

We thank the reviewers for their constructive comments on our manuscript. In the following paragraphs, the reviewers' comments are in black font and our point-by-point responses are in blue.

Referee #1

General comments

In the original version of this manuscript, Seo and Kim presented the results of a study designed to assess the relative and interactive effects of simulating fire and dynamic vegetation on carbon and water cycling in the Community Land Model. One especially interesting finding was that fire seems to increase net ecosystem productivity, but only when dynamic vegetation is turned off. Many of the other results were not very novel but were appropriate for Geoscientific Model Development because they add evidence supporting existing findings, and could help to interpret future CLM experiments.

The authors have done a good job of responding to reviewer comments and the revised version of the manuscript is much improved. There is still room for improvement, especially with regard to the handling of vegetation distributions in the model runs, but I recommend that this manuscript be accepted pending minor revisions.

Specific comments

There still needs to be clarification about how land use and vegetation were handled. Below is a version of Table 1 containing suggested corrections/improvements in bold.

	BGC for year 1850	BGC for 20th cent.	BGConly	BGC-DV
Time	—	1901–2000	200 yr	200 yr
Climate forcing (CRU-NCEP)	Repeated 1901–1920	1901–2000	Repeated for five times 1961–2000	Repeated for five times 1961–2000
[CO ₂]	1850	1901–2000	2000	2000
Biogeog. shifts?	No	Yes	No	Yes
Initial veg.	No	From BGC year 1850	From BGC for 20th century	No
Initial soil	No	From BGC year 1850	From BGC for 20th century	From BGC for 20th century
PFTs	15 natural + 2 crop	15 natural + 2 crop	15 natural + 2 crop	15 natural
Fire	On	On	On (BGConly-F) Off (BGConly-N)	On (BGC-DV-F) Off (BGC-DV-NF)

The “land use” row should be clarified. Based on how the authors filled it in, the row name should be “PFTs.” Then the boxes should be filled with “15 natural + 2 crop” for all except the box for BGC-DV, which would have “15 natural”.

>> As per reviewer’s suggestion, we have added the detailed explanation of a series of different experiments in Table 1.

Table 1: Configurations of the experiments used in the study

	<i>BGC for the year 1850</i>	<i>BGC for the 20th century</i>	<i>BGConly</i>	<i>BGC-DV</i>
<i>Time</i>	-	<i>1901–2000</i>	<i>200 yr</i>	<i>200 yr</i>
<i>Climate forcing</i>	<i>Repeated 1901– 1920 (CRU-NCEP)</i>	<i>1901–2000 (CRU-NCEP)</i>	<i>Repeated 1961– 2000 for five times (CRU-NCEP)</i>	<i>Repeated 1961– 2000 for five times (CRU-NCEP)</i>
<i>[CO₂]</i>	<i>[1850]</i>	<i>[1901–2000]</i>	<i>[2000]</i>	<i>[2000]</i>
<i>Biogeography shifts</i>	<i>No</i>	<i>Yes (Prescribed with time-varying PFT distribution)</i>	<i>No</i>	<i>Yes (Simulated in DV mode)</i>
<i>Initial vegetation state</i>	<i>No</i>	<i>From BGC year 1850</i>	<i>From BGC for 20th century</i>	<i>No</i>
<i>Initial soil</i>	<i>No</i>	<i>From BGC year 1850</i>	<i>From BGC for 20th century</i>	<i>From BGC for 20th century</i>
<i>PFTs</i>	<i>15 natural + 2 crops for 1850 based on the LUH dataset</i>	<i>15 natural + 2 crops for 20th century based on the LUH dataset</i>	<i>15 natural + 2 crops for 2000 based on satellite data</i>	<i>15 natural (except crops)</i>
<i>Fire</i>	<i>On</i>	<i>On</i>	<i>On (BGConly-F) Off (BGConly- NF)</i>	<i>On (BGC-DV-F) Off (BGC-DV-NF)</i>

Since the “BGC for year 1850” run had no initial vegetation and no dynamic vegetation, the PFT distribution map must have come from somewhere. Where? The only explanation I see in the text is that “Initial conditions for the year 1850 equilibrium state were provided by NCAR,” but that doesn’t answer the question. Presumably this run uses the Satellite Phenology option, which should be noted, since there is a paragraph spent explaining that option.

>> We have clarified the initial conditions for the BGC for year 1850 both in the text and in “PFT” row of Table 1 in the revised manuscript (see above for Table 1).

L138: “*The BGC run for the year of 1850 was initialized with the PFT distribution from the Land Use Harmonization (LUH) transient dataset for 1850 to 2005 (Hurtt et al., 2006) to simulate the year 1850 equilibrium state, used to initialize the 20th century transient run.*”

Reference

Hurtt, G. C., Frolking, S., Fearon, M. G., Moore, B., Shevliakova, E., Malyshev, S., Pacala, S., and Houghton, R.: *The underpinnings of land-use history: three centuries of global gridded land-use transitions, woodharvest activity, and resulting secondary lands. Glob. Change Biol.* 12, 1208-1229. doi.org/10.1111/j.1365-2486.2006.01150.x, 2006.

Did the “BGC for 20th century” run use dynamic vegetation or not? There is no information about this run given in the main text, which is of course a problem. Looking at Table 1, it appears that dynamic vegetation was used (Biogeography shifts: Yes), but then later the authors state (as they also do in their reply to the other reviewer) that BGConly-F is “derived from observations”. Since the initial vegetation for BGConly-F is derived from the “BGC for 20th century” run, that would seem to indicate that the latter did NOT use dynamic vegetation. I can see two ways that these two pieces of information could be reconciled:

- If the 20th century run used an external, time-varying PFT distribution—in which case that should be noted and cited.
- If the 20th century run used dynamic vegetation, but then the BGConly run used a set PFT distribution map from MODIS—in which case, (a) that map should be noted and cited, (b) the authors need to reconcile this with the “Initial vegetation: From BGC for 20th century” box under “BGConly” in Table 1, and (c) the authors need to explain what happened to the vegetation at the time of transition (whether it disappeared from the system entirely or was killed and left to decompose).

>> “BGC for 20th century” uses an external, time-varying PFT distribution from LUH

dataset (Hurtt et al., 2006). This has been clarified both in the text and in “Biogeography shifts” and “PFT” rows of Table 1 in the revised manuscript (see above for Table 1).

L140: *“In the transient run, the amount of atmospheric carbon dioxide is increased since the onset of the Industrial Revolution in 1850 and the composition of land cover and vegetation is changed with the LUH dataset of Hurtt et al. (2006) (Vitousek et al., 1997; Pitman et al., 2004).”*

Other comments:

- LL148–150: This sentence should indicate whether the vegetation previously in the system was (a) killed and left to decompose or (b) removed from the system entirely in a non-conserving way.

>> (b) is right. We have clarified this in the revised manuscript as follows.

L150: *“In BGC-DV runs, the initial land surface state was bare ground with the vegetation previously in the system being entirely removed”*

- LL293–294: This sentence does not make sense in the context of this paragraph. It should be moved to the end of the previous paragraph.

>> We have corrected “excluding” to “including” to clarify the original meaning in the revised manuscript.

Technical corrections

- L98: “BGD-DV” should be “BGC-DV”.

>> We have corrected it.

- L136: “Figure 1” should be “Table 1”.

>> We have corrected it from “Figure 1” to “Figure 1 and Table 1”.

- LL192–193: “in comparison to all three GFED datasets” should be deleted.

>> We have deleted it.

- L194: Quotation mark should be deleted

>> We have deleted it.

Referee #2

General comments

The manuscript has been much improved by the revisions and clarifications within the text in response to the referee comments. In particular, clarification of the methodology along with references, and correction of the time period of climate forcing used in the experiment I think address the main concerns from the previous version. There are still a few minor points of clarification needed as outlined below, but I recommend publication subject to these being addressed.

Specific Comments

The following points refer to the line numbering of the revised manuscript in the ‘Author’s Response’ document which includes the tracked changes.

There is some ambiguity over the term ‘land use’ within the paper which needs clarification:

Where crops are included in the model, are they simulated by the model, or are they prescribed? Are they also derived from MODIS and AVHRR, or from land use data such as HYDE et al? (e.g. Klein Goldewijk, K. , A. Beusen, M. de Vos and G. van Drecht: The HYDE 3.1 spatially explicit database of human induced land use change over the past 12,000 years, *Global Ecology and Biogeography* 20(1): 73-86.DOI: 10.1111/j.1466-8238.2010.00587.x., 2011) This is not explained in the text, and should be described in lines 233 – 351 for SP and BGC modes.

>> The crop fractions in the gridcell are prescribed in both SP and BGC modes based on the merged dataset of the MODIS-derived land cover product and the GLC2000 data set (Ramankutty et al., 2008). This has been clarified in the revised manuscript as follows.

LL 90: “*Crop is also prescribed based on the merged dataset of the MODIS-derived land cover product and the global land cover in 2000 (GLC2000) (Ramankutty et al., 2008).*”

Reference

Ramankutty, N., Evan, A., Monfreda, C., and Foley, J.: *Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000, Global Biogeochem. Cycles*, 22, GB1003, doi:10.1029/2007GB002952, 2008.

L233: Are the vegetation fractions prescribed or simulated by the model in SP mode? The text only mentions climatological data rather than vegetation cover data, but the rest of

the text suggests that the SP option does use prescribed vegetation compared to simulated vegetation in the BGC-DV mode. Please clarify in the text.

>> We have re-written the sentence to clarify that the vegetation coverage is prescribed based on satellite-based products and the LAI is prescribed based on the satellite based climatological data, differing between months but not between years in the revised manuscript as follows.

LL 84: *“In the satellite phenology (SP) option, vegetation coverage of different PFTs is prescribed using satellite-based land cover data (Lawrence and Chase, 2007), derived from a variety of satellite products including MODIS and Advanced Very High-Resolution Radiometer data.”*

LL 91: *“Furthermore, the vegetation state (i.e., leaf area index, LAI) of different PFTs on land surface can be set based on the satellite-derived climatological data (Lawrence and Chase, 2007), which differ between months but not between years.”*

Usually the term ‘land use’ refers to anthropogenic / agricultural land use. In Table 1 the ‘land use’ row would better be labelled as ‘Vegetation’ or ‘PFTs’, and should include information on whether the vegetation is simulated by the model or prescribed / derived from MODIS/AVHRR. A separate row for ‘land use’ including information on agricultural land use would be useful. For example:

	BGC for the year 1850	BGC for the 20th century	BGConly	BGC-DV
Vegetation	17 PFTs for 1850 derived from MODIS ?	Simulated / prescribed transient ? 17 PFTs for 20th century	Simulated / prescribed equilibrium ? 17 PFTs for 2000	Simulated equilibrium 15 PFTs (without crops)
Agricultural land use / crops	Set at 1850, from MODIS ?	Simulated / prescribed land use change for 20 th Century from ?	Set at 2000 ?	None, only natural vegetation is simulated

>> As per reviewer’s suggestion, we have clarified the land use of the different simulations in “Biogeography shifts” and “PFT” rows of Table 1 in the revised manuscript as follows.

