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Abstract. The veracity of urban climate simulation models should be systematically evaluated to demonstrate the 

trustworthiness of these models against possible model uncertainties. However, existing studies paid insufficient attention to 15 

the model evaluation; most studies only provided some simple comparison lines between modelled variables and their 

corresponding observed ones on the temporal dimension. Challenges remain since such simple comparisons cannot concretely 

prove that the simulation of urban climate behaviours is reliable. Studies without systematic model evaluations, being 

ambiguous or arbitrary to some extent, may lead to some seemingly-new but scientifically-misleading findings.  

To tackle these challenges, this article proposes a methodological framework for the model evaluation of high-resolution urban 20 

climate simulations and demonstrates its effectiveness with a case study in the area of Shenzhen and Hong Kong, China. It is 

intended to remind (again) urban climate modellers of the necessity of conducting systematic model evaluations in urban-scale 

climatology modelling and reduce these ambiguous or arbitrary modelling practices. 

1 Introduction  

Recently, studies on urban climate have received growing attention. It is forecasted that there will be 66% of the worldôs 25 

population living in the urban area by 2050 (United Nations, 2014). The fundamental well-being of the urban population, such 

as their comfort and health, is directly and significantly affected by urban meteorological conditions, such as temperature, 

wind speed, and air pollution. Meanwhile, the ongoing global trend of climate change adds to the urgency and significance of 

achieving better understandings of urban climate and obtaining more precise predictions of future changes. In this vein, many 

tools have been developed, and the rapidly developing urban climate simulation models are among the most powerful ones. 30 

These simulation models have been widely applied in analyses and predictions of urban climate, as well as assessments of 

urban climate impacts brought by the dramatic human interferences in cities (Dale, 1997; Kalnay and Cai, 2003). 

Model evaluation is necessary for urban climate simulations to make sure the results are reliable and trustworthy to some 

extent. Model evaluation refers to comparisons between the modelled variables and its corresponding observed ones. After 

modelling, a model evaluation should be conducted for establishing the trustworthiness to the modelling results because of the 35 

model incompleteness caused by the approximations and assumptions in the scientific mechanisms of the model even if the 

model was configured appropriately. Urban climate simulation is employed to obtain fine-scale details from the lateral 

boundary condition of coarse-scale meteorological data by using a limited area model. Moreover, in order to construct precisely 

the fine-scale details at utmost in the area of interest, the model takes the area of interest land surface forcing into account (Lo 
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et al., 2008). The fine-scale details are constructed by a limited area model driven by the lateral boundary conditions of coarse-

scale meteorological data and land surface forcing data but do not exist in the coarse-scale meteorological data.  In its essence, 

the fine-scale details constructed by a limited area model have the possibility of deviating from their corresponding natural 

values. Urban climate simulation, with a higher requirement on its resolution (spatial and temporal) and modelling urban 

climatological phenomena (for example, urban heat island, temperature difference between urban and non-urban areas), is 5 

more sensitive to the inadequacies of the atmospheric model, the inappropriate configuration of the modelling system (Warner, 

2011) and the quality of input data (Bruyère et al., 2014). Therefore, model evaluation is even more critical for urban climate 

simulation. 

However, recent efforts understandably paid minimum attention to model evaluation in the community of urban climate 

modellers, which weakens the reliability of every conclusion based on the insufficiently justified model results. Among 10 

existing literature, researchers mostly conducted some simple comparisons between modelled variables and their 

corresponding observed ones by drawing their short-term time-history plots. For example, Jiang et al. (2008) made a bold 

prediction that the near-surface temperature in the Huston area will increase by 2°C in future years (2051ï2053). However, 

the conclusion was only supported by a simple comparison between the observed and WRF-modelled diurnal 2-meter air 

temperature during August 2001ï2003. Meng et al. (2011) modelled the 2-meter air temperature and heat island intensity by 15 

using three different modelling schemes, thus concluded which one is best in modelling performances. However, these 

seemingly robust conclusions are only based on a comparison of the observed temperatures with their corresponding modelled 

