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Abstract. The veracity of urban climate simulation models should be systematically evaluated to demonstrate the 15 

trustworthiness of these models against possible model uncertainties. However, existing studies paid insufficient attention to 

the model evaluation; most studies only provided some simple comparison lines between modelled variables and their 

corresponding observed ones on the temporal dimension. Challenges remain since such simple comparisons cannot 

concretely prove that the simulation of urban climate behaviors is reliable. Studies without systematic model evaluations are 

ambiguous or arbitrary to some extent, which may still lead to some seemingly new findings, but these findings may be 20 

scientifically misleading. To tackle these challenges, this article proposes a methodological framework for the model 

evaluation of high-resolution urban climate simulations and demonstrates its effectiveness with a case study in the fast-

urbanising city of Shenzhen, China. It is intended to remind (again) urban climate modelers of the necessity of conducting 

systematic model evaluations in urban-scale climatology modelling and reduce these ambiguous or arbitrary modelling 

practices.     25 

1 Introduction 

Recently, studies on urban climate have received growing attention, since 66% of the world’s population will be living in 

cities by 2050 (United Nations, 2014) and their fundamental well-being, such as their comfort and health, is directly and 

significantly affected by urban meteorological conditions, including but not limited to temperature, wind speed and air 

pollution. Meanwhile, the ongoing global trend of climate change adds to the urgency and significance of achieving better 30 

understandings of urban climate and obtaining more precise predictions of future changes and their related impacts. In this 

vein, many tools have been developed and the rapidly developing urban climate simulation models are among the most 

powerful ones. These simulation models have been widely applied in analyses and predictions of urban climate conditions, 

as well as assessments of urban climate impacts brought by the dramatic human interferences in cities. 

Model evaluation is necessary for urban climate simulations to make sure the results are reliable and trustworthy to some 35 

extent. Urban climate simulation is employed to obtain fine-scale details from the lateral boundary condition of coarse-scale 

meteorological data by using a limited area model. Moreover, in order to construct precisely the fine-scale details at utmost 

in the area of interest, the model takes the area of interest land surface forcing into account (Lo et al., 2008). The fine-scale 

details are constructed by a limited area model consisting of physical components driven by the lateral boundary conditions 
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of coarse-scale meteorological data and land surface forcing data but don’t exist actually in the coarse-scale meteorological 

data.  In its essence, the fine-scale details constructed by a limited area model have the possibility of deviating from their 

corresponding natural values. Urban climate simulation, with a higher requirement on its resolution (spatial and temporal) 

and modelling urban climatological phenomena (for example, urban heat island, temperature difference between urban and 

non-urban areas), is more sensitive to the inadequacies of the atmospheric model, the inappropriate configuration of the 5 

modelling system (Warner, 2011) and the quality of input data. Therefore, model evaluation is even more critical for urban 

climate simulation. 

However, recent efforts understandably paid minimum attention to model evaluation in the community of urban climate 

modelers, which weakens the reliability of every conclusion based on the insufficiently justified model results. Among 

existing literature, researchers mostly conducted some simple comparisons between modelled variables and their 10 

corresponding observed ones by drawing their short-term time-history plots. For example, Jiang et al. (2008) made a bold 

prediction that the near-surface temperature in the Huston area will increase by 2°C in future years (2051–2053). However, 

the conclusion was only supported by a simple comparison between the observed and WRF-modelled diurnal 2-meters air 

temperature during August 2001–2003. Meng et al. (2011) modelled the 2-meters air temperature and heat island intensity 

by using three different modelling schemes and concluded which one is best in modelling performances. However, these 15 

seemingly robust conclusions are only based on a comparison of the observed temperatures with their corresponding 

modelled ones over a period of 3 days. With a simple model evaluation comparing diurnal patterns of 3-months-WRF-

modelled 2-m surface temperature, special humidity, and relative humidity with its corresponding observed ones, Yang et al. 

(2012) asserted that the WRF model could reconstruct the urban climate features at high resolution of 1-km and had a good 

performance in modelled surface air temperature and relative humidity in the Nanjing area. Although the afore-mentioned 20 

efforts partially addressed the evaluation issue, significant challenges remain in establishing the trustworthiness of the 

model:  Even if an exact match between a modelled variable at some grids and its corresponding observed one in a period 

cannot conclude that the model simulates urban climate successfully, not to mention a non-exact match. These model 

evaluation methods are not convincing, or even reckless. That kind of modelling practices without a convincing model 

evaluation is still prevalent in climate modelling community even for the most recent literature, such as the papers of Gu and 25 

Yim (2016), Wang et al. (2016) and Bhati and Mohan (2016). To sum up, it is a blind point in climate modelling community 

that the existing studies paid insufficient attention to the model evaluation. 