Table 1: Configurations of the experiments used in the study

	BGC for the year 1850	BGC for the 20th century	BGConly	BGC-DV
Time	-	1901–2000	200 yr	200 yr
Climate forcing	Repeated 1920 (CRU-NCEP)	1901–2000 (CRU-NCEP)	Repeated 2000 for five times (CRU-NCEP)	Repeated 2000 for five times (CRU-NCEP)
[CO ₂]	[1850]	[1901–2000]	[2000]	[2000]
<i>Biogeography shifts</i>	<i>No</i>	<i>Yes (Prescribed with time-varying PFT distribution)</i>	<i>No</i>	<i>Yes (Simulated in DV mode)</i>
Initial vegetation state	No	From BGC year 1850	From BGC for 20th century	No
Initial soil	No	From BGC year 1850	From BGC for 20th century	From BGC for 20th century
<i>PFTs</i>	<i>15 natural + 2 crops for 1850 based on the LUH dataset</i>	<i>15 natural + 2 crops for 20th century based on the LUH dataset</i>	<i>15 natural + 2 crops for 2000 based on satellite data</i>	<i>15 natural (except crops)</i>
Fire	On	On	On (BGConly-F) Off (BGConly- NF)	On (BGC-DV-F) Off (BGC-DV- NF)

L509-510 “In comparison to the burned area of BGConly-F, BGC-DV-F simulates a relatively small burned area because agricultural fires are excluded in BGC-DV-F and only natural vegetation is simulated (Castillo et al., 2012).” Probably worth saying here as well that this is also due to fewer trees / less fuel, which is a feedback from the fire.

>> This point has been added in the revised manuscript as follows.

LL 176: “*In comparison to the burned area of BGConly-F, BGC-DV-F simulates a relatively small burned area because agricultural fires are excluded in BGC-DV-F and only natural vegetation is simulated (Castillo et al., 2012) as well as because fewer trees and thus less fuels, feed backed from fire, are simulated in BGC-DV-F than in BGConly-F.*”

Technical Corrections

L911-912: “Therefore, the limited impact of fires on precipitation in Li and Lawrence

(2017) with the coupled model would be increased by excluding dynamic vegetation in the model.”

Should this be “including dynamic vegetation”?

>> We have corrected it from “including” to “excluding”.

L89-91: “A process-based fire parameterization of intermediate complexity has been developed and assessed within the framework of the National Center for Atmospheric Research (NCAR) the Community Earth System Model (CESM)”.

This made more sense as originally written: “A process-based fire parameterization of intermediate complexity known as the Community Earth System Model (CESM) has been developed and assessed within the framework of the National Center for Atmospheric Research (NCAR)”

>> A process-based fire model is included in the NCAR CESM framework, one of earth system models, not a fire model. We therefore keep the original sentence in the revised manuscript.

L216-217: “It is important to understand the individual and combined impacts of fires and vegetation distribution on water and carbon exchange; however, few studies to date have assessed this complicated global process.” Should be “these complicated global processes”

>> As per reviewer’s suggestion, we have revised it.

L774 “for the case without considering the vegetation dynamics and differences between BGC-DV-F and BGC-DV-F” Should be “between BGC-DV-F and BGC-DV-NF

>> We have corrected it.

1 **Interactive impacts of fire and vegetation dynamics on global
2 carbon and water budget using Community Land Model version
3 4.5**

4 Hocheol Seo¹, and Yeonjoo Kim¹

5 ¹Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea.

6 Correspondence to: Yeonjoo Kim (yeonjoo.kim@yonsei.ac.kr)

7 **Abstract**

8 Fire plays an important role in terrestrial ecosystems. The burning of biomass affects carbon and water fluxes and
9 vegetation distribution. To understand the effect of interactive processes of fire and ecological succession on surface
10 carbon and water fluxes, this study employed the Community Land Model version 4.5 to conduct a series of
11 experiments that included and excluded fire and dynamic vegetation processes. Results of the experiments that
12 excluded the vegetation dynamics showed a global increase in net ecosystem production (NEP) in post-fire regions,
13 whereas the inclusion of vegetation dynamics revealed a fire-induced decrease in NEP in some regions, which was
14 depicted when the dominant vegetation type was changed from trees to grass. Carbon emissions from fires are
15 enhanced by reduction in NEP when vegetation dynamics are considered; however, this effect is somewhat mitigated
16 by the increase in NEP when vegetation dynamics are not considered. Fire-induced changes in vegetation modify the
17 soil moisture profile because grasslands are more dominant in post-fire regions. This results in less moisture within
18 the top soil layer than that in unburned regions, even though transpiration is reduced overall. These findings are
19 different from those of previous fire model evaluations that ignored vegetation dynamics and thus, highlight the
20 importance of interactive processes between fires and vegetation dynamics in evaluating recent model developments.

21 **Keywords**

22 Fire model, Dynamic vegetation model, Terrestrial carbon balance, Community Land Model, Terrestrial water balance

23

24 **1 Introduction**

25 Wildfire is a natural process that influences ecosystems and the global carbon and water cycle (Gorham, 1991;
26 Bowman et al., 2009; Harrison et al., 2010). Climate and vegetation control the occurrence of fires and their spread,
27 which in turn affects climate and vegetation (Vilà et al., 2001; Balch et al., 2008). When fire destroys forests and
28 grasslands, the distribution of vegetation is also affected (Clement and Touffet, 1990; Rull, 1999). Wildfires are major
29 sources of trace gases and aerosols, which are important elements in the radiative balance of the atmosphere (Scholes
30 et al., 1996; Fiebig et al., 2003). Aerosols affect surface air temperature, precipitation, and circulation (Tarasova et al.,
31 1999; Lau and Kim, 2006; Andreae and Rosenfeld, 2008).

32 Changes in soil properties occur in regions affected by fire; leaves and roots can be annihilated in those
33 regions (Noble et al., 1980; Swezy and Agee, 1991). Each year, fires transport approximately 2.1 Pg of carbon from
34 soil and vegetation into the atmosphere in the form of carbon dioxide and other carbon compounds (van der Werf et
35 al., 2010). Harden et al. (2000) report that approximately 10–30% of annual net primary productivity (NPP) disappears
36 through fires in upland forests. Transpiration and canopy evaporation decrease with the reduction in leaf numbers
37 (Clinton et al., 2011; Beringer et al., 2015). Soil develops a water-repellent layer during fires due to intense heating
38 (DeBano, 1991) and ash produced by biomass combustion impacts the quality of runoff (Townsend and Douglas,
39 2000).

40 In post-fire regions, plant distribution gradually changes over time from bare ground to grassland, shrubland,
41 and finally to forest during ecological succession (Prach and Pyšek, 2001). Therefore, the structure and distribution
42 of vegetation can be altered by fires in post-fire regions (Wardle et al., 1997). The existence of grass and trees in the
43 savanna can be attributed to fires (Hochberg et al., 1994; Sankaran et al., 2004; Baudena et al., 2010). However, fires
44 can also wipe out succession.

45 Fire affects many aspects of the Earth system. Therefore, a process-based representation of fires is included
46 in dynamic global vegetation models (DGVMs), land surface models (LSMs), and Earth system models (ESMs; Rabin
47 et al., 2017). Previous studies reported the incorporation of fire models into global climate models to investigate the
48 occurrence and spread of fires and how they impact climate and vegetation (e.g., Pechony and Shindell, 2010; Li et
49 al., 2012; 2013). Bond et al. (2005) used the Sheffield DGVM and performed the first global study on the extent to
50 which fires determine global vegetation patterns by preventing ecosystems from achieving potential height, biomass,
51 and dominant functional types expected under ambient conditions (i.e., potential vegetation).

52 In recent years, global fire models have become more complex (Hantson et al., 2016). Different fire models
53 parameterize different impact factors such as fuel moisture, fuel size, probability of lightning, and human effects. In
54 this respect, the Fire Model Intercomparison Project (FireMIP) evaluates the strength and weakness of each fire model
55 by comparing the performance of different fire models and suggesting improvements for individual models (Rabin et
56 al., 2017).

57 A process-based fire parameterization of intermediate complexity has been developed and assessed within
58 the framework of the National Center for Atmospheric Research (NCAR) the Community Earth System Model
59 (CESM) (Li et al. 2012; 2013; 2015). The satellite-based Global Fire Emission Database version 3 (GFED3), which
60 is derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) fire count products and the burned

61 area, has been used to improve fire parameterization. The impact of fires on carbon, water, and energy balance has
62 also been investigated within the CESM framework (Li et al., 2014; Li and Lawrence, 2017). However, although these
63 studies have considered land-atmosphere interactions using the Community Land Model (CLM) coupled with an
64 atmospheric model, they have ignored the changes in global vegetation patterns caused by fires, even though the initial
65 model developed by Li et al. (2012) was designed to consider the vegetation dynamics (i.e., changes in vegetation
66 distribution) within the CLM-DGVM.

67 It is important to understand the individual and combined impacts of fires and vegetation distribution on
68 water and carbon exchange; however, few studies to date have assessed [these complicated global processes](#). Therefore,
69 in this study, we aim to understand the interactive effects of fires and ecological succession on carbon and water fluxes
70 on the land surface. Specifically, using the NCAR CLM, we conduct a series of numerical experiments that include
71 and exclude fire and dynamic vegetation processes. Our results show that the impact of fires on carbon and water
72 balance (especially in net ecosystem production (NEP) and soil moisture) on ecological succession is different from
73 that on static vegetation.

삭제됨: this

삭제됨: process

74 2 Model and experimental design

75 2.1 Model description

76 This study used CLM version 4.5, which is the land model of the NCAR CESM version 1.2. The CESM is
77 maintained by NCAR's Climate Global Dynamics Laboratory (CGD) and comprises different components such as
78 land, atmosphere, ocean, land ice, and ocean ice (Worley et al., 2011; Kay et al., 2012). Each component utilizes
79 various formulae to represent the complex interplay of physical, chemical, and biological processes and each can be
80 used either independently or as coupled (Smith et al., 2010; Neale et al., 2012; Bonan et al., 2013). Land surface in
81 the CLM is represented by sub-grid land cover (glacier, lake, wetland, urban, or vegetated) and vegetation coverage
82 is represented by 17 plant functional types (PFTs) comprising 11 tree PFTs, 2 crop PFTs, 3 grass PFTs, and bare
83 ground. For a detailed description of the model, please refer to Lawrence et al. (2011).

84 CLM can be run by including different levels of vegetation processes. In the satellite phenology (SP) option,
85 vegetation coverage of different PFTs is [prescribed](#) using [satellite-based land cover](#) data (Lawrence and Chase, 2007),
86 derived from a variety of satellite products including MODIS and Advanced Very High-Resolution Radiometer data.
87 Land fractions are divided into bare ground, grass, shrub, and evergreen/deciduous trees. In addition, grass, shrub, and
88 tree PFTs are classified into tropical, temperate, and boreal types, based on the physiology and climate rules of Nemani
89 et al. (1996). Vegetation is further divided into C3 or C4 plants based on MODIS-derived LAI values and the mapping
90 methods of Still et al. (2003). [Crop is also prescribed based on the merged dataset of the MODIS-derived land cover](#)
91 [product and the global land cover in 2000 \(GLC2000\)](#) (Ramankutty et al., 2008). Furthermore, the vegetation state
92 (i.e., leaf area index, LAI) of different PFTs on land surface can be set based on the satellite-derived climatological
93 data (Lawrence and Chase, 2007), which differ between months but not between years.

삭제됨: and the state (i.e., leaf area index, LAI) of different PFTs on
land surface can be set based on the satellite-derived climatological
data. The coverage

삭제됨: set

삭제됨: climatological

삭제됨: Climatological LAI is set to differ between months but not
between years.

