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Abstract. The leaf area index (LAI) is a crucial parameter for understanding the exchanges of momentum, 

carbon, energy, and water between terrestrial ecosystems and the atmosphere. In this study, the Data 

Assimilation Research Testbed (DART) has been successfully coupled to the Community Land Model 

(CLM) by assimilating global remotely sensed LAI data with explicit carbon and nitrogen components 15 
(CLM4CN). The purpose of this paper is to determine the best algorithm for LAI assimilation. Within 

this framework, four sequential assimilation algorithms, i.e., the Kernel Filter (KF), the Ensemble 

Kalman Filter (EnKF), the Ensemble Adjust Kalman Filter (EAKF), and the Particle Filter (PF), are 

applied, thoroughly analysed and compared. The results show that assimilating remotely sensed LAI data 

into the CLM4CN is an effective method for improving model performance. In detail, the assimilation 20 
accuracies of the ensemble filter algorithms (EnKF and EAKF) are better than that of the KF algorithm 

because the KF is based on the linear model error assumption. From the perspective of average and 

RMSE, the PF algorithm performs worse than the EAKF and EnKF algorithms because of the gradually 

reduced acceptance of observations with assimilation steps. In other words, the contribution of the 

observations to the posterior probability during the assimilation process is reduced. The EAKF algorithm 25 
is the best method because the matrix is adjusted at each time step during the assimilation procedure. 

1 Introduction 

Land surface processes play an important role in the earth system because all the physical, 

biochemical, and ecological processes occurring in the soil, vegetation, and hydrosphere influence the 

mass and energy exchanges during land-atmosphere interactions (Bonan, 1995; Pitman, 2003; Pitman et 30 
al., 2009, 2012). The leaf area index (LAI) is a key biophysical parameter of vegetation in land surface 

models (LSMs) and influences their simulation performance. Therefore, high-quality, spatially and 

temporally continuous LAI inputs are extremely important (Bonan et al., 1992; Li et al., 2015). 

Real-time monitoring of LAI on a large scale is a worldwide problem. The lack of spatial 

representativeness caused by the sparse distribution of conventional observations makes it difficult to 35 
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achieve a global observational LAI dataset. Remote sensing can provide global data with high spatial 

and temporal resolutions, but the inversion accuracy is associated with different plant functional types 

(PFTs) and vegetation fractions. Furthermore, although advanced land surface models (LSMs, e.g., the 

Community Land Model version 4, CLM4) can predict LAI variation, the model performance is greatly 

affected by the model structure or the initial/forcing/boundary conditions of the input (Dai et al., 2003; 5 
Luo et al., 2003; Levis et al., 2004). Data Assimilation (DA), through optimally combining both 

dynamical and physical mechanisms with real-time observations, can effectively reduce the estimation 

uncertainties caused by spatially and temporally sparse observations and poor observed data accuracy 

(Kalnay, 2003). 

As a link between observations and dynamic model states, mathematical algorithms play an 10 
important role in calculating the increments and adjusting the state vector during assimilation (Kalnay et 

al., 2007). The two basic data assimilation algorithms are the variational DA based on optimal control 

theory and sequential algorithms based on the Kalman Filter (KF) (Dimet and Talagrand, 1986; Gordon 

et al., 1993; Bannister et al., 2017; Vetra-Carvalho et al., 2018). Because the KF algorithm is based on 

the linear model error assumption, many new sequential algorithms have been proposed. For example, 15 
the Extended Kalman Filter (EKF) was developed to meet the need for a nonlinear observation operator, 

but the tangent operator needs to be developed (Kalnay, 2003). Based on the Monte Carlo method and 

focused on the nonlinear operator, the Ensemble Kalman Filter (EnKF) was developed (Evensen, 1994) 

and was first used in the study of atmospheric science (Houtekamer and Mitchell, 1998). Since then, the 

EnKF has been widely applied for the assimilation of ocean, land surface and atmospheric data 20 
(Houtekamer et al., 2005; Evensen, 2007). In recent years, the Monte-Carlo methods have been proposed 

to allow the assimilation of information from sources that have non-Gaussian errors.  