Although some previous literatures adverted already the importance of model evaluation in interpreting the modelling 

results, such as Osborn and Hulme (1997), Caldwell et al. (2009), Gosling et al. (2009) and Sillmann et al. (2013), a 

systematic framework for model evaluation wasn’t provided in the previous literatures. It is especially a research gap in 30 

urban climate modelling community to proposing a systematic framework and methods for model evaluation. Thus, in this 

paper, we dig deeply into the model evaluation and propose a systematic framework and methods for evaluating model 

results from multiple perspectives, to benefit future studies with more choices for model quality control and make urban 

scale simulation more robust. Moreover, we also provide a case analysis of the interval between the modelled atmospheric 

variable and its corresponding observed one. 35 

The remainder of this paper is organized as follows. Section 2 introduces the proposed framework for model evaluation, 

experimental design, and data used for modelling and model evaluation. Section 3 introduces the technical preparation for 

the urban climate simulation. Section 4 presents various results of the proposed model evaluation methods in our case study. 

Section 5 concludes the paper with discussions. 
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2 Methodology 

2.1 Urban Climate Modelling  

In an urban area, the natural texture of the land surface has remarkably changed to human-made, impervious land surface. 

The textural change of the land surface leads to modifications in the interchange of energy, momentum, and mass between 

the land surface and planetary boundary layer (PBL) (Wang et al., 2009). Moreover, in an urban area, the anthropogenic heat 5 

release caused by human activities increases the sensible and latent heat emission. Furthermore, the urban building 

morphology also has an impact on the radiation exchange and the airflow. Tewari et al. (2007) developed the Urban Canopy 

Model (UCM) to couple with the Advanced Research WRF (ARW) model via Noah Land Surface Model (Noah-LSM) to 

improve the simulation accuracy of urban processes by integrating these physical characters below the urban canopy. 

We took Shenzhen and Hong Kong, a region in China that had gone through intensive urbanization process, as the study 10 

area. We took the year of 2010 as the study period because both of the land surface data and observation data are obtainable 

in 2010. WRF ARW model coupled with Noah LSM/SLUCM (WRF ARW/Noah LSM/SLUCM v3.7.1) was used for 

modelling urban climate in 2010 at 1-km2 grid spacing. Through comparison, we found that some of the terrestrial input data 

provided by NCAR were out-of-date, especially for data describing the fast-developing area. To reflect more precisely the 

artificial changes on the physical environment brought by the urbanization, we developed four sets of high-resolution urban 15 

data, including the vegetation coverage, building morphology, land cover, and anthropogenic heat, and used them as inputs 

for the follow-up urban climate simulation, and so the simulated urbanization impacts on urban climate would be more 

accurate.   

Since running an atmospheric model consumes a considerable amount of computational resources, especially for simulating 

long-term climate, we divided the urban climate simulation case into sequenced four-days simulation segments due to 20 

limitations in computational resources. For each segment, the first day overlaps with the last day of its previous simulation 

segment, which was used for model spin-up. For more details, please refer to Section S3 of Supplementary Material. 

2.2 The Methodological Framework for Urban Climate Model Evaluation 

For urban climate model evaluation, comparing modelled meteorological attributes with their corresponding observed ones 

is the most widely-accepted way of model evaluation in literatures. Given a certain study area and period, such comparisons 25 

are carried out respectively for each meteorological variables of interest. 

Different perspective, that is, different views into your data, are vital for urban climate model evaluation since 

meteorological processes contain substantial spatial-temporal patterns and variances. Most existing literatures conducted 

comparisons simply including all observations within their spatial-temporal coverage. Despite that comparing all 

observations provides an aggregated evaluation of model performance, such a comparison is conducted under the assumption 30 

that urban climate behaviours are similar across space and time, which is usually not true. Therefore, we included three 

different temporal perspectives in our model evaluation framework (Table 1): annual, monthly, and daily. In doing so, we 

got a direct sense of whether the modelled results could replicate the temporal and spatial patterns in the observations.   

For each perspective, existing literature commonly compares the descriptive statistics, that is, the range, mean, and variance, 

between the modelled and observed attributes. The importance of examining climate statistics other than climate means is 35 

not new (Katz and Brown 1992; Boer and Lambert 2001). The descriptive statistics are useful in providing aggregated 

information on the distribution of the attributes, but they can be very misleading since very different distributions can lead to 

similar descriptive statistics, and these aggregated metrics can be sensitive to outliers. Therefore, we compared not only the 

descriptive statistics, but also the statistical distributions of modelled and observed meteorological variables. The probability 
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density function (PDF) was used to calculate the statistical distribution of modelled and observed meteorological variables or 

the differences between pairs of them. The overlap of two distributions was quantified using the Perkins Skill Score (PSS). 

The PSS ranges from 0 to 1, while 1 indicates perfect modelling and 0 indicates the worst modelling. The advantages of 

using PDFs and PSS for climate statistics has been discussed in Perkins et al. (2007). 

