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Abstract. The veracity ofurban climate simulation modelshould besystematicallyevaludged to demonstrate the
trustworthiness ofhese modek against possible model uncertaintiewever, existing studigsaid insufficient attentioto
the model evaluatignmost studiesonly provided some simple comparison lines betweerelled variables andheir
corresponding observed onestba temporal dimension. Challenges rensite suclsimple comparisons cannot concretely
prove that thesimulation ofurban climate behaviars is reliable Studies without systematic model evaluatiobeing
ambiguous or arbitrary to some extent, may lead to some seemizglput scientificallymisleading findings

To takle thesechallengesthisarticle proposea methodological framework féihe modelevaluation ohigh-resolution urban
climate simulatios and demonstradéts effectiveness with a case studythie area oShenzhermand Hong KongChina It is
intended tademind (again) urban climateoddlersof the necessity afonductingsystematianodel evaluatiogin urbanscale

climatologymodellingandreducethese ambiguous or arbitramyodellingpractices.

1 Introduction

Recently, studies on urban climate have received growing attention. It is fectttedtt her e  wi | | be 66%
population living intheurban area by 2050 (United Nations, 20T4jefundamental welbeingof the urban populatigrsuch

as their comfort and health, is directly and significantly affected by urban meteorblogicktions, such as temperature,
wind speedand air pollutionMeanwhile, he ongoing global trend of climate charagiels to the urgency and significance of
achievingbetter understandings of urban climate abthiningmore precise predictions of future changes. In this vein, many
tools havebeen developedndthe rapidly developing urban climate simulation models are among thewdes$t-usedones

These simulatiommodels lave been widely appliedh analyses and predictions of urban climate, as well as assessments of
urban climate impacts brought by the dramatic human interferences inDiies 1997 Kalnay and Cai, 2003

Model evaluation is necessary for urban climate simulations to make sure the results are reliable and trustworthy to some

extent Model evaluation refers to comparisons betwdbe modelled variableand corresponding obseations After
modelling, a modekvaluation should be conducted for establishing the trustworthiness to the results because of the
incompleteness caused by the approximations and assumptions in the scientific mechanisms of the modelveasn if
configured appropriatelyJrban climatesimulation is employed to obtain firseale details from the lateral boundary condition
of coarsescale meteorological data by usiadimited area model. Moreover, in order to construct precisely thesitade

details at utmost in tharea of interesthe model takes tharea of interedand surface forcing into account (Lo et al., 2008).

The finescale detailsre constructetly a limited aea modehot onlydriven by the lateral boundary conditions of coarse
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scale meteorological datacland surface forcing data thdd not existin the coarsescale meteorological dathut alschave

the possibility ofdeviating fromtheir corresponding rtaral values.Urban dimate simulation, with a higher requirement on

its resolution (spatial and temporal) and modelling urban climatological phenomena (for example, urban heat island,
temperature difference between urban andumtyan areas), is more séh& to the inadequacies of the atmospheric model,

the inappropriate configuration of the modelling system (Warner, 2011) and the quality of input data (Bruyére et al., 2014).
Therefore, model evaluation is even moriical for urban climate simulation.

However, recent efforts understandably paid minimum attention to model evaluation in the community of urban climate
moddlers, which weakens the reliabilityf conclusios based on the insufficiently justified model results. Among existing
literature reearchers mostly conducted some simple comparisons betwedalled variables andheir corresponding
observed ones by drawirigeir shortterm timehistory plots. For example, Jiang et al. (200&)de a bold prediction that the
nearsurface temperature the Huston area will increase by 2°C in future years (2P833). However, the conclusion was

only supported by simple comparison betwedime observedand WRFmodelleddiurnal 2-meterair temperature during
August 20012003 Meng et al. (2011nodelledthe 2-meterair temperature and heat island intensiyyusingthreedifferent
modelling schems, thusconcludedwhich oneis best in modelling performance. However, these seemingly robust
conclusionsre only basedn a comparison of the observed temperaturesthginhcorrespondingnodelledonesover a period

of 3 days.With a simple model evaluatiosomparingdiurnal patternsof 3-monthsWRFmodelled2-m surface temperature,
special humidityand relative humidity with its corresponding observed ones, Yang et al. (2012) asserted that the WRF model
could reconstruct the urban climate features at high resolutionkoh With a good performance imodelledsuface air
temperature and relative humiditythre Nanjing areaAlthough the aforamentioned efforts partially addressed the evaluation
issue,significant challenges remain in establishing the trustworthiness of the model: Even if an exact match hetween
modelledvariable at some grids and its corresponding observed omeeiio@lcannot conclude that the model simulates urban
climate successfully, not to mention a rexact match. These model evaluatinethodsare not convincing, or even reckless.