Many previous studies focusing on the comparison of variational and sequential algorithms have 

been conducted to determine the optimal assimilation method (Han and Li, 2008). Wu et al. (2011) 

systematically compared EnKF and 3DVAR/4DVAR algorithms and found that the EnKF algorithm was 25 
better than the 3DVAR method and the same as the 4DVAR method. For this reason, the application of 

the EnKF algorithm has been expanded quickly, and many other forms of the EnKF method have been 

developed, such as the Dual EnKF (Li et al., 2014), Ensemble Square Root Filter (EnSRF) (Whitaker 

and Hamill, 2002), and Ensemble Adjust Kalman Filter (EAKF, Anderson, 2001). At the same time, 

combinations of variational algorithms and sequential algorithms have also been developed. For example, 30 
the maximum likelihood ensemble filter (MLEF, Zupanski, 2005), the combination of 3DVAR and PF 

algorithms (Leng and Song, 2013), the hybrid variational-ensemble data assimilation methods, i.e., the 

4DEnKF (Hunt et al., 2004; Fertig et al., 2007; Zhang et al., 2009) and the DrEnKF (Wan et al., 2009) 

have been developed at NCEP and applied to improve model predictions (Whitaker et al., 2008).  

A complete Land Data Assimilation System (LDAS) is mainly composed of forcing datasets, initial 35 
and boundary datasets, parameterization sets, dynamical models as physical constraints, assimilation 

algorithms, observational data and target output. In recent decades, studies of land data assimilation have 

become very active, although this topic was proposed later than the assimilation of atmospheric 

observations (Lahoz and De Lannoy, 2014). Land data assimilation can implement both in-situ 

observations and remotely sensed data like satellite observation of soil moisture, snow water equivalent 40 
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(SWE), land surface temperature and so on to constrain the physical parametrization and initialization of 

land surface state. (Liu et al., 2008; Reichle et al., 2014; Zhang et al., 2014; Zhao et al., 2016; 2018). The 

widely acknowledged LDASs include the North LDAS (NLDAS, Mitchell et al., 2004; NLDAS-2, Luo 

et al., 2003; Xia et al., 2012), the Global LDAS (GLDAS, Rodell et al., 2004), the European LDAS 

(ELDAS, Jacobs et al., 2008), the West China LDAS (WCLDAS, Huang and Li, 2004) and the Canadian 5 
LDAS (CaLDAS, Carrera et al., 2015). 

Recent studies focusing on assimilation in terrestrial systems have tended to add multiple 

phenological observations to constrain and predict biome variables and further improve model 

performance (Knyazikhin et al., 1998; Xiao et al., 2009; Viskari et al., 2015). Joint assimilation of surface 

incident solar radiation, soil moisture and vegetation dynamics (LAI) into land surface models or crop 10 
models is of great importance since it can improve the model results for national food policy and security 

assessments (Sabater et al., 2008; Ines et al., 2013; Sawada et al., 2015; Jin et al., 2018; Mokhtari et al., 

2018). Furthermore, the abilities to simulate river discharge, land evapotranspiration, and gross primary 

production have been improved in Europe (Barbu et al., 2011; Albergel et al., 2017). To date, such studies 

have been conducted using a single sequential algorithm at a single site or on regional scales (Montzka 15 
et al., 2012; Sawada et al., 2018). 

The Data Assimilation Research Testbed (DART) is an open source community facility and 

includes several different types of KF algorithms (Anderson et al., 2009). It has been coupled to many 

high-order models and observations for ocean, atmosphere, land surface, and chemical constituents. For 

example, DART has been coupled with CLM4 or CLM4.5 to improve snow and soil moisture estimations 20 
as well as land carbon processes (Zhang et al., 2014; Kwon et al., 2016; Zhao et al., 2016; Fox et al., 

2018; Zhao et al., 2018). Utilizing coupled DART/CLM4, the Global Land Surface Satellite LAI 

(GLASS LAI) data are assimilated into the Community Land Model with carbon and nitrogen 

components (CLM4CN) in the present study to explore the optimal assimilation algorithm for model 

performance. The experimental design and different assimilation algorithms are described in Sect. 2. 25 
Section 3 describes the optimal algorithm for LAI assimilation, and the proportion of observations is 

discussed in Sect. 4. Conclusions and discussions are given in Sect. 5. 

2 Data and Methodology 

A complete LDAS is mainly composed of forcing/initial/boundary datasets, parameterization sets, 

dynamical LSMs, assimilation algorithms, observational data and target output. LSMs play an important 30 
role in the LDAS because they can add physical constraints to the control variables during assimilation. 

In addition, the simulation ability of LSMs can directly affect the output because they provide the 

associated uncertainty for assimilation. 