Table 1. An Evaluation Framework for Urban Climate Modelling 5 

Metrics Temporal Perspectives 

Statistical 

Perspectives 

Method Annual  Monthly Daily 

Descriptive Statistics  Temporal comparison Annual Pattern Monthly Pattern Diurnal pattern 

Statistical 

Distributions 

 

Overlap of the probability 

density functions of 

modelled and observed 

data 

Annual mean PSS Monthly PSS   

Probability density 

function of the difference 

between modelled and 

observed data 

Annual Mean 

score of the 

specified interval  

Distribution and 

the score of the 

specified intervals 

 

2.3 Observation Datasets and Modelled Variables for Model Evaluation 

In existing literatures, Numerical Weather Prediction (NWP) models are typically evaluated by comparing the spatial-

temporal patterns of the modelled variables with those of its corresponding near-surface observations. Moreover, four 

prognostic variables (2-meter air temperature, surface temperature, 10-meter wind at u direction and 10-meters wind at v 

direction) and three diagnostic variables (accumulated total cumulus precipitation, accumulated total grid  precipitation and 10 

2-meter relative humidity) were chosen as the modelled variables for the comparison because these variables are the critical 

variables in the prognostic and diagnostic equations in the NWP model. 

Table 2 shows the observation datasets we used for the comparison between modelled results and observations in the inner-

most domain. Table 3 lists the modelled variables and its corresponding observed ones in the model evaluation. The 

observation datasets are the point data except the MODIS dataset which is the grid data. All the modelled variables are grid 15 

data. The comparisons between modelled variables with its corresponding observed ones are comparisons  between the grid 

value of the modelled variable with its point value matched by to geographical locations,  except for the comparison between 

the modelled surface temperature and its corresponding observation retrieved from MODIS imagery. 

Table 2: Observation Datasets. 

Observation Datasets Sources 

2010 PRD 2-Meters Air Temperature 

Meteorological Bureau of Shenzhen Municipality 
2010 PRD 10-Meters Wind Speed 

2010 PRD Precipitation 

2010 PRD Relative Humidity 

2010 MODIS/Aqua Land Surface 

Temperature and Emissivity (LST/E) product 

NASA EOSDIS Land Processes DAAC, USGS Earth 

Resources Observation and Science (EROS) Center 
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Table 3: Modelled Variables for Model Evaluation. 

     Modelled Variables for Model Evaluation 
Corresponding Observation Datasets 

Name Description 

T2 2-meters air temperature  2010 PRD 2-Meters Air Temperature 

TSK Surface temperature 2010 MODIS/Aqua Land Surface Temperature 

and Emissivity (LST/E) product 

U10 10-meters wind at U direction 
2010 PRD 10-Meters Wind Speed 

V10 10-meters wind at V direction 

RAINC Accumulated total cumulus precipitation 
2010 PRD Precipitation 

RAINNC Accumulated total grid scale precipitation 

RH2 2-meters relative humidity 2010 PRD Relative Humidity 

2.4 Workflow for Model Evaluation 

Following the proposed framework, we used four statistic figures (Table 4) and designed a workflow (Figure 1) in the 

practice of model evaluation. We first conducted a data processing operation (run by a program) on each pair of the raw 

observation dataset and its corresponding modelled result to produce an evaluation 3D-matrix which consists of a one-year 5 

temporal series of 2D-matrixes. Each non-empty element of the 2D-matrixes geographically corresponds with a pair of 

observation data and its corresponding modelled one a time point. A location map of meteorological observations was also 

produced if the raw observation dataset is a meteorological observation dataset. Secondly, we conducted the figure plotting 

operations (run by the programs) on each evaluation 3D-matrix step by step to produce a series of statistic figures. Specially, 

we designed a guideline (Table 5) for specifying the intervals in the PDFD figure, which are used for measuring the 10 

accuracy. Finally, we conducted grading or checking operations on these statistic figures artificially base on the guidelines 

for grading (Table 6) or checking (Table 7). 

Table 4: The Statistic Figures for Model Evaluation.  

Statistical 

Perspectives 

Methods 

Statistic Figures Usage 

Descriptive 

Statistics 

Temporal Comparison of 

Spatial Variation (TCSV) 

It is used to temporally compares two variables’ spatial variation 

ranges and median in the whole year. 

Diurnal Variation (DV)  
It is used to temporally compares the diurnal variations of two 

variables’ spatial variation ranges and median in the whole year. 

Statistical 

Distributions 

Probability Density 

Function of Difference 

(PDFD) 

It is used to show the probability density of difference between 

the modeled variable and its corresponding observed one. 

Perkins Skill Score (PSS) 

It is used for revealing quantifiably the extent of overlap 

between the observed and modeled variables’ Probability 

Density Function (PDF). A value of 1 indicates a perfect 

modeling of the observation. On the contrary, a value of 0 means 

the worst simulation. 

 

Table 5: The Guideline for Specifying the Interval in a PDFD Figure.  15 
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No. The Range of Coefficient (A) Intervals 

1 0.1 – 0.2 

[-Aσ, Aσ] 2 0.2 – 0.4 

3 0.4 – 0.6 

Remark: σ is the annual mean value of the monthly standard deviation of the modelled variable  

 

Table 6: The Guideline for Grading. 

