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Abstract. Accurate calculations of shortwave reflectances in clear-sky aerosol-laden atmospheres are necessary for various

applications in atmospheric sciences. However, computational cost becomes increasingly important for some applications such

as data assimilation of top-of-atmosphere reflectances in models of atmospheric composition. This study aims to provide a

benchmark that can help in assessing these two requirements in combination. We describe a protocol and input data for 44,080

cases involving various solar and viewing geometries, four different surfaces (one oceanic bidirectional reflectance function5

and three albedo values for a Lambertian surface), eight aerosol optical depths, five wavelengths, and four aerosol types.

We first consider two models relying on the discrete ordinate method: VLIDORT (in vector and scalar configurations) and

DISORT (scalar configuration only). We use VLIDORT in its vector configuration as a reference model and quantify the loss

of accuracy due to (i) neglecting the effect of polarisation in DISORT and VLIDORT (scalar) models and (ii) decreasing the

number of streams in DISORT. We further test two other models: the 6SV2 model relying on the successive orders of scattering10

method and FLOTSAM, a new model under development by two of the authors. Typical mean fractional errors of 2.8 and 2.4%

for 6SV2 and FLOTSAM are found, respectively. Computational cost depends on the input parameters but also on the code

implementation and application as some models solve the radiative transfer equations for a range of geometries while others

do not. All necessary input and output data are provided as Supplementary Material as a potential resource for interested

developers and users of radiative transfer models.15

Copyright statement.
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1 Introduction

Accurate radiative transfer calculations in the Earth’s atmosphere are necessary for some applications such as remote sensing

of the atmospheric and surface properties, numerical weather prediction, and climate modelling. In this study, we are interested

more specifically in the calculation of radiances in the shortwave spectrum in clear-sky aerosol-laden atmospheres of the Earth

for reasons explained below. Assuming perfect knowledge of the optical properties of the atmosphere and surface and a plane5

parallel atmosphere, solving the radiative transfer equation is a very well posed physical problem that essentially reduces to

a (not-so-easy) algorithmic and numerical problem. Accurate methods have existed for a long time and testing the accuracy

of newly developed methods has been standard practice in the radiative transfer community for some time (de Haan et al.,

1987; Stamnes et al., 1988; Spurr, 2008; Kotchenova et al., 2006; Kotchenova and Vermote, 2007; Barlakas et al., 2016;

Korkin et al., 2017). Well-used state-of-the-art radiative transfer models generally show agreement within 1% (or better) under10

most conditions tested. There has also been a number of intercomparison or benchmarking exercises for shortwave radiance

calculations, largely motivated by the requirements for accurate calculations in ground-based and satellite aerosol retrievals

(Kotchenova et al., 2006; Kokhanovsky et al., 2010a; Emde et al., 2015, 2018). A classical benchmarking exercise consists

in comparing the model results to well-known solutions for simple cases of a Rayleigh scattering atmosphere (Coulson et al.,

1960; Natraj et al., 2009). However such cases are very specific and do not represent the variety of conditions met in the real15

atmosphere. The International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission

has recently defined a set of more realistic cases (Emde et al., 2015, 2018). Another benchmark is to test the numerical

convergence of the scheme when the angular and/or vertical resolutions of the model are increased (de Haan et al., 1987;

Ganapol, 2017). However, numerical convergence may be difficult to achieve and to assess because the numerical models may

experience lower precision when the resolution is increased too much, especially for models coded in single precision. Finally,20

there have also been benchmarking exercises for aerosol retrievals from observed clear-sky shortwave radiances, which tests

simultaneously the accuracy of the radiative transfer model and the aerosol retrieval algorithm (Kokhanovsky et al., 2010b).

It should be noted that accounting for the polarisation of light is necessary because it affects the accuracy of the computed

radiances (e.g., Kotchenova et al., 2006) but also because some aerosol retrieval algorithms rely on the inversion of polarised

radiances (e.g., Tanré et al., 2011; Dubovik et al., 2011). However, in cases where the atmosphere contains an important load25

of non-spherical particles (dust), errors in neglecting polarisation have been reported to be less than 1% (Barlakas, 2016).

Methods for computing shortwave radiances by solving accurately the radiative transfer equation are often computationally

expensive. In data assimilation or satellite retrieval applications for which radiances have to be computed many times and

on many profiles, the computational cost has always been an issue for pragmatic reasons (a numerical model that is too

slow to be run on the fastest computer is virtually useless). However, developing fast or very fast radiative transfer models30

capable of computing radiances (and not only vertical fluxes) has received little attention so far. Exceptions include early

attempts to use neural networks for fast and accurate radiative transfer in the longwave spectrum (Chevallier et al., 1998;

Krasnopolsky and Chevallier, 2003; Pfreundschuh et al., 2018). It may also be possible to design fast physical algorithms in

the longwave spectrum because of the weaker scattering (as compared to the shortwave spectrum) and isotropic emission (e.g.,
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Wang et al., 2013b). In the shortwave spectrum, one can mention methods based on principal component analysis (Kopparla

et al., 2017; Somkuti et al., 2017), two-orders of scattering method (Natraj and Spurr, 2007), adding-doubling method (e.g.,

Wang et al., 2013a), or recent efforts for fast calculations of cloudy-sky visible radiances (Scheck et al., 2016). However,

Scheck et al. (2016) rely on tabulated calculations (so-called look-up tables), which only allows to consider a limited set of

possible atmospheric inputs. It is noteworthy in that respect that the performance assessment of the newly released SORD5

(Successive ORDers of scattering) model (Korkin et al., 2017) shows a runtime analysis for the 52 benchmark cases that were

tested (their Fig. 6). There is a mode in the distribution of runtimes that is below 0.01 s but also a fairly long tail with occasional

runtimes between 60 and 300 s or even longer than 600 s. Finally the computational cost of algorithms for three-dimensional

radiative transfer models have been investigated by Pincus and Evans (2009) and are known to be expensive.

Forecasts and reanalyses of atmospheric aerosols have been produced operationally by combining numerical models and10

aerosol observations in data assimilation systems (Bocquet et al., 2015; Hollingsworth et al., 2008). Aerosol information

provided by satellite retrievals is often assimilated in aerosol models both in research (Collins et al., 2001) and operational

(Benedetti et al., 2018) contexts. A widely assimilated quantity is the aerosol optical depth (AOD), a column integrated quantity

that quantifies the interaction of aerosols with atmospheric radiation. So far, the assimilation of AOD retrievals has been

successful in constraining the model variables towards the equivalent measured variables, but as the resolution, complexity,15

and quality requirements of the products vary, possible inconsistencies between the assumptions used for the satellite aerosol

retrieval and the model or between the different satellite retrieval algorithms arise. Furthermore, there is some information on

aerosol types in the observed reflected solar radiation that may not be included in AOD products and is, therefore, lost for data

assimilation.