ones over a period of 3 days. With a simple model evaluation comparing diurnal patterns of 3-months-WRF-modelled 2-m 

surface temperature, special humidity, and relative humidity with its corresponding observed ones, Yang et al. (2012) asserted 

that the WRF model could reconstruct the urban climate features at high resolution of 1-km with a good performance in 20 

modelled surface air temperature and relative humidity in the Nanjing area. Although the afore-mentioned efforts partially 

addressed the evaluation issue, significant challenges remain in establishing the trustworthiness of the model:  Even if an exact 

match between a modelled variable at some grids and its corresponding observed one in a period cannot conclude that the 

model simulates urban climate successfully, not to mention a non-exact match. These model evaluation methods are not 

convincing, or even reckless. That kind of modelling practices without a convincing model evaluation is still prevalent in 25 

climate modelling community even for the most recent literature, such as the papers of Gu and Yim (2016), Wang et al. (2016) 

and Bhati and Mohan (2016). To sum up, it is a blind point in the climate modelling community that the existing studies paid 

insufficient attention to the model evaluation. 

In spite of some previous literatures adverted already the importance of model evaluation in interpreting the modelling results, 

such as Osborn and Hulme (1997), Caldwell et al. (2009), Gosling et al. (2009) and Sillmann et al. (2013), a systematic 30 

framework for model evaluation has not been provided in the previous literature. It is a research gap in urban climatology. 

Thus, in this paper, we dig deeply into the model evaluation to propose a systematic framework and methods for evaluating 

model results from multiple perspectives, to benefit future studies with more choices for model quality control and make urban 

scale simulation more robust. Moreover, we also provide a case analysis of the interval between the modelled atmospheric 

variable and its corresponding observed one. 35 

The remainder of this paper is organized as follows. Section 2 introduces the proposed framework for model evaluation, 

experimental design, and data used for modelling and model evaluation. Section 3 introduces the technical preparation for 

urban climate simulation. Section 4 presents various results of the proposed model evaluation methods in our case study. 

Section 5 concludes the paper with discussions. 



3 

 

2 Methodology 

2.1 Urban Climate Modelling  

In an urban area, the natural texture of the land surface has remarkably changed to human-made, impervious land surface. The 

textural change of the land surface leads to modifications in the interchange of energy, momentum, and mass between the land 

surface and planetary boundary layer (PBL) (Wang et al., 2009). Moreover, in an urban area, the anthropogenic heat release 5 

caused by human activities increases the sensible and latent heat emission. Furthermore, the urban building morphology also 

has an impact on the radiation exchange and the airflow. Tewari et al. (2007) developed the Urban Canopy Model (UCM) to 

couple with the Advanced Research WRF (ARW) model via Noah Land Surface Model (Noah-LSM) to improve the simulation 

accuracy of urban processes by integrating these physical characters below the urban canopy. 

We took Shenzhen and Hong Kong, a region in China that had gone through intensive urbanization process, as the study area. 10 

We took the year of 2010 as the study period because both of the land surface data and observation data were obtainable in 

2010. WRF ARW model coupled with Noah LSM/SLUCM (WRF ARW/Noah LSM/SLUCM v3.7.1) was used for modelling 

urban climate in 2010 at 1-km2 grid spacing. Through comparison, we found that some of the terrestrial input data provided 

by NCAR were out-of-date, especially for data describing the fast-developing area. To reflect more precisely the artificial 

changes on the physical environment brought by the urbanization, we developed four sets of high-resolution urban data, 15 

including the vegetation coverage, building morphology, land cover, and anthropogenic heat, by using them as inputs for the 

follow-up urban climate simulation, the simulated urbanization impacts on urban climate would be more accurate.   

Since running an atmospheric model consumes a considerable amount of computational resources, especially for simulating 

long-term climate, we divided the urban climate simulation case into sequenced four-days simulation segments due to 

limitations in computational resources. For each segment, the first day overlaps with the last day of its previous simulation 20 

segment, which was used for model spin-up. For more details, please refer to Section S3 of Supplementary Material. 