That kind ofmodelling practices without a convincing model evaluatiorstii prevalentin climate modellingcommunity

evenfor the most receriterature such as the papers of Gu and Yim (20¥6ang et al. (2016and Bhati and Mohan (2016).

To sum up, it is a blind point ithe climate modelling community that the existing studiagd insufficient attentiomo the

model evaluation

In spite ofsomeprevious literatureadverted alreadghe importance of model evaluationinterpreting the modelling results,
such asOsborn and Hulme (1997%aldwell et al. (2009)Gosling et al. (2009) an8illmann et al. (2013), a systematic
framework for model evaluation has not begrovided in the pevious literaturelt is a research gap in urban climiagy.
Thus, in this paper, we dig deeply into the model evaluatigmmopose a systematic framework and methods for evaluating
model results from multiple perspectives, to benefit future studibsmate choices for model qualitgpntrol andmake urban
scale simulation more robu$tloreover, we also provide @ase analysis of théeparturebetween thenodelledatmospheric

variable and its corresponding observed one.

The remainder of this pap&s organizedas follows. Section 2 introduces the proposed framework for model evaluation,
experimental design, and data usedrfardellingand model evaluatiorSection 3 introduces the technical preparation for
urban climate simulation. Section 4 preserdsiousresultsof the proposed model evaluation methods in our case study.

Section 5 concludes the paper with discussions.
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2 Methodology
2.1Urban Climate Modelling

In an urban area, the natural texture of the land surface has remarkably chdangegitoade impervious land surface. The
textural change of the land surface leads to modifications in the interchange of energy, momentum, and mass between the lat
surface angblanetary boundary layePBL) (Wang et al., 2009Moreover, in an urban aree anthropogenic heat release
caused by human activities increases the seraitldatenheat emission. Furthermore, the urban building morphology also

has an impact on the radiation exchange and the airflewari et al. (2007) developé¢ke Urban Canpy Model (UCM) to

couple with the AvancedResearcWWRF (ARW)model viaNoahLand Surface Model (NoabhSM) to improve the simulation

accuracy of urban processes by integrating these physical charactersheaidvan canopy.

We ook Shenzhen and Hong Kgnaregionin Chinathat had gone through intensive urbanimatprocessas the study area.
We took he year of 2010 as the study period becdnatk of the land surface data and observation @ata obtainable in
2010.WRF ARW model coupled wittNoahLSM/SLUCM (WRF ARW/Noah LSM/SLUCM v3.7.1yasusedfor modelling
urban climate in 2010 atkm?grid spacing. Through comparison, we found that some of the terragrigldata provided
by NCAR were out-of-date, especially for da describing the fasteveloping areaTlo reflect more precisely the artificial
changeson the physical environmetrought by theurbanization,we developedour sets of higiresolutionurbandata
includingthe vegetation coverage, building morphology, land cawmianthropogenic heaby usingthemas inputdor the

follow-up urban climate simulation, the simulated urbanization impacts on urban climate would be more accurate.

Sincerunningan atmosphericmodelconsumes consideral@ amount of computational resources, especially for simulating
long-term climate we dividedthe urban climate simulation case into sequenced {fdays simulation segmentdue to
limitations in computational resourcdsor each segmenthé first day overlaps with the last daits previous simulation

segmentwhichwas usedor modelspintup. For more details, please refer to Section S3 of Supplementary Material.

2.2 The Methodological Framework for Urban Climate Model Evaluation

Forurban climatemodel evaluationgomparing modelled meteorological attributes with their corresponding observed ones is
the most widelyaccepted wapf model evaluatioin literature. Given a certain study area and period, such comparisons are

carried out respectively for each meteoradagvariablesof interest

Different viewson your dataarevital for urban climate model evaluation since meteorological processes contain substantial
spatialtemporal patterns and variances. Most existing literature condootagarisons simplyncluding all observations
within ther spatialtemporal coverageespite thatomparing all observatiorgovides an aggregated evaluation of model
performancesuch a comparisas conductedinder the assumption that urban climate behmsiare similar across space and
time, which is usually not trué.herefore, we includkthreedifferenttemporalresolutiors in our model evaluation framework
(Table 1): annuaJ monthly, and dailyto provice a sophisticated view omhether the modelled results could replicate the

temporal and spatial patterns in the observations or not.