An alternative pathway to the assimilation of AOD retrieved from passive satellite measurements is the direct assimilation of20

these measurements (Benedetti et al., 2018). The main challenge of doing so is basically that the satellite retrieval algorithm has

to be replaced by a somehow equivalent procedure inside the data assimilation loop. In particular, a shortwave radiative trans-

fer model (RTM) would act as a major piece of the observation operator and some stringent requirements on accuracy/quality,

flexibility, and runtime would have to be met. In the case of variational data assimilation, similar requirements would apply to

the Jacobian of the RTM. The purpose of this benchmark paper is to assess the accuracy and computational cost of different25

RTMs to assimilate top-of-atmosphere reflectances to constrain aerosols. We will exclude the assessment of the Jacobian of the

RTMs in this work. Successful implementation of this approach could help to improve the performance of the current aerosol

data assimilation systems by providing: i) consistency between modelled aerosol type, aerosol vertical profile, atmospheric

conditions, and the radiative transfer calculation, ii) potentially better characterisation of the error covariance matrices for the

observations, iii) flexibility when there is a change in satellite instrument, and iv) capability of assimilating simultaneously sev-30

eral different sources of aerosol information. Additionally, developments in this direction could help improving the numerical

weather prediction (NWP) models by providing a functional shortwave observation operator to the data assimilation system.

The latter also opens the possibility of improvements in the data assimilation of shortwave radiances for the atmospheric and

surface properties (Martin et al., 2014), including cloudy atmospheres (Martin and Hasekamp, 2018). These authors show that
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the adjoint framework can be computationally efficient, but do not present the computational cost of the SHDOM and FSDOM

models that they use.

To our knowledge, only a limited number of studies have been able to assimilate shortwave radiances in atmospheric compo-

sition models. Weaver et al. (2007) have assimilated the Moderate Resolution Imaging Spectroradiometer (MODIS) radiances

in the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model coupled to the Arizona Radiation Transfer5

Code, a look-up-table-based model, showing that although the assimilation improves the model AOD, it does not outperform

MODIS AOD products (Remer et al., 2005). Drury et al. (2008) were able to assimilate MODIS radiances in the GEOS-Chem

chemical transport model (coupled with the LIDORT radiative transfer model) with the resulting aerosol field comparing better

against the Aerosol Robotic Network (AERONET) data than MODIS (collections 4 and 5) products for a 45 day period over

North America. Wang et al. (2010, 2012) have also assimilated MODIS radiances in the GEOS-Chem model (coupled with the10

VLIDORT model) showing improvements in the AOD computations and top-down emission estimates. Xu et al. (2013) also

used GEOS-Chem and VLIDORT to estimate sources of gaseous compounds by assimilating MODIS radiances and evaluated

against OMI (Ozone Monitoring Instrument) SO2 and NO2 retrievals and Multiangle Imaging Spectro-Radiometer (MISR)

and AERONET AOD.

Migliorini (2012) discusses some conditions where the assimilation of radiances is equivalent to the assimilation of the15

retrieval products. For this to happen, the observation operator has to be reasonably (i.e., within the errors of the variable)

approximated by a linear function of the control variable and the background information has to be chosen such that the same

information content of the observations is propagated in both assimilations. In our case, the first condition is usually assumed

true, but the second condition is difficult to implement and to evaluate.

For operational data assimilation purposes, the computational cost of the radiance observation operator is crucial (Weng,20

2007). While the computational burden of assimilating satellite radiances is expected to be larger than that of assimilating

retrievals, it has not yet been specified, to our knowledge, how fast such an observation operator has to be. A rough estimate

could be made using the computing time of the infrared radiance calculation as a guideline. For example, in the European

Centre for Medium-range Weather Forecasts (ECMWF) data assimilation system, the infrared radiance observation operator

takes around 0.1 ms per profile and channel in a highly parallelised system and roughly three times more including the tangent25

linear and adjoint code calculations. Taking into account the current infrastructure of the Copernicus Atmospheric Monitoring

Service (CAMS) at ECMWF, a first estimate of the maximum computing time for shortwave radiance calculation would be

approximately 10 ms per profile and channel, but ideally of the order of 1 ms (or about ten times slower than the current RTTOV

infrared calculations) in this particular ECMWF/CAMS infrastructure. Likewise, there is a lack of knowledge of the required

accuracy of the shortwave radiance calculations needed. A first order estimate would be an accuracy similar to the measurement30

or retrieval error, but this could depend on the data assimilation configuration and the measurement characteristics (in terms of

multi-spectral and multi-angle viewing capability, quality of the prior including that of the surface reflectance, etc.). There may

also be a variety of RTMs for different atmospheric conditions (e.g., clear- or cloudy-sky) or wavelengths (ultraviolet, visible

or near-infrared).
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How computational speed is achieved depends on the desired application. Some methods, such as the discrete ordinate

method or the Monte Carlo method (e.g., Emde et al., 2015, 2018), can compute radiances for a set of viewing geometries (given

one sun geometry) in a single simulation. Other methods, such as the successive orders of scattering (e.g., Lenoble et al., 2007),

require one simulation for each viewing geometry (again given one sun geometry). The latter is not necessarily a disadvantage

for applications where a different atmospheric profile of optical properties is associated with every viewing geometry. When5

the problem to be solved requires a lot of tasks to be processed in parallel and frequent thread synchronisation, as is the case in

many three-dimensional atmospheric models, it is the slowest tasks that matter. Therefore, the tail of the runtime distribution

matters as much, if not more, than the average or median runtime across atmospheric conditions and viewing geometries. In the

specific case of aerosol radiance assimilation in NWP models, it may nevertheless be possible to leave out the conditions and

geometries that take too long, either by eliminating them in advance or by stopping them on the fly during the first iteration if10

the corresponding tasks exceed a threshold time. In the end, there is likely to be some trade off to be accepted between accuracy

and computational cost of the radiance calculations.

Keeping this introduction in mind, the objective of this study is to provide a benchmarking tool for evaluating shortwave

radiances in the clear-sky aerosol-laden atmosphere under a wide range of aerosol conditions. The benchmarking is designed to

assess both the accuracy and computational cost of radiative transfer models. Although data assimilation of aerosol radiances15

is the key motivation for this work, we report computational cost both for single and multiple geometries to make the scope

more general. We provide all necessary input and output data for this benchmarking as Supplementary Material in NetCDF

and ACSII format so that it becomes an available resource for model developers and potential model users. The protocol is

described in the next section. It is followed by a test of the protocol in different RTMs and some conclusions.

2 Benchmark protocol20

The detailed benchmark protocol is provided as Supplementary Material. Only the main features are summarised here. We

consider five wavelengths spanning the shortwave spectrum: 470, 550, 660, 865, and 1024 nm. These wavelengths correspond

to typical wavelengths in shortwave atmospheric windows used by satellite instruments such as MODIS, POLarization and Di-

rectionality of the Earth’s Reflectances (POLDER) / Polarisation et Anisotropie des Réflectances au sommet de l’Atmosphère,

couplées avec un Satellite d’Observation emportant un Lidar (PARASOL), Visible Infrared Imaging Radiometer Suite (VIIRS),25

Along Track Scanning Radiometer (ATSR), and Advanced Along Track Scanning Radiometer (AATSR). They offer a range

of conditions because molecular scattering and the impact of polarisation are more important at the shorter wavelengths.

