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Abstract. The veracity ofurban climate simulation modelshould besystematicallyevaluated to demonstrate the
trustworthiness ofhese modek against possible model uncertaintiewever, existing studigsaid insufficient attentioto
the model evaluatignmost studiesonly provided some simple comparison lines betweerelled variables andheir
corresponding observed onestba temporal dimension. Challenges rensite suclsimple comparisons cannot concretely
prove that thesimulation ofurban climate behaviars is reliable Studies without systematic modeValuations,being
ambiguous or arbitrary to some extent, may lead to some seemiaglput scientificallymisleading findings

To takle thesechallengesthisarticle proposes a methodological frameworkifamodelevaluation ohigh-resolution uban
climate simulatios anddemonstrateits effectiveness with a case studythie area oEhenzhermand Hong KongChina It is
intended tademind (again) urban climateoddlersof the necessity afonductingsystematianodel evaluatiogin urbanscale

climatologymodellingandreducethese ambiguous or arbitramyodellingpractices.

1 Introduction

Recently, studies on urban climate have received growing attention. It is foretegtech e r e  wi | | be 66%
population living intheurban area by 2050 (United Nations, 20T4jefundamental welbeingof the urban populatigrsuch

as their comfort and health, is directly and significantly affected by urban meteorological conditions, such as temperature,
wind speedand air pollutbn. Meanwhile, he ongoing global trend of climate charagils to the urgency and significance of
achievingbetter understandings of urban climate ahthiningmore precise predictions of future chandashis vein, many

tools havebeen developedndthe rapidly developing urban climate simulation models are among the most powerful ones
These simulation modelsatie been widely appliedh analyses and predictions of urban climate, as well as assessments of

urban climate impacts brought by the dramatiman interferences in citiéBale, 1997 Kalnay and Cai, 2003

Model evaluation is necessary for urban climate simulations to make sure the results are reliable and trustworthy to some
extent Model evaluation refers to comparisons between the modelled variables and its corresponding observed ones. Afte
modelling, a model evaluation should be conducted for establishing the trustworthiness to the modelling results bezause of th
model incompleteess caused by the approximations and assumptions in the scientific mechanisms of the model even if the
model was configured appropriateldrban climate simulation is employed to obtain fsoale details from the lateral
boundary condition of coarsseak meteorological data by usiagimited area model. Moreover, in order to construct precisely

the finescale details at utmost in theea of interesthe model takes trerea of interedand surface forcing into account (Lo

1


mailto:bohuang@cuhk.edu.hk

10

15

20

25

30

35

et al., 2008). The finscak detailsare constructetly a limited area model driven by the lateral boundary conditions of eoarse
scale meteorological data and land surfaceing data but dact existin the coarsescale meteorological data. In its essence,
the fine-scale detailgonstructed by &mited areamodel havehe possibility ofdeviating fromtheir corresponding natural
values.Urban dimate smulation, witha higher requirement on its resolution (spatial and temporal) and modelling urban
climatological phenomena (for ample, urban heat island, temperature difference between urban andoaonareas), is
more sensitive to the inadequacies of the atmospheric model, the inappropriate configuration of the modellifigy aystem
2011)and the quality of input dai@ruyére et al., 2014)Therefore, model evaluation is even moritical for urban climate

simulation.

However, recent efforts understandably paid minimum attention to model evaluation in the community of urban climate

moddlers, which weakens the reliability of every conclusion basadthe insufficiently justified model resultémong
existing literature researchers mostly conducted some simple comparisons betweéelled variables andtheir
corresponding observed ones bywirgy their shortterm timehistory plots.For example, Jiang et al. (2008kde a bold
prediction that the neaurface temperature in the Huston area will increase by 2°C in future year$Z@b63)L However,
the conclusion was only supported &#ysimplecomparison betweethe observedand WRFmodelleddiurnal 2-meterair
temperature during August 202003 Meng et al. (2011nodelledthe 2-meterair temperature and heat island intengiyy
using three different modelling schems, thus concludedwhich oneis best inmodelling performance. However, these
seemingly robust conclusioase only basedn a comparison of the observed temperaturesthdincorrespondingnodelled
onesover a period oB days.With a simple model evaluatiocomparingdiurnal paternsof 3-monthsWRF-modelled2-m
surface temperature, special humidégd relative humidity with its corresponding observed pyiaag et al. (2012) asserted
that the WRF modetould reconstruct the urban climafeaturesat high resolution of -km with a good performance in
modelledsurface air temperature and relative humidityha Nanjing areaAlthough the aforementioned efforts partially
addressed the evaluation isssignificantchallenges remain in establishing the trustworthiness of tiikein Even if an exact
match between modelledvariable at some grids and its corresponding observed oneériad cannot conclude that the
model simulates urban climate successfully, not to mention eexact match. These model evaluatimethodsare not
convincing, or even reckless. That kindrbdelling practices without a convincing model evaluatiorstii prevalentin
climatemodellingcommunity everfior the most receriterature such as the papers of Gu and Yim (20¥6ang et al. (2016)
andBhati and Mohan (2016)Y.0 sum up, it is a blind point ithe climate modelling community that the existing stugieg