2.1 CLM4CN 

Developed by the National Center for Atmospheric Research (NCAR), the Community Land Model 35 
(CLM) can simulate energy, momentum and water exchanges between the land surface and the overlying 

atmosphere at each computational grid. The CLM is designed mainly for coupling with the atmospheric 
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numerical model and providing the surface albedo (direct and scattered light within the visible and 

infrared bands), upward longwave radiation, sensible heat flux, latent heat flux, water vapor flux, and 

east-to-west and south-to-north surface stress needed by the atmospheric model. These parameters are 

controlled by many ecological and hydrological processes. The model can also simulate leaf phenology 

and physiological processes, as well as water circulation through plant pores. Ecological differences 5 
between vegetation types and thermal and hydrological differences between different soil types are also 

considered. Each grid cell can be covered by several different land use types. Each cell contains several 

land units, each land unit contains a different number of soil and snow cylindrical blocks, and each 

cylindrical block may contain several types of vegetation functions. The CLM employs 10 soil layers to 

resolve soil moisture and temperature dynamics and uses PFTs to represent subgrid vegetation 10 
heterogeneity (Oleson et al., 2010). 

There are two ways to update LAI in CLM4. The LAI is treated as a diagnostic variable that is 

linearly interpolated from a 30-year averaged satellite dataset, and there is no annual LAI variation for 

CLM4 with Satellite Phenology (CLM4SP) (Lawrence and Chase, 2007). For CLM4CN, the prognostic 

LAI is calculated by the leaf carbon pool and an assumed vertical gradient of specific leaf area (SLA) 15 
(Thornton and Zimmermann, 2007). Carbon and nitrogen are obtained by plant storage pools in one 

growing season and then retained and distributed in the subsequent year. All carbon and nitrogen state 

variables in vegetation, litter, and soil organic matter (SOM) are prognostic based on the prescribed 

vegetation phenology. The CLM4CN offline mode with prescribed meteorological forcing is used in this 

study. 20 

2.2 DART (the Lanai version)  

DART is developed and maintained by the Data Assimilation Research Section (DAReS) at NCAR. 

The purpose of DART is to provide a flexible tool for data assimilation (DA), and it has been coupled 

with many ‘high-order’ models. As a software environment, DART makes it easy to explore a variety of 

data assimilation methods and observations with different numerical models. The DART system includes 25 
several different types of sequential algorithms, which are selected at runtime by a namelist setting. The 

Lanai version of DART, which supports many existing models including the CESM climate component, 

the MPAS (Model for Prediction Across Scales) models and the NOAH land model etc., is used in this 

study. Released in December 2013, the Lanai version of DART can process many new observation types 

and sources and include new diagnostic routines as well as new utilities. Detailed settings for DART can 30 
be found at https://www.image.ucar.edu/DAReS/DART/. 

Currently, the coupled DART/CLM4 model has produced many reanalysis data for snow and soil 

moisture. It has been found that snow DA can improve temperature predictions, especially over the 

Tibetan Plateau, implying great implications for future land DA and seasonal climate prediction studies 

(Lin et al., 2016). Furthermore, the coupled DART/CLM framework would be employed to assimilate 35 
other variables, such as LAI, from various satellite sources and ground observations (i.e., truly multi-

mission, multi-platform, multi-sensor, multi-source, and multi-scale). Ultimately, this would allow earth 

system models to be constrained by all types of observations to improve model performance for seasonal 

and decadal prediction skills. 

https://www.image.ucar.edu/DAReS/DART/
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2.3 Sequential Assimilation Algorithms 

According to Anderson et al. (2001), Equation (1) is used to express how new sets of observations 

modify the prior joint state conditional probability distribution obtained from predictions based on 

previous observation sets.  

p(zt,k|Yt,k) = p(𝐲𝐲𝑡𝑡,𝑘𝑘
𝑜𝑜 | zt,k) p(zt,k | Yt,k-1)/ p(𝐲𝐲𝑡𝑡,𝑘𝑘

𝑜𝑜 | Yt,k-1)               (1) 5 

in which Yt,k is defined as the superset of all observation subsets, 𝐲𝐲𝑡𝑡,𝑘𝑘
𝑜𝑜  is the kth subset of observations 

at time t, zt,k is the joint state-observation vector for a given t and k. In ensemble applications, generally 

there is no need to compute the denominator of (1). Four algorithms for approximating the product in 

the numerator of (1) are presented below, and detailed information can be found in Anderson et al. 

(2001).  10 

2.3.1 Ensemble Kernel Filter (EKF) 

The kernel filter mechanism, first proposed by Lindgren et al. (1993) and further developed by 

Anderson and Anderson (1999), has been incorporated into the DART and can be extended to the joint 

state space. Detailed calculation process can be found in Anderson et al. (2001). The kernel filter is 

potentially general, because the values and expected values of the mean and covariance and higher-order 15 
moments of the resulting ensemble are functions of high-order moments of the prior distribution. 

