
Anonymous Referee #1 

General comments: 
The authors provide a comprehensive, clear, and succinct description and documentation of the GCAM 
v5.1 model. They include eleven scenarios that span a wide range of socioeconomic and climate policy 
assumptions to illustrate the results. The manuscript provides a valuable resource for potential future 
users of the model, as well as other researchers wanting to understand the modeling structure, inputs, 
outputs, and data sources for comparison to other modeling frameworks. 
 
Scientific significance: While this article does not describe and document an entirely new modeling 
framework, the GCAM model and related analyses make a major contribution to our understanding of the 
linkages between energy, land, water, climate and socioeconomic systems. It is a widely used and widely 
cited modeling framework. Version 5.1 appears to represent a substantial advance and update in the data 
sources, individual model components, as well as the linkages between the key systems. I do have some 
suggestions, however, to improve the discussion of what is new relative to earlier versions. 
 
Scientific quality: The approach and results are robust. Data sources are valid and well documented. The 
modeling framework is compared to other models such as IMAGE and MESSAGE (Section 1), and the 
results of scenarios are compared with other projections (Section 4.3.7) and to historical data (Section 
4.7.1.) 
 
Scientific reproducibility: The GCAM model is an open source model with all code and inputs available 
on GitHub, as well as users guides and trainings. Each individual model component is concisely 
documented and described, with resources for additional information as needed. The authors provide 
information on how to obtain the model in the manuscript. 
 
Presentation quality: The authors do an excellent job succinctly and clearly describing the model structure 
and data sources, and summarizing the key results of their SSP and 2.6 W/m2 scenarios. 
 
Author Response: Thank you for the helpful comments.  
 
Author Changes: We have revised the manuscript in response to your comments and that of the other 
referee. 
 
Specific comments: 
 
page 2, lines 14-15: Can you be more specific or quantify what is meant by "computationally 
inexpensive." Very briefly, what are the general system requirements and associated run time for a 
scenario (e.g., run on the order of minutes, hours?) Can you give the reader a ballpark idea of the run 
time, say with a standard desktop/laptop versus a higher-end computing cluster? You highlight the 
growing complexity and computational requirements at the end of the paper, but what does it require now 
for this model version? 
 
Author Response: A single 100-year simulation using GCAM runs in 10-15 minutes on a laptop. More 
complex options, e.g., limiting radiative forcing to a particular level, requires numerous sequential 100-
year simulations increasing the run time.  
 
Author Changes: We have added a footnote indicating runtime: “A single 100-year simulation using 
GCAM runs in 10-15 minutes on a laptop. More complex options, e.g., limiting radiative forcing to a 
particular level, requires numerous sequential 100-year simulations increasing the run time.” 
 



page 3: In this section, I would like to see some additional discussion of what the critical updates are to 
version 5.1 relative to earlier versions. The authors briefly touch on the differences in the SSP results due 
to updates in technology costs relative to work published in Muratori (2017). However, can you highlight 
here, and then briefly summarize in the discussion, the most significant updates to this version of GCAM? 
I would suggest including that early on in Section 2, or flagging major changes from previous GCAM 
versions in the individual sections (energy, land, etc) where appropriate. The documentation is very 
comprehensive, but it was often unclear what was new versus what has been in the model database in 
previous versions. Please be more explicit about what is new. 
 
Author Response: We have added a new subsection, now numbered 2.4, that summarizes the critical 
updates between this version of GCAM and GCAM4. 
 
Author Changes: We have added a new subsection:  
 
“Over time, GCAM has evolved to incorporate new features and more detail, such as more detailed land 
use (starting with GCAM v3), increased regional resolution (starting with GCAM v4), and incorporating 
water demand (starting with v5). The most recent updates (relative to GCAM v4) include: 

• Incorporating water demands, 
• Changing the land regions to be based on water basins, instead of agro-ecological zones,  
• Including multiple agricultural management practices, which enables intensification,  
• Including five alternative socioeconomic pathways,  
• Updating to a newer version of the climate model, and 
• Including a new data processing system.” 