94 In addition to the SP option, CLM 4.5 can be extended using the biogeochemistry model (BGC) and dynamic
95 vegetation model (DV); CLM simulations with BGC without DV (BGConly) and BGC with DV (BGC-DV) can be

105 configured. BGConly simulates the carbon and nitrogen cycles in addition to biophysics and hydrology in a given
106 distribution of vegetation PFTs (Paudel et al., 2016). In BGConly, phenological variations of LAI are simulated and
107 whole-plant mortality is assumed as an annual mortality rate of 2% without biogeographical changes of the vegetation
108 distribution. In contrast, BGC-DV simulates biogeographical changes in the natural vegetation distribution and
109 mortality as well as seasonal changes of LAI (Castillo et al., 2012; 2013). A PFT can occupy a region or degenerate
110 by competing with other PFTs, or they can coexist under various environmental factors, such as light, soil moisture,
111 temperature, and fire (Zeng, 2010; Song and Zeng, 2013). Plant mortality in BGC-DV is determined by heat stress,
112 fire, and growth efficiency (Rauscher et al., 2015). Note that BGC-DV does not simulate the crop PFTs, which is
113 included in BGConly, because it simulates the changes in the natural vegetation only.

삭제됨: BGD

114 In the fire model (Li et al., 2012, 2013; Bonan et al., 2013), fire types are divided into four groups: non-peat
115 fires outside cropland and tropical closed forests, agricultural fires, deforestation fires in tropical closed forests, and
116 peat fires. Fire counts are determined based on natural and artificial ignition, fuel availability, fuel combustibility, and
117 anthropogenic and unsuppressed natural fires related to socioeconomic conditions. The burned area is calculated by
118 multiplying the fire count by the average fire spread, which is considered to be driven by wind speed, PFT, fuel
119 wetness, and socioeconomic factors. In other words, the burning and spread of fire are related to the CLM input
120 parameters of climate and weather conditions, vegetation conditions, socioeconomic conditions, and population
121 density. After biomass and peat burning are calculated, trace gas and aerosol emissions as well as carbon emissions,
122 which are the byproducts of fires, are estimated.

123 Once the burned area is identified, impacts of the fire on vegetation mortality, peat burning, and carbon cycle,
124 can be addressed. The amount of carbon emitted from the fire (E) is calculated as follows:

$$125 \quad E = A \cdot C \cdot CC, \quad (1)$$

126 where A is the burned area; C is a vector of elements including carbon density of the leaf stem and the root and transfer
127 and storage of carbon; CC is the corresponding combustion completeness factor vector.

128 Burned area also impacts the carbon and nitrogen pools of the vegetation, which are related to leaf, stem, and
129 root; fire changes the vegetation state (e.g., LAI) and vegetation height during the burning period in both BGConly
130 and BGC-DV runs. However, the number of individual PFTs does not change in BGConly, but decreases by biomass
131 burning in BGC-DV. In other words, individual plants are killed by fire only when the DV option is included in the
132 model. The number of PFTs killed by fire ($P_{distrub}$) is calculated using equation (2).

$$133 \quad P_{distrub} = \frac{A_p}{fA_g} P \xi, \quad (2)$$

134 where P is the population density for each PFT, ξ is the whole-plant mortality factor for each PFT, A_g is the grid cell
135 area, A_p is the burned area of each PFT, and f is the fraction of coverage of each PFT. The whole-plant mortality, the
136 rate at which plants die completely by fire, is a calibrated PFT-dependent parameter, which is 0.1 for broadleaf
137 evergreen trees, 0.13 for needleleaf evergreen trees, 0.07 for deciduous trees, 0.15 for shrubs, and 0.2 for grass (Li et
138 al., 2012).

139 The terrestrial carbon balance is affected when biomass is burned. The net ecosystem exchange (NEE) can
140 be estimated using NEP (NEP=NPP–heterotrophic respiration (Rh)) and carbon loss due to biomass burning (C_{loss}).

서식 있음: 아래 첨자

143 **2.2 Experimental design**

144 A series of global numerical experiments were conducted in this study using a spatial resolution of 1.9° longitude \times
 145 2.5° latitude. Global climate data from the Climate Research Unit (CRU)-National Centers for Environmental
 146 Prediction (NCEP) reanalysis were used for atmospheric driving forcing of CLM. Data from 1901 to 2000 included 6
 147 h precipitation, air temperature, wind speed, specific humidity, longwave radiation, and shortwave radiation. Figure 1
 148 and Table 1 summarizes the experimental process used in this study. The BGC run for the year of 1850 was initialized
 149 with the PFT distribution from the Land Use Harmonization (LUH) transient dataset for 1850 to 2005 (Hurt et al.,
 150 2006 to simulate the year 1850 equilibrium state, used to initialize the 20th century transient run. In the transient run,
 151 the amount of atmospheric carbon dioxide is increased since the onset of the Industrial Revolution in 1850 and the
 152 composition of land cover and vegetation is changed with the LUH dataset of Hurt et al. (2006) (Vitousek et al., 1997;
 153 Pitman et al., 2004). The final surface conditions should represent those of the year 2000 after running the transient
 154 simulation using the CLM-BGC model.

삭제됨: Initial conditions

삭제됨: were provided by NCAR and

삭제됨: simulate

삭제됨: The

삭제됨: has

삭제됨: has

삭제됨: Therefore, these changes need to be reflected when running a 20th century transient simulation and the

155 Using the simulated surface conditions for the year 2000, four different 200 yr equilibrium CLM simulations
 156 (BGConly and BGC-DV simulations with and without the fire model) were conducted (Table 1). For BGConly runs,
 157 a restart file from the transient run was used with and without the fire model (hereafter, BGConly-F and BGConly-
 158 NF, respectively). Similarly, the BGC-DV runs were performed using the same restart file to simulate the equilibrium
 159 vegetation in 200 yr offline BGC-DV runs both with and without the fire model (hereafter, BGC-DV-F and BGC-DV-
 160 NF, respectively; Erfanian et al., 2016). In BGC-DV runs, the initial land surface state was bare ground with the
 161 vegetation previously in the system being entirely removed while soil conditions were adjusted with a restart file from
 162 the transient run (i.e., BGC run for the 20th century in Table 1) (Catillo et al., 2012; Raushcher et al., 2015; Qiu and
 163 Liu, 2016; Wang et al., 2016). Therefore, the vegetation state is quickly stabilized for 200 years of the BGC-DV runs
 164 since the runs restart from the spun-up soil carbon condition (i.e., after decomposition spin-up). Furthermore, the last
 165 30 yr results of the 200 yr runs are analyzed to focus on the equilibrium states of both BGConly and BGC-DV runs.
 166 While the fire model is optional when using CLM with BGC, it is always run when using CLM with BGC-DV. Hence,
 167 the model was modified when conducting the BGC-DV-NF run and the burned area was set to zero to neglect any fire
 168 incidences.

169 A comparison between the BGConly-F and BGConly-NF runs enables the isolation of the impact of fire on
 170 land surface, regardless of DV. In addition, the impact of fires and the interactive impacts of fires and vegetation
 171 distribution on the Earth system can be identified by comparing the BGC-DV-F and BGC-DV-NF runs. Note that this
 172 study focuses on the impact of fires and vegetation dynamics on land carbon and water fluxes by forcing the CLM
 173 with the CRU-NCEP climate data (1961–2000) without considering the land–atmosphere feedbacks. Simulations were
 174 run for 200 years from the initial surface conditions of the year 2000 to derive equilibrium land surface conditions. In
 175 addition, the average surface conditions of the last 30 years were compared with the simulation results.

184 **3 Results and discussion**185 **3.1 Burned area**

186 In this section, we evaluate how the simulated burned areas differ between the runs with and without vegetation
187 dynamics, i.e., BGC-DV-F and BGConly-F runs. On average, the BGC-DV-F and BGConly-F runs show burned areas
188 of 320 and 487 Mha yr⁻¹, respectively. These results are similar to those of previous studies that applied CLM (i.e., Li
189 et al., 2012; Li and Lawrence, 2017). The fire model of Li et al. (2012) was originally developed by comparing the
190 BGC-DV-F-type CLM simulations and resulted in 322 Mha yr⁻¹ for 1997–2004. The BGC-DV-F simulation, under
191 the equilibrium condition driven by the 1961–2000 CRU-NCEP data in this study, estimates a similar burned area
192 (320 Mha yr⁻¹) to that of Li et al. (2012). Li and Lawrence (2017) estimated the annual burned area as 489 Mha, which
193 is similar to that of BGConly-F (487 Mha), using a BGC-F type simulation coupled with CAM.

194 In comparison to the burned area of BGConly-F, BGC-DV-F simulates a relatively small burned area because
195 agricultural fires are excluded in BGC-DV-F and only natural vegetation is simulated (Castillo et al., 2012) as well as
196 because fewer trees and thus fewer fuel, feed backed from fire, are simulated in BGC-DV-F than in BGConly-F.
197 Furthermore, the spatial distribution of burned areas in Figure 2 shows that BGC-DV-F particularly underestimates
198 the burned area in Africa and Oceania compared to BGConly-F. The differences in vegetation distribution between
199 BGC-DV-F and BGConly-F in Figure 3, where PFTs, excluding two crop PFTs, are simplified into six vegetation
200 groups (broadleaf evergreen trees, needleleaf evergreen trees, deciduous trees, shrubs, grasses, and bare ground)
201 (Rauscher et al., 2015), may impact the size of the burned area. In BGC-DV-F (Figure 3a), evergreen and deciduous
202 trees show limited growth whereas grass and bare ground are dominant in some regions such as southern Africa.
203 Overall, BGC-DV-F simulates trees on 37.5% of the global land area while BGConly-F, which is derived from
204 observations (Figure 3b), indicates that trees cover 41.46% of the global land area (Table 2). More trees provide
205 increased fuel for the occurrence and spread of fires in BGConly-F than in BGC-DV-F, consistent with the larger
206 burned area in BGConly-F than in BGC-DV-F.

207 We also compare the model estimates to the satellite-based observational datasets of GFED (van der Werf et
208 al., 2010; Giglio et al., 2013; van der Werf et al., 2017) (Figure 3). Although the model simulations are not intended
209 to reflect the reality, but rather to understand the model mechanisms under the equilibrium states under the 1961–2000
210 climate forcing, it is still valuable to assess the model results using the observations. Different versions of GFED
211 datasets provided different sized burned areas: GFED3 (van der Werf et al., 2010), GFED4 (Giglio et al., 2013), and
212 GFED4 with small fires, i.e., GFED4s (van der Werf et al., 2017) suggest the burned area of 371 Mha yr⁻¹ for 1997–
213 2009, 348 Mha yr⁻¹ for 1997–2011 and 513 Mha yr⁻¹ for 1997–2016, respectively. In comparison to the most recent
214 data, i.e., GFED4s, both BGConly-F and BGC-DV-F runs, especially BGC-DV-F, underestimate the burned area.
215 Possible reasons for this underestimation in BGC-DV-F include the exclusion of agricultural fires and relatively small
216 tree-dominated land coverage. The initial model development with a BGC-DV-F type simulation (Li et al., 2012) was
217 carried out in comparison to GFED3 (van der Werf et al., 2010) and BGC-DV-F estimated a burned area (320 Mha
218 yr⁻¹) similar to that of GFED3 (i.e., 371 Mha yr⁻¹).

삭제됨:)

삭제됨: in comparison to all three GFED datasets.

삭제됨: ”

222 **3.2 Interactions between vegetation and fire processes**

223 The impact of fires on vegetation distribution is assessed by comparing BGC-DV-F and BGC-DV-NF simulations
224 (Table 2 and Figures 4 and 5). Figure 4 shows the vegetation distribution of BGC-DV-NF (Figure 4a) and BGC-DV-
225 F minus BGC-DV-NF (Figure 4b: Figure 4a minus Figure 3a). The plots clearly indicate large differences in vegetation
226 cover in areas of high fire frequency (i.e., South Africa, South America, western North America, India, and a portion
227 of China) (Table 2), whereas areas with relatively low fire occurrence (i.e., the Arctic and desert regions) show small
228 differences.