2.2 The Methodological Framework for Urban Climate Model Evaluation 

For urban climate model evaluation, comparing modelled meteorological attributes with their corresponding observed ones is 

the most widely-accepted way of model evaluation in literature. Given a certain study area and period, such comparisons are 

carried out respectively for each meteorological variables of interest. 25 

Different views on your data are vital for urban climate model evaluation since meteorological processes contain substantial 

spatial-temporal patterns and variances. Most existing literature conducted comparisons simply including all observations 

within their spatial-temporal coverage. Despite that comparing all observations provides an aggregated evaluation of model 

performance, such a comparison is conducted under the assumption that urban climate behaviours are similar across space and 

time, which is usually not true. Therefore, we included three different temporal resolutions in our model evaluation framework 30 

(Table 1): annual, monthly, and daily. In doing so, our instinct can decide whether the modelled results could replicate the 

temporal and spatial patterns in the observations or not. 

Table 1. An Evaluation Framework for Urban Climate Modelling 

Metrics Temporal Resolution 

Statistical 

Perspectives 

Method Annual Monthly  Daily 

Descriptive 

Statistics  

Temporal Comparison of Spatial 

Variation (TCSV) 

Annual Variation 

Pattern 

Monthly Variation 

Pattern 

Diurnal 

pattern 

Urban Climatological Spatial Pattern  
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Statistical 

Distributions 

 

Perkins Skill Score (PSS) Annual mean PSS Monthly PSS   

PDF of the difference between 

modelled and observed data  

Annual mean score  Monthly score   

For each perspective, existing literature commonly compares the descriptive statistics, that is, the range, mean, and variance, 

between the modelled and observed attributes. The importance of examining climate statistics other than climate means is not 

new (Katz and Brown 1992; Boer and Lambert 2001). The descriptive statistics are useful in providing aggregated information 

on the distribution of the attributes, but they can be very misleading since the diverse distributions can lead to similar 

descriptive statistics, and these aggregated metrics can be sensitive to outliers. Therefore, we compared not only the descriptive 5 

statistics but also the statistical distributions of modelled and observed meteorological variables. The probability density 

function (PDF) was used to calculate the statistical distribution of modelled and observed meteorological variables or the 

differences between pairs of them. The overlap of two distributions was quantified using the Perkins Skill Score (PSS). The 

PSS ranges from 0 to 1, while 1 indicates perfect modelling and 0 indicates the worst modelling. The advantages of using 

PDFs and PSS for climate statistics have been discussed in Perkins et al. (2007).  10 

In urban climatology, the urban-rural difference is among the most important spatial patterns to investigate. Therefore, at the 

spatial dimension, we evaluated the model by comparing the temporal evolutions of the observed and simulated meteorological 

characteristics in urban and non-urban areas. 

Following the proposed framework, we designed a guideline (Section S4 of Supplementary Material) and a workflow (Figure 

1) in the practice of model evaluation. 15 

Step 1 : Data Processing Step 2 : Descriptive Statistics Step 3 : Statistical Distribution

2
-M

e
te

rs
 A

ir
 T

e
m

p
e
ra

tu
re

1
0
-M

e
te

rs
 W

in
d
 S

p
e
e
d
/

P
re

ci
p
it

at
io

n
/R

e
la

ti
ve

 H
u
m

id
it

y
Su

rf
ac

e
 T

e
m

p
e
ra

tu
re

Observation 
raw data

Observation 
locations

Get 
observations 

locations

Observation
data

Get 
observations 

data

Model
result data

Produce 
evaluation data

Evaluation 
3D-matrix 

Plot locations 
map

Observation 
Locations

Plot monthly 
PDFD figure

PDFD

Grading

MODIS
data

MODIS raw 
data

Model
result data

Get MODIS data

Evaluation 
3D-matrix

Produce 
evaluation data

Observation 
raw data

Observation
data

Model
result data

Observation 
locations

Produce 
evaluation data

Get 
observations 

data

Observation 
[ƻŎŀǘƛƻƴǎΩǎ aŀǇ

Get 
observations 

locations

Evaluation 
3D-matrix

Plot locations 
map

Data
Programming 

Processing 
Input /  Output Figure Grading /

Checking

TCSV

Checking

Plot TCSV 
figures

Checking

TCSV  (urban/
nonurban)