 
 
page 4, lines 8-17: I would like to see a bit more detailed discussion and additional specifics on the share 
weights in terms of their role in both model calibration, but also to what extent these can constrain future 
technology and market shifts. This could be here, or in the individual sections. This may be something 
more for the discussion section at the end, but given the long time horizon of the model, to what extent 
are the share weights relaxed or overwritten for future periods. The authors note that these are "on 
occasion over-written." But, how would user know where and when share weight may be constraining 
results versus where they can be overwritten to enable more transformative market shifts? How does a 
user know when a share constraint may be constraining the model in way that perhaps make it harder to 
reach deep decarbonization targets, for example? These are important model levers and are often not 
documented with the same rigor and transparency as something like technology cost, for example. 
 
Author Response: The reviewer is correct that share weights do influence future technology deployment. 
One important note regarding share weights is that they are a variable that model users can adjust as they 
see fit to create different scenarios from those released in GCAM 5.1, just as technology costs and 
performance can be adjusted by users. 
 
For simplicity, our general philosophy for share weights in GCAM 5.1 is to maintain them at their 
calibrated values, which ensure the model replicates history. We do, however, make adjustments to this 
approach in at least two circumstances: 

(1) We consider that the past is not a good analog for the future, as with emerging technologies 
(e.g., solar, wind) where information barriers or lack of infrastructure may prevent their 
adoption today, but those factors will likely be ameliorated with time, or 

(2) The specific scenario being produced necessitates changes to the share weights. For example, 
we have adjusted the renewable share weights in the SSP1 scenario to reflect stronger 
preferences for wind and solar.  



It is also important to note that one goal in GCAM 5.1 development is transparency regarding the many 
assumptions in the model. We have constructed an approach to data and assumption development that 
allows users and those interpreting the model to easily find key assumptions, such as those regarding 
share weights, in the input files or in the GCAM data system. 
 
Author Changes: We have added a few sentences to the manuscript elaborating on how share weights 
are chosen/used: “The general philosophy in GCAM is to maintain share weights at their calibrated values 
(which ensure the model replicates history) unless: 

(1) We consider that the past is not a good analog for the future, as with emerging technologies 
(e.g., solar, wind) where information barriers or lack of infrastructure may prevent their 
adoption today, but those factors will likely be ameliorated with time, or 

(2) The specific scenario being produced necessitates changes to the share weights (e.g., solar 
and wind in the SSP1).” 

 
page 6, lines 32-34: I would suggest flagging that this approach, while a fine approximation at a general 
level, does not capture the changes in emissions factors of non-CO2 emissions that may be induced by 
policies and air emissions control technologies that individual regions, countries, etc. may adopt in 
specific time periods. 
 
Author Response: Yes, while this approach doesn’t explicitly represent individual policies, it is designed 
to capture the general trend that emissions policies and emissions control technologies increase with 
income. 
 
Author Changes: We have added a sentence with this caveat: “This approach is designed to capture 
general trends in emissions factors, but does not explicitly represent individual technologies or policies 
that may be adopted.” 
 
page 7, line 6: The resources supply curves are now 20 years old. Are there plans to update these? 
 
Author Response: We model resources, not reserves, and estimates of resources tend to change less over 
time. We have looked at some updated curves (Rogner et al. 2012) and there is little change in oil & gas 
resources. Coal supply curves in this publication seemed to only include reserves, a much smaller number 
than resources, making it difficult to update consistently.  
 
Author Changes: No changes made. 
 
page 7, line 8: All other biomass energy is supplied from the land component, correct? 
 
Author Response: Yes, and these sources of biomass are discussed later in this section. 
 
Author Changes: We have added a sentence clarifying this: “other sources of biomass energy are 
supplied by the land component and discussed later.” 
 
page 7, line 24: Do liquid refining plants include both petroleum and biofuels? If so, are biofuels plants 
modeled separately? 
 
Author Response: Yes, we include several different types of refineries, including petroleum, biofuels, 
coal-to-liquids, and gas-to-liquids. Biofuels plants are modeled separately, with separate cost and 
performance characteristics. 
 



Author Changes: We have added additional information on refineries, and energy transformation in 
general: “For example, the energy transformation sectors include a variety of technologies representing 
different electricity generation facilities (including different fuel sources and technologies), different 
refineries (e.g., petroleum, bioliquids, coal-to-liquids, gas-to-liquids), different gas processing facilities, 
and different hydrogen production facilities. Each technology is specified with a different set of inputs, 
costs, and performance characteristics.” 
 
page 8, line 9: It would be useful to know how many crops are modeled, and maybe list the major 
commodities. 
 