229 We estimated the fraction of burned areas, where fractions are grouped into four categories (>10%, 10–1%,
230 1–0.1% and, <0.1%) for each vegetation type, and investigated the relationship between vegetation distribution and
231 fire occurrence. Differences in the vegetation distribution between BGC-DV-F and BGC-DV-NF in Figure 5 illustrate
232 a nonlinear change in vegetation distribution in response to post-fire area. The changes are small in areas with minimal
233 fire occurrence or where the burned area fraction is small (0.1–1%). However, relatively large changes in vegetation
234 distribution occur when the burned area fraction exceeds 1%. Furthermore, there are large changes in the vegetation
235 distribution in areas with burned area fractions above 10%, including increases in bare ground, grass, and shrubs
236 (31.19, 52.28, and 7.91%, respectively) but decreases in deciduous, needleleaf evergreen, and broadleaf evergreen
237 trees (8.85, 79.22, and 91.17%, respectively).

238 In ecosystems, plants die in regions where fires occur and grass with rapid growth rates occupies those
239 regions. Therefore, fire increases the ratio of bare ground and grassland but reduces the number of trees. However,
240 there are no significant changes in the global fraction of shrubs and deciduous trees in the middle of the ecological
241 succession process with respect to the presence or absence of fires (Table 2). When a fire occurs in a region where
242 shrubs grow, the ratio of shrubland is diminished (e.g., in the middle of North America in Figure 4b), but fire increases
243 the ratio of shrubland in regions where trees grow (e.g., in the southwestern Asia in Figure 4b). Similarly, the number
244 of deciduous trees increases or decreases due to fires. Thus, the role of fires in areas of shrubland and deciduous trees
245 varies with the region and the actual vegetation distribution is a result of many factors including fire, climate,
246 topography, and soil conditions (He et al., 2007; Cimalová and Lososová, 2009).

247 **3.3 Fire impact on carbon balance**

248 The direct and indirect impacts of fires on carbon balance were investigated for static and dynamic vegetation cover
249 (Figure 6 and Table 3). The impact of fires in BGConly was estimated by calculating the difference between BGConly-
250 F and BGConly-NF, averaged over the final 30 years of each 200 yr simulation. Similarly, the impact of fires in BGC-
251 DV was estimated by calculating the difference between BGC-DV-F and BGC-DV-NF.

252 Carbon emissions from fires (direct impacts) are shown in Figure 6. The spatial distribution of the BGConly
253 and BGC-DV runs is similar, but average annual emissions are higher in BGConly (3.5 Pg) than in BGC-DV (3.0 Pg)
254 because trees are less dominant in BGC-DV than in BGConly, which causes a reduced fuel load.

255 Carbon emission estimates from both BGConly and BGC-DV simulations are relatively high; however, they
256 do fall within the range of previous findings. For example, 1997–2014 GFED4s data estimated annual direct carbon
257 emissions as 2.3 Pg. Mouillot et al. (2006) estimated annual carbon emissions as 3.0 Pg for the end of the 20th century

258 and the 20th century average as 2.5 Pg. Li et al. (2012) estimated the 20th century emissions as 3.5 Pg C yr⁻¹ using the
259 CLM3-DGVM and Li et al. (2014) and Yue et al. (2015) both estimated the 20th century emissions as 1.9 Pg C yr⁻¹
260 using the CLM4.5 and ORCHIDE land surface models, respectively.

261 In addition to direct carbon emissions from fires, fire influences terrestrial carbon sinks by impacting
262 ecosystem processes (Figure 6). Fire increases the NEP in post-fire regions in BGConly simulations (i.e., difference
263 between BGConly-F and BGConly-NF, Figure 6a), which is consistent with the findings of the previous studies (Li
264 et al., 2014). The overall NEP increase is 2.5 Pg C yr⁻¹ in this study, which is greater than the value of 1.9 Pg C yr⁻¹
265 calculated by Li et al. (2014). However, Li et al. (2014) performed a transient simulation from 1850 to 2004, whereas
266 the BGConly runs in our study were conducted following an equilibrium simulation using the year 2000 as the
267 reference year, which means that no fire exchanges are caused by land cover changes.

268 Simulations that ignore vegetation dynamics (i.e., the BGConly runs in this study; Li et al., 2014; Yue et al.,
269 2015) show a global fire-induced NEP increase when comparing fire-on and fire-off runs. However, a decrease in fire-
270 induced NEP is apparent in some regions in BGC-DV simulations (i.e., differences between BGC-DV-F and BGC-
271 DV-NF, Figure 6b). This carbon sink reduction occurs in regions where dominant PFTs change from broadleaf and
272 needleleaf evergreen trees to grass (Table 3 and Figure 6). Table 4 shows the correlation coefficients between percent
273 changes in vegetation types and changes in carbon fluxes (NEP, NPP, and R_h) for six different PFTs in each grid cell
274 and Figure 7 shows the broadleaf evergreen tree, needleleaf evergreen tree, and grass PFTs. NEP changes are strongly
275 linked to changes in dominant PFTs; for example, decreases in broadleaf evergreen and needleleaf evergreen trees
276 and increases in grass. Furthermore, the changes in NEP and PFTs are related to the changes in NPP and R_h to some
277 extent. Our results differ from those of previous studies that did not consider vegetation dynamics (e.g., Amiro et al.,
278 2010) because the inclusion of vegetation dynamics enables the model to capture NEP decreases in post-fire regions
279 at the beginning of the post fire-succession.

280 Since land use changes are not considered in this study, the overall impact of fires was estimated by the sum
281 of direct carbon emissions from fires and terrestrial carbon sinks, i.e., NEP (Eq. 3). Both simulations resulted in net
282 carbon sources in the post-fire regions, even though different processes were involved. Direct carbon emissions from
283 fires (C_{fe} in Eq. 3) were partly negated by the increased NEP in the BGConly runs, but they were enhanced by the
284 reduction of NEP in BGC-DV runs.

285 **3.4 Fire impact on water balance**

286 The impact of fires on water balance was examined by estimating the changes in runoff, evapotranspiration, and soil
287 moisture between cases with and without fire. The differences between BGConly-F and BGConly-NF were assessed
288 for the case without considering the vegetation dynamics and differences between BGC-DV-F and BGC-DV-NF for
289 the case considering the vegetation dynamics (Table 5 and Figure 8). Increases in runoff and decreases in
290 evapotranspiration (ET) were observed in post-fire regions to a different degree, which is consistent with the results
291 of the previous studies (Neary et al., 2005; Li and Lawrence, 2017). Our study used CLM as a standalone model
292 without coupling it with atmospheric or ice models, whereas Li and Lawrence (2017) examined the impact of fires on

삭제됨: F

294 global water budget using CLM-BGC coupled with the CAM and CICE models and showed that the impact of fires
295 on global annual precipitation was limited.

296 Li and Lawrence (2017) demonstrated that a reduction in vegetation canopy (LAI; Table 6) is a critical
297 pathway for fires that decrease ET. Fire events lower the leaf area, which decreases vegetation transpiration and
298 canopy evaporation; however, they also expose more of the soil to the air and sunlight, which increases soil
299 evaporation. Post-fire decreases in vegetation height (Table 6) can increase and decrease ET because the resulting
300 decrease in land surface roughness potentially reduces water and energy exchange and leads to higher leaf
301 temperatures and wind speeds. In this study, both BGConly and BGC-DV runs show that the vegetation canopy is the
302 main pathway leading to a decrease in ET, which is similar to the findings of Li and Lawrence (2017). In addition, an
303 examination of the changes in the vegetation composition in post-fire regions shows that the overall impact of those
304 changes in ET and runoff does not differ greatly when dynamic vegetation is employed in the model.

305 The results show that fire-induced vegetation changes (from trees to grass or bare ground) in BGC-DV lead
306 to a significant decrease in canopy transpiration and increase in soil evaporation relative to BGConly runs. Fire
307 destroys plant roots and leaves; changes in the dominant vegetation types in BGC-DV lead to changes in the soil
308 moisture profile through reduced transpiration (Figure 9 and Table 7). Consequently, there is less water stress in each
309 soil layer in the burned areas than in unburned areas. Grasslands dominate the post-fire regions in BGC-DV runs and
310 they absorb and transpire more water from the top soil layer than trees (Mazzacavallo and Kulmatiski, 2015).
311 Therefore, there is less moisture in the top soil layers in fire affected regions than in unburned regions, although the
312 overall transpiration is diminished. In summary, fire has an impact on vegetation distribution, which in turn impacts
313 the soil water profile.

314 Despite the differences in soil moisture and vegetation canopy and height, changes in ET and runoff do not
315 vary significantly between BGConly and BGC-DV. Thus, including dynamic vegetation does not impact the
316 physiological and physical processes of evapotranspiration and runoff, respectively. However, changes in ET and
317 runoff can be amplified in BGC-DV than in BGConly by modeling the land–atmosphere interactions with a coupled
318 land–atmosphere model (e.g., CLM–CAM) because changes in land characteristics in BGC-DV would feed back to
319 the changes in precipitation. Therefore, the limited impact of fires on precipitation in Li and Lawrence (2017) with
320 the coupled model would be increased by [including](#) dynamic vegetation in the model.

삭제됨: excluding

321 4 Conclusions

322 To understand the interplay between the vegetation dynamics and the impact of fires, we conducted a series of
323 numerical experiments using CLM with and without fires and dynamic vegetation. In particular, we investigated the
324 impact of fires on vegetation distribution and how these changes influence terrestrial carbon and water fluxes.

325 The results show that fire interrupts the process of ecological succession, which impacts the global vegetation
326 distribution. Fire transforms some regions into bare ground and grassland starts to quickly dominate those landscapes
327 because grass grows faster than trees. For shrubs and deciduous trees in the mid-stages of ecological succession, there
328 were no large differences in the overall coverage ratios between simulations that included vegetation dynamics and
329 those that did not. Simulations that did not consider vegetation dynamics showed a fire-induced global increase in

331 NEP; however, a fire-induced decrease in NEP was detected in some regions in BGC-DV runs. A carbon sink
332 reduction was also detected in regions where the dominant PFT changed from broadleaf and needleleaf evergreen
333 trees to grass. While carbon emissions from fires were partly negated by increased terrestrial carbon sinks (NEP) in
334 BGConly runs, they were enhanced by the reduction of terrestrial carbon sinks in BGC-DV runs when dynamic
335 vegetation was considered.

336 Fire-induced changes in vegetation from trees to grass or bare ground resulted in a decrease in canopy
337 transpiration and increased soil evaporation in post-fire regions in BGC-DV runs; however, there were no significant
338 differences in the overall impact on ET and runoff between the simulations that used dynamic vegetation and those
339 that did not. However, changes in dominant vegetation types in BGC-DV led to changes in the soil moisture profile.
340 Furthermore, the increased distribution of grassland cover was more dominant in post-fire regions, which then resulted
341 in less moisture in the top soil layers than in unburned areas, although transpiration diminished overall.

342 Enabling the vegetation dynamics module in the CLM improves the understanding of the interactive impacts
343 of fires and vegetation dynamics. However, uncertainty still exists because of the limitations in the simulations of
344 equilibrium vegetation distribution using CLM with BGC-DV-F; the final equilibrium vegetation state of the BGC-
345 DV model did not always correspond to the observed distribution (Figure 3). For example, shrubs in the tundra were
346 rare in both BGC-DV-F and BGC-DV-NF runs. Furthermore, crops, needleleaf evergreen boreal, and shrub boreal
347 cannot be simulated by the DV module, as also reported in previous studies (Zeng et al., 2008).