Range 
Grading 

PSS Accuracy(a) 

0.7 ≤ PSS ≤ 1 70% ≤ a ≤ 100% Good 

0.7 > PSS ≥ 0.5 70% > a ≥ 50 % Acceptable 

         PSS < 0.5             a < 50% Unacceptable 

Remark: Accuracy is the PDFD value of interval 2 or interval 3. 

 5 

Table 7: The Guideline for Checking. 

Statistic 

Figures 

Temporal Perspectives for Checking 

Annual Monthly Daily 

TCSV  Annual Pattern Monthly Pattern  

DV  Annual Pattern  Diurnal pattern 

 

3 Technical Preparation 

3.1 Model Setup 

A telescoping nests’ structure with four nested domains which are centered at 22˚39ʹ30ʺ N, 114˚11ʹ30ʺ, was set up as the 10 

horizontal domain baseline configuration in this study.  Moreover, the same set of eta levels with 51 members was used in 

each horizontal domain. Furthermore, there were some physics components in the model, and each component had some 

different schemes for choosing. Table 7 shows the scheme chosen for each component. For more details, please refer to 

Section S4 of Supplementary Material. 

Table 7: Physics Components’ Schemes. 15 

              Component Scheme 

Cumulus New Simplified Arakawa-Schubert 

Microphysics WDM5 

Radiation  RRTMG  

Planetary Boundary Layer Bougeault–Lacarrere 

Surface Layer  Revised MM5  

Land Surface Model Noah LSM 

Urban Canopy Model Single-layer 

3.2 Data Preparation 

Firstly, the 2010 NCEP FNL (Final) Operational Global Analysis Dataset (1-degree grid spatial resolution and 6-hourly 

temporal resolution) was used as the Gridded Data in this study. Secondly, the Completed Dataset of WRF Preprocessing 
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System (WPS) Geographical Input Data was used as the Static Geographical Dataset in this study. Thirdly, the 2010 PRD 

Urban Land Surface Dataset, whose major sets of data include the land cover, vegetation coverage, urban morphology and 

anthropogenic heat, was specially developed for refining the WRF primary data. 

3.3 Primary Data Processing 

Firstly, the primary data included the interpolated geo-data files, the intermediate format meteorological data files, the 5 

horizontally interpolated meteorological data files, the initial condition data files, and the lateral boundary condition data 

files. Secondly, two primary data processing software packages (geo_data_refinement processing package and 

wrf_input_refinement processing package) were developed for extracting the urban land surface attributes from the 2010 

PRD Urban Land Surface Dataset and revising the corresponding fields of the related primary data files with these attributes. 

4 Model Evaluation 10 

4.1 Evaluation of the 2-Meters Air Temperature 

As shown in Figure 2, the monthly PSS of 2-meters air temperature ranges from a minimum of 0.595 in July to a maximum 

of 0.886 in January and has an annual mean value of 0.724. This makes it clear that the model captured the PDF for the 

observed air temperature at least about 60% in a month and over 72% in a year. Moreover, Figure 3 shows monthly 

comparisons between the observed and the modelled 2-meters air temperatures’ spatial variation range and median values at 15 

2:00, 8:00, 14:00, and 20:00. It is evident that the modelled air temperatures always have similar behaviour in temporal-

spatial variation with the observed ones. Furthermore, Figure 4 shows the diurnal variations of observed, modelled air 

temperatures’ median and spatial variation range in each month. As is evident in Figure 4, both the median and the range of 

the 2-meters modelled air temperature have the same diurnal variation pattern as that of its corresponding observed ones in 

each month, although there are differences between the modelled ones and the corresponding observed ones. Finally, Figure 20 

5 shows that the PDF of differences that exist between each value of each month’s time series of modelled grid air 

temperatures and its corresponding observed ones. As shown in Figure 5, the probability of 3-degrees bias interval (the 

absolute value of the difference between modelled surface temperature and its corresponding observed one is 3 degrees) in a 

month varies from 64% to 91% and has an annual mean probability of this interval of 78%. 

To sum up, the model produces quite a good simulation of 2-meters air temperature with annual mean PSS of 0.724. It also 25 

captures the behaviors of monthly and diurnal variation of observed 2-meters air temperatures. However, as shown in Figure 

2, the modelled distribution shifts to low temperature in the period of June to October (summertime in the research area). 

Actually, as shown in Figure 5, the differences between the modelled 2-meters air temperatures and their corresponding 

observed ones exist in the whole year. In reality, the difference includes not only the modelling bias but also a natural gap 

between a 1-km grid spatial average value and a value of a point located in this grid. Moreover, the observation always 30 

locates in an open area, and thus, the observed 2-meters air temperature is the temperature of a point in the open area. The 

modelled 2-meters air temperature is a mean temperature of a 1-km grid which always includes some vegetation covered 

areas. It is a common sense that the point air temperature in the open area is always higher than its corresponding 1-km grid 

mean air temperature in the summertime.  