Author Response: We include all crops represented in the FAO database, but aggregate them to 15 
commodity categories. 
 
Author Changes: We have added a sentence at the beginning of the land section with this information: 
“GCAM includes all commodities reported by the FAO, but aggregates them into 15 commodity classes 
(e.g., Corn, Rice, Wheat, SugarCrop, OilCrop, Forest, Pasture, etc.).” 
 
page 8, line 21-22: Is there a mechanism to represent cropland that is idle/fallow in a particular period? 
 
Author Response: We do include “other arable land” which includes fallow cropland. However, we do 
not explicitly include rotations that alternate fallow with crops.  
 
Author Changes: We have added “other arable land” to the list of land cover types.  
 
page 9, line 11: What it meant by bioenergy constraints? Lower or upper volume mandates to meet a 
renewable or low carbon fuel standard? Or are these done as shares of liquid fuel markets? 
 
Author Response: GCAM can do this in any of the ways mentioned. We can impose a lower or upper 
bound, specified in EJ, for bioenergy in any region or time period. We can also impose a policy that 
specifies a share of liquid fuels produced by bioenergy or sets an upper bound on the amount of bioliquids 
consumed.  
 
Author Changes: We have added a parenthetical note listing these options: “(e.g., lower or upper bounds 
on total bioenergy consumption or the share of bioenergy in liquid fuels)” 
 
page 10, line 3: GCAM models water supply as an unlimited resource, but does the model provide the 
capability to constrain or price water use. It seems there are prices for municipal water use. Are there any 
prices, or the ability to price or limit quantities of water for cooling technologies or irrigation? 
 
Author Response: Yes, we include a price of water that can be changed easily in the model. 
Additionally, the capability exists to include a constraint on water quantity. We intend to release files that 
facilitate these sorts of experiments in the next release. 
 
Author Changes: We have added a sentence to this paragraph on prices: “The price for this resource can 
be specified by the user.” 
 
page 10, lines 11-20: The authors introduce the term blue water. It might be helpful to briefly define the 
terms blue, as well as green and grey water use. Otherwise, I’d suggest omitting. 
 
Author Response: We have opted to omit the term from the paper. 
 



Author Changes: We have removed the references to blue and green water from this paragraph. 
 
page 10, lines 27: There is mention of regions that primarily use seawater for electric power cooling 
system demands. It is unclear, however, whether the water component of the model differentiates between 
water sources in terms of groundwater, surface water, or water types, fresh, brackish, saline, reuse. Please 
clarify if these differences are captured or not. Otherwise, I think it’s important to highlight in model 
results that water withdrawals and consumption include all freshwater as well as seawater, since other 
energy-water analysis may exclude saline/seawater withdrawals. 
 
Author Response: In the version described in this paper, GCAM does not distinguish between types of 
water, lumping all into a single “resource”. It is possible to separate water supply into freshwater, 
groundwater, seawater, etc. We are working on facilitating this separation and will release this capability 
to the community at a later date. 
 
Author Changes: We have modified the sentence describing water resources in response to this 
comment: “In GCAM v5.1, water supply is an unlimited resource, including all sources of water (e.g., 
freshwater, groundwater, seawater).” 
 
page 12, line 25: Nice. The example of bioenergy as an example of a coupled system is well described 
and highlights ones of the key strengths of this type of model, which is the interactions between systems. 
 
Author Response: Thank you! 
 
Author Changes: No changes made 
 
page 13, line 12: Maybe at the end of this section perhaps briefly highlight other examples where the 
components are tightly coupled. 
 
Author Response: We have added some more examples. 
 
Author Changes: We have added an additional paragraph: “Fertilizer is another example of a tightly 
coupled system, with its production determined by the energy system and consumption determined by the 
land system. Additionally, many other aspects of GCAM create direct or indirect linkages among sectors 
(e.g., water demand is linked to the energy and agricultural production, climate is linked to emissions 
produced by the energy and land systems).” 
 
page 16, line 5: Please clarify what causes the increases in pollution controls, is this solely due to the 
changes in emissions factors in response to growth in per capita-GDP? 
 
Author Response: Yes, this due to the decline in emissions factors as a result of increased GDP.  
 