2.1 Vertical profiles

The molecular and aerosol profiles are described below. It should be noted that we assume the atmosphere to be plane-parallel,

i.e., there is no correction applied for sphericity of the Earth’s atmosphere.30
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2.1.1 Molecular profile

We use a midlatitude summer atmospheric profile (McClatchey et al., 1971) and provide the layer altitude (km), pressure

(hPa), temperature (K), relative humidity (%), water vapour mixing ratio (ppmv), ozone mixing ratio (ppmv), humid and dry

air density (g/cm3) on 50 levels ranging from z = 0 to zmax = 120 km. The molecular scattering and absorption optical depths

are provided for the 49 corresponding layers from the surface to the top-of-atmosphere using the radiative transfer code GAME5

(Dubuisson et al., 2004, 2006). In particular, the absorption optical depths have been calculated with GAME for the five selected

wavelengths by averaging the gaseous absorption (for H2O and O3) in each layer from the k-distribution parameterisation used

in the GAME code. Note that gaseous absorption is weak at the selected wavelengths so this approximation remains valid.

The molecular depolarisation ratios are taken from Bodhaine et al. (1999), with values of 0.0288567, 0.0283241, 0.0279199,

0.0275716, and 0.0274591 for the five selected wavelengths. There is no obligation to use the 49 layers provided in the protocol.10

Indeed, it could be interesting to perform the RTM calculations on a reduced vertical grid to decrease the computational cost.

In case a different vertical grid is used, we ask that the vertically-integrated molecular scattering and absorption optical depths

to be conserved.

2.1.2 Aerosol profile

We define the vertical profile of the aerosol extinction coefficient (σaer) as an exponential function with a height scale H of15

2 km, normalized to unity when integrated between z = 0 and z = zmax = 120 km, that is:

σaer(z) =
e−z/H

H (1− e−zmax/H)
. (1)

The aerosol optical depth of a layer i, τi, is computed as:

τi =

zi∫
zi

σaer(z) dz (2)

with ∆zi the layer thickness, that is, the difference between the altitudes of the layer top (zi) and the layer bottom (zi). The20

average aerosol extinction coefficient for layer i then satisfies:

σaer
i = τi/∆zi. (3)

We provide σaer
i and τi for the 49 layers defined in our atmospheric profile, but these quantities can be easily recomputed for

any vertical grid. These values are normalised to an AOD of 1, so they have to be multiplied by the actual AOD of each case.

2.2 Aerosol types25

Four aerosol types have been defined. Aerosol size distributions are assumed to be log-normal with the parameters shown in

Table 1. Refractive indices are taken from the literature (see Table 1) and the aerosols are assumed to be internally mixed,

with a volume-weighting rule. The four aerosol types defined in this benchmark have been chosen to represent a variety of size
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and optical properties observed in the atmosphere. Two fine-mode aerosols are defined: industrial scattering (aer_is) is sulphate

aerosol with a relative humidity of 50%, while industrial absorbing (aer_ia) is a mixture of the OPAC (Hess et al., 1998) aerosol

type INSO (insoluble), SOOT (soot), and WASO (water soluble, at 50% of relative humidity). The industrial absorbing aerosol

is similar to an organic matter aerosol type. We also consider a monomodal dust aerosol and a bimodal sea-salt aerosol (aer_ss).

2.3 Aerosol optical properties5

Aerosol optical properties were computed by the authors using their own Mie routines and results were cross-checked for

consistency. The Mie routine used to generate the input data was rewritten in Fortran based on the implementation of Toon and

Ackerman (1981) and was compiled with the Intel Fortran compiler in quadruple precision. The calculations are monochro-

matic (i.e., no integration was performed on the wavelength). The aerosol size distribution is integrated over the size range

reported for each type in Table 1 with a Gaussian quadrature of 10,000 points in logarithm of the radius. The number of terms10

used to compute the sums of the an and bn coefficients is approximated as a function of the Mie parameter (x= 2πr/λ)

following Wiscombe (1980).

For each aerosol type, we provide the aerosol optical depths at the 440, 670, 865, and 1024 nm wavelengths corresponding to

the selected AOD at 550 nm. The aerosol mass extinction coefficient (although not necessary to conduct the RTM calculations),

single scattering albedo, and asymmetry parameter are also given.15

The phase matrix is computed and provided at 50,000 points evenly spaced in scattering angle from 0 to 180◦. As the

particles are assumed to be spherical, only the S11, S12, S33, and S34 elements of the phase matrix are non-zero and provided.

We also decompose the phase matrix in generalised spherical functions (de Rooij and van der Stap, 1984; de Haan et al., 1987)

as needed for the vector version of the discrete ordinate method. For this, the phase matrix is integrated with a 8,000 points

Gaussian quadrature over the cosine of the scattering angle and we provide the first 750 moments of that decomposition for20

the six commonly-used elements (α1, α2, α3, α4, β1, β2). For completeness, we also provide the corresponding Legendre

coefficients (by definition the lth Legendre coefficient equals the lth Legendre moment multiplied by 2l+ 1). Thus, we provide

all necessary information on aerosol optical properties for usual RTMs so that no further processing of the aerosol optical

properties should be required. Of course, the RTMs that neglect polarisation should only consider the S11 term of the phase

matrix or the α1 Legendre moments.25

The accurate reconstruction of the original phase function from the Legendre decomposition (S11) cannot be ensured if a

too low number of Legendre moments is used to approximate it. As for the vertical resolution, there is no obligation for this

benchmarking exercise to represent the exact phase function and it may be interesting to approximate it to strike a balance

between accuracy and computational cost (see for example Ding et al. (2009)). The minimum number of Legendre moments

for which the approximated phase function is positive depends on the aerosol type and the wavelength (basically, on how large30

the forward peak is). For the industrial scattering and industrial absorbing aerosols, a minimum of 4 to 8 moments is required

(depending on the wavelength). For dust aerosol, the minimum is between 14 moments (at 1024 nm) and 40 moments (at

470 nm), while for sea salt, the minimum is between 144 moments (at 1024 nm) and 348 moments (at 470 nm).

Figure 1 shows the phase function and the linear depolarisation ratio for the four aerosol types considered in this benchmark.
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Aerosol type Industrial Industrial Sea-Salt Dust

Scattering Absorbing

Mixture input sulphate (50% RH) WASO (50% RH) INSO SOOT fine coarse ——

N particles 1 1200 0.1 8300 70 3 1

ρwet (g cm−3) 1.264 1.437 2 1 2.16 2.16 2.61

r_min (µm) 0.00611 0.005 0.005 0.005 0.03 0.03 0.03

r_max (µm) 24.44 25 25 25 20 20 20

r_mod (µm) 0.0259 0.0262 0.471 0.0118 0.1992 1.992 0.29

σg 2.24 2.24 2.51 2.0 1.9 2.0 2.0

Ref Index (real) 470 nm 1.435 1.439 1.530 1.750 1.357 1.357 1.530

550 nm 1.431 1.437 1.530 1.750 1.354 1.354 1.530

670 nm 1.427 1.436 1.530 1.750 1.351 1.351 1.530

865 nm 1.422 1.430 1.520 1.750 1.347 1.347 1.520

1024 nm 1.418 1.428 1.514 1.760 1.345 1.345 1.515

Ref Index (imag) 470 nm 5.184 E-08 2.649 E-03 8.000 E-03 4.530 E-01 3.519 E-09 3.519 E-09 6.690 E-03

550 nm 5.367 E-08 3.179 E-03 8.000 E-03 4.400 E-01 2.980 E-09 2.980 E-09 5.200 E-03

670 nm 7.491 E-08 3.709 E-03 8.000 E-03 4.340 E-01 2.668 E-08 2.668 E-08 4.040 E-03

865 nm 6.722 E-07 6.331 E-03 8.000 E-03 4.333 E-01 3.895 E-06 3.895 E-06 4.300 E-03

1024 nm 2.539 E-06 8.391 E-03 8.000 E-03 4.410 E-01 2.353 E-05 2.353 E-05 4.500 E-03

Table 1. Aerosol physical and optical properties for the different aerosol types considered in the benchmark. σg is the geometric standard

deviation. The refractive indices are linearly interpolated from the OPAC database (Hess et al., 1998). Dust refractive index are linearly

interpolated from Woodward (2001).