4.2 Evaluation of Surface Temperature 35 

Figures 6 and 7 show that the monthly PSS of modelled surface temperatures ranges from 0.629 to 0.794 at 2:00 and from 

0.479 to 0.777 for modelled at 14:00 respectively. The annual mean PSS of modelled surface temperatures at 2:00 and 14:00 

is 0.702 and 0.623 respectively. Accordingly, both modelled surface temperatures at 2:00 and 14:00 are seen as quite a good 
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expounding in MODIS surface temperature with a PSS of over 0.6. Moreover, As shown in Figure 8, the modelled surface 

temperatures have the same annual variation pattern as their corresponding MODIS one irrespective of whether they are 

measured at 2:00 or 14:00. Furthermore, as shown in Figures 9 and 10, both the modelled surface temperatures and their 

corresponding observations from MODIS have the same pattern in which the surface temperature is higher in the urban areas 

than in non-urban areas irrespective of the time at which it is measured. Therefore, the model successfully captures the urban 5 

climatological behavior in which the surface temperature is higher in the urban areas than in non-urban areas. Finally, as 

shown in Figure 11, the monthly probabilities of 3-degrees bias interval (the absolute value of the difference between 

modelled surface temperature and its corresponding MODIS one is 3 degrees) at 2:00 ranges between 69% and 98% and has 

quite a high annual mean value of 87%. Figure 12 also shows that the probabilities of a 3-degree bias interval at 14:00 ranges 

from 54% to 84% and has a really high annual mean value of 73%.  10 

To sum up, the modelled 2:00 and 14:00 surface temperatures represent the corresponding MODIS ones with an acceptable 

PSS. Moreover, the modelled surface temperatures also have the same annual variations and the same urban climatological 

patterns as that of the MODIS ones. However, as shown in Figures 11 and 12, the difference between the modelled surface 

temperature and its corresponding MODIS one is noticeable in some grids. An analysis which was conducted to the 

MYD11A1 dataset finds that there are many grids whose quality was not evaluated in the MYD11A1 dataset and 15 

accordingly, it is highly possible that this difference includes an observation bias. Moreover, due to the difference between 

the temporal coverages of the model outcome and its corresponding observation from MODIS, the observed difference also 

includes a bias introduced by the difference in measured time. Furthermore, the resampling operation on the MODIS dataset 

also causes a technical bias in some grids.  

4.3 Evaluation of the 10-Meters Wind Speed 20 

As shown in Figure 13, the monthly Perkins Skill Score of modelled 10-meters wind speed ranges between 0.482 and 0.802 

and has an acceptable annual mean value of 0.660. Moreover, Figure 14 shows monthly comparisons between the spatial 

variation range and median values of the observed and the modelled 10-meters wind speeds at 8:00, 14:00, 20:00, and 2:00. 

It is evident that the modelled 10-meters wind speed always has a similar behaviour of temporal-spatial variation with the 

observed ones. Furthermore, as shown in Figure 14, the monthly probabilities of 3 m/s bias interval (the absolute value of the 25 

difference between modelled wind speed and its corresponding observed one is 3 m/s) range between 61% and 83%. 

To sum up, we provide a well-grounded conclusion that the model simulates 10-meters wind speed with acceptable PSS. The 

modelled ones of 10-meters wind speed also have the same annual variation as that of the observed ones. However, Figure 

15 shows that the modelled distribution shifts to high speed. The difference in the speed of modelled 10-meters wind and its 

corresponding observed one is not entirely caused by the model bias. The observation altitude of the modelled 10-meters 30 

wind is different from its corresponding observed one. The modelled outcomes measure the upper air movement of the urban 

canopy, but the observations measure the air movement inside the canopy. The locations of modelled and observed air 

movements concerning the canopy would cause a natural gap between the modelled and observed values. Moreover, this 

difference also includes a natural gap between a 1km-grid spatial average value and a value of a point located in this grid.  

4.4 Evaluation of Precipitation 35 

As shown in Figure 16, the monthly PSS of modelled precipitation ranges between 0.444 and 0.747 and has an annual mean 

value of 0.579. Moreover, Figure 17 shows monthly comparisons between the observed and the modelled precipitation’ 

spatial variation range and median values at 8:00, 14:00, 20:00, and 2:00. It is evident that the modelled ones of precipitation 

always have similar behaviour of spatial-temporal variation with the observed ones.  Furthermore, As shown in Figure 18, 

the model simulated precipitation with an accuracy in which the monthly probabilities of the 3-mm bias interval (the 40 
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absolute value of the difference between modelled precipitation and its observed one is 3 mm) range between 39% and 89% 

and have an acceptable annual mean value of 67%. 

Based on the comparison of experiments and observations concerning the modelled and observed measurements of 

precipitation, we provide a well-grounded conclusion that the model simulates precipitation with an acceptable PSS. 

Moreover, the modelled precipitations also have the same annual variation as that of the observed ones. However, Figure 18 5 

shows that the probability of 3-mm bias intervals is quite low in some months; for example, the one was 39%, 50%, and 53% 

in June, September, and May respectively. The modelled precipitations deviated from its corresponding observed ones in 

these three months.  