Author Changes: We have modified this sentence to clarify: “increases in pollution controls induced by 
rising incomes.” 
 
page 17, line 24-25: The data is from CDIAC, but there is no reference. Please provide a citation or link 
to the website (this data is being transitioned to a new data archive site, correct?) 
 
Author Response: Yes, the data is moving to a new site.  
 
Author Changes: We have added a link to the website where the data is currently. 
 



page 19, line 10-29: See my earlier comments about summarizing the most significant advances in the 
version 5.1 of GCAM. I think you could tighten up the discussion in paragraphs 2-4 of the discussion to 
create some space if you are word limited, and still get those key points across to the reader. 
 
Author Response: See above 
 
Author Changes: We have added an additional subsection in section 2, as described above. Additionally, 
we have added a sentence to this section: “GCAM v5.1 describes a new version of GCAM, including 
several major enhancements from previous versions (e.g., water demand, multiple agricultural 
management practices, new land regions, new data system, newer climate model, alternative 
socioeconomic pathways).” 
 
page 27, Figure 2: In the caption, maybe describe what the regions are based upon, e.g., are they based on 
AEZs? Other than getting across a general sense of the spatial scale this graph doesn’t convey too much. 
Perhaps add some descriptions in the Figure caption regarding the basis for each of the regional 
breakouts. 
 
Author Response: We have added information on the regions to the figure caption. 
 
Author Changes: We have added this to the caption: “Regions are based on geopolitical boundaries for 
energy and economy, on water basins for water, and on a combination of geopolitical boundaries and 
water basins for land.” 
 
page 30, Figure 6: In the caption, do you mean that data are aggregated up for both land allocation and 
crop types? Or just for land allocation? Are there more crop types than this? See my earlier comment for 
page 8. 
 
Author Response: This note only applies to land allocation. The only crops missing from the top row are 
biomass and Forest, which are modeled in a different unit and thus cannot be easily included here. (Note: 
we had erroneously included forest in this figure in the initial submission, but have removed it now) 
 
Author Changes: We have clarified the aggregation and the crops in the caption: “Note bioenergy and 
forest are excluded from agricultural production (top) as they are modeled in different units, EJ/yr and 
m3/yr, respectively. Land cover data (bottom) are aggregated...” 

 
page 32, Figure 10: The letters labels seem unnecessary, (a oil, b natural gas). It would be cleaner if you 
left them off the legend. 
 
Author Response: Thank you for the suggestion. 
 
Author Changes: We have removed these letters. 
 
page 34, Figure 12: Can you make the data points bigger? It’s hard to make out the ones on the line. Also, 
wasted space with the lower right quadrant. I’d add something or drop the CDIAC versus GCAM data 
and just summarize in words. 
 
Author Response: Thank you for the suggestion. 
 
Author Changes: We have improved the figure in response to this comment. 
 
page 35, Figure 13: This mapping onto the AR5 data is very useful for comparison. 



 
Author Response: Thank you! 
 
Author Changes: No changes made. 
 
Technical corrections: 
In the references, please provide the links for the data from EIA, EPA, FAO AQUASTAT, IBNET, IEA, 
IHA, etc... 
 
Author Response: We have added these links. 
 
Author Changes: We have added links within each citation in the reference section. 
 
References need a lot of clean up, e.g., Kriegler, this looks to be a thesis. Please cite as such. Macknick et 
al is missing information, this is a report. 
 
Author Response: We have cleaned up the references, including more information on URLs, DOI, 
Universities, etc. where appropriate. 
 
Author Changes: We have added additional information to the Kriegler citation (university, department, 
URL) and the Macknick citation (DOI, city). 
 

Anonymous Referee #2 

This manuscript briefly introduced the GCAM model structure, the core systems (socioeconomic, 
energy, agricultural and land use, water, climate), and the databases. 
 
The authors provided 11 scenarios based on the combinations of different socioeconomic and climate 
policy assumptions, and illustrated the results. Overall, the manuscript was useful for the readers to 
understand this model, and the data source and references are valid. I would recommend it to be published 
after the following issues are clarified. 
 
Author Response: Thank you for the helpful comments. 
 
Author Changes: We have revised the paper in response to your comments and those of another referee. 
 
Generally comments 
Since the new version of GCAM v5.1 is introduced in this manuscript, a summary of updates from the 
previous version is necessary to be provided clearly, in aspects of model structure, databases, linkages, 
etc. 
 
Author Response: Thank you for the suggestion. 
 