Table 1. An Evaluation Framework for Urban Climate Modelling

Metrics Temporal Resolution
Statistical Method Annual Monthly Daily
Perspectives
Descriptive | Temporal Comparison of Spati| Annual Variation| Monthly Variation | Diurnal
Statistics | Variation(TCSV) Pattern Pattern pattern
Urban Climatological Spatial Pattern




Statistical

Distributions

Perkins Skill Score (PSS)

Annual mean PSS

Monthly PSS

PDF of the difference between

modelled and observed data

Annualmean score

Monthly score

For each perspective, existing literature commonly compares the descriptive statistics, that is, the range, mean, @nd varianc

between the modelled and observed attribdtes.importance of examining climate statistics other than climate means is not

new(Katz and Brown 1992; Boer and Lambert 200He descriptive statistics are useful in providing aggregated information

on the distribution of the attributes, but they can be very misleading giacdiversedistributions can lead to similar

5 descriptivestatistics, and these aggregated metrics can be sensitive to outliers. Therefore, we compared not only the descriptiv

statistics but also the statistical distributions of modelled and observed meteorological variableobabdity density

function (PDF) was used to calculate the statistical distribution of modelled and observed meteorological variables or the

differences between pairs of them. The overlap of two distributions was quantified using the Perkins Skill Score (PSS). The

PSS ranges from 0 tb, while 1 indicateperfectmodellingand 0 indicates the worstodelling The advantages of using

10

PDFs and PSS for climate statistic¥dbeen discussed in Perkins et al. (2007).

In urban climatology, therbanrural difference is among the most important spatial patterns to invesfig@tefore, at the

spatial dimension, we evaluated the mdietomparinghe temporaévolutionsof the observed and simulated meteorological

characteristicen urban and on-urban areas.

Following the proposed framework, wesigned a guideline (Section S4 of Supplementary Material) and a workflow (Figure

15 1) in the practice of model evaluation.
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Figure 1: The Workflow for Model Evaluation.
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2.3 Observation Datasetsand Modelled Variablesfor Model Evaluation

In existing literatureNumericalWeatherPrediction(NWP) modelsare typically evaluatedy comparinghe spatiakemporal
patterns of themodelledvariables with those of itsorrespondingnearsurface observatian Moreover, we selected 7
meteorological variables for the comparison, includdmeter air temperature, surfatemperature 10-meter wind atu
direction 10-meters wind at direction accumulated total cumulus precipitation, accumulated ¢pidlprecipitatiorand 2
meter relative humiditybecauseahese variables are the critical variables in the prognostic and diagnostic equattoms in
NWP model

Table?2 lists themodelledvariablesandtheir correspondingbservationsn the model evaluatiorhe observation datasets
are the point data excefidr the MODIS datasetvhich is the grid data. All the modelled variables ara gtata. he
comparisondetween modelledariables \ith its corresponding observed ones @smparisons betwedhe grid value of the
modelled variable with its point valumatchedoy to geographicalocations, excepor the comparison between the modelled
surfacetemperaturg TSK) and its correspondingbservation retrieved frortMODIS imagery.Moreover, a MODIS land
surface temperature is a result of the inverse calculation based on the longwave radiatginttie atrmsphere received by
satellite according to the theory of blackbody. A MODIS land surface temperature is a manifestation of the surface synthetic
radiation brightness temperature. Furthermore, in the land surface process, TSK is calculated iteratidigly txtive energy
balance which involves longwave radiation, shortwave radiation, sensible heat and latent heat, and actwdinglyl SK
value is also a manifestation of the surface synthetic radiation brightness temperature. Although there diféeesamses
between TSK and the brightness temperatures observed by satellites, they describe ralaileelghysical quantities

Thereforewe uselT SK to compare witlthe MODIS land surface temperature.

Table 2: Modelled Variables for Model Evaluation.