2.4 Surface reflectance

Two surface reflectance models are selected, a Lambertian and an oceanic bidirectional reflectance distribution function

(BRDF) model. For the Lambertian model, three surface albedos were chosen, namely 0, 0.05, and 0.1. The spectral de-

pendence of the surface reflectance is ignored, i.e., the albedo is assumed the same for the five wavelengths considered. The5

second surface reflectance model is the oceanic glitter model from Mishchenko and Travis (1997). This model is suited for

both full vector radiative transfer models (i.e., including polarisation) and for the scalar approximations.

Wind speed is set to 10 m s−1 but the Mishchenko and Travis (1997) code assumes an isotropic Gaussian distribution of

(oceanic) surface slopes, so the wind orientation is not taken into account. The salinity is set to 34.3‰ and water refractive

indices are interpolated, for each wavelength, from the data provided in Hale and Querry (1973) as inputs to the Mishchenko10

and Travis (1997) routine (available at https://www.giss.nasa.gov/staff/mmishchenko/brf/). The effect of shadowing is also

taken into account.
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Figure 1. First (i.e., S11, left panels), second (i.e., S12, middle panels) element of the phase matrix, and linear depolarisation ratio (i.e.,

−S12/S11) (right panels) as a function of the scattering angle (◦) for the four aerosol types (rows), where aer_du stands for dust, aer_ia for

industrial absorbing, aer_ss for sea-salt and aer_is for industrial scattering. The colour code corresponds to the five wavelengths (470, 550,

660, 865, and 1024 nm). The mass extinction coefficient (ext, in m2 g−1), single scattering albedo (ssa), and asymmetry parameter (g) are

also indicated in each panel. The phase function is normalised to 2
(
i.e.,

∫ π
0
S11(Θ) sinΘ dΘ = 2

)
.

The convention for the azimuthal angle used in the Mishchenko and Travis (1997) routine is the opposite of the convention

that we use below to define geometries, so the coupling between the atmospheric RTM and the oceanic code has to be done

carefully.

2.5 Geometries and configurations

We have selected 8 cases for aerosol loadings in the atmosphere, with AOD at 550 nm ranging between 0 (no aerosol) to 25

(high aerosol loading). These values refer to the 550 nm wavelength and the corresponding AODs can be estimated for the

other wavelengths depending on the aerosol types. A table with the equivalences in AOD, for each aerosol type and wavelength

is also provided in the benchmark protocol.
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We have further selected four solar and four viewing zenith angles, θs and θv , from 0◦ (zenith) up to 60◦. Given the provided

surface reflectance models and the assumption of spherical (hence randomly-oriented) aerosols in the atmosphere, the radiance

at the top of the atmosphere is only dependent on the difference between the incident and reflected azimuthal angle and not on

each value taken independently. We have chosen five azimuthal angles between φr = 0◦ (backscatter when solar and viewing

zenith angles are equal) and φr = 180◦ (forward scattering when solar and viewing zenith angles are equal). The different cases5

are summarised in Table 2. Removing the redundancies in aerosol types for AOD = 0 and azimuthal angle for θs = θv = 0◦,

this results in 11,020 cases for the BRDF surface and 33,060 cases for the Lambertian surfaces (see Table 3), which gives a

grand total of 44,080 cases.

Geometrical conditions

Solar zenith angles, θs 0◦, 20◦, 40◦, 60◦

Viewing zenith angles, θv 0◦, 20◦, 40◦, 60◦

Azimuthal angles, φr 0◦, 45◦, 90◦, 135◦, 180◦

Environmental conditions

Wavelengths 470, 550, 660, 865 and 1024 nm

Aerosol optical depth at 550 nm 0, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2

Surface Oceanic BRDF and Lambertian reflectance (0.0, 0.05, 0.1)

Aerosol profile Exponential profile with height scale of 2 km

Atmospheric profile Midlatitude summer

Aerosol types sea-salt (aer_ss), dust (aer_du), industrial scattering (aer_is), in-

dustrial absorbing (aer_ia)

Table 2. Summary of the proposed geometrical and environmental conditions used in the simulations.

2.6 Measured variables

We aim to provide a standardised dataset to evaluate the possibility of assimilating satellite radiances in operational forecasts of10

atmospheric composition. Thus, two variables are important to estimate for each case: the simulated reflectance (or radiance)

that would be observed by the satellite and a “sound” estimate of the radiative transfer code runtime.

We will describe the accuracy of the models in terms of the reflectance, ρI , of the intensity (i.e., the first Stoke component),

which is related to the radiance, I , through the relationship:

ρI =
π I

Is cos(θs)
(4)15

where Is is the incident solar flux at the top of the atmosphere (conveniently taken equal to one for reflectance calculations),

and θs is the solar zenith angle.

10



The runtime may be difficult to estimate and compare between different models. We aim to measure the runtime of the

computations excluding input/output operations, as typical applications would embed the RTM code in a larger operational

system. The runtime of the RTM should be measured in a single-thread configuration. Ideally, the simulations should be

performed on the same core of the computer and with the same system load conditions (except for the RTM) as other threads

on the operating system (in particular with a high input/output load) could hamper the correct timing of the model. Multiple5

repetitions of the computations can be performed to get better estimates.

Given a set of atmospheric and aerosol conditions, some models can compute, almost without extra cost, the radiances for

several viewing geometries, while other models require multiple simulations to achieve the same. For this protocol, this would

introduce a difference of a factor of circa 80 (the number of viewing geometries) in the reported runtimes. Depending on the

application, this feature of some models may or may not be relevant. For this reason, we present here the runtimes of the tested10

models in two configurations: one taking advantage of the simultaneous output for multiple viewing geometries, and another

one without this feature. In the second configuration (called ind in Section 3), each simulation outputs only one geometry

while in the first configuration (called mult in Section 3), it outputs as many values as possible within the specifications of the

protocol. The number of multiple outputs per simulation will be detailed in the next Section.