However, when applied to large models, computational efficiency will be an issue for the application of 

the algorithm.  

2.3.2 Ensemble Kalman Filter (EnKF) 

The KF algorithm has not been widely used because of computing limitations and the linear model 20 
error assumption. The EnKF was proposed based on a Monte Carlo approximation, for which the 

background error covariance is approximated using an ensemble of forecasts (Evensen, 1994). The EnKF 

algorithm can be utilized for nonlinear systems and can also reduce the computing requirement of DA 

(Burgers et al., 1998; Evensen, 2003; 2007). 

The EnKF procedure is divided into two stages: prediction and analysis. (1) In the prediction stage, 25 
the ensemble forecast field is generated from the ensemble initial condition, and the error covariance 

matrix of the ensemble forecast is calculated. (2) In the analysis stage, the simulation of each member of 

the ensemble is updated using the covariance matrix of observation vector error and state vector error. 

The traditional EnKF, an ensemble of Kalman Filters with each member using a different sample estimate 

of the prior mean and observations, is used in this study (Houtekamer and Mitchell1998). 30 

2.3.3 Ensemble Adjust Kalman Filter (EAKF) 

Although the forms of expression are different, the proposed EnSRF (Whitaker et al., 2002) and 

EAKF (Anderson, 2001) are the same algorithm. 

The difference between the EAKF and the traditional EnKF lies in the adjustment of the gain matrix 

to avoid filtering the divergence problem by increasing the premise of the analysis error covariance 35 
(Anderson, 2003, 2007; Wang et al., 2007). In the EAKF algorithm, ensemble observation members are 
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calculated by the observation operator, and the increment of each observation member is calculated as 

∆𝑌𝑌𝑖𝑖. 

The increment ∆𝑋𝑋𝑖𝑖𝑖𝑖  for each ensemble sample of each state variable in terms of ∆𝑌𝑌𝑖𝑖  can then be 

calculated as follows: 

∆𝑋𝑋𝑖𝑖𝑖𝑖 =  
𝜎𝜎𝑗𝑗𝑜𝑜
𝑝𝑝

𝜎𝜎𝑜𝑜
𝑝𝑝+𝜎𝜎𝑗𝑗𝑜𝑜

𝑝𝑝  ∆𝑌𝑌𝑖𝑖 .                                                                    (2) 5 

where i indicates the ensemble member, j is the state vector member, 𝜎𝜎𝑖𝑖𝑜𝑜
𝑝𝑝  is the prior covariance of state 

vector and observation, and 𝜎𝜎𝑜𝑜
𝑝𝑝 is the prior variance of observation. 

2.3.4 Particle Filter (PF) 

The Particle Filter (PF) is also a sequential Monte Carlo method, which is based on the Bayesian 

sequential importance sampling method (SIS). The PF algorithm finds a set of random samples in the 10 
state space to approximate the probability density function and then replaces the integral operation with 

the sample mean to obtain the process of minimum variance distribution of the state (Moradkhani et al., 

2005). The procedure of the PF algorithm can also be divided into two frameworks: forecast and analysis. 

If there are enough observations, the posterior density at k can be approximated as 

p(Xka|Y1:k)  ≈  ∑ wi,k δ(Xka − Xi,ka )N
i=1 .                                                  (3) 15 

 𝛿𝛿(∗) is the Dirac Function and �𝑤𝑤i,k

N

i=1

= 1. 

in which p(Xka|Y1:k) is the posterior probability distribution, Xi,ka  is the particle element, wi,k is the 

weight of each particle, N is the number of particles. Unlike the EnKF algorithm, the PF method takes 

into account the weights of different particles and can be better applied to nonlinear systems. However, 

in association with the DA, there are a limited number of particles with large weights, and too many 20 
computing resources are distributed to particles with weights of approximately 0. This situation is called 

particle degradation (Doucet et al., 2000). Effective methods to solve this issue include resampling or 

selecting more reasonable importance functions. 

2.4 Datasets 

2.4.1 Ensemble Meteorological Forcing and initial conditions 25 

The ensemble initial conditions and background error (Hu et al., 2014) are produced from ensemble 

analysis products generated by running DART and the Community Atmosphere Model (CAM4) (Raeder 

et al., 2012). DART/CAM4 produced 80 atmospheric forcing datasets with 6-hour time intervals for the 

period of 1998-2010. These ensemble meteorological data have been widely employed in DA for ocean, 

snow, soil moisture, and many other related studies (Danabasoglu et al., 2012). By considering 30 
computational cost and filter performance, 40 members among the ensemble forcing datasets are chosen 

to drive the CLM4CN. 