Modelled Variables for Model Evaluation Corresponding Observation Datasets
Name Description Datasets Sources
T2 2-meterair temperature 2010 PRD 2-meter| Meteorological Bureau o
Air Temperature ShenzhemMunicipality
U10 10-meters wind at U direction 2010 PRD 1&Meters
V10 10-meters wind at V direction Wind Speed

RAINC Accumulated total cumulus precipitatiq
RAINNC | Accumulated total grid scal

2010 PRD

Precipitation

precipitation

RH2 2-meterrelative humidity 2010 PRD Relative
Humidity

TSK Surface temperature 2010 MODIS/Aqual NASA EOSDIS Land
Land Surfacg Processes DAAC, USG
Temperature an{ Earth Resources Observati
Emissivity (LST/E)| and Science (EROS) Centel
product




10

15

20

25

3 Technical Preparation
3.1Model Setup

A telescoping nestso6 structrecerdgredavi t B2 ¢ dda 3 (hevadbet dolad henh 1 !
horizontal domain baseline configuration in this study. Moredhersameset of eta levels with1l membersvasusedin

each horizontal domain. Furthermore, thamre some physics components in the modeld each component Hasome

different schemes for choosintable3 shows the scheme chosen for each compoRentmore details, please refer to Section

S4of Supplementary Material.

Table 3: Physics Componentsd Schemes

Component Scheme
Cumulus New Simplified ArakaweSchubert
Microphysics WDM5
Radiation RRTMG
Planetary Boundary Layer| BougeaultLacarrere
Surface Layer Revised MM5
Land Surface Model Noah LSM
Urban Canopy Model Singlelayer

3.2Data Preparation

Firstly, the 2010 NCEP FNL (Final) OperatainGlobal Analysis Datasdil-degres grid spatial resolution and-i&ourly
temporal resolutionwas usedas the Gridded Data in this study. Secondly, the Completed Dataset of WRF Preprocessing
System YWPS) Geographical Input Data wased as the Static Geographical Dataset in this study. Thirdl20tt@ PRD

Urban Land Surface Datasethosemajor sets of data includthe land cover, vegetation coverage, urban morpholagy
anthropogenic heawvhich wasspecially developetbr refining the WRF primary data.

3.3Primary Data Processing

Firstly, the primary data includkethe interpolated gedata files, the intermediate format meteorological data files, the
horizontally interpolated meteorological data files, the initial condition dataditelthe lateral boundary condition data files
Secondly two primary data proceslg software packages(geo data refinement processing package and
wrf_input_refinement processing packageredevelopedor extracting the urban land surface attributes fron2010 PRD

Urban Land SurfacBatasetand revising the corresponding fieldstioe relded primary data filesvith these attributes

4 Model Evaluation
4.1 Evaluation of the 2Meter Air Temperature

Using descriptive statistics, Figukecompares the range and median values of the observed antbdeded2-meter air
temperature at 2:00, 8:00, 14:00, and 20:00 in each month of the year. It is evident tiade¢ledair temperatures always

have similar temporadpatialbehaviourwith the observed onebloreover,Figure3 compares the diurnal range anddiam

of the observed anehodelledair temperature each month of the year. Both the range and median eh#ierthodelledair
temperature have the same diurnal variation with its corresponding observed ones in each month, although there ase differenc

between thanodelledones and the corresponding observed dhgghermore, as shown in Figures 4 and 5 ntioelelledair
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5 Figure 2: Comparison ofModelled and Observed2-meter Air Temperature at 2:00, 8:00, 14:00, and 20:00.
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Figure 4: Comparison of Observed Air Temperatureqat 2:00, 8:00, 14:00 and 20:Q0n Urban and Non-Urban Areas.
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Figure 5: Comparison ofModelled Air Temperatures (at 2:00, 8:00, 14:00 and 20:00n the Urban and Non-urban Areas.

Using PSS to compare the statistical distribution of the observed and modelled air temperature, the model produces quite
good simulation oR-meterair temperature with annual mean PSS of 0.724. It also capturbehbeiars of monthly and

diurnal varation of observe@-meterair temperaturesgzigure6 showsthatthe monthly PSS of-theter air temperature ranges

from a minimum of 0.595 in July to a maximum of 0.886 in January and has an annual mean value ohi3.d@rhonstrates

that the model captured the PDF for the observed air temperature at least abibua808hth and over 72% in a year. Figure

7 shows the PDF of differences betwesathv al ue of each monadelldyrd ait temperatusee and iess 0 |
corresponding observed ones. The probabilitydégrees bias interval (the absolute valutefifference betweanodelled

surface temperature and its corresponding observed one is 3 degrees) in a month varies from 64% to 91% and has an anni
mean probability of this interval of 78%.