4.5 Evaluation of Relative Humidity 

As shown in Figure 19, the monthly PSS of the modelled relative humidity ranges between 0.525 and 0.786 and has an 10 

annual mean value of 0.673. Moreover, Figure 20 shows the monthly comparisons between observed and modelled air 

relative humidity values’ spatial variation range and median values at 8:00, 14:00, 20:00, and 2:00. It is apparent that the 

modelled values always have similar behaviour in spatial-temporal variation with the observed ones, although all modelled 

median values are higher than the corresponding observed ones. Furthermore, as shown in Figure 21, the model simulates 

the relative humidity with quite a good accuracy in which the monthly probabilities of the 20% bias interval (the absolute 15 

value of the difference between modelled precipitation and its observed one is 20%) range between 77% and 96% and have a 

high annual mean value of 91%. 

To sum up, the model simulates the relative humidity with an acceptable PSS and accuracy. Moreover, it also simulates the 

monthly variation pattern of relative humidity appropriately.  

5 Discussions and Conclusions 20 

5.1 Model evaluation using observations 

We need more sophisticated model evaluation methods for better comparisons between model outcomes and observations to 

serve as partial support for the reliability of urban climate simulations and any conclusions based on the simulation results. A 

model can simulate a resonance with the natural system (Oreskes et al. 1994), and accordingly, a climate simulation should 

aim at modelling the temporal and spatial meteorological features of climate. Therefore, a model evaluation should aim at 25 

assessing the similarity of temporal and spatial features between the modelled results and observations. In this study, the PSS 

was used for assessing the similarity quantitatively, and the graphic of temporal comparison of spatial variation was used for 

assessing the similarity qualitatively. The satisfied quality of simulation was evaluated by the acceptable annual values of 

PSS of modelled variables and the similar behaviors of modelled variables with their corresponding observed ones shown in 

the graphic of temporal comparison of spatial variation figures of modelled variables.  30 

Utilizing the proposed model evaluation methods, evaluation results in this case study indicate that this atmospheric model 

appropriately portrayed the annual variations in the climatological patterns of air temperature, surface temperature, 10-

meters wind speed, and air relative humidity. We observe that the simulation model captured similar temporal and spatial 

meteorological features of urban climate. From a quantitative perspective, the model achieved at least an acceptable PSS and 

accuracy in the simulations of 2-meters air temperature, surface temperature, 10-meters wind speed, precipitation, and air 35 

relative humidity, which means that the simulation results are acceptable approximations of the observations. Apparently, 

according to the above evaluations, the proposed simulation model in our case study is sufficiently reliable in reproducing 

meteorological features of urban climate at the 1-km spatial resolution. 
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The good match in our study or any other study, between the model outcomes and observations can only support that the 

simulation results are acceptable approximations of the observations in the specific spatial-temporal coverages in respective 

studies. These comparisons are inadequate for model ‘verification’ or ‘validation’. Returning to the philosophical basis, 

terminologies “verification” and “validation” imply the confirmation of truth and legitimacy respectively (Oreskes et al., 

1994). We get observations of meteorological characters from monitoring stations, and that is why the observations come in 5 

points and suffer from frequent missing data. Therefore, it is common that the spatial-temporal coverage of the observations 

can only partially match that of the modelling outcomes, which can be proved by the model evaluation process regarding air 

temperature, surface temperature and other factors mentioned above. A good match between a model outcome and its 

corresponding observation at specific locations is no guarantee of a good match at other locations. Similarly, a good match 

between the model outcomes and the corresponding observations for a historical period is no guarantee of a good match in 10 

the future. Moreover, a good match between the model outcomes and corresponding observations for a limited spatial-

temporal range does not guarantee that the model is free from initial and uncertainties. Consequently, even a complete match 

between the observations and model outcomes does not ensure a successful verification and validation of the modelling 

system, let alone an incomplete match in practice (Oreskes et al., 1994). Although it is impossible to verify or validate a 

model, it is feasible to evaluate model outcomes with the observation data using sophisticated spatial and temporal 15 

comparisons, since a model can represent a natural system accurately to some extent (Oreskes et al. 1994) and accordingly, 

evaluating the model with the observation seems to be the best way we currently have to access the performance of a model, 

but we should always be aware of its imperfectness. 

5.2 The Natural Gap, Observation bias, and Model bias 

The model evaluation is not complete even a complete match between the observations and model outcomes does not ensure 20 

a successful verification and validation of the modelling system, let alone an incomplete match in practice (Oreskes et al., 

1994). Observations are probably the best reference we get to evaluate the simulation results, but that does not mean 

observations are perfect for such an evaluation. The comparison between the model outcome and observations alone does not 

make a complete model evaluation since it does not rule out the natural gap, observation bias, and model bias. 