insufficient attentiorto the model evaluation

In spite ofsomeprevious literatureadverted alreadthe importance of model evaluationinterpreting the modelling results,
such asOsborn and Hulme (1997Faldwell et al. (2009)Gosling et al. (2009) an8illmann et al. (2013), a systematic
framework for model evaluatioimas not beeprovided in the pevious literaturelt is a research gap in urban climkigy.
Thus, in this paper, we dig deeply into the model evaluatignmopose a systematic framework and methods for evaluating
model results from multiple perspectives, to benefit future studibsmate choices for model qualitpntrol andmake urban
scale simulation more robus¥loreover, we also provide @se analysis of the interviaétween thenodelledatmospheric

variable and its corresponding observed one.

The remainder of this papés organizedas follows. Section 2 introduces the proposed framework for model evaluation,
experimental design, and data usedrfardellingand model evaluatiorSection 3 introduces the technical preparation for
urban climate simulation. Section 4 preserdsiousresultsof the proposed model evaluation methods in our case study.

Section 5 concludes the paper with discussions.
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2 Methodology
2.1Urban Climate Modelling

In an urban area, the natural texture of the land surface has remarkably chdngegitonade impervious land surface. The
textural change of the land surface leads to modifications in the interchange of energy, momentum, and mass between the lat
surface angblanetary boundary layéPBL) (Wang et al., 2009Moreover, in an urban area, thethropogenic heat release
caused by human activities increases the seraitldatenheat emission. Furthermore, the urban building morphology also

has an impact on the radiation exchange and the airflewari et al. (2007) developé¢ke Urban Canopyodel (UCM) to

couple with the AvancedResearcWWRF (ARW)model viaNoahLand Surface Model (NoabhSM) to improve the simulation

accuracy of urban processes by integrating these physical charactershealdyancanopy

We ok Shenzhen and Hong Kongyagionin Chinathat had gone through intensive urbanimatprocessas the study area.
We took he year of 2010 as the study period becdnah of theland surface data and observation dagee obtainablén
2010.WRF ARW model coupled wittNoahLSM/SLUCM (WRF ARW/Noah LSM/SLUCM v3.7.1yvasusedfor modelling
urban climate in 2010 atKnv grid spacing. Through comparison, we found that some of the terrésigldata provided
by NCAR were out-of-date, especially for data describing the f#etelopng area.To reflect more precisely the artificial
changeson the physical environmetrought by theurbanization,we developedour sets of higiresolutionurbandata
includingthe vegetation coverage, building morphology, land cpsadanthropogenic heaby usingthemas inputdor the

follow-up urban climate simulation, the simulated urbanization impacts on urban climate would be more accurate.

Sincerunningan atmospheric modebnsumes consideral@ amount of computational resaes, especially for simulating
long-term climate we dividedthe urban climate simulation case into sequenced {fdays simulation segmentdue to
limitations in computational resourcdsor each segmenthé first day overlaps with the last daits previous simulation

segmentwhichwas usedor modelspinup. For more details, please refer to Section S3 of Supplementary Material.

2.2 The Methodological Framework for Urban Climate Model Evaluation

Forurban climatemodel evaluationgomparing modellg meteorological attributes with their corresponding observed ones is
the most widelyaccepted wapf model evaluatioin literature. Given a certain study area and period, such comparisons are

carried out respectively for each meteorologiGaiablesof interest

Different viewson your dataarevital for urban climate model evaluation since meteorological processes contain substantial
spatialtemporal patterns and variances. Most existing literature condaotagarisons simplyncluding all observébns

within ther spatialtemporal coverageespite thatomparing all observatiorgovides an aggregated evaluation of model
performancesuch a comparisas conductedinder the assumption that urban climate behasiare similar across space and
time,which is usually not true. Therefore, we inclddlereedifferenttemporalresolutiorsin our model evaluation framework
(Table1): annua] monthly, and dailyln doing so, our instinct can decide whether the modelled results could replicate the

temporaland spatial patterns in the observations or not.