Author Changes: We have added a new subsection to section 2 based on this comment and that of 
another reviewer. Additionally, we’ve added a sentence to the discussion summarizing these updates. 
 
The 11 scenarios were analyzed mainly based on the global scale. I would suggest the authors to provide 
some country-level discussion or analysis. I think that will be helpful for us to understand the discrepancy 
in changes among regions or countries estimated by the model. 
 



Author Response: Thank you for the helpful suggestion.  
 
Author Changes: We have added three new figures (one each for energy, land, and water results) and 
paragraphs describing the results in Section 4.  
 
The new energy text:  
“Energy consumption varies across region, in terms of both total consumption and fuel mix (Figure 6). 
Furthermore, these regional differences change over time due to differences in socioeconomic growth 
across regions, so the largest consumers today are not the largest consumers in the future. For example, 
the USA and China have the highest primary energy consumption in 2010, with 86 and 102 EJ/yr, 
respectively. In 2100, however, India and Africa_Western have the highest in energy consumption in both 
the CORE (164 and 127 EJ/yr, respectively) and CORE-26 scenarios (75 and 86 EJ/yr, respectively). For 
fuel mix, there are regional differences in the share of fossil fuels used in 2010, with much lower shares in 
Africa_Western and Africa_Eastern than the rest of the world. However, in 2100, the biggest differences 
are across scenarios and not across regions, with fossil fuel consumption ranging from 70-95% of total 
primary energy in the CORE scenario and much lower use in the CORE-26.” 
 
The new land text: 
“There are significant differences in land use across regions (Figure 8). However, regions that have large 
shares of cropland today (e.g., India, Europe, China, USA MidWest, Argentina) also have large shares of 
cropland in the future in both the CORE and CORE-26 scenarios. In the CORE scenario, bioenergy land 
is spread throughout the world’s agricultural producing regions with only 16 of the 384 regions in GCAM 
devoting more than 10% of their land to bioenergy and only 1 very small region in Southeast Asia 
devoting more than 20%. In the CORE-26, higher amounts of bioenergy land are required, resulting in 
shares of bioenergy land ranging from 0% to 58%. Note that some of the regions with large shares of 
bioenergy land are small in size. The largest amounts of bioenergy land in absolute value are in the Nile 
River basin in Africa_Eastern and the Niger River basin in Africa_Western, with 470 and 459 thous km2 
of bioenergy land in 2100 in the CORE-26, respectively. Only 10 region/basin combinations have more 
than 150 thous km2 of bioenergy; these region/basins are found in Africa_Eastern, Africa_Western, India, 
Canada, and Russia.” 
 
The new water text: 
“Water withdrawals differ significantly across region (Figure 10). The basins with the largest irrigation 
water withdrawals in 2010 are the Ganges, the Indus, and the Sabarmati. In 2100, the largest irrigation 
water withdrawals come from these three basins plus the Nile River basin (in both the CORE and CORE-
26) and the Arabian Peninsula (in the CORE-26 only). The two largest regions in terms of non-irrigation 
water withdrawals are the USA and China in 2010 and India and China in 2100 in both the CORE and 
CORE-26 scenarios.” 
 
Specific comments 
Page 2 Line 20, “There are a number of models in the community with similar overall scope to GCAM, 
although each has a unique structure and focus.” Could the authors provide a summary about what the 
unique ability of GCAM have? Any advantages and disadvantages about all the models? 
 
Author Response: There have been a number of papers that have compared GCAM to other models, 
both in terms of results and structure. For example, Bauer et al. (2018) provides a comparison between 
GCAM and 10 other models in terms of model type, regional resolution, technology availability, and 
basic economic structure. Popp et al. (2017) provides a comparison of the land component of five models. 
Rao et al. (2017) provides a comparison of the non-CO2 emissions representation in five models, 
including information on input data and drivers of emissions. 
 



Author Changes: We have added a sentence referring the reader to these comparisons: “Several recent 
papers provide comparisons of GCAM to these models and many others, including discussions of model 
structure, input data, and results (Popp et al. 2017; Bauer et al. 2018; Rao et al. 2017).” 
 
Page 4 Line 12, “The exact share a given option receives in GCAM depends on the logit exponent and the 
share weight”, What is the difference between logit exponent and the share weight? I would suggest the 
author to provide the formula to demonstrate how the logit exponent and share weight influence on the 
decision making. 
 