The natural gap refers to the fact that model outcomes from the simulation models are average values of a grid, while the 25 

observations are point-based which only measures the meteorological conditions around the location of the monitoring 

station. Comparing the average value within a spatial area, the size of which ranges from 0.25 km2 to over 100 km2, with 

point-based observations is problematic for two main reasons. 1) The average value in a grid is calculated under the 

assumption that the grid is homogeneous, which is usually not true especially when detailed urban morphology is 

considered, and so the average value is usually lower than that of point-based observations; 2) the point-based observations 30 

are likely to be significantly affected by the surrounding environment of the monitoring station, which does not reflect the 

meteorological condition in the same area. Therefore, the comparison between modelled outcomes and observations has 

biases, although it is usually the only model evaluation approach we get so far. The only exception is using the observations 

from remotely sensed imagery, for example, we used the land surface temperature product from MODIS/Aqua to evaluate 

the modelled temperature of the surface skin. However, there are many grids whose quality have not been evaluated in 35 

MODIS/Aqua Land Surface Temperature Product, and accordingly, the difference between the modelled temperature of the 

surface skin of a grid and its corresponding one in MODIS/Aqua Land Surface Temperature Product includes an observation 

bias highly possible.  

The model bias refers to the uncertainty caused by differences between the actual atmospheric physical processes and the 

approximations in the model (Skamarock et al., 2005, 2008). The atmospheric model produces the fine atmospheric features 40 

which do not exist in the original meteorological data. An atmospheric model can represent a natural atmospheric system 
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accurately to some extent rather than entirely. The simulation models are supposed to include many more complex 

atmospheric physical processes to explain meteorological states with high spatial and temporal resolutions, but many of them 

have to be omitted or empirically approximated due to limitations in knowledge and computational efficiency. This situation 

is unusually severe for high-resolution climate simulations. Given the complexity of simulation models, estimating error 

propagation in these models are difficult, and thus model evaluation becomes the only quality control of simulation results, 5 

especially for high-resolution urban climate simulations which are more sensitive to the inadequacies of the atmospheric 

model, inappropriate configuration of the modelling system (Warner, 2011), and the quality of input data.   

5.3 The Capabilities of WRF ARW/Noah LSM/SLUCM in Simulating Meteorological   Phenomena  

This paper aims to present a standardized methodological framework that can be used in all regions to evaluate the 

modelling performance rather than to examine the capabilities of the model in simulating meteorological phenomena in a 10 

specified region. Therefore, we proposed model evaluation methods for the comparison between modelled variables and its 

corresponding observed ones rather than investigating the meteorological phenomena in the modelled results. However, the 

capabilities of a model in simulating meteorological phenomena are an important research direction but beyond the scope of 

this study.  Therefore, we would like to contribute some opinions about the capabilities of WRF ARW/Noah LSM/SLUCM 

in simulating meteorological phenomena to urban climate modellers for their reference. 15 

At first, a reasonable temporal variation of the height of PBL can be seen in the modelled results but it cannot be examined 

by the observation because of unavailability of its corresponding observed ones. Secondly, the land-sea breeze should can be 

observed in our study area because it is a coastal area. However, we didn’t find out this phenomenon in the modelled results 

due to the temporal resolution of 6 hours isn’t enough fine for supporting the investigation of it (only four modelled variables 

of 10-meters wind speed at 2:00, 8:00, 14:00 and 20:00 on each day). Thirdly, the annual climatological variation in our 20 

study area is associated with the monsoon flow, especially the annual variations of 2-meters air temperature, 10-meters wind 

speed and precipitation. Figures 2, 13 and 16 demonstrate that the modelled 2-meters air temperature, 10-meters wind speed 

and precipitation have a same annual variation behaviour as its corresponding observed ones, which indicates that the model 

can simulate these climatological features in a study area affected by the monsoon flows. However, the model cannot reach 

the extreme value of these variables, especially the precipitation. Finally, the spatial distribution of temperature is strongly 25 

associated with the local land surface attributes. The model can simulate the temperature difference between in urban and 

non-urban area (Figure 8). 

5.4 Conclusions 

Following the proposed framework, we first measured both the descriptive statistics of the modelled and observed variable 

and the difference between them at each spatial-temporal epoch for each meteorological variable. Secondly, we respectively 30 

analyzed the probability density function (PDF) of modelled and observed variables, the temporal-spatial variation of the 

modelled and observed variable, and the probability of the difference values between modelled variable and its 

corresponding observed one. With visualized PDFs, we can understand the empirical distribution of the simulation bias and 

notice outliers directly if any, which may shed light for further model results’ calibrations. Thirdly, we apply the analysis 

using descriptive statistics and statistical distributions to the other temporal scales: monthly and time-of-day. By doing so, 35 

we further investigate temporal variations in different month of the year and time of the day.  

In conclusion, we emphasize in this paper that model evaluation is necessary and usually the only process that guarantees the 

reliability of simulation outcomes, and so utilizing a sophisticated model evaluation process to reach an acceptable 

agreement between the simulated and observed meteorological variables should be the premise of any conclusion drawn 

from the modelling results. The emerging high-resolution urban climate simulation models are especially sensitive to 40 

possible initial and model uncertainties. In this vein, we proposed a sophisticated model evaluation framework that examines 
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not only the matches between the spatial-temporal patterns of the modelled and observed variables but also the statistical 

distribution of the difference between the modelled variables and their corresponding observations. Moreover, the proposed 

method utilized PSS to statistically quantifies the extent of overlap between the PDFs of modelled variables and their 

corresponding observations, which, we argue, was a more informative and useful indicator for the quality of modelling 

outcomes compared to existing metrics such as residuals and correlations. By doing so, we hope to provide more capable 5 

tools that improve the quality control in future researches using numerical meteorological simulations, especially high-

resolution urban climate simulations.  

