shows significant grid imprinting in the pressure fields,

but the solution symmetry about the equator is broken in both IFS-FVM and IFS-ST as a result of the incorporation of the

16The precipitation rate represents the liquid and rain (excluding ice and snow) sedimentation flux at the surface.
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cloud parametrisation (in contrast to the dry results shown before in Fig. 5). The analysis of the simulations is supplemented in

Fig. 10 with the time series of the minimum near-surface pressure (left panel) and the area-integrated precipitation rate (right

panel). The temporal evolution of these two quantities is close between IFS-FVM and IFS-ST. Particularly, the minimum near-

surface pressure agrees almost exactly at day 15, although small differences occur over the course of the simulation. The onset

and subsequent increase of the precipitation matches well in IFS-FVM and IFS-ST, and the later variations in the precipitation5

rate are similar, with no systematic under- or overestimation. Kinetic energy spectra evaluated at day 15 are shown in Fig. 11.

Compared to the spectra of the dry simulations in Fig. 6, IFS-FVM and IFS-ST consistently show a considerably larger kinetic

energy in the scales smaller than wave number≈ 120 in the mid-troposphere at about 500 hPa. Overall, the presented consistent

results of IFS-FVM and IFS-ST attest to the quality of the presented dry and moist-precipitating FV formulations along with

the coupling to the IFS physics parametrisation.10

Figure 7. Moist-precipitating baroclinic instability at day 10: surface precipitation rate (mm/day) obtained with IFS-FVM and IFS-ST

coupled to the same IFS cloud microphysics parametrisation. The upper (lower) row shows shaded contours from the IFS-FVM (IFS-ST)

simulations, overlaid by the IFS-ST (IFS-FVM) black contour line of 0.5 mm/day. The left and right columns are for the (O160,TCo159)

and (O320,TCo319) horizontal grids, respectively.
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Figure 8. Moist-precipitating baroclinic instability at day 15: surface precipitation rate (mm/day) obtained with IFS-FVM and IFS-ST

coupled to the same IFS cloud microphysics parametrisation. The upper (lower) row shows shaded contours from the IFS-FVM (IFS-ST)

simulations, overlaid by the IFS-ST (IFS-FVM) black contour line of 0.5 mm/day. The left and right columns are for the (O160,TCo159)

and (O320,TCo319) horizontal grids, respectively.
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Figure 9. Moist-precipitating baroclinic instability at day 15: pressure on the lowest full level (hPa) obtained with IFS-FVM and IFS-ST

coupled to the same IFS cloud microphysics parametrisation. The IFS-FVM results in the first and second row employed the standard

coupling at every time step Ns = 1 or subcycling of dynamics for three time steps Ns = 3, respectively. The simulations were performed

with the (O320,TCo319) grid.
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Figure 10. Moist-precipitating baroclinic instability: Time series of minimum pressure on the lowest full level (left) and area-integrated rain

rate (right). The blue and red lines correspond to the IFS-FVM and IFS-ST results, respectively.

Figure 11. Moist-precipitating baroclinic instability at day 15: Kinetic energy spectra obtained with IFS-FVM and IFS-ST using the

(O320,TCo319) grid. The blue vertical line indicates the spatial scale corresponding to four times the nominal grid spacing of the O320

octahedral grid, which also represents the cubic truncation scale with TCo319 applied in IFS-ST. The spectra are shown on model levels near

the surface and at ∼ 500 hPa.

3.3 Computational efficiency

Computational efficiency of NWP models is crucial. For current HPC architectures and model resolutions, the operational

IFS-ST at ECMWF represents one of the most efficient dynamical core formulations for global NWP. Although the novel IFS-

FVM is considered for future applications in the nonhydrostatic regime and potentially different requirements in terms of the

computing hardware, an important basic question concerns its performance for current NWP configurations. Of interest is the5

relative performance of IFS-FVM to both the hydrostatic IFS-ST and its nonhydrostatic extension (see Section 2.2). In order to
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4 Conclusions

This paper highlighted the semi-implicit NFT finite-volume integration of the fully compressible equations of the novel IFS-

FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parametrisation by means of a

generic interface. Developments such as the new horizontal-vertical directionally-split NFT advective transport scheme based

on MPDATA, variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and5

a computationally efficient coding implementation provide a basis for the overall efficacy of IFS-FVM and for the application

in global NWP at ECMWF.