Author Response: The logit exponent dictates the width of the distribution around cost or profit, 
influencing the extent to which economics influence shares. The share weight captures unmeasured or 
uneconomic factors influencing decisions. Larger logit exponents result in decisions more closely tied to 
the economics, meaning the least cost or highest profit option will take most of the share. With lower 
logit exponents, the share weights have a stronger influence; for example, with a logit exponent of zero 
shares will be determined solely by the share weights. 
 
Author Changes: We have added the share formula to the text to help clarify this point. 
 
Page 6 Line 3, “whereas depletable resources are indicated as cumulative resource quantities (in EJ), 
which are drawn down in each time period.” How to determine the total available amount for depletable 
resources? Is it fixed or changeable? 
 
Author Response: The total amount of a depletable resource available for the entire 100-year simulation 
is fixed. In each period, the amount remaining is updated to reflect any consumption in the prior time 
period.  
 
Author Changes: We have revised this paragraph to be clearer: “Resources may be renewable (e.g., 
wind, solar), or depletable (e.g., fossil fuels and uranium). Renewable resource supply curves are 
indicated in EJ per year, whereas depletable resources are indicated as cumulative resource quantities (in 
EJ), which are drawn down in each time period as each resource is consumed. Resource costs, including 
depletion-related increases in fossil resource prices, may be counter-acted by exogenous technical change, 
which lowers extraction costs.” 
 
Page 6 Line 21, “the additional cost is equal to the emissions price multiplied by the amount of emissions 
of the specified species released per unit of output.” How is the emission price calculated in the model for 
CO2 and non-CO2? Is it related to the control measures of pollutants or their harmful effects? Will it 
change over time? 
 
Author Response: The emissions price is determined by the type of policy imposed and can change over 
time. In a reference or no policy scenario, the emissions price is zero for all gases. In the 2.6 scenarios 
shown in this paper, there is a price on CO2 chosen to ensure radiative forcing is limited to 2.6 W/m2 in 
2100.  
 
Author Changes: We have added an additional clarifying sentence: “Emissions prices can be 
exogenously specified or generated by the model if a constraint or target is imposed; these prices can vary 
across time, region, and gas.” 
 
Page 6 Line 31, the emission factor is actually related to the control application rate. When control rate is 
high, the emission factor is low. How was it considered in the model? 
 



Author Response: Both are possible. The user can read in emissions factors directly that implicitly 
reflect control rates. Or, a control rate can be calculated by the model and used to modify the emissions 
factor. The default approach is the latter, where the control rate is linked to GDP per capita for pollutants 
and CO2 prices for GHGs. 
 
Author Changes: We have added a clarification on control rates to this section: “In future years the 
emission factor may evolve as control rates change in response to growth in per-capita GDP and/or 
carbon pricing.” 
 
Page 7 Line 15, “Final demand sectors include buildings (residential and commercial), transportation 
(passenger and freight), and industrial (fertilizer, cement, and general industry) sectors.” Have the 
detailed transportation types been considered, such as aviation, railway, in-land water, shipping, etc.? 
Will the detail industrial sectors be included in future? 
 
Author Response: Yes, we have included detailed transportation types, including aviation, rail, in-land 
water, and shipping. For industrial, we have currently separated cement and fertilizer production. We are 
continually enhancing GCAM, but if/when more detailed industrial sectors will be included is uncertain 
and depends on a range of priorities.  
 
Author Changes: We have added a parenthetical note clarifying the detail on transportation: “(passenger 
and freight, including road, rail, air, and shipping)” 
 
Page 10 Line 2, “water supply is an unlimited resource” The water supply is very limited in some regions, 
such as desert. Will it be an issue? 
 
Author Response: There are studies that show that water scarcity could be a problem in many regions, 
see for example Hejazi et al. (2014). We are working on developing constraints on water supply that will 
be included in future model releases. 
 
Author Changes: We have added a citation to the Hejazi et al. article in response to this comment and 
the next comment. 
 
Page 19 Line 17, “Research versions of GCAM already include new dynamics such as the effects of 
climate on water supplies, energy demands, and crop yields.” Any references to provide here will be good 
 
Author Response: We have added references. 
 
Author Changes: We have added references. 
 