We also intend to raise the awareness and attention over model evaluation methods within the modelling community, since 

new findings without sophisticated understanding, control of model uncertainties and systematic assessments of model 

outcomes may be scientifically misleading. Moreover, we reminded that the modeller should be cautious to conclude a 10 

quantitative finding because it is impossible to identify the natural gap, observation bias, and model bias in the difference 

between observations and its corresponding modelled results. Furthermore, although this methodological framework of 

model evaluation was designed for urban climate simulation, it can be also applied in the local scale climate simulation 

wherever in urban or non-urban regions.  

Finally, some future research ideas were inspired. The effects of the selected physical components on the evaluated 15 

modelling accuracy is not clear, which requires further control experiments. Also, the effects of the refined urban land 

surface datasets on the evaluated modelling accuracy also requires further discussions.  

 

Code availability.  Information on the availability of source codes used in this study is tabulated below. 

Source codes Availability 

WRF Model 3.7.1 These source codes are publicly available at 

http://www2.mmm.ucar.edu/wrf/users/download/get_source.html WRF Pre-Processing System (WPS) 3.7.1 

namelist.wps  

These source codes are available upon request from the 

corresponding author. 

namelist.input 

Changes in the programs of WRF for inputting 

the 2D anthropogenic sensible and latent heat data  

geo_data_refinement processing package 

wrf_input_refinement processing package 

model_evaluation package 

 20 

Data availability.  Information on the availability of data used in this paper is tabulated below. 

Data Availability 

2010 NCEP FNL (Final) Operational Global Analysis 

Dataset 

This dataset is publicly available at 

https://rda.ucar.edu/datasets/ds083.2/ 

Completed Dataset of WRF Preprocessing System (WPS) 

Geographical Input Data 

This dataset is publicly available at 

http://www2.mmm.ucar.edu/wrf/users/download/get_sourc

es_wps_geog.html 

2010 PRD Observation Locations These datasets are available upon request from the 

corresponding author. 2010 PRD Urban Land Surface Dataset 

2010 PRD 2-Meters Air Temperature 

2010 PRD 10-Meters Wind Speed 

2010 PRD Precipitation 

https://rda.ucar.edu/datasets/ds083.2/
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2010 PRD Relative Humidity 

2010 MODIS/Aqua Land Surface Temperature and 

Emissivity (LST/E) product 

This dataset is publicly available at 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_pro

ducts_table/myd11a1_v006 

Modelling Variables for Model Evaluation (T2, TSK, U10, 

V10, RAINC, RAINNC, RH2, and SWDOWN) 

This dataset is available upon request from the 

corresponding author. 
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Figure 1: The Workflow for Model Evaluation. 

 

 

Figure 2: Monthly PSS of 2-Meters Air Temperature. 
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Figure 3: Comparison of 2-Meters Air Temperature at 2:00, 8:00, 14:00, and 20:00. 
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Figure 4: Diurnal Variation of 2-Meters Air Temperature. 

 

Figure 5: Monthly PDF of 2-Meters Air Temperature Difference. 
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Figure 6: Monthly PSS of Surface Temperature at 2:00. 

 

Figure 7: Monthly PSS of Surface Temperature at 14:00. 

  5 

Figure 8: Comparison of Modelled Surface Temperatures with its Corresponding MODIS Ones at 2:00 and 14:00. 
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Figure 9: Comparison of MODIS Surface Temperatures in Urban Area with the Ones in the Non-Urban area at 2:00 and 14:00. 

 

Figure 10: Comparison of Modelled Surface Temperatures in Urban Area with the Ones in the Non-Urban area at 2:00 and 14:00. 
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Figure 11: Monthly PDF of 2:00 Surface Temperature Difference. 



19 

 

 

Figure 12: Monthly PDF of 14:00 Surface Temperature Difference. 

 

Figure 13: Monthly PSS of 10-Meters Wind Speed. 
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Figure 14: Comparison of Modelled 10-Meters Wind Speed with its Corresponding Observed Ones at 2:00, 8:00, 14:00 and 20:00.  

 

Figure 15: Monthly PDF of 10-Meters Wind Speed Difference.  

 5 

Figure 16: Monthly PSS of Precipitation.  
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Figure 17: Comparison of Modelled Precipitations with its Corresponding Observed Ones at 2:00, 8:00, 14:00, and 20:00.  

 

Figure 18: Monthly PDF of Precipitation Difference.  5 
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Figure 19: Monthly PSS of Relative Humidity.  

 

 

Figure 20: Comparison of Modelled Relative Humidity with its Corresponding Observed One at 2:00, 8:00, 14:00, and 20:00.  5 
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Figure 21: Monthly PDF of Humidity Difference.  

 