3 Models15

3.1 Reference model: VLIDORT

The VLIDORT model is an independent implementation of the discrete ordinate method based in part on earlier work by

Siewert (2000a, b) and other sources. In this work we have used the VLIDORT version 2.7, which includes a BRDF supplement

that can be called before the main program. A detailed user’s guide is available (Spurr, 2014). One interesting feature of

this model is that it also provides Jacobians with respect to the model inputs (not used in this study). In this model, it is20

possible to choose how many elements are computed in the Stokes vector. Although VLIDORT is able to solve the radiative

transfer equation for the four-element Stokes vector (I,Q,U,V ) (Spurr, 2008), we will refer to the vector runs when the 3× 3

approximation of the RT problem is used (i.e., neglecting circular polarisation in the atmosphere by solving only for (I,Q,U))

and we will refer to the scalar runs when only the first element of the Stokes vector is used in the computations (i.e., when

polarisation of electromagnetic radiation is not accounted for). VLIDORT is written in double precision, it has the capability to25

output, in a single call, radiances for any number of solar and viewing angles. The protocol vertical resolution with 49 layers is

used. It should be noted that the discrete ordinate method shows a numerical instability for zenith viewing angle θv of 0◦ or a

relative azimuthal angle φr of 90◦. These angles are therefore prescribed at θv = 0.0001◦ and φr = 89.98◦ instead to circumvent

this problem. We use the model with 32 streams and the TMS correction (Nakajima and Tanaka, 1988) is activated. The TMS

correction removes the single scattering feature computed with a few streams and replaces it by the exact single scattering30

contribution. This correction helps to remove non-physical features due to the use of a low number of Legendre coefficients in

the computation. VLIDORT vector is our reference model.
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3.2 DISORT

The DISORT model (Stamnes et al., 1988) is a flexible and widely used RTM. It solves the scalar approximation of the

radiative transfer equation in a plane parallel atmosphere by using the discrete ordinate method. In this study, we use the

DISORT code, version 4, available from http://lllab.phy.stevens.edu/disort/ and we have coupled the oceanic BRDF following

the code developer instructions. We use the model with 32 streams and the TMS correction (Nakajima and Tanaka, 1988) is5

activated. It should be noted that most of this code is written in single precision, but important routines (as the computation of

the Gaussian nodes) are written in double precision. We use 32 streams in our main configuration but sensitivity results for 4,

8, 16, 32, 64, 96, and 128 streams are also presented below. The protocol vertical resolution with 49 layers is used. Similar to

VLIDORT, the DISORT code has numerical instabilities which manifest themselves when the solar and viewing zenith angles

(θs and θv) are equal. In such cases, we perturb the cosine of the viewing zenith angle by 8× 10−5.10

Given a solar zenith angle, the DISORT model can provide outputs for multiple viewing geometries. In this study, the number

of geometries for the mult timing configuration is the number of φr cases multiplied by the number of θv cases (i.e., 4×5 = 20).

Although we know the DISORT model to be too slow for online data assimilation of aerosol radiances, we find it useful

to document here the trade-off between accuracy and computing time as a function of the number of streams used in the

calculations. Figure 2 shows both the Mean Fractional Error and the average computing time for 4, 8, 16, 32, 64, 96, and 12815

streams. The Mean Fractional Error is shown relative to our reference VLIDORT (vector) and is of the order of 1 or 1.5%

for the Lambertian and oceanic BRDF surface cases, respectively, as soon as the number of streams exceeds 8. Most of that

discrepancy is due to DISORT neglecting polarisation as the Mean Fractional Error against VLIDORT (scalar) is significantly

smaller: <0.1% for the Lambertian surface case and a <1% for the surface BRDF case.

There is a big gain in accuracy when increasing the number of streams from 4 to 8 and little further gain in accuracy beyond20

16 streams. A deterioration in accuracy is observed beyond 96 streams in the case of the BRDF surface, which may be due to

the DISORT model being coded in single precision float. While the dependence of model accuracy on the number of streams

is well known (Stamnes and Swanson, 1981), we find it useful to confront the loss of accuracy with the gain in computational

cost. Computing time increases rapidly with the number of streams (faster than the cube of the number of streams beyond 16

streams). Using 16 streams might, therefore, be an interesting trade-off between accuracy and computational cost.25

3.3 6SV2

The 6SV2 model is a radiative transfer model based on the successive order of scattering (SOS) method (Vermote et al., 1997).

It solves the radiative transfer equation by using the three elements approximation (3×3) of the Stokes vector. The accuracy of

the code against previous benchmark and Monte Carlo codes has been reported to be better than 1% (Kotchenova et al., 2006;30

Kotchenova and Vermote, 2007). We have used version 2.1 of the model. Two configurations are available: a standard accuracy

configuration that consists of 83 Gaussian points for the phase function, 30 vertical levels, 25 zenith angles and 181 azimuth

angles, and a high accuracy configuration that consists of 121 Gaussian points for the phase function, 50 vertical levels, 75

12
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Figure 2. Accuracy (in black) and computing times (in red) for the DISORT model as a function of the number of streams used. The

Lambertian and oceanic BRDF surface cases are shown with solid and dashed lines, respectively. The accuracy is shown in terms of Mean

Fractional Error against VLIDORT (vector). The computing times are an average for 20 geometries and were estimated on a processor AMD

Opteron 6378, 2.4 GHz. Please note the logarithmic scales for the number of streams used in the DISORT calculations (x-axis) and the

timings (right vertical axis).

zenith angles, and 181 azimuth angles. We will present results only from the standard accuracy, which is 2 to 70 faster than the

high accuracy configuration, but will comment briefly on the high accuracy configuration in Section 4.2.

Molecular scattering and absorption vertical profiles are embedded in the code. Both are internally computed according to

the atmospheric profile as part of “core” SOS routines. It is therefore not appropriate to prescribe our own molecular scattering

and absorption profiles, so we use the 6SV2 defaults instead. The difference in the total molecular scattering optical depth is5

less than 0.26% with respect to the files provided in this protocol. We have coupled the BRDF calculations to the 6SV2 model

but it should be noted that the atmosphere-surface coupling of the oceanic BRDF model in 6SV2 does not use the full surface

reflection matrix but only the first column of it (i.e., the column that relates reflected I with incoming I , Q, and U ).

The 6SV2 model can only compute one viewing geometry in each model call (i.e., the ind configuration is exactly the same

as the mult configuration).10

13



3.4 FLOTSAM

We also test in this study a preliminary version of the Forward-Lobe Two-Stream Radiance Model (FLOTSAM), which is

being developed at the European Centre for Medium-Range Weather Forecasts (ECMWF). Unlike look-up-table-based solar

RTM, FLOTSAM permits an arbitrary layering of different types of scatterers, including clouds, aerosols, and molecules. The

model has been designed to be fast enough to be used in iterative assimilation and retrieval schemes. It exploits the fact that5

particle phase functions typically contain a “narrow forward lobe” associated with scattering angles of less than a few degrees,

and a “wide forward lobe” associated with scattering angles of the order of 15◦. This enables coupled ordinary differential

equations to be written down for radiation in the quasi-direct solar beam (including the narrow forward lobe) and a wider

beam of radiation propagating away from the Sun due to scattering by the wide forward lobe. Additionally, the upwelling

and downwelling diffuse fluxes are computed using the two-stream approximation. FLOTSAM may, therefore, be thought of10

as the solar analogue of the infrared Two-Stream Source Function technique of Toon et al. (1989). To facilitate the use of

FLOTSAM in variational assimilation and retrieval schemes, it has been coded in C++ using version 2.0 of the Adept library

(Hogan, 2014, 2017), which enables the Jacobian to be easily computed via Adept’s fast automatic differentiation capability.