It was shown that the advanced semi-implicit NFT finite-volume integration scheme on co-located meshes can achieve

comparable solutions to the proven spectral-transform IFS-ST. IFS-ST is applied successfully for operational forecasting at

ECMWF and is therefore considered an appropriate reference model. Here, the study focused on medium-and extended-range10

simulation of the dry and moist-precipitating baroclinic instability benchmark at various resolutions. While the baroclinic

instability benchmark aims at global atmospheric dynamics in the hydrostatic regime, referenced supplementary studies with

IFS-FVM, such as in DCMIP-2016, emphasise nonhydrostatic dynamics. In addition to solution quality, we have demonstrated

competitive computational efficiency of the presented semi-implicit NFT finite-volume integration of IFS-FVM relative to

the semi-implicit semi-Lagrangian integration of IFS-ST, especially when comparing the future nonhydrostatic formulations.15

Common aspects of the finite-volume and spectral-transform model formulations are the octahedral reduced Gaussian grid,

geospherical framework, co-location of variables, distribution of vertical model levels, and the IFS physics parametrisations.

Sharing these properties enables a clean comparison and analysis of the different discretisations as well as physics-dynamics

coupling, and generally facilitates coexistence and combination in IFS.

Future high-performance computing may ultimately demand strictly local numerical discretisations to solve the governing20

equations in NWP and climate models. In this regard, the median-dual finite-volume discretisation of IFS-FVM complements

the operational global spectral-transform method in IFS-ST at ECMWF. Furthermore, IFS-FVM enhances IFS-ST by means of

deep-atmosphere nonhydrostatic fully compressible equations in a generalised height-based vertical coordinate, conservative

and monotone advective transport, flexible horizontal and vertical meshes, while showing competitive solution quality and

efficiency for the configurations studied in this paper and beyond. Building on the developments of the present paper, ongoing25

work advances IFS-FVM to full-physics global medium-range NWP at convection-resolving resolutions.

Appendix A: Horizontal-vertical splitting of the NFT advective transport

We consider the advection operator Ai in the two-time-level semi-implicit integration scheme (7) to be directionally-split in

the horizontal and vertical directions. This splitting is motivated by the observation that NWP models typically have a larger

restriction on the time step in the vertical than the horizontal direction. For example, in the current operational configuration of30

IFS run at TCo1279/L137 (≈ 9 km horizontal grid spacing and 137 stretched vertical levels), the advective Courant numbers

are up to a factor of two larger in the vertical than in the horizontal direction. The horizontal-vertical splitting also accom-
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modates to IFS-FVM’s unstructured horizontal discretisation enabling broad classes of meshes over the surface of the Earth’s

sphere/spheroid, and the structured grid in the (stiff) vertical direction.

The proposed scheme implements mass-compatible second-order Strang-splitting as explained in the following. The overall

semi-implicit integration of the fully compressible equations (1) proceeds exactly as explained in Section 2.1.2, but with the

3D NFT advection operator Ai split into purely horizontal Axy
i and vertical Az

i schemes, respectively. For each model time5

step δt, these are applied in the sequence Az
i →Axy

i →Az
i using half time steps in the two vertical sweeps and the full time

step in the horizontal part. Specifically, the split scheme commences with the integration of the mass continuity equation (1a)

as

ρ
[1]
d i

= Az
i (ρ

n
d ,(vzG)n+1/2,Gn,G[1],0.5δt) , (A1)

ρ
[2]
d i

= Axy
i (ρ[1]

d ,(vhG)n+1/2,G[1],G[2], δt) ,10

ρn+1
d i = ρ

[3]
d i

= Az
i (ρ

[2]
d ,(vzG)n+1/2,G[2],Gn+1,0.5δt) ,

which provides the updated densities ρ
[1]
d , ρ

[2]
d , ρn+1

d and accumulates normal mass fluxes (vzGρd)[1], (v⊥h Gρd)[2], (vzGρd)[3]

for the three sub-steps. For compatibility with mass continuity, these quantities are then all employed in the subsequent advec-

tive transport of scalar variables Ψ̃ (8) as

Ψ[1]
i = Az

i (Ψ̃,(vzGρd)[1],(Gρd)n,(Gρd)[1],0.5δt) , (A2)15

Ψ[2]
i = Axy

i (Ψ[1],(v⊥h Gρd)[2],(Gρd)[1],(Gρd)[2], δt) ,

Ψ̂i = Ψ[3]
i = Az

i (Ψ
[2],(vzGρd)[3],(Gρd)[2],(Gρd)n+1,0.5δt) .