To achieve a steady state solution for all state variables, the CLM4CN was run for 4000 years by 

Qian’s forcing (Qian et al., 2006) at the resolution of 1.9° latitude by 2.5° longitude (Shi et al., 2013). 

Then the]. The CLM4CN was then forced by the ensemble mean of selected 40 members of DART/CAM 35 
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datasets for 1000 years. In the last step, the ensemble simulation during the time period from 1998 to 

2001 was treated as spin-up, and 40 ensemble initial conditions were obtained. Aiming at global scale 

and considering the computational cost, only one-year assimilation and ensemble simulation were 

conducted. Our goal is to first find out the best experiment, and then conduct long-term simulation 

or assimilation in the future. 5 

2.4.2 LAI datasets 

The Global Land Surface Satellite (GLASS) LAI dataset is used in this study as observations for 

assimilation (Zhao et al., 2013). Since the ensemble simulation or assimilation is run at the resolution of 

0.9° latitude by 1.25° longitude, the original spatial resolution of 0.05° of the GLASS LAI is upscaled to 

the same resolution.  10 
To evaluate the assimilation result, an improved LAI dataset developed from the MODerate 

Resolution Imaging Spectroradiometer (MODIS) (Yuan et al., 2011) is utilized. Spatial and temporal 

inconsistencies can be reduced by considering the characteristics of the MODIS LAI data and quality 

control (QC) information (Baret et al., 2013). The resolution of MODIS data is 1-km, which is also 

upscaled to the grid level to evaluate the analysis of LAI and assimilation effect. 15 

2.5 Experimental Design 

Table 1. Experimental design for LAI assimilation using DART/CLM4CN. 

 

To determine the optimal assimilation algorithm, five experiments corresponding to the KF, EnKF, 

EAKF and PF methods are designed and showed in Table 1, in which the “Algorithms” experiments 20 
would reject some observations under certain conditions using the KF, EnKF, EAKF, and PF algorithms. 

The expected value of the difference between the prior mean and observation is �𝜎𝜎𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜𝑝𝑝2 + 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 , in which 

𝜎𝜎𝑝𝑝𝑝𝑝𝑖𝑖𝑜𝑜𝑝𝑝  and 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 are standard deviations of the prior PDF and observation PDF respectively. DART will 

reject the observation if the bias of the prior mean and observations is larger than three times of the 

expected value. The “Algorithms without observation rejection” experiments would accept all the 25 
observed LAI.  During assimilation, CLM stops and writes restart and history files at a frequency of 8 

days. If there is available observational GLASS LAI data, they are assimilated into the CLM4CN. DART 

extract state vector, the increments are calculated by filtering at each time step, and the LAI, leaf carbon 

(Leaf C) and leaf nitrogen (Leaf N) are updated. The adjusted DART state vector is resent to the CLM 

restart files as a new initial condition for the next time step. All the simulation and assimilation are 30 
conducted at the spatial resolution of 0.9° latitude by 1.25° longitude. The ensemble assimilation is 

Experiment Assimilated 
variables Updated variables Assimilation algorithm Accept all 

observation 

Algorithms  GLASS LAI LAI, Leaf C, Leaf N EAKF, EnKF, KF, PF NO 

Algorithms 
without 
observation 
rejection 

GLASS LAI LAI, Leaf C, Leaf N EAKF YES 
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conducted pointwise, indicating that spatial covariances are not considered. 

3 The Optimal Algorithm for DART/CLM4CN 

The spatial distributions of global LAI in 2002 for (a) observations in July, (b) ensemble mean of 

simulations in July, (c) observations in November, and (d) ensemble mean of simulations in November 

are shown in Fig. 1. The observations in Fig. 1 are from the updated MODIS LAI dataset with a spatial 5 
resolution of 1.0 latitude by 1.0 longitude. There are two latitudinal belts of high LAI values located in 

the tropics and at 50-65°N. These two regions are mainly dominated by evergreen broadleaf forests and 

boreal forests, respectively. Because of the presence of deserts, plateaus and bare ground, the LAI is low 

in western North America, western Australia, southern Africa, and southern South America, where 

shrubs and/or grass are dominant. Globally, the CLM4CN can simulate the LAI distribution 10 
characteristics, except that it systematically overestimates LAI, especially at low latitudes. There are 3 

high-LAI regions located in the tropics: the Amazon, central Africa, and some islands in Southeast Asia. 