Table 1. An Evaluation Framework for Urban Climate Modelling

Metrics Temporal Resolution
Statistical Method Annual Monthly Daily
Perspectives
Descriptive | Temporal Comparison of Spatig Annual Variation | Monthly Variation | Diurnal
Statistics | Variation(TCSV) Pattern Pattern pattern
Urban Climatological Spatial Pattern




Statistical

Distributions

Perkins Skill Score (PSS)

Annual mean PSS

Monthly PSS

PDFof the difference between

modelled and observethta

Annualmeanscore

Monthly score

For each perspective, existing literature commonly compares the descriptive statistics, that is, the range, mean, @nd varianc

between the modelled and observed attribdtes.importance of examining climate statistics other than climate means is not

new(Katz and Brown 1992; Boer and Lambert 2DUhe descriptive statistics are udefuproviding aggregated information

on the distribution of the attributes, biltey can be very misleading sintiee diversedistributions can lead to similar

5 descriptivestatistics, and these aggregated metrics can be sensitive to outliers. Therefore, we compared not only the descriptiv

statistics but also the statistical distributions of modelled and observed meteorological variableobabdity density

function (PDF) was used to calculate the statistical distribution of modelled and observed meteorological variables or the

differences between pairs of them. Tdweerlap of two distributions was quantified using the Perkins Skill Score (PSS). The

PSS ranges from 0 tb, while 1 indicateperfectmodellingand 0 indicates the worstodelling The advantages of using

10

PDFs and PSS for climate statisticwdbeen discussed in Perkins et al. (2007).

In urban climatology, therbanrural difference is among the most important spatial patterns to invesfig@tefore, at the

spatial dimension, we evaluated the mdmletomparinghe temporaévolutionsof the observed and simulated meteorological

characteristicen urban and an-urban areas.

Following the proposed framework, wesigned guideline (Section S4 of Supplementary Material) amdrkflow (Figure

15 1) in the practice of model evaluation.
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Figure 1: The Workflow for Model Evaluation.
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2.3 Observation Datasetsand Modelled Variablesfor Model Evaluation

In existing literatureNumericalWeatherPrediction(NWP) modelsare typically evaluatedy comparinghe spatiakemporal
patterns of themodelled variables with those of itsorrespondingnearsurface observatien Moreover, we selected 7
meteorological variables for the comparison, includdageter air temperature, surfatemperature10-meter wind atu
direction 10-meters wind av direction accumulated total cumulus precipitationcamulated totagrid precipitationrand 2
meter relative humiditybecausahese variables are the critical variables in the prognostic and diagnostic equattoms in
NWP model

Table?2 lists themodelledvariablesandtheir correspondingbservationsn the model evaluationThe observation datasets
are the point data excefidr the MODIS datasetvhich is the grid data. All the modelled variables ara gtata. he
comparisondetween modelledariables with its corresponding observed onesamgparisondetweerthe grid value of the
modelled variable with its point valumatchedoy to geographicalocations, excepor the comparison between the modelled
surfacetemperaturg TSK) and its correspondingbservation retrieved froniODIS imagery.Moreover, aMODIS land
surface temperature is a result of the inverse calculation based on the longwave radaatginttie atmosphere received by
satellite according to the theory of blackbody. A MODIS land surface temperature is a manifestation of the surface synthetic
radiation brightness temperatukewrthermorein the land surface proce3§Kis calculated itettvely according to the energy
balance which involves longwave radiation, shortwave radiation, sensible heat and latent heat, and acttedinglyl SK
value is also a manifestation of the surface synthetic radiation brightness temperature. Aliboaiginet some differences
between TSK and the brightness temperatures observed by satellites, they describe relailaelghysical quantities
Thereforewe useTSK to compare witlthe MODIS land surface temperature.

Table 2: Modelled Variables for Model Evaluation.