FLOTSAM has been incorporated into the Cloud, Aerosol and Precipitation from Multiple Instruments using a Variational

Technique (CAPTIVATE) retrieval scheme, which will provide operational products from the forthcoming EarthCARE satellite15

(Illingworth et al., 2015).

FLOTSAM is designed to be used in iterative schemes in which multiple calculations are performed with different profiles

of optical properties but for the same viewing geometry. This is implemented by allowing the user to perform the set-up

calculations once for a particular solar zenith angle, viewing zenith angle and viewing azimuth angle, and then to re-use the

information in subsequent radiance calculations for different optical profiles. We assess the computational cost for both the ind20

and the mult configurations, with the latter consisting of 4 × 4 × 5 × 8 = 640 cases involving 80 geometry set-up calculations

and each separate geometry being used with 8 different optical depths.

4 Results

4.1 Methods and statistics

The protocol has been tested for the 5 model versions described above: VLIDORT (vector), VLIDORT (scalar), DISORT,25

6SV2, and FLOTSAM. As explained in Section 2.6, the accuracy is quantified in terms of monochromatic reflectances at the

top of the atmosphere and the accuracy is computed against the vector version of the VLIDORT model unless stated otherwise.

With as many as 44,080 cases considered in this study, we have to find original ways to visualize the results as explained be-

low. Along with the average reflectance computed for each model, the following statistical measures have also been computed:

Root Mean Square Error (RMSE) =

√√√√ 1

N

N∑
i=1

(mi − ri)230
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Mean Fractional Bias (MFB) =
2

N

N∑
i=1

mi − ri
mi + ri

Mean Fractional Error (MFE) =
2

N

N∑
i=1

∣∣∣∣mi − ri
mi + ri

∣∣∣∣
where N is the number of experiments, mi is the reflectance of the tested model and ri is the reflectance of the reference

model for case i. By definition, the Mean Fractional Bias can range between −2 and 2, with a best score of zero, while the5

Mean Fractional Errors can range between 0 and 2, with a best score of zero. Both values are multiplied by 100 with respect

to the definitions above in the Tables presented below. We also state the percentages of cases where the relative error of the

reflectances is above defined relative error thresholds. These diagnostics, which could be detailed for particular subsets of our

44,080 cases, can help to decide if and under which conditions a particular RTM could be useful, according to the required

accuracy of the reflectance calculations.10

Runtimes of the models are presented in an absolute measure (seconds), and no reference is needed. Finally, we will comment

on possible trade-offs between accuracy and computing time.

4.2 Accuracy

Figure 3 shows histograms of the simulated reflectances of the VLIDORT (vector) model at the top of the atmosphere for

all or various subsets of the 44,080 cases. These reflectances form the reference simulations for this study. The width of the15

histograms (or violins) in Figure 3 are proportional to the number of cases in each bin of the reflectance (y-axis) discretization.

The multiple panels (and multiple violins) are computed with all the simulations, but filtered by the value indicated on the

x-axis. Therefore, they can be interpreted as an analogous to marginal density probability functions of the set of simulations.

Figure 3 shows a wide range of reflectances (from near 0 to almost 0.5) and known dependencies of the reflectance with respect

to some of the input variables such as the surface albedo (Lambertian case), the AOD, or the wavelength in this range of the20

spectrum.

A first comparison of the relative error is shown in Figure 4 for two scalar models (with otherwise the same degree of

sophistication as the reference model). Figure 4 shows the histograms of the relative errors, (m− r)/r, with m being the

tested model and r the reference model (the vector version of VLIDORT). It can be seen that for both models, DISORT and

the scalar version of VLIDORT, the errors are mostly below 5%. They are centred on zero for the Lambertian surface, but25

a negative bias is observed for the BRDF case. Comparison of scalar VLIDORT against vector VLIDORT provides a direct

measure of the relative errors due to neglecting polarisation in the model. As expected and because of a larger molecular

scattering contribution, we observe larger relative errors for the shorter wavelengths (MFE = 1.8% at 470 nm; MFE = 0.5%

at 1024 nm). We also observe larger errors for the accumulation-mode aerosols (industrial scattering and industrial absorption

have MFE ≈ 1.2%) in contrast to coarse-mode aerosols (dust and sea-salt have MFE ≈ 0.6%). These errors are associated30

to the larger polarised phase function (see Figure 1) of industrial scattering and industrial absorption aerosols for large AOD

(see Figures A2 and A4). Although no clear relation is shown for relative errors as function of the geometrical parameters in

Figure 4, Figure A2 shows a clear link between the relative errors and the scattering angle for these two accumulation-mode
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aerosols at large AOD. The oceanic BRDF function used in this study also enhances the errors of the scalar versions as these

neglect the polarising effect of the surface, because the glint can increase the polarised feature of the light for some angles.

Larger relative errors are shown for the dark surface case (Lambertian surface albedo equal to zero have MFE ≈ 1.2%) because

the reference reflectances are smaller than for their 0.05 and 0.1 Lambertian counterparts (with MFE ≈ 0.7% and MFE ≈ 0.5%,

respectively). The error statistics of the VLIDORT (scalar) and DISORT models are very similar, with noticeable differences5

only for the BRDF case (Figure 4 and Table 3). The scalar approximation may thus be appropriate for some combinations of

wavelengths, aerosols types and surface types but not for others. We further note, that for both types of surfaces, the scalar

VLIDORT simulations outperform DISORT simulations when they are compared against the vector version of VLIDORT

(which is not surprising), but in both cases the overall Mean Fractional Error is larger than 0.7 % and the Mean Fractional Bias

is negative.10

Figure 5 and Table 4 show the relative errors of the other two models used in this study, 6SV2 and FLOTSAM, against

VLIDORT (vector). As the FLOTSAM model does not include polarisation, it is not expected to outperform the scalar ap-

proximations exemplified in the DISORT and VLIDORT (scalar) comparisons. However, this is the case for the 470 nm cases,

as can be seen from the corresponding violin plot of Figure 5. For 6SV2, the relative error shows a mode around zero, while

for FLOTSAM, the shapes of the violin plots are more similar to those of the scalar approximations shown in Figure 4. The15

reason for the unexpected dependence of the 6SV2 model errors with the wavelength is not completely clear, but it could be

related to the technical difficulties in prescribing user-specific molecular scattering and absorption profiles in the 6SV2 code

(see Sections 2.1.1 and 3.3). In contrast to Figure 4, Figure 5 shows larger relative errors for sea salt aerosols, for both models.