The global LAI is lower in November than in July. The LAI values in the high latitudes of the northern 

hemisphere are higher in July than in November because November is not the growing season for most 

of the vegetation in the northern hemisphere. 15 

 

Figure 1: Spatial distributions of global LAI values in 2002 for (a) observations in July, (b) ensemble mean of 

simulations in July, (c) observations in November, and (d) ensemble mean of simulations in November. 

The differences between global LAI from observations and that from assimilation experiments in 

July 2002 with the methods of (a) EAKF, (b) EnKF, (c) KF and (d) PF are shown in Fig. 2. Globally, 20 
assimilation results with the methods of EAKF and EnKF are larger in lower-latitude regions and higher-

latitude regions in the Northern Hemisphere. For the EAKF and EnKF algorithms, large negative biases 
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are located in the Amazon region, central Africa, and northeastern China, which are dominated by BET 

tropical, NET boreal forests and mixed forest types, respectively. The LAI values from the assimilation 

experiment are always higher in the middle- and high-latitude regions, especially in western North 

America, the northern Amazon, northwestern China, and western Australia, where open shrublands and 

grasslands are dominant. The LAI values from the assimilation experiments with the KF and PF 5 
algorithms are highly overestimated compared to the observations in the northern and eastern Amazon, 

central Africa, southern Eurasia, and Southeast Asia. In addition, the LAI values obtained by the EAKF 

method are more continuous than those obtained by the EnKF method and more consistent with the 

observations in central South America and central Africa. Notably, the correction of overestimated LAI 

is significantly better than that of underestimated LAI, which is mainly attributed to the high dispersion 10 
of LAI in those regions. In other words, high dispersion is beneficial to assimilation. 

 
Figure 2: Differences between global LAI from assimilation experiments and that from observations in July 

2002 with the methods of (a) EAKF, (b) EnKF, (c) KF and (d) PF. 

The results also indicate that the EAKF and EnKF assimilation algorithms are better than the KF 15 
and PF algorithms in November (figures not shown). In detail, the EAKF algorithm is better than the 

EnKF method in November, especially in the Amazon, central Africa, and southern Eurasia. The biases 

of assimilated LAI relative to the observed LAI are higher in November in the 20-65°N region, which 

may be because vegetation during this period in the Northern Hemisphere is not lush. In western Australia 

and central Eurasia, the improvement of the underestimation in November is not as significant as that in 20 
July, which indicates that the system has a limited capability to simulate the vegetation process, 

especially for open shrubland and grassland. From the perspective of the average and RMSE, the PF 

algorithm performs worse than the EAKF and EnKF algorithms because of the gradually reduced 

acceptance of observations with assimilation steps. Note that the average and RMSE only make sense 

for the Ensemble Kalman Filters.  For the PF algorithm, the particle with the largest weight (a posteriori 25 
maximum for the pdf) should be discussed separately. 
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Figure 3: Same as Fig. 2, but for RMSE of ensemble members. 

The RMSEs of ensemble members are showed in Figure 3 to provide hints where the assimilation 

is the most efficient. The RMSEs of ensemble members for the EAKF and EnKF algorithm are larger 

than those for the KF and PF algorithms, indicating that the EAKF and EnKF are more effective. In July 5 
2002, the RMSE of the ensemble estimates is the largest in lower latitude regions, with particularly high 

values in central South America, central Africa, and Southeast Asia. The regions with comparatively large 

ensemble spreads are located in eastern North America and western Europe. The large ensemble spreads 

areas are also transitional regions with different vegetation types, indicating low capability of the models 

to simulate complex vegetation types.  10 
The mean LAI globally and the LAI in five latitudinal bands were chosen for analysis in this study. 