Modelled Variables for Model Evaluation Corresponding Observation Datasets
Name Description Datasets Sources
T2 2-meterair temperature 2010 PRD 2-meter| Meteorological Bureau o
Air Temperature Shenzhen Municipality
ui10 10-meterswind at U direction 2010 PRD 1&Meters
V10 10-meters wind at V direction Wind Speed

RAINC Accumulated total cumulus precipitatiq
RAINNC | Accumulated total grid scal

2010 PRD

Precipitation

precipitation

RH2 2-meterrelative humidity 2010 PRD Relative
Humidity

TSK Surface temperature 2010 MODIS/Aqual NASA EOSDIS Land
Land Surface Processes DAAC, USG
Temperature an{ Earth Resources Observati
Emissivity (LST/E)| and Science (EROS) Centel
product
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3 Technical Preparation

3.1Model Setup

A telescoping nestsod6 structarecergedavi t 22 ¢ ®2a 3 (hevadibet dpolaH dvgnh 1 o ¢

horizontal domain baseline configuration in this study. Moredhersameset of eta levels with 51 membexssusedin
each horizontal domain. Furthermore, thamre some physics components in the modeld each component Hasome
different schemes for choosintable3 shows the scheme chosen for each compoRentmore details, please refer to Section
S4of Supplenentary Material.

Table 3: Physics Componentsd Schemes

Component Scheme
Cumulus New Simplified ArakaweSchubert
Microphysics WDM5
Radiation RRTMG
Planetary Boundary Layer| BougeaultLacarrere
Surface Layer Revised MM5
Land Surfaceviodel Noah LSM
Urban Canopy Model Singlelayer

3.2Data Preparation

Firstly, the 2010 NCEP FNL (Final) OperatainGlobal Analysis Datasdil-degres grid spatial resolution and-i&ourly
temporal resolutionwas usedas the Gridded Data in this study. 8edly, the Completed Dataset of WRF Preprocessing
System YWPS) Geographical Input Data wased as the Static Geographical Dataset in this study. ThirdI20tH@ PRD
Urban Land Surface Datasethosemajor sets of data includthe land cover, vegetatiawoverage, urban morphologgnd
anthropogenic heatvhich wasspecially developetbr refining the WRF primary data.

3.3Primary Data Processing

Firstly, the primary data includkethe interpolated gedata files, the intermediate format meteorological data files, the
horizontally interpolated meteorological data files, the initial condition dataditelthe lateral boundary condition data files
Secondly two primary data proceslg software packages(geo data refinement processing package and
wrf_input_refinement processing packageredevelopedor extracting the urban land surface attributes fron2010 PRD

Urban Land SurfacBatasetand revising the corresponding fieldstioe relded primary data filesvith these attributes

4 Model Evaluation
4.1 Evaluation of the 2Meter Air Temperature

Using descriptive statistics, FiguRecompares the range and median values of the observed antdeded2-meter air
temperature at 2:00, 8:00, 14:00, and 20:00 in each month of thdtysavident that thenodelledair temperatures always
havesimilar temporalspatialbehaviourwith the observed onebloreover,Figure3 compares thdiurnalrange and ndian

of the observecandmodelledair temperature each morththe yearBoth therange and median tfie 2metermodelledair
temperature have the same diurnal variatith its corresponding observed ones in each month, although there are differences

between thanodelledones and the corresponding observed dheshermore, as shown in Figures 4 and 5 ntloelelledair



temperatures have the sanrbanclimatological spatial pattern as the observed ones in which the air temperature is higher in

the uban areas than in namban areas irrespective of the time at whidh iheasured
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5 Figure 2: Comparison of Modelled and Observed2-meter Air Temperature at 2:00, 8:00, 14:00, and 20:00.
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Figure 4: Comparison of Observed Air Temperatures(at 2:00, 8:00, 14:00 and 20:Q0n Urban and Non-Urban Areas.
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Figure 5: Comparison of Modelled Air Temperatures (at 2:00, 8:00, 14:00 and 20:00n the Urban and Non-urban Areas.

Using PSS t@wompare the statistical distribution of the observed and modelled air tempettatuneygdel produces quite a

good simulation oR-meterair temperature with annual mean PSS of 0.724. It also capturbehbeiars of monthly and

diurnal variation of obse&ed2-meterair temperaturegzigure6 showsthatthe monthly PSS of-theter air temperature ranges

from a minimum of 0.595 in July to a maximum of 0.886 in January and has an annual mean value ohi3.d@rhonstrates

that the model captured the PDF foe observed air temperature at least about 60% in a month and over 72% in a year. Figure
7 shows the PDF of differences betwesathv al ue of each monadelldyrd ait temperatusee and iess 0 |
corresponding observed on&$ie probabilityof 3-degrees bias interval (the absolute value of the difference betacziiled

surface temperature and its corresponding observed one is 3 degrees) in a month varies from 64% to 91% and has an anni

mean probability of this interval of 78%.