348 The fire module in CLM is parameterized to estimate the occurrence, spread, and impacts of fires. Thresholds
349 used to estimate fuel combustibility depend on relative humidity and surface air temperature; however, these values
350 may not be suitable for all regions (Zhang et al., 2016). In addition, the economic impact of fire occurrence and the
351 socioeconomic impact of fire spread are estimated using the input datasets of population density (person km⁻²) and
352 GDP (US\$ per capita), respectively (Li et al., 2013). Uncertainty due to socioeconomic factors should be noted for
353 both historical and future simulations because changes in these factors may vary by country (Steelman and Burke,
354 2006). It is evident that our understanding of fires needs to improve because fires play an important role in the
355 distribution of vegetation and in carbon, water, and energy cycles. This study shows that fire models are strongly
356 impacted by vegetation distribution; therefore, fire simulations would improve with the advancement of dynamic
357 vegetation models.

358 **Code and Data Availability**

359 The code of and input datasets for CLM were downloaded from the NCAR CLM website (refer to cesm.ucar.edu).

360 **Author Contributions**

361 YK and HS designed the study and HS performed the model simulations by processing the data and modifying the
362 code. Both YK and HS analyzed the results and wrote the manuscript.

363 **Acknowledgements**

364 This study was supported by the Basic Science Research Program through the National Research Foundation of Korea,
365 which was funded by the Ministry of Science, ICT & Future Planning (2018R1A1A3A04079419), and by the Korea
366 Polar Research Institute (KOPRI, PN17900).

367

368 **Conflict of Interest**

369 The authors declare that they have no conflicts of interest.

370 **References**

371 Andreae, M. O., and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-
372 active aerosols, *Earth Sci. Rev.*, 89(1–2), 13–41, doi.org/10.1016/j.earscirev.2008.03.001, 2008.

373 Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., Brown, M., Chen, J., Clark, K. L., Davis, K. J., Desai,
374 A. R., Dore, S., Engel, V., Fuentes, J. D., Goldstein, A. H., Goulden, M. L., Kolb, T. E., Lavigne, M. B., Law, B. E.,
375 Margolis, H. A., Martin, T., McCaughey, J. H., Misson, L., Montes-Helu, M., Noormets, A., Randerson, J. T., Starr,
376 G., and Xiao, J.: Ecosystem carbon dioxide fluxes after disturbance in forests of North America, *J. Geophys. Res. -*
377 *Biogeosci.*, 115(4), doi.org/10.1029/2010JG001390, 2010.

378 Balch, J. K., Nepstad, D. C., Brando, P. M., Curran, L. M., Portela, O., de Carvalho, O., and Lefebvre, P.: Negative
379 fire feedback in a transitional forest of southeastern Amazonia, *Global Change Biol.*, 14(10), 2276–2287,
380 doi.org/10.1111/j.1365-2486.2008.01655.x, 2008.

381 Baudena, M., D'Andrea, F., and Provenzale, A.: An idealized model for tree-grass coexistence in savannas: The role
382 of life stage structure and fire disturbances, *J. Ecol.*, 98(1), 74–80, doi.org/10.1111/j.1365-2745.2009.01588.x, 2010.

383 Beringer, J., Hutley, L., Abramson, D., Arndt, S., Briggs, P., Bristow, M., Canadell, J., Cernusak, L., Eamus, D.,
384 Edwards, A., Evans, B., Fest, B., Goergen, K., Grover, S., Hacker, J., Haverd, V., Kanniah, K., Livesley, S., Lynch,
385 A., Maier, S., Moore, C., Raupach, M., Russell-Smith, J., Scheiter, S., Tapper, N., and Uotila, P.: Fire in Australian
386 savannas: From leaf to landscape, *Global Change Biol.*, 21(1), 62–81, doi.org/10.1111/gcb.12686, 2015.

387 Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C.
388 and Thornton, P. E.: Technical Description of Version 4.5 of the Community Land Model (CLM), NCAR/TN-
389 486+STR, NCAR, Boulder, Colo., 2013.

390 Bond, W. J., Woodward, F. I., and Midgley, G. F.: The global distribution of ecosystems in a world without fire, *New*
391 *Phytol.*, 165(2), 525–538, doi.org/10.1111/j.1469-8137.2004.01252.x, 2005.

392 Bowman, D., Balch, J., Artaxo, P., Bond, W., Carlson, J., Cochrane, M., Antonio, C., Defries, R., Doyle, J., Harrison,
393 S., Johnston, F., Keeley, J., Krawchuk, M., Kull, C., Marston, J., Moritz, M., Prentice, I., Roos, C., Scott, A., Swetnam,
394 T., van der Werf, G., and Pyne, S.: Fire in the Earth System, *Science*, 324(5926), 481–484,
395 doi.org/10.1126/science.1163886, 2009.

396 Castillo, C. K. G., and Gurney, K. R.: A sensitivity analysis of surface biophysical, carbon, and climate impacts of
397 tropical deforestation rates in CCSM4-CNDV, *J. Clim.*, 26(3), 805–821, doi.org/10.1175/JCLI-D-11-00382.1, 2013.

398 Castillo, C. K. G., Levis, S., and Thornton, P.: Evaluation of the new CNDV option of the community land model:
399 Effects of dynamic vegetation and interactive nitrogen on CLM4 means and variability, *J. Clim.*, 25(11), 3702–3714,
400 doi.org/10.1175/JCLI-D-11-00372.1, 2012.

401 Cimalová, Š., and Lososová, Z.: Arable weed vegetation of the northeastern part of the Czech Republic: Effects of
402 environmental factors on species composition, *Plant Ecol.*, 203(1), 45–57, doi.org/10.1007/s11258-008-9503-1, 2009.

403 Clement, B., and Touffet, J.: Plant Strategies and Secondary Succession on Brittany Heathlands after Severe Fire, *J.
404 Veg. Sci.*, 1(2), 195–202, doi.org/10.2307/3235658, 1990.

405 Clinton, B. D., Maier, C. A., Ford, C. R., and Mitchell, R. J.: Transient changes in transpiration, and stem and soil
406 CO₂efflux in longleaf pine (*Pinus palustris* Mill.) following fire-induced leaf area reduction, *Trees – Struct. Funct.*,
407 25(6), 997–1007, doi.org/10.1007/s00468-011-0574-6, 2011.

408 DeBano, L.F.: The effects of fire on soil properties, United States Department of Agriculture Forestry Service General
409 Technical Report, INT-2, 151–156., 1991.

410 Erfanian, A., Wang, G., Yu, M., and Anyah, R.: Multimodel ensemble simulations of present and future climates over
411 West Africa: Impacts of vegetation dynamics, *J. Adv. Model. Earth Syst.*, 8(3), 1411–1431,
412 doi.org/10.1002/2016MS000660, 2016.

413 Fiebig, M., Stohl, A., Wendisch, M., Eckhardt, S., and Petzold, A.: Dependence of solar radiative forcing of forest
414 fire aerosol on ageing and state of mixture, *Atmos. Chem. Phys. Discuss.*, 3(2), 1273–1302, doi.org/10.5194/acp-3-
415 881-2003, 2003.

416 Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily, monthly, and annual burned area using the
417 fourth-generation global fire emissions database (GFED4), *J. Geophys. Res.-Biogeo.*, 118(1), 317–328,
418 doi.org/10.1002/jgrg.20042, 2013.

419 Gorham, E.: Northern Peatlands : Role in the Carbon Cycle and Probable Responses to Climatic Warming, *Ecol. Appl.*,
420 1(2), 182–195, doi.org/10.2307/1941811, 1991.

421 Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., Archibald, S., Mouillot, F., Arnold,
422 S. R., Artaxo, P., Bachelet, D., Ciais, P., Forrest, M., Friedlingstein, P., Hickler, T., Kaplan, J. O., Kloster, S., Knorr,
423 W., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Meyn, A., Sitch, S., Spessa, A., van der Werf, G. R., Voulgarakis,
424 A., and Yue, C.: The status and challenge of global fire modelling, *Biogeosciences*, 13(11), 3359–3375,
425 doi.org/10.5194/bg-13-3359-2016, 2016.

426 Harden, J. W., Trumbore, S. E., Stocks, B. J., Hirsch, A., Gower, S. T., O'Neill, K. P., and Kasischke, E. S.: The role
427 of fire in the boreal carbon budget, *Global Change Biol.*, 6(Suppl. 1), 174–184, doi.org/10.1046/j.1365-
428 2486.2000.06019.x, 2000.

429 Harrison, S.P., Marlon, J.R. and Bartlein, P.J.: Fire in the Earth System, *Changing climates, earth systems and society*
430 (ed. by J. Dodson), 21–48, Springer, Dordrecht, 2010.

431 He, M. Z., Zheng, J. G., Li, X. R., and Qian, Y. L.: Environmental factors affecting vegetation composition in the
432 Alxa Plateau, China, *J. Arid. Environ.*, 69(3), 473–489, doi.org/10.1016/j.jaridenv.2006.10.005, 2007.

433 Hochberg, M. E., Menaut, J. C., and Gignoux, J.: The Influences of Tree Biology and Fire in the Spatial Structure of
434 the West African Savannah, *J. Ecol.*, 82(2), 217–226, doi.org/10.2307/2261290, 1994.

435 Hurtt, G. C., Frolking, S., Fearon, M. G., Moore, B., Shevliakova, E., Malyshev, S., Pacala, S., and Houghton, R.: The
436 underpinnings of land-use history: three centuries of global gridded land-use transitions, woodharvest activity, and
437 resulting secondary lands. *Glob. Change Biol.* 12, 1208–1229. doi.org/10.1111/j.1365-2486.2006.01150.x, 2006.

438 Kay, J. E., Hillman, B. R., Klein, S. A., Zhang, Y., Medeiros, B., Pincus, R., Gettelman, A., Eaton, B., Boyle, J.,
439 Marchand, R., and Ackerman, T. P.: Exposing global cloud biases in the Community Atmosphere Model (CAM) using
440 satellite observations and their corresponding instrument simulators. *J. Clim.*, 25(15), 5190–5207,
441 doi.org/10.1175/JCLI-D-11-00469.1, 2012.

442 Lau, K. M., and Kim, K. M.: Observational relationships between aerosol and Asian monsoon rainfall, and circulation,
443 *Geophys. Res. Lett.*, 33(21), L21810, doi.org/10.1029/2006GL027546, 2006.

444 Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., Zeng, X., Yang,
445 Z., Levis, S., Sakaguchi, K., Bonan, G. B., and Slater, A. G.: Parameterization improvements and functional and
446 structural advances in Version 4 of the Community Land Model. *J. Adv. Model. Earth Syst.*, 3(1),
447 doi.org/10.1029/2011MS00045, 2011.

448 Lawrence, P. J., and Chase, T. N.: Representing a new MODIS consistent land surface in the Community Land Model
449 (CLM 3.0). *J. Geophys. Res.-Biogeosci.*, 112(1), doi.org/10.1029/2006JG000168, 2007.

450 Li, F., and Lawrence, D. M.: Role of fire in the global land water budget during the twentieth century due to changing
451 ecosystems. *J. Clim.*, 30(6), 1893–1908, doi.org/10.1175/JCLI-D-16-0460.1, 2017.

452 Li, F., Bond-Lamberty, B., and Levis, S.: Quantifying the role of fire in the Earth system - Part 2: Impact on the net
453 carbon balance of global terrestrial ecosystems for the 20th century. *Biogeosciences*, 11(5), 1345–1360,
454 doi.org/10.5194/bg-11-1345-2014, 2014.

455 Li, F., Levis, S., and Ward, D. S.: Quantifying the role of fire in the Earth system - Part 1: Improved global fire
456 modeling in the Community Earth System Model (CESM1). *Biogeosciences*, 10(4), 2293–2314, doi.org/10.5194/bg-
457 10-2293-2013, 2013.