The five bands are boreal (45-65°N), northern temperate (23-45°N), northern equatorial (0-23°N), 

southern equatorial (0-23°S), and southern temperate (23-90°S). Figure 4 presents the root mean square 

differences (RMSDs) of the ensemble means of simulation/assimilation versus observations for (a) global, 

(b) boreal, (c) northern temperate, (d) northern equatorial, (e) southern equatorial, and (f) southern 15 
temperate. Generally, although they all feature similar variation pattern characteristics, the RMSDs of all 

the assimilation datasets relative to the observations are less than those of the simulation, indicating that 

all four assimilation algorithms can improve the LAI simulation. The highest RMSD relative to the 

observations is associated with the simulation, followed by the assimilation datasets from the KF and PF 

algorithms, and the RMSDs are lowest for the EAKF and EnKF methods. During the growing season, 20 
the RMSDs of LAI reach their largest values, especially for the regions in the middle and high latitudes 

of the Northern Hemisphere and high latitudes of the Southern Hemisphere. In the low-latitude region 

covered by evergreen or deciduous broadleaf forests, the RMSD does not present an obvious annual 

change. Because the PF assimilation is heavily dependent on the weights of certain particles and to some 
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degree ignores the importance of observed LAI data, the phenomenon of particle degradation occurs 

during the assimilation. The assimilation is far less efficient in the boreal region than in other areas, 

which is partly attributed to the consistently low initial RMSD during non-growing seasons and limited 

capability of the models for simulating processes associated with boreal forest type.  

 5 
Figure 4: RMSDs of ensemble means of simulation/assimilation versus observations for (a) global, (b) boreal 

(45-65°N), (c) northern temperate (23-45°N), (d) northern equatorial (0-23°N), (e) southern equatorial (0-

23°S), and (f) southern temperate (23-90°S). 

Figure 5 shows the globally or regionally averaged RMSDs of simulation/assimilation and 

observations. The RMSDs of assimilation are lower than those of simulation, implying that assimilating 10 
remotely sensed LAI data into the CLM4CN is an effective method for improving the model performance. 

The RMSDs of assimilation results using the algorithms of EAKF and EnKF are much lower than the 

KF and PF methods, indicating their better performance in assimilation. The difference between 

simulation and all four algorithms in the northern and southern equatorial regions is larger than in other 

regions, indicating that the assimilation is more efficient there. 15 
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Figure 5: Globally or regionally averaged RMSDs for the simulation/assimilation results. 

The background/analysis departures are calculated as (1) innovations, which are the differences 

between the assimilated LAI and model background, and (2) residuals, which are the differences between 

the assimilated observations and analysis (Barbu et al., 2011). It was concluded that the LDAS system is 5 
working well based on the condition that the residuals are reduced compared to the innovations (Albergel 

et al., 2017). Figure 6 shows the histograms of innovation and residuals of LAI globally and for all 

subregions during July 2002. Generally, the distribution characteristics of both innovations and residuals 

are similar for the algorithms of KF and PF, which means that these two algorithms are not very efficient 

for LAI assimilation. The distribution of residuals is more centered on 0 than that of the innovations for 10 
the EAKF and EnKF algorithms, especially for the EAKF algorithm. The innovations dominantly exhibit 

a large negative bias, indicating that the model always highly overestimates LAI. The residuals can 

improve this overestimation situation, especially for the EAKF algorithm. The analysis departures show 

an abnormal high value in the range of -3 to -2 for the boreal and southern equatorial subregions for the 

EnKF algorithm but not for the EAKF algorithm, implying that the EAKF algorithm is the optimal 15 
algorithm for LAI assimilation. 
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Figure 6: The histograms of innovation and residuals of LAI globally and for all subregions during July 2002. 

(a-d) Global; (e-h) boreal; (i-l) northern temperate; (m-p) northern equatorial; (q-t) southern equatorial; (u-

x) southern temperate 

4 Effective Observational Proportion 5 

The assimilation results depend not only on the algorithm but also on the observations. This not 

only requires a sufficiently strong degree of discretization for ensemble simulations but also requires the 

observational variables to be sufficiently trustworthy. In this section, the proportion of LAI observations 

that can be accepted for the four algorithms is discussed. During assimilation, the DART can calculate 

the number of non-assimilated observations when the difference of prior mean and observations is larger 10 

than three times of the expected value. The proportion of accepted LAI observations is defined as the 

number of accepted observations divided by the number of total observations. 

To explain the relationship between assimilation algorithms and observation rejection, Fig. 7 

displays the proportion of accepted LAI observations for the four algorithms in the zonal regions. In 

general, the EnKF and EAKF methods accepted many more observational LAI observations than the PF 15 
and KF methods. In the low-latitude regions, the proportion of accepted LAI observations is 
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approximately 75%, which is lower than in the high-latitude regions. This may be because the broadleaf 

forest in tropical regions can grow unrestrictedly in the model, producing LAI values that are much higher 

than the observations. At the very beginning of assimilation, DART rejects the largest proportion of LAI 

observations in the southern equatorial, northern equatorial, and northern temperate zones due to large 

biases between the simulation and the observations. Over time, the rejection proportion gradually 5 
decreases for the northern equatorial, southern equatorial and southern temperate. As ensemble-analyzed 

LAI values tend to relatively fixed, the rejection proportion increases over regions with small LAI 

amplitudes, such as the northern temperate and boreal region. From May to September in the boreal 

region and from April to September in the northern temperate region, the proportion of accepted LAI is 

much smaller than in the other regions. These two periods are also when the model simulation presents 10 
an obvious discrete characteristic. This experiment illustrates the utility of the spin-up process for 

ensemble initial conditions. 