Plot TCSV 
figures

Checking

TCSV (Diurnal 
Variation)

Plot DV figure

Grading

Plot monthly 
PSS figure

PSS 

Plot monthly 
PDFD figure

GradingChecking Checking

Plot monthly 
PSS figure

TCSV  (urban/
nonurban)

Grading

TCSV

Plot TCSV 
figures

PSS 

Plot TCSV 
figures

PDFD

Grading

TCSV

Plot TCSV 
figures

Grading

PSS 

Checking

Plot monthly 
PSS figure

Plot TCSV 
figures

Checking

Plot monthly 
PDFD figure

TCSV  (urban/
nonurban)

PDFD

 

Figure 1: The Workflow for Model Evaluation.   
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2.3 Observation Datasets and Modelled Variables for Model Evaluation 

In existing literature, Numerical Weather Prediction (NWP) models are typically evaluated by comparing the spatial-temporal 

patterns of the modelled variables with those of its corresponding near-surface observations. Moreover, we selected 7 

meteorological variables for the comparison, including 2-meter air temperature, surface temperature, 10-meter wind at u 

direction, 10-meters wind at v direction, accumulated total cumulus precipitation, accumulated total grid precipitation and 2-5 

meter relative humidity, because these variables are the critical variables in the prognostic and diagnostic equations in the 

NWP model. 

Table 2 lists the modelled variables and their corresponding observations in the model evaluation. The observation datasets 

are the point data except for the MODIS dataset which is the grid data. All the modelled variables are grid data. The 

comparisons between modelled variables with its corresponding observed ones are comparisons between the grid value of the 10 

modelled variable with its point value matched by to geographical locations, except for the comparison between the modelled 

surface temperature (TSK) and its corresponding observation retrieved from MODIS imagery. Moreover, a MODIS land 

surface temperature is a result of the inverse calculation based on the longwave radiation through the atmosphere received by 

satellite according to the theory of blackbody. A MODIS land surface temperature is a manifestation of the surface synthetic 

radiation brightness temperature. Furthermore, in the land surface process, TSK is calculated iteratively according to the energy 15 

balance which involves longwave radiation, shortwave radiation, sensible heat and latent heat, and accordingly, the final TSK 

value is also a manifestation of the surface synthetic radiation brightness temperature. Although there are some differences 

between TSK and the brightness temperatures observed by satellites, they describe relatively similar physical quantities. 

Therefore, we use TSK to compare with the MODIS land surface temperature. 

Table 2: Modelled Variables for Model Evaluation. 20 

     Modelled Variables for Model Evaluation Corresponding Observation Datasets 

Name Description Datasets Sources 

T2 2-meter air temperature  2010 PRD 2-meter 

Air Temperature 

Meteorological Bureau of 

Shenzhen Municipality 

U10 10-meters wind at U direction 2010 PRD 10-Meters 

Wind Speed V10 10-meters wind at V direction 

RAINC Accumulated total cumulus precipitation 
2010 PRD 

Precipitation 
RAINNC Accumulated total grid scale 

precipitation 

RH2 2-meter relative humidity 2010 PRD Relative 

Humidity 

TSK Surface temperature 2010 MODIS/Aqua 

Land Surface 

Temperature and 

Emissivity (LST/E) 

product 

NASA EOSDIS Land 

Processes DAAC, USGS 

Earth Resources Observation 

and Science (EROS) Center 
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3 Technical Preparation 

3.1 Model Setup 

A telescoping nestsô structure with four nested domains which are centred at 22ę39ᾳ30ᾴ N, 114ę11ᾳ30ᾴ, was set up as the 

horizontal domain baseline configuration in this study.  Moreover, the same set of eta levels with 51 members was used in 

each horizontal domain. Furthermore, there were some physics components in the model, and each component had some 5 

different schemes for choosing. Table 3 shows the scheme chosen for each component. For more details, please refer to Section 

S4 of Supplementary Material. 