458 Li, F., Zeng, X. D., and Levis, S.: A process-based fire parameterization of intermediate complexity in a dynamic
459 global vegetation model. *Biogeosciences*, 9(7), 2761–2780, doi.org/10.5194/bg-9-2761-2012, 2012.

460 Mazzacavallo, M. G., and Kulmatiski, A.: Modelling water uptake provides a new perspective on grass and tree
461 coexistence. *PLoS ONE*, 10(12), e0144300, doi.org/10.1371/journal.pone.0144300, 2015.

462 Mouillet, F., Narasimha, A., Balkanski, Y., Lamarque, J.-F., and Field, C. B.: Global carbon emissions from biomass
463 burning in the 20th century. *Geophys. Res. Lett.*, 33(1), L01801, doi.org/10.1029/2005GL024707, 2006.

464 Neale, R. B., et al.: Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR/TN-486+STR,
465 NCAR, Boulder, Colo., 2012.

466 Neary, D. G., Ryan, K. C., and DeBano, L. F.: Wildland Fire in Ecosystems, effects of fire on soil and water, General
467 Technical Report RMRS-GTR-42, 4. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research
468 Station, Ogden, UT., 2005.

469 Nemani, R. R., Running, S. W., Pielke, R. a, and Chase, T. N.: Global vegetation cover changes from coarse resolution
470 satellite data. *J. Geophys. Res.-Atmos.*, 101(D3), 7157–7162, doi.org/10.1029/95jd02138, 1996.

471 Noble, J. C., Smith, A. W. and Leslie, H. W.: Fire in the mallee shrublands of western New South Wales, *Rangeland*
472 *J.*, 2(1), 104–114, 1980.

473 Paudel, R., Mahowald, N. M., Hess, P. G. M., Meng, L., and Riley, W. J.: Attribution of changes in global wetland
474 methane emissions from pre-industrial to present using Attribution of changes in global wetland methane emissions
475 from pre-industrial to present using CLM4.5-BGC, *Environ. Res. Lett.*, 11(3), doi:10.1088/1748-9326/11/3/034020,
476 2016.

477 Pechony, O., and Shindell, D. T.: Driving forces of global wildfires over the past millennium and the forthcoming
478 century, *PNAS*, 107(45), 19167–19170, doi.org/10.1073/pnas.1003669107, 2010.

479 Pitman, A. J., Narisma, G. T., Pielke, R. A., and Holbrook, N. J.: Impact of land cover change on the climate of
480 southwest Western Australia, *J. Geophys. Res.-Atmos.*, 109(D18), D18109, doi.org/10.1029/2003JD004347, 2004.

481 Prach, K., and Pyšek, P.: Using spontaneous succession for restoration of human-disturbed habitats: Experience from
482 Central Europe, *Ecol. Eng.*, 17(1), 55–62, doi.org/10.1016/S0925-8574(00)00132-4, 2001.

483 Qiu, L., and Liu, X.: Sensitivity analysis of modelled responses of vegetation dynamics on the Tibetan Plateau to
484 doubled CO₂ and associated climate change, *Theor. Appl. Climatol.*, 124(1–2), 229–239, doi.org/10.1007/s00704-
485 015-1414-1, 2016.

486 Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hanton, S., Kaplan, J. O., Li, F., Mangeon, S.,
487 Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A.,
488 Sheehan, T., Voulgarakis, A., Kelley, D. I., Colin Prentice, I., Sitch, S., Harrison, and S., Arneth, A.: The Fire
489 Modeling Intercomparison Project (FireMIP), phase 1: Experimental and analytical protocols with detailed model
490 descriptions, *Geosci. Model Dev.*, 10, 1175–1197, doi.org/10.5194/gmd-10-1175-201, 2017.

491 [Ramankutty, N., Evan, A., Monfreda, C., and Foley, J.: Farming the planet: 1. Geographic distribution of global](#)
492 [agricultural lands in the year 2000, Global Biogeochem. Cycles](#), 22, GB1003, doi:10.1029/2007GB002952, 2008.

493 Rauscher, S. A., Jiang, X., Steiner, A., Williams, A. P., Michael Cai, D., and McDowell, N. G.: Sea surface
494 temperature warming patterns and future vegetation change, *J. Clim.*, 28(20), 7943–7961, doi.org/10.1175/JCLI-D-
495 14-00528.1, 2015.

496 Rull, V.: A palynological record of a secondary succession after fire in the Gran Sabana, Venezuela, *J. Quat. Sci.*,
497 14(2), 137–152, doi.org/10.1002/(SICI)1099-1417(199903)14:2<137::AID-JQS413>3.0.CO;2-3, 1999.

498 Sankaran, M., Ratnam, J., and Hanan, N. P.: Tree-grass coexistence in savannas revisited - Insights from an
499 examination of assumptions and mechanisms invoked in existing models, *Ecol. Lett.*, 7(6), 480–490,
500 doi.org/10.1111/j.1461-0248.2004.00596.x, 2004.

501 Scholes, R. J., Ward, D. E., and Justice, C. O.: Emissions of trace gases and aerosol particles due to vegetation burning
502 in southern hemisphere Africa, *J. Geophys. Res.*, 101(D19), 23,623–23,682, 1996.

503 Smith R, et al.: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate
504 System Model (CCSM), Technical Report LAUR-10-01853, Los Alamos National Laboratory, 2010.

505 Song, X., and Zeng, X.: Investigation of uncertainties of establishment schemes in dynamic global vegetation models,
506 *Adv. Atmos. Sci.*, 31(1), 85–94, doi.org/10.1007/s00376-013-3031-1, 2014.

507 Steelman, T. A., and Burke, C. A.: Is wildfire policy in the United States sustainable?, *J. Forest.*, 33, 67–72,
508 doi.org/10.2139/ssrn.1931057, 2007.

509 Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R. S.: Global distribution of C 3 and C 4 vegetation: Carbon cycle
510 implications, *Global Biogeochem. Cycles*, 17(1), 6-1-6–14, doi.org/10.1029/2001GB001807, 2003.

511 Swezy, D. M., and Agee, J. K.: Prescribed-fire effects on fine-root and tree mortality in old-growth ponderosa pine,
512 *Can. J. For. Res.*, 21(5), 626–634, doi.org/10.1139/x91-086, 1991.

513 Tarasova, T. A., Nobre, C. A., Holben, B. N., Eck, T. F., and Setzer, A.: Assessment of smoke aerosol impact on
514 surface solar irradiance measured in the Rondônia region of Brazil during Smoke, Clouds, and Radiation – Brazil, *J.*
515 *Geophys. Res.-Atmos.*, 104(D16), 19161–19170, doi.org/10.1029/1999JD900258, 1999.

516 Townsend, S., and Douglas, M. M.: The effect of three fire regimes on stream water quality, water yield and export
517 coefficients in a tropical savanna (Northern Australia), *J. Hydrol.*, 229, 118–137, 2000.

518 van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R.
519 S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest,
520 agricultural, and peat fires (1997–2009), *Atmos. Chem. Phys.*, 10, 11707–11735, 2010.

521 van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle,
522 M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during
523 1997–2016, *Earth Syst. Sci. Data*, 9, 697–720, doi.org/10.5194/essd-9-697-2017, 2017.

524 Vilà, M., Lloret, F., Ogheri, E., and Terradas, J.: Positive fire-grass feedback in Mediterranean Basin woodlands, *For.*
525 *Ecol. Manage.*, 147, 3–14. 2001.

526 Vitousek, P. M., Mooney, H. a, Lubchenco, J., and Melillo, J. M.: Human Domination of Earth's Ecosystems, *Science*,
527 277(5325), 494–499, doi.org/10.1126/science.277.5325.494, 1997.

528 Wang, G., Yu, M., Pal, J. S., Mei, R., Bonan, G. B., Levis, S., and Thornton, P. E.: On the development of a coupled
529 regional climate–vegetation model RCM–CLM–CN–DV and its validation in Tropical Africa, *Clim. Dyn.*, 46(1–2),
530 515–539, doi.org/10.1007/s00382-015-2596-z, 2016.

531 Wardle, D., Olle, Z., Greger, H., and Gallet, C.: The Influence of Island Area on Ecosystem Properties The Influence
532 of Island Area on Ecosystem Properties, *Science*, 277(5330), 1296–1300, doi.org/10.1126/science.277.5330.1296,
533 1997.

534 Worley, P. H., Mirin, A. A., Craig, A. P., Taylor, M. A., Dennis, J. M., and Vertenstein, M.: Performance of the
535 community earth system model, in: High Performance Computing, Networking, Storage and Analysis (SC), 2011
536 International Conference, Seattle, WA, 2011.

537 Yue, C., Ciais, P., Cadule, P., Thonicke, K., and Van Leeuwen, T. T.: Modelling the role of fires in the terrestrial
538 carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE -Part 2: Carbon emissions
539 and the role of fires in the global carbon balance, *Geosci. Model Dev.*, 8(5), 1321–1338, doi.org/10.5194/gmd-8-1321-
540 2015, 2015.

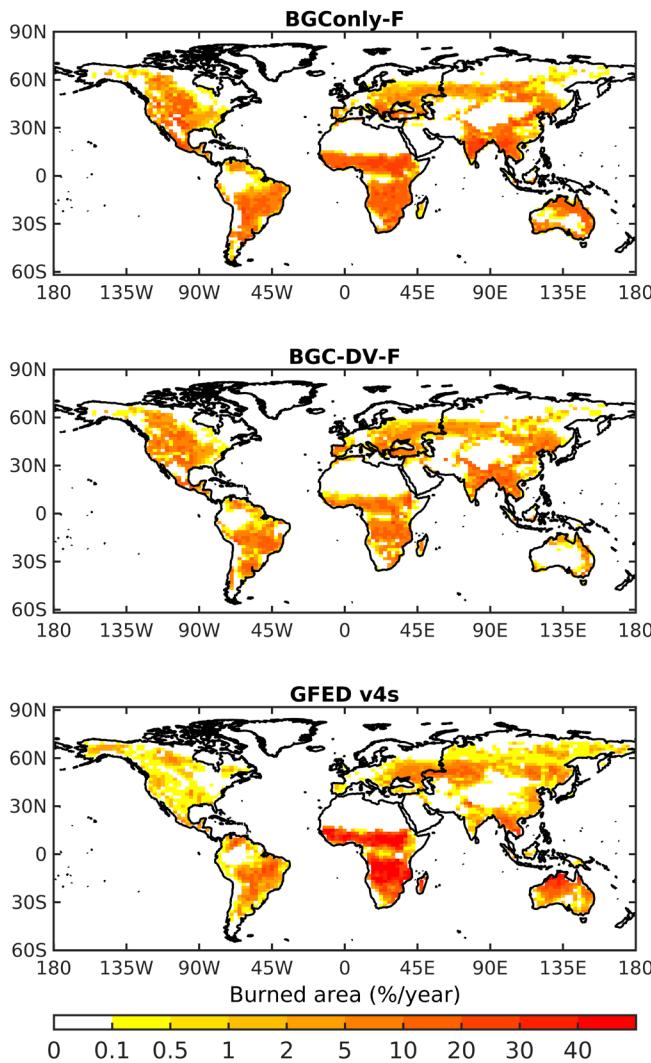
541 Zeng, X.: Evaluating the dependence of vegetation on climate in an improved dynamic global vegetation model, *Adv.*
542 *Atmos. Sci.*, 27(5), 977–991, 2010.

543 Zeng, X., Zeng, X., and Barlage, M.: Growing temperate shrubs over arid and semiarid regions in the Community
544 Land Model-Dynamic Global Vegetation Model, *Global Biogeochem. Cycles*, 22(3), GB3003,
545 doi.org/10.1029/2007GB003014, 2008.