 
Figure 7: The proportion of accepted LAI observations for the four algorithms in the zonal regions. 

The difference between globally assimilated and observed LAIs with the methods of EAKF (with 15 
rejection) in (a) July and (b) November are shown in Fig. 8 to illustrate the role of observation proportion. 

It can be concluded that when accepting all the observations, the assimilation results seem to be better 

than when some observations are rejected during assimilation. Large biases occur in the Amazon, central 

Africa, southern Eurasia, and the boreal region, where the LAI is overestimated in the model. 

Furthermore, the KF and PF algorithms gradually reduce the acceptance of observations as assimilation 20 
progresses, which may partially explain their worse performance than the EnKF and EAKF algorithms 

(see Fig. 5). 
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Figure 8: Differences between globally assimilated and observed LAIs for the methods of EAKF in (a) July 

and (b) November. 

During assimilation, the assimilated observations (GLASS LAI) are always treated as “true” values. 

The question thus becomes how do the true values influence the assimilation results? Figure 9 shows the 5 
RMSDs of simulation experiments without/with rejection (EAKF_noreject / EAKF_reject) and MODIS 

LAI over the (a) global, (b) boreal, (c) northern temperate, (d) northern equatorial, (e) southern equatorial, 

and (f) southern temperate regions. In the EAKF_reject experimental design, if the observed LAI is three 

times larger than the bias between the simulation and the observations, the observation would be rejected 

by DART, while in the EAKF_noreject experiment, all observed LAIs are assimilated. Generally, 10 
RMSDs for both simulation and assimilation present obvious annual variations, with RMSDs reaching 

their maximum values in the season with considerable vegetation growth over a large area. The RMSD 

of assimilation is far less than that of the simulation, although their characteristic variation patterns are 

similar. This demonstrates the effectiveness of assimilation for improving model simulation. The RMSD 

relative to the observations was highest for the simulation, followed by the EAKF_reject experiment, 15 
and was lowest for the EAKF_noreject experiment. The RMSDs are large during the growing season, 

when LAI values are also high in the boreal and northern temperate regions. During assimilation, when 

accepting all the observations, the RMSD is smaller than that when rejecting some observations. 
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Figure 9: RMSDs of simulation experiments without/with rejection (EAKF_noreject and EAKF_reject) and 

MODIS LAI for the (a) globe, (b) boreal (45-65°N), (c) northern temperate (23-45°N), (d) northern equatorial 

(0-23°N), (e) southern equatorial (0-23°S), and (f) southern temperate (23-90°S) regions. 

5 Conclusions and Discussion 5 

The Community Land Model version 4 with prognostic carbon-nitrogen components (CLM4CN) is 

coupled with the Data Assimilation Research Testbed (DART) to determine the optimal assimilation 

algorithm for leaf area index (LAI). Four different sequential methods, i.e., the Kalman Filter (KF), 

Ensemble Kalman Filter (EnKF), Ensemble Adjust Kalman Filter (EAKF), and Particle Filter (PF), are 

discussed in this paper. 10 

The results show that assimilating remotely sensed LAI into the CLM4CN is an effective method 

for improving model performance. Globally speaking, the EAKF and EnKF assimilation algorithms are 

better than the KF and PF assimilation algorithms. The LAI obtained by the EAKF method is more 

continuous than that obtained by the EnKF method and more consistent with observations in central 

South American and central Africa, whereas the deviation in the EnKF method can be from -4 m2 m-2 to 15 

4 m2 m-2. Furthermore, the assimilation shows better performance in the vegetation growing season. The 
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lowest root mean square error (RMSD) is associated with the EAKF algorithm, suggesting that the EAKF 

algorithm is the best and has a robust performance. 

The proportion of observations accepted by the model is another topic of this research. The 

proportion of accepted LAI observations is 10-20% in the low latitudes lower than in the high latitudes 

because of large biases between the assimilation and the observations. When all the observations are 5 

accepted, the RMSD of the results is smaller than that when some observations are rejected. 
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