While larger errors in Figure 4 were related to the polarisation/depolarisation effects from aerosol particles (as shown in the

right column of Figure 1), errors of 6SV2 and FLOTSAM could be related to the more pronounced forward scattering peak of20

the sea salt aerosols and their large single scattering albedo. In fact, errors for large AOD (Figure A3) are not strongly linked

to the amount of polarised radiance (Figure A4) for sea salt aerosols. In the case of 6SV2, the coarse discretisation of the

aerosol phase function used in the model configuration (83 Gaussian points, Section 3.3) hampers the accurate simulation of

the sea salt forward scattering peak. There is no clear dependence of the relative errors with respect to the viewing and solar

geometries but, as for Figure 4, larger errors are observed for larger AOD and for the surface BRDF case.25

Synthetic error statistics are shown in Table 4. Both the 6SV2 and FLOTSAM models have comparable Mean Fractional

Errors, but these are larger than those of DISORT and VLIDORT (scalar). Some difference concerning the type of surface

can be appreciated with 6SV2 performing better in the case of Lambertian surfaces. It should be noted that using the high

accuracy configuration of 6SV2 instead of the standard accuracy configuration reduces the Mean Fractional Error from 1.5 to

1.1% for the Lambertian surface case, but does not improve this score for the BRDF surface case. The Mean Fractional Bias is30

negative, and it is of similar magnitude for both models. However, 6SV2 presents larger biases over the two types of surfaces

(and the sign of the bias differs for the BRDF and Lambertian surfaces). In contrast, FLOTSAM shows virtually no bias for the

Lambertian surface cases and a smaller bias than 6SV2 for the BRDF cases. An important difference with the scalar models is

the presence of a heavy tail in the relative error distribution, which can be inferred from the last rows of Table 4.

35
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All BRDF Lambertian

DISORT VLIDORT DISORT VLIDORT DISORT VLIDORT

(scalar) (scalar) (scalar)

Reference (VLIDORT vector) Mean 0.114 0.108 0.116

Model Mean 0.114 0.114 0.108 0.108 0.116 0.116

RMSE 0.002 0.002 0.003 0.002 0.002 0.002

Mean Fractional Bias (%) –0.44 –0.42 –0.82 –0.89 –0.31 –0.26

Mean Fractional Error (%) 0.99 0.91 1.48 1.29 0.83 0.78

N 44,080 44,080 11,020 11,020 33,060 33,060

% of exps. with errors > 0.5% 55.09 51.34 68.43 61.79 50.64 47.86

% of exps. with errors > 1% 35.27 34.47 48.97 47.71 30.70 30.05

% of exps. with errors > 2% 14.63 14.71 25.95 27.04 10.85 10.60

% of exps. with errors > 2.5% 9.09 9.08 17.18 18.12 6.39 6.07

% of exps. with errors > 5% 0.77 0.28 2.18 0.60 0.30 0.17

% of exps. with errors > 7.5% 0.29 0.00 0.97 0.00 0.07 0.00

% of exps. with errors > 10% 0.18 0.00 0.68 0.00 0.02 0.00

Table 3. Statistical measures of DISORT and scalar VLIDORT reflectances against vector VLIDORT (first row). Errors of the last rows are

defined as the absolute value of the relative error, using the VLIDORT (vector) reflectance as the reference. VLIDORT is the configuration

with 32 streams and the TMS correction activated. N refers to the number of cases.

4.3 Timing

In this Section, we present statistics of computing times for three of the models used in this study. All the computing times

presented below were estimated on an Intel i5-4690, 3.5 GHz workstation running Linux (kernel 2.6.32), GNU C++ and Fortran5

compiler version 4.4.7, on a single processor and with exclusive use of the workstation. We have compiled the models using

their default compilation flags, ie, “-O” for 6SV2; “-O3” and “-march=native” for FLOTSAM and “-O3” for DISORT.

We start this section with the 6SV2 model which can only be used in ind configuration. Figure 6 shows the violin plots of the

computing time of the 6SV2 model that spans as much as two orders of magnitude. Clearly, the BRDF cases are more expensive

than the Lambertian surface cases, with most computing times ranging between ca. 0.7 and 4 s for the former. This appears to10

be due to multiple calls to the BRDF routine. It may be possible to optimise this routine or recode it in a more efficient way, but

we have not attempted to do so. We also note an increase in computing time with increasing solar zenith angle (θs) and AOD,
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All BRDF Lambertian

6SV2 FLOTSAM 6SV2 FLOTSAM 6SV2 FLOTSAM

Reference (VLIDORT vector) Mean 0.114 0.108 0.116

Model Mean 0.114 0.114 0.102 0.107 0.117 0.116

RMSE 0.007 0.008 0.014 0.012 0.003 0.006

Mean Fractional Bias (%) –0.58 –0.49 –5.60 –2.01 1.09 0.02

Mean Fractional Error (%) 2.78 2.41 6.60 4.01 1.51 1.88

N 44,080 44,080 11,020 11,020 33,060 33,060

% of exps. with errors > 0.5% 71.30 80.21 82.56 89.86 67.54 77.00

% of exps. with errors > 1% 45.84 63.70 71.08 79.76 37.42 58.35

% of exps. with errors > 2% 30.04 39.91 54.44 61.91 21.91 32.58

% of exps. with errors > 2.5% 25.04 32.02 48.57 53.80 17.20 24.76

% of exps. with errors > 5% 14.01 11.89 34.50 26.05 7.18 7.17

% of exps. with errors > 7.5% 8.25 4.70 26.00 11.59 2.34 2.40

% of exps. with errors > 10% 5.63 1.97 20.20 5.56 0.77 0.77

Table 4. Same as Table 3 but for the 6SV2 and FLOTSAM models.

and with decreasing wavelength. This is consistent with a larger number of scattering orders being necessary in such cases.

Cases for coarse mode aerosols (especially sea salt aerosols) are more expensive than cases for accumulation mode aerosols,

with some calculations reaching 5 s for sea salt aerosols. We do not have an explanation as to why the cases for industrial

absorbing aerosols are more expensive than those for industrial scattering aerosols.

As discussed above, the DISORT and FLOTSAM models offer efficiency savings when multiple profiles are computed5

together. In the case of DISORT, multiple viewing geometries can be computed for one solar zenith angle. In the case of

FLOTSAM, a smaller saving is that the geometry set-up calculations may be computed once for a given solar/viewing geometry

and then re-used for multiple atmospheric profiles with different optical properties. The runtime of these models is, in general,

not sensitive to the viewing geometry, wavelength, aerosol type or AOD. However, there are some differences between the

two types of surface reflectance. Table 5 shows a summary of the measured runtimes for the three tested models. Computing10

times are indicated for the two measurement procedures (ind and mult) and for the two types of surface reflectance (BRDF

and Lambertian). In the case of FLOTSAM, we also report the “one-off set-up” cost, which in the case of the BRDF involves

creating a four-dimensional look-up table. We stress that this is invoked only once per call to the executable, so in an operational

data assimilation system performing many millions of radiance calculations it would increase the executable runtime by only

a very small fraction. The one-off set-up costs are not shown for the 6SV2 and DISORT models as they are not isolated from15

the rest of the computations.

18



For the 6SV2 model, values of Table 5 are in concordance with Figure 6 with runtimes of the order of seconds. The DISORT

model average runtime is smaller than that of 6SV2. Similarly to 6SV2, there is an important dependence of the DISORT

runtime on the type of surface considered. The extra cost of computing 20 profiles, instead of one profile, can be estimated as

the difference between the mult and ind cases. For DISORT, this additional cost is about 0.07 s for the Lambertian case and

about 0.22 s for the BRDF case, which correspond to 25% and 18% of the total mult runtime. This would benefit an application5

that requires simultaneous calculation of many viewing geometries. The spread of DISORT runtimes indicated in Table 5 arises

because DISORT efficiently decreases the number of internal computations for symmetric geometries (solar zenith angle equal

to zero, 21% of the cases) and it is faster for AOD=0 (3.4% percent of the cases). For the remaining cases of Table 5, there is

almost no spread in the DISORT runtime.