546 Zhang, L., Mao, J., Shi, X., Ricciuto, D., He, H., Thornton, P., Yu, G., Li, P., Liu, M., Ren, X., Han, S., Li, Y., Yan,
547 J., Hao, Y., and Wang, H.: Evaluation of the Community Land Model simulated carbon and water fluxes against
548 observations over ChinaFLUX sites, *Agric. For. Meteorol.*, 226–227, 174–185,
549 doi.org/10.1016/j.agrformet.2016.05.018, 2016.

550

551

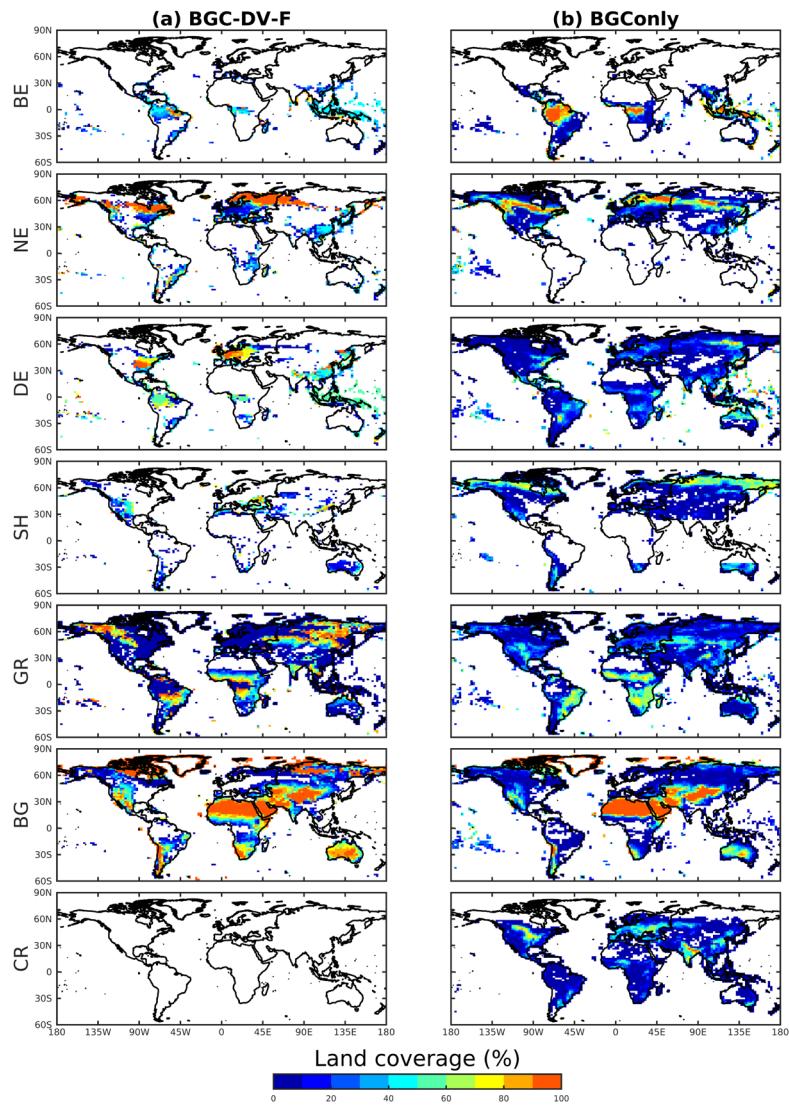

552

553

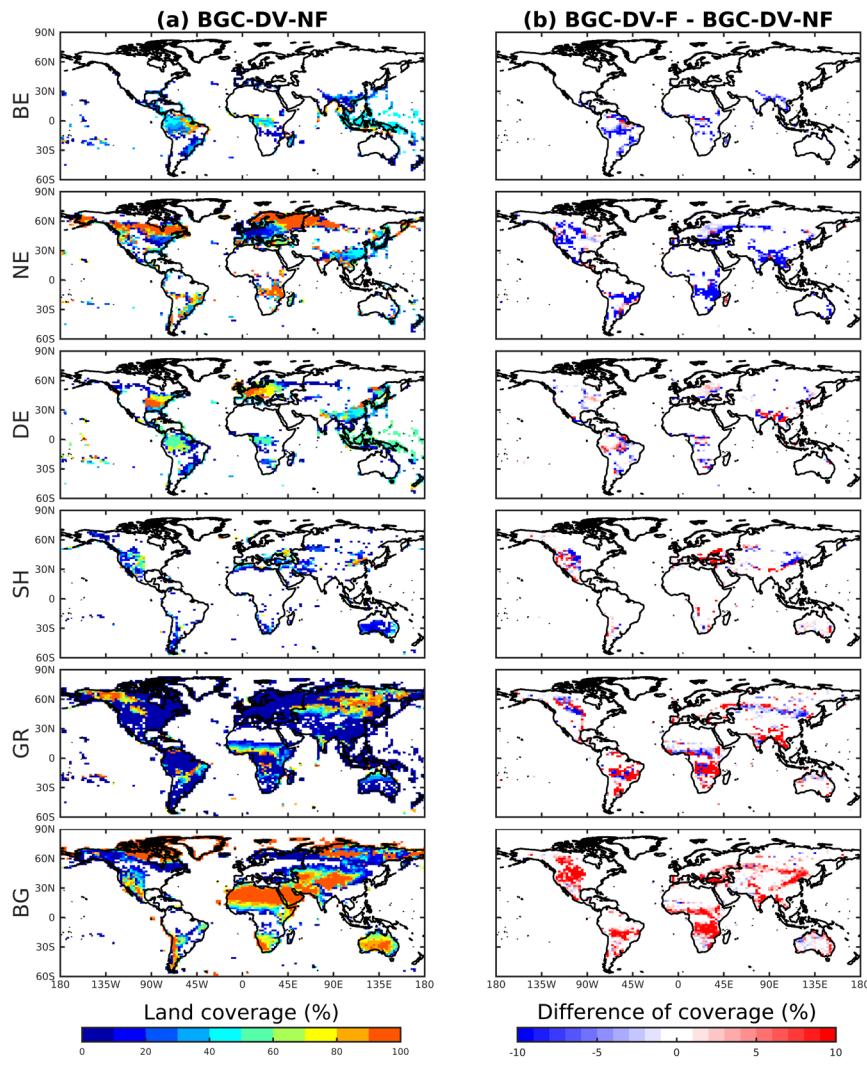
554 **Figure 1: Flowchart showing model simulations conducted to investigate the interactive impact of fires and ecological**
555 **succession on the Earth system using Community Land Model (CLM4.5) simulations extended with biogeochemistry**
556 **(CLM4.5BGC) and BGC with dynamic vegetation (CLM4.5BGCDV).**

557

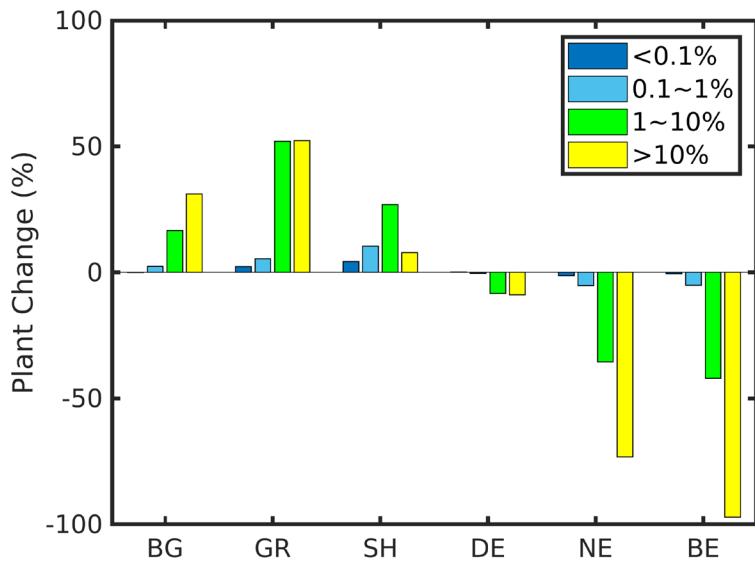
558



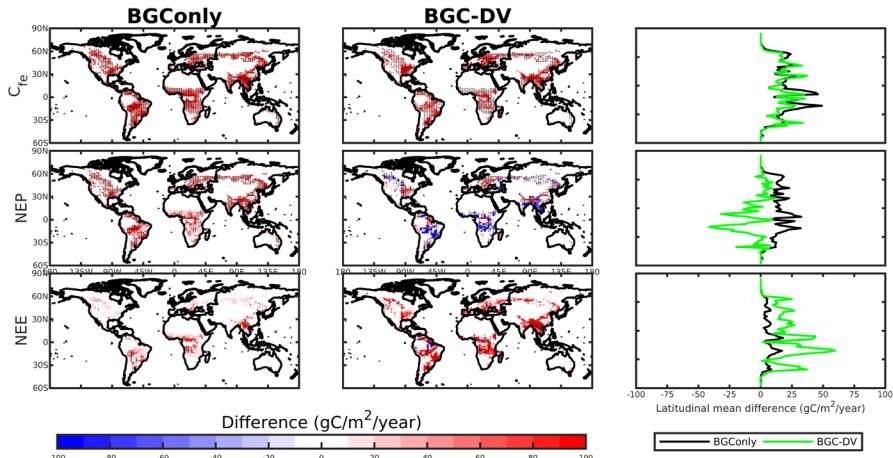
559


560

561 **Figure 2:** Annual burned area percentage by grid cell for CLM4.5BGC with fire (BGConly-F),
 562 CLM4.5BGCDV with fire (BGC-DV-F), and Global Fire Emission Database version 4 with small fires (GFED4s)


563

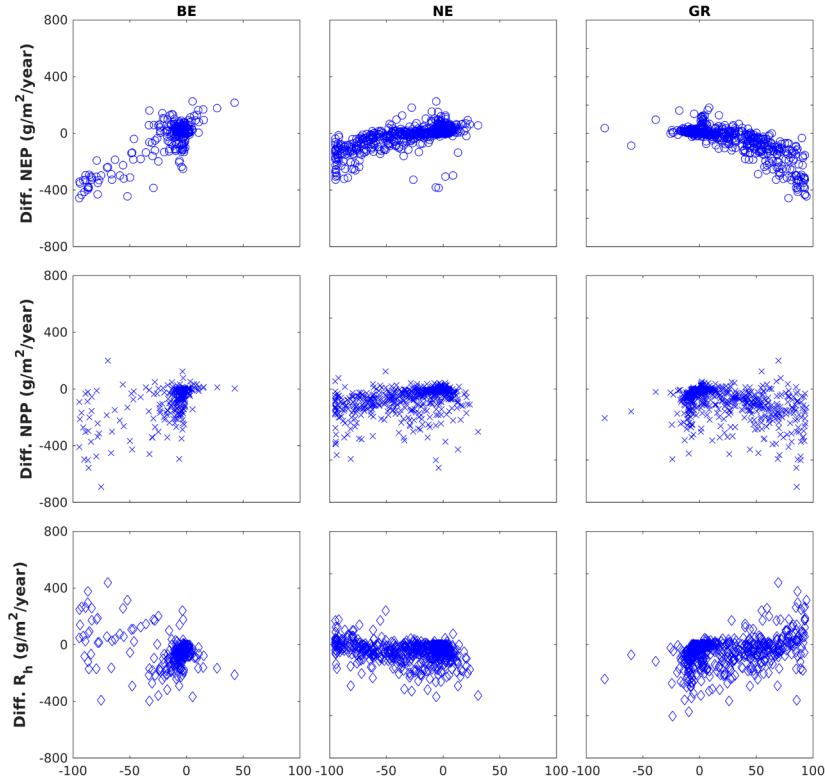
564
 565 **Figure 3:** Percentages of land cover type (broadleaf evergreen (BE)), needleleaf evergreen (NE),
 566 deciduous (DE), shrub (SH), grass (GR), bare ground (BG) and crop (CR) in BGC-DV-F and
 567 BGConly-NF.