In (A1) and (A2), the implementation of the horizontal advection transportAxy follows the horizontal part of the unstructured-

mesh FV MPDATA of Kühnlein and Smolarkiewicz (2017). The vertical scheme Az is a corresponding 1D structured-grid

MPDATA. Results from numerical experimentation relevant to NWP show that the presented horizontally-vertically split NFT20

scheme based on MPDATA can be considerably more efficient than the standard fully multidimensional (unsplit) MPDATA

of Kühnlein and Smolarkiewicz (2017). This is particularly due to the integration of the vertical parts Az
i with δt/2 each,

which mitigates the vertical stability restriction while not adding any significant computational cost 18. Overall, the horizontal-

vertical splitting ofAi can enable a more than twice larger time step in the integration than the unsplit formulation. In addition,

the split scheme facilitates the application of higher-order, e.g. Waruszewski et al. (2018), and/or flux-form semi-Lagrangian25

advective transport in the vertical. While a detailed presentation and analysis will be provided in a future publication, results

so far indicate comparable solution quality of the split versus unsplit schemes for global atmospheric flow benchmarks. All

IFS-FVM results presented in this paper were obtained using the split scheme (A1)-(A2) for Ai in (7)-(8).

18Compared to the unsplit scheme, the particular horizontal-vertical splitting also does not incur any additional parallel communication in the context of the

horizontal domain decomposition of IFS-FVM.
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Appendix B: Weighted line Jacobi preconditioner

The bespoke preconditioner solves for the solution error e of the pressure perturbation variable ϕ′

P(e) = r, (B1)

where here r denotes the residual error of (19). The preconditioning operator P is then decomposed into vertical and horizontal

parts (Smolarkiewicz and Margolin, 2000) and the residual problem is solved iteratively according to5

Pz(eµ+1) +Ph(eµ)− r = 0, (B2)

where µ numbers the iterates. The vertical part Pz is inverted directly with a tridiagonal algorithm. The horizontal part Ph is

lagged behind, except for its diagonal entries. The actual implementation is given as

Pz(eµ+1) +Ph(eµ) +D(eµ+1− eµ)− r = 0 , (B3)

where D is the diagonal coefficient of Ph, specified as10

Dk,i =− 1
4Vi

3∑

ℓ=1

A∗
ℓ k,i

ζℓk,i

l(i)∑

j=1

ζℓk,j

Vj

(
B11

k,jS
x
j

2 +B22
k,jS

y
j

2
)

, (B4)

with B11 and B22 referring to the diagonal entries of G̃T C. Subsequently, (B3) is executed as

eµ+1 = ω [D−Pz]
−1 (Deµ−Ph(eµ) + r

)
+ (1−ω)eµ (B5)

with the weight ω = 0.7.

Appendix C: Specification of the curvilinear coordinate framework of IFS-FVM15

IFS-FVM’s ability to accommodate complex mesh geometries results from two aspects of its formulation, the horizontal

unstructured-mesh finite-volume discretisation and generalized curvilinear coordinate mappings embedded in a geospherical

framework (Prusa and Smolarkiewicz, 2003; Szmelter and Smolarkiewicz, 2010).

In the geospherical curvilinear coordinate framework of Prusa and Smolarkiewicz (2003), the vector u represents the phys-

ical velocity with zonal, meridional and vertical components aligned at every point of the spherical shell with axes of a local20

Cartesian frame (marked with the superscript c) tangent to the lower surface (r = a); here r is the radial component of the

vector radius, and a is the radius of the sphere. Relations between the local Cartesian and the geospherical frame are therefore

dxc = r cosφdλ, dyc = rdφ and zc = r− a, where λ and φ denote longitude and latitude, respectively, in radians.