Table 5 shows the runtimes of the FLOTSAM model. Firstly, it is noted that the standard deviation of the reported values10

is small (around one order of magnitude less than the values). This is because FLOTSAM performs the same number of

operations for every case, thus, there is no added value of showing histograms of runtimes. For this model, it can be seen that

the one-off set-up cost of the BRDF is a little under 3 s, but in the ind case, subsequent radiance calculations are 3–4 orders

of magnitude faster than the other two models tested, and the BRDF calculation is only slightly slower. If many profiles have

to be computed with the same observation geometry, then, the geometry set-up cost is invoked only once and the average cost15

per profile is reduced. This is illustrated in the mult case in which 640 profiles are computed, which involves 80 different

geometries. Excluding the model set-up time, the computation of a single profile takes around 0.3 to 0.4 ms in the ind case,

and around (99 ms)/640 = 0.16 ms in the mult case.

FLOTSAM 6SV2 DISORT

one-off set-up
Lambertian 2.87× 10−5 (1.99× 10−6)

BRDF 2.76 (5.28× 10−3)

ind
Lambertian 3.05× 10−4 (1.84× 10−6) 1.06 (0.87) 0.22 (0.18)

BRDF 3.70× 10−4 (1.49× 10−5) 1.90 (0.95) 0.99 (0.18)

mult
Lambertian 9.90× 10−2 (6.23× 10−4) 0.29 (0.16)

BRDF 9.96× 10−2 (5.63× 10−4) 1.21 (0.16)
Table 5. Average runtimes in seconds. The standard deviation is shown in parenthesis. The mult runtimes account for 640 profiles for

FLOTSAM, 20 profiles one profile per model call for 6SV2. The one-off set-up costs of FLOTSAM are invoked only once per instance of

the executable, no matter how many radiances are subsequently calculated, so are the same for the ind and mult experiments.
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5 Summary and conclusions

We have presented in this study a comprehensive benchmarking methodology and protocol, with an unprecedented number

of cases combining different viewing geometries, aerosol optical depths, aerosol types, wavelengths, and surface types. The

VLIDORT model in its vector configuration (i.e., considering polarisation) is used as the reference model. Preliminary results

in terms of accuracy and computing time are presented for three models: the well-known models DISORT and 6SV2 on one5

side, and FLOTSAM, a new fast model under development by two of the authors of this study. All models perform better when

using Lambertian surface reflectance than when using an oceanic BRDF. All the models perform better under low AOD, and

the scalar models have lower accuracies at shorter wavelengths. For the Lambertian surface cases, the Mean Fractional Errors

of the models are 0.8, 1.5, and 1.9% for DISORT, 6SV2, and FLOTSAM, respectively. The BRDF cases show a larger Mean

Fractional Errors with 1.5, 6.6, and 4% for DISORT, 6SV2, and FLOTSAM, respectively.10

The DISORT and 6SV2 models show comparable computing time, between tenths of a second and seconds, but DISORT

can provide the solution at multiple viewing geometries for each atmospheric condition, while 6SV2 cannot. FLOTSAM is

very fast, with computing times of much less than a millisecond per profile. However, it should be noted that this model is

still under development and its accuracy could improve further. Moreover, all models present a tail of cases with larger errors

and/or computing times. It could be interesting to characterise these better to investigate if screening out those cases can be an15

option in data assimilation applications. Also, a fast tangent linear and adjoint computation is required for the integration of an

RTM in a variational data assimilation system.

The protocol, input and output data are available as a potential resource for interested developers and users of RTMs willing

to benchmark their models.

Code and data availability. The detailed protocol is available in PDF format. All inputs necessary to the benchmark are available as ASCII20

text files. The surface BRDF is available as a Fortran routine from the M. Mishchenko website https://www.giss.nasa.gov/staff/mmishchenko/

brf/. The VLIDORT reference results are available in NetCDF format.
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Figure 3. Histograms of the computed reflectances for the VLIDORT model. The top-middle panel is a histogram of all considered cases,

while the other panels classify the cases according to the value of θs (top-left), θv (top-right), φr = φv−φs (middle-left, “no φr” corresponds

to the cases where θs = θv = 0.0), surface type: BRDF or Lambertian (middle-middle), surface albedo value (middle-right), 550 nm aerosol

optical depth (bottom-left), wavelength (in µm, bottom-middle), and aerosol type (“no aer” corresponds to AOD=0, bottom-right). The

width of the classes is indicated in the bottom-right (∆y = 2.49× 10−3), and the maximum number of cases in a class is provided for each

histogram. The histograms are presented as “violin plots” with rotated density plot on each side. Mean (triangles) and median (circles) values

are indicated. Note that the scale used on the x-axis is different for each violin plot.
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Figure 4. Same as Fig. 3, but for the relative error of the DISORT and VLIDORT (scalar) models against the vector version of VLIDORT.

Please note the ±5% error range on the y-axis. The number of cases outside the range is indicated in Table 3. The width of the classes is

∆y = 4.98× 10−4. Note that the scale used on the x-axis is different for each violin plot but is the same for the two models within a violin

plot.
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Figure 5. Same as Fig. 3, but for the relative error of the FLOTSAM and 6SV2 models against the vector version of VLIDORT. Please

note the ±10% relative error range of the y-axis. The width of the classes is ∆y = 9.95× 10−4. The number of cases outside the range is

indicated in Table 4. Note that the scale used on the x-axis is different for each violin plot but is the same for the two models within a violin

plot.
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Figure 6. Same as Fig. 3, but for the runtime of the 6SV2 model. Please note the logarithmic scale on the y-axis.
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Figure A1. Two-dimensional density plots of the simulated reflectances for the 6SV2, FLOTSAM, DISORT, and VLIDORT (scalar) models

versus those of the VLIDORT (vector) model. The plots on the left column mix all 44,080 cases, while those in the middle and right columns

are for the Lambertian and BRDF surface cases, respectively.
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Figure A2. Histograms for the relative error of the VLIDORT (scalar) and DISORT models. Similar to Figure 4 but only for AOD≤0.05 on

the left column, and AOD≥1 on the right column (AOD at 550 nm). Relative error histograms are presented as a function of the scattering

angle. Scattering angle has been binned in intervals with similar quantity of data. The four aerosol types considered in this work are shown

in different panels.
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Figure A3. Histograms for the relative error of the FLOTSAM and 6SV2 models. Similar to Figure 4 but only for AOD≤0.05 on the left

column, and AOD≥1 on the right column (AOD at 550 nm). Relative error histograms are presented as a function of the scattering angle.

Scattering angle has been binned in intervals with similar quantities of datapoints. The four aerosol types considered in this work are shown

in different panels.
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Figure A4. Histograms for the polarised reflectance
(√

ρQ2 + ρU2
)

of the VLIDORT (vector) computed reflectances. Only for AOD≤0.05

on the left column, and AOD≥1 on the right column (AOD at 550 nm). Scattering angle has been binned in intervals with similar quantities

of datapoints. The four aerosol types considered in this work are shown in different panels.
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