568
 569 **Figure 4:** Percentages of land cover (broadleaf evergreen (BE), needleleaf evergreen (NE), deciduous (DE), shrub (SH),
 570 grass (GR), and bare ground (BG)) in BGC-DV-NF and differences in plant cover between BGC-DV-F and BGC-DV-NF.

571

572 Figure 5: Differences in vegetation distribution (bare ground (BG), grass (GR), shrub (SH), deciduous (DE), broadleaf
 573 evergreen (BE), and needleleaf evergreen (NE)) ratios between BGC-DV-F and BGC-DV-NF for four burned area
 574 categories: under 0.1%, 0.1~1%, 1~10%, and greater than 10%.

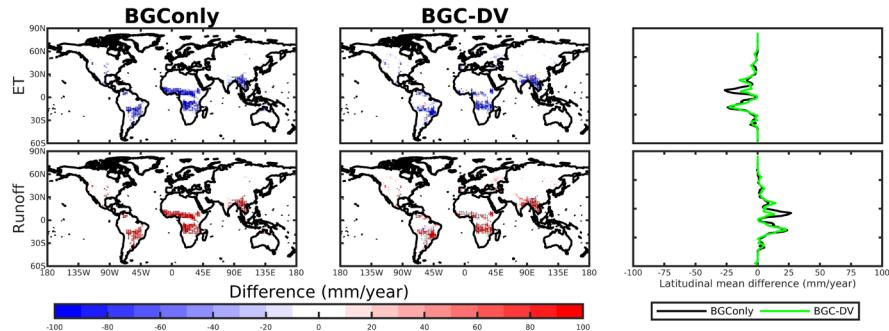
575



576
 577 **Figure 6: Differences in carbon emissions (C_{fe}), net ecosystem production (NEP), and net ecosystem exchange (NEE) caused**
 578 **by fires in BGConly (BGConly-F minus BGConly-NF; left column) and BGC-DV (BGC-DV-F minus BGC-DV-NF; middle**
 579 **column). Hashed areas indicate that the difference passed the Student's t-test at the 0.05 significance level. Latitudinal mean**
 580 **differences are plotted in the far-right column.**

581

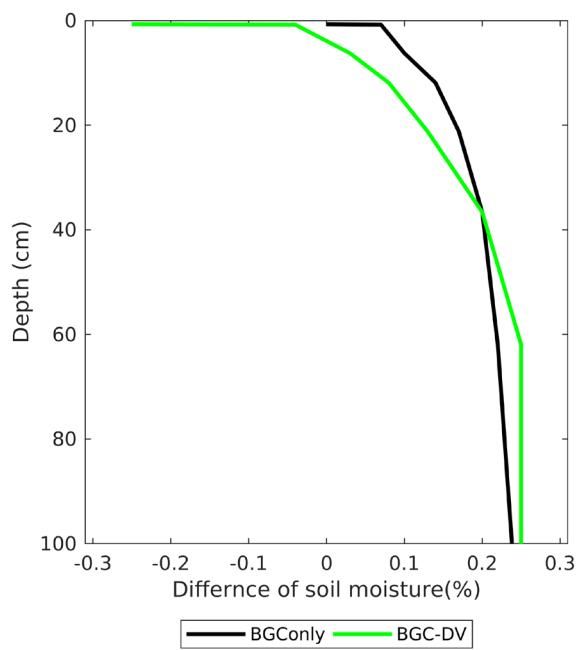
582


Veg. cover(%) change

583

584 Figure 7: Differences in net ecosystem production (NEP),
585 net primary productivity (NPP), and heterotrophic respiration
586 (Rh) due to fires in BGC-DV (i.e., BGC-DV-F minus BGC-DV-NF) according to percent changes in broadleaf evergreen
(BE), needleleaf evergreen (NE), and grass (GR) vegetation types.

587


588

589 **Figure 8: Differences in evapotranspiration (ET) and runoff due to fire in BGConly (BGConly-F minus BGConly-NF; left**

590 columns) and BGC-DV (BGC-DV-F minus BGC-DV-NF; middle column). Hashed areas indicate that the difference passed

591 the Student's t-test at the 0.05 significance level. Latitudinal mean differences are plotted in the far-right column.

592

593

594 **Figure 9: Difference in soil moisture (%) due to fire in BGConly (i.e., BGConly-F minus BGConly-NF) and BGC-DV (i.e.,**

595 BGC-DV-F minus BGC-DV-NF).

596

Table 1: Configurations of the experiments used in the study

BGC for the year 1850		BGC for the 20th century	BGConly	BGC-DV
Time	-	1901–2000	200 yr	200 yr
Climate forcing	Repeated 1901–1920 (CRU-NCEP)	1901–2000 (CRU-NCEP)	Repeated 1961– 2000 for five times (CRU-NCEP)	Repeated 1961– 2000 for five times (CRU-NCEP)
[CO ₂]	[1850]	[1901–2000]	[2000]	[2000]
Biogeography shifts	No	Yes (Prescribed with time-varying PFT distribution)	No	Yes (Simulated in DV mode)
Initial vegetation	No	From BGC year 1850	From BGC for 20th century	No
Initial soil	No	From BGC year 1850	From BGC for 20th century	From BGC for 20th century
PFTs	15 natural + 2 crops for 1850 based on the UNH dataset	15 natural + 2 crops for 20th century based on the UNH dataset	15 natural + 2 crops for 2000 based on satellite data	15 natural (except crops)
Fire	On	On	On (BGConly-F) Off (BGConly-NF)	On (BGC-DV-F) Off (BGC-DV-NF)

삭제됨: 17 PFTs
서식 있음: 글꼴 색: 텍스트 1, 영어(영국)
[1] 위로 이동함: PFTs
삭제됨: 17
삭제됨: 17 PFTs
서식 있음: 글꼴 색: 텍스트 1, 영어(영국)
서식 있음: 글꼴 색: 텍스트 1, 영어(영국)
삭제됨: Simulated
서식 있음: 줄 간격: 1줄
서식 있음: 글꼴 색: 텍스트 1, 영어(영국)
삭제됨: PFTs
서식 있음: 글꼴 색: 텍스트 1, 영어(영국)
[1] 이동함(삽입)
삭제됨: Land use
서식 있음: 글꼴 색: 텍스트 1, 영어(영국)

Table 2: Percentage (%) land cover types (bare ground, grass, shrub, deciduous, needleleaf evergreen, and broadleaf evergreen) in BGConly, BGC-DV-F, and BGC-DV-NF.

	BGConly	BGC-DV-F	BGC-DV-NF
Bare ground	28.17	41.21	38.66
Grass	20.13	21.25	16.53
Shrub	8.41	4.75	4.24
Deciduous	12.78	12.29	12.67
Needleleaf evergreen	9.96	14.73	20.54
Broadleaf evergreen	10.31	5.73	7.33
Crop	10.25	-	-

610
611
612 **Table 3: Annual means of carbon budget for GPP, NPP, Ra, R_b, NEP, NEE, and C_{fe} and their differences between one with
fire and one without fire (i.e., BGConly-F minus BGConly-NF, and BGC-DV-F minus BGC-DV-NF) in Pg C yr⁻¹. Asterisk
(*) index indicates that the difference passed the Student's t test at the $\alpha = 0.05$ significance level.**

	BGConly			BGC-DV		
	BGConly-F	BGConly-NF	Difference	BGC-DV-F	BGC-DV-NF	Difference
C _{fe}	3.49	0.00	3.49*	2.98	0	2.98*
GPP	130.51	144.24	-13.73*	122.01	136.93	-14.92*
NPP	56.66	63.17	-6.51*	52.14	55.56	-3.42*
R _a	73.85	81.08	-7.23*	69.87	81.37	-11.50*
R _b	52.75	61.73	-8.98*	41.19	43.79	-2.60*
NEP	3.91	1.44	2.47*	13.65	14.67	-1.02*
NEE	-0.42	-1.44	1.02*	-5.27	-8.87	3.60*

613

614

615 **Table 4: Pearson correlation coefficients between carbon fluxes (NEP, NPP, R_h) and percentage changes in vegetation cover**
616 **for broadleaf evergreen (BE), needleleaf evergreen (NE), deciduous (DE), shrub (SH), grass (GR), and bare ground (BG).**

	BE	NE	DE	SH	GR	BG
NEP	0.84	0.68	0.34	-0.28	-0.80	-0.14
NPP	0.56	0.44	0.34	-0.30	-0.47	-0.35
R_h	-0.36	-0.17	-0.01	-0.13	0.27	-0.30

617

618

619
 620 **Table 5: Annual mean water budgets for ground evaporation (GE), canopy evaporation (CE),
 621 evapotranspiration (ET), and total runoff (RO) and the difference between the one with fire and the one without fire (i.e.,
 622 BGConly-F minus BGConly-NF, and BGC-DV-F minus BGC-DV-NF) in $10^3 \text{ km}^3 \text{ yr}^{-1}$. Asterisk (*) index indicates that the
 difference passed the Student's t test at the $\alpha = 0.05$ significance level.**

	BGConly			BGC-DV		
	BGConly-F	BGConly-NF	Difference	BGC-DV-F	BGC-DV-NF	Difference
GE	20.87	19.27	1.60*	23.29	19.61	3.68*
CE	15.71	16.39	-0.68*	15.62	16.88	-1.26*
CT	38.41	40.42	-2.01*	37.68	40.99	-3.31*
ET	74.99	76.08	-1.09*	76.59	77.48	-0.89*
RO	31.09	30.02	1.07*	29.51	28.64	0.87*

623

624

625
626 **Table 6** Annual mean values for LAI ($m^2 m^{-2}$) and vegetation height (m) and the difference between the one with fire and
627 the one without fire (i.e., BGConly-F minus BGConly-NF, and BGC-DV-F minus BGC-DV-NF). Asterisk (*) index indicates
that the difference passed the Student's t test at the $\alpha = 0.05$ significance level.

	BGConly			BGC-DV		
	BGConly-F	BGConly-NF	Difference	BGC-DV-F	BGC-DV-NF	Difference
LAI	2.13	2.36	-0.23*	2.24	2.62	-0.38*
Height	7.05	7.45	-0.4*	6.03	7.76	-1.73*

628

629

630
631
632

Table 7: Annual mean soil moisture (%) at each soil depth and the difference between with fire and without fire cases (i.e., BGConly-F minus BGConly-NF, and BGC-DV-F minus BGC-DV-NF). Asterisk (*) index indicates that the difference passed the Student's t test at the $\alpha = 0.05$ significance level.

Depth	BGConly			BGC-DV		
	BGConly-F	BGConly-NF	Difference	BGC-DV-F	BGC-DV-NF	Difference
0.71 cm	21.22	21.22	0.00*	20.48	20.73	-0.25*
0.79 cm	23.22	23.15	0.07*	22.59	22.63	-0.04*
6.23 cm	23.24	23.14	0.10*	22.61	22.58	0.03*
11.89 cm	22.72	22.58	0.14*	22.14	22.06	0.08*
21.22 cm	22.37	22.2	0.17*	21.83	21.7	0.13*
36.61 cm	22.48	22.28	0.20*	21.98	21.78	0.2*
61.98 cm	22.57	22.35	0.22*	22.1	21.85	0.25*
103.8 cm	22.45	22.21	0.24*	21.95	21.7	0.25*

633