Consistent with Prusa and Smolarkiewicz (2003), we define a set of geospherical coordinates of the physical space Sp as

x̃ = aλ, ỹ = aφ, z̃ = zc (x̃, ỹ, z̃ in units of meters). The latter are related to the curvilinear coordinates x = (x,y,z) of the25

computational space St (see Section 2.1.1) by the general transformation

(t,x) =
(
t̃,F(t̃, x̃)

)
. (C1)
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where F(t̃, x̃) represents a bijective map between the physical and computational systems (Prusa and Smolarkiewicz, 2003;

Kühnlein et al., 2012). A default mapping in IFS-FVM uses no stretching with respect to the horizontal positions of the

unstructured computational mesh x≡ x̃, y ≡ ỹ, combined with a general terrain-following vertical coordinate z = z(x̃, ỹ, z̃).

Under these conditions, the 3×3 coefficient matrix G̃ employed in the formalism of Section 2.1.1 has the following non-zero

components G̃1
1 = [Γcos(ỹ/a)]−1, G̃2

2 = Γ−1, G̃3
1 = [Γcos(ỹ/a)]−1∂z/∂x̃, G̃3

2 = Γ−1∂z/∂ỹ, G̃3
3 = ∂z/∂z̃. The Jacobian of5

the transformation is G = Γ2 cos(ỹ/a)(∂z/∂z̃)−1. Here, Γ = 1 + γ z̃/a with γ = 0 and γ = 1 for the shallow- and deep-

atmosphere form of the governing equations (1), respectively, and the indices 1, 2, and 3 correspond to x, y, and z components.

Furthermore, in the momentum equation (1b), the components of the Coriolis acceleration are

−f ×u =
[

v f0 sin(ỹ/a)− γ wf0 cos(ỹ/a) ,−uf0 sin(ỹ/a) ,γ uf0 cos(ỹ/a)
]

, (C2)

where u = (u,v,w) and f0 = 2|Ω|. Furthermore, the metric forcings (viz., component-wise Christoffel terms associated with10

the convective derivative of the physical velocity) are,

M(u) = (Γa)−1
[

tan(ỹ/a)uv− γ uw ,−tan(ỹ/a)uu− γ vw ,γ (uu + v v)
]

. (C3)

Note that in the shallow- versus deep-atmosphere form of the governing equations (1), gravity is constant g = g0 or varies with

height as g = g0 (a/r)2, respectively. As indicated in Section 2.1.1, the optional time-dependence of the generalised curvilinear

coordinates enters through the mesh velocity (Prusa and Smolarkiewicz, 2003; Kühnlein et al., 2012).15
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Appendix D: Summary of variables and physical constants

Table D1. List of variables

Symbol Description

λ Longitude (in radians)

φ Latitude (in radians)

z Height with respect to mean sea level (set to zero)

ps Surface hydrostatic pressure with HPEs in IFS-ST

πs Surface hydrostatic pressure with fully compressible equations in IFS-ST

u Zonal wind velocity

v Meridional wind velocity

w Vertical wind velocity

u 3D wind vector

p Pressure

ρ Total air density

ρd Dry air density

T Temperature

Tv Virtual temperature

θ Potential temperature

θρ Density potential temperature

d4 Vertical divergence variable

π Exner pressure

rk Mixing ratio moisture variables (vapour, liquid, rain, ice, snow)

qk Specific moisture variables (vapour, liquid, rain, ice, snow)
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Table D2. List of physical constants

Constant Description Value

g0 Gravitational acceleration 9.80616 m s−2

p0 Reference pressure 1000 hPa

cpd Specific heat capacity of dry air at constant pressure 1004.5 J kg−1 K−1

cvd Specific heat capacity of dry air at constant volume 717.5 J kg−1 K−1

Rd Gas constant for dry air 287.0 J kg−1 K−1

Rv Gas constant for water vapor 461.5 J kg−1 K−1

ε Ratio of Rd to Rv 0.622

Code availability. Model codes developed at ECMWF are intellectual property of ECMWF and its member states, and therefore the IFS

code is not publicly available. Access to a reduced version of the IFS code may be obtained from ECMWF under an OpenIFS license (see

“http://www.ecmwf.int/en/research/projects/openifs” for further information).

Data availability. The model output data can be downloaded from http://doi.org/10.5281/zenodo.1445597.
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