Table 3: Physics Componentsô Schemes. 

              Component Scheme 

Cumulus New Simplified Arakawa-Schubert 

Microphysics WDM5 

Radiation  RRTMG  

Planetary Boundary Layer BougeaultïLacarrere 

Surface Layer  Revised MM5  

Land Surface Model Noah LSM 

Urban Canopy Model Single-layer 

3.2 Data Preparation 

Firstly, the 2010 NCEP FNL (Final) Operational Global Analysis Dataset (1-degree grid spatial resolution and 6-hourly 10 

temporal resolution) was used as the Gridded Data in this study. Secondly, the Completed Dataset of WRF Preprocessing 

System (WPS) Geographical Input Data was used as the Static Geographical Dataset in this study. Thirdly, the 2010 PRD 

Urban Land Surface Dataset, whose major sets of data include the land cover, vegetation coverage, urban morphology, and 

anthropogenic heat, which was specially developed for refining the WRF primary data. 

3.3 Primary Data Processing 15 

Firstly, the primary data included the interpolated geo-data files, the intermediate format meteorological data files, the 

horizontally interpolated meteorological data files, the initial condition data files, and the lateral boundary condition data files. 

Secondly, two primary data processing software packages (geo_data_refinement processing package and 

wrf_input_refinement processing package) were developed for extracting the urban land surface attributes from the 2010 PRD 

Urban Land Surface Dataset and revising the corresponding fields of the related primary data files with these attributes. 20 

4 Model Evaluation 

4.1 Evaluation of the 2-Meter Air Temperature  

Using descriptive statistics, Figure 2 compares the range and median values of the observed and the modelled 2-meter air 

temperature at 2:00, 8:00, 14:00, and 20:00 in each month of the year. It is evident that the modelled air temperatures always 

have similar temporal-spatial behaviour with the observed ones. Moreover, Figure 3 compares the diurnal range and median 25 

of the observed and modelled air temperature each month of the year. Both the range and median of the 2-meter modelled air 

temperature have the same diurnal variation with its corresponding observed ones in each month, although there are differences 

between the modelled ones and the corresponding observed ones. Furthermore, as shown in Figures 4 and 5, the modelled air 
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temperatures have the same urban climatological spatial pattern as the observed ones in which the air temperature is higher in 

the urban areas than in non-urban areas irrespective of the time at which it is measured. 

 

 

Figure 2: Comparison of Modelled and Observed 2-meter Air Temperature at 2:00, 8:00, 14:00, and 20:00. 5 
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Figure 3: Diurnal Variation of  2-meter Air Temperature.  
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Figure 4: Comparison of Observed Air Temperatures (at 2:00, 8:00, 14:00 and 20:00) in Urban and Non-Urban Areas. 

 

 

Figure 5: Comparison of Modelled Air Temperatures (at 2:00, 8:00, 14:00 and 20:00) in the Urban and Non-urban Areas. 

Using PSS to compare the statistical distribution of the observed and modelled air temperature, the model produces quite a 5 

good simulation of 2-meter air temperature with annual mean PSS of 0.724. It also captures the behaviours of monthly and 

diurnal variation of observed 2-meter air temperatures. Figure 6 shows that the monthly PSS of 2-meter air temperature ranges 

from a minimum of 0.595 in July to a maximum of 0.886 in January and has an annual mean value of 0.724. This demonstrates 

that the model captured the PDF for the observed air temperature at least about 60% in a month and over 72% in a year. Figure 

7 shows the PDF of differences between each value of each monthôs time series of modelled grid air temperatures and its 10 

corresponding observed ones. The probability of 3-degrees bias interval (the absolute value of the difference between modelled 

surface temperature and its corresponding observed one is 3 degrees) in a month varies from 64% to 91% and has an annual 

mean probability of this interval of 78%. 