Figure 4 and Figure 9, since there are no differences between CORE and CORE-26 (barely see the dashed 
line), I would suggest just use one series in the plot, for both CORE and CORE-26 
 
Author Response: Thank you for the suggestion. 
 
Author Changes: We have removed the additional series and renamed the current series “CORE and 
CORE-26”. 
 
Figure 5, two “geothermal” here, i and I 
 
Author Response: Thank you for catching this issue.  
 



Author Changes: We have removed the letters, so there is only a single “geothermal” now. 
 
Figure 5 and Figure 10, I would suggest to delete the first letter for each series label 

Author Response: We have removed the letters. 
 
Author Changes: We have removed the letters. 
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Abstract. This paper describes GCAM v5.1, an open source model that represents the linkages between energy, water, land, 
climate, and economic systems. GCAM is a market equilibrium model, is global in scope, and operates from 1990 to 2100 in 10 
five-year time steps. It can be used to examine, for example, how changes in population, income, or technology cost might 
alter crop production, energy demand, or water withdrawals, or how changes in one region’s demand for energy affect energy, 
water, and land in other regions. This paper describes the model, including its assumptions, inputs, and outputs. We then use 
eleven scenarios, varying socioeconomic and climate policy assumptions, to illustrate the results from the model. The resulting 
scenarios illustrate a wide range of potential future energy, water, and land uses. We compare the results from GCAM v5.1 to 15 
historical data and to future scenario simulations from earlier versions of GCAM and from other models. Finally, we provide 
information on how to obtain the model. 

1 Introduction 

Researchers and decision makers are increasingly interested in understanding the many ways in which human and Earth 
systems interact with one another, at scales from local (e.g., a city) to regional to global (Palmer and Smith, 2014). For example, 20 
how might new emerging technologies such as photovoltaic cells or new batteries influence the way that energy is consumed 
and used, and what might this mean for greenhouse gas emissions, air pollution, international markets for fossil fuels, and 
access to energy? How might changes in population, income, or technology cost alter crop production, energy demand, or 
water withdrawals? How do changes in one region’s demand for energy affect energy, water, and land in other regions?  
 25 
A number of modeling tools and frameworks have been established to explore questions such as these, representing the multiple 
interactions among human and Earth systems (Calvin and Bond-Lamberty, 2018; Weyant, 2017). This paper introduces the 
most recent version of one such model, GCAM v5.1. GCAM represents the behavior of, and complex interactions between 
five major systems – energy, water, land, climate, and the economy – at global and regional scales. GCAM simulates changes 
in these systems for decades into the future. GCAM has its roots in the Edmonds-Reilly model (Edmonds and Reilly, 1983b, 30 
1983a, 1983c) developed in the late 1970s and early 1980s and has been continuously updated since then (Kim et al., 2006; 
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Wise et al., 2009, 2014a). Over time, as scientific questions have become more complex, GCAM has also evolved in 
complexity, transitioning from a focus solely on energy and CO2 emissions to an examination of questions at the intersection 
of energy, water, land, socioeconomics, and climate. 
 
The model represents all of these systems in a single, integrated computational platform rather than linking among models 5 
operating in different platforms, although some components (e.g., the climate system) can be run individually as well. This 
allows insights that are not possible in single sector or single system models. Models such as GCAM are designed to answer 
what if questions about the future; that is, they help us understand how the future will evolve under a particular set of conditions 
and how the system will change under the influence of external factors. For example, users can examine the influence of 
changes in socioeconomics or policy on energy, water, and land in GCAM (as shown in Section 4). GCAM can also be used 10 
to explore the implications of changes in one region on other regions (e.g., Wise et al. (2014b)). 
 
GCAM is computationally inexpensive1 enabling the exploration of multiple scenarios (Calvin et al., 2014, 2017; Graham et 
al., 2018) and large ensembles (Lamontagne et al., 2018) to develop robust insights given the significant uncertainty in future 
conditions. Individual component modules in GCAM are designed to capture key characteristics of the underlying systems; 15 
however, because its focus is on the interactions among systems, it does not include the level of detail found in sector- or 
process-specific models.  
 
There are a number of models in the community with similar overall scope to GCAM, although each has a unique structure 
and focus. The IMAGE (Stehfest et al., 2014) model also contains a dynamic-recursive energy system module, which is soft-20 
linked with a detailed land-use module, representing a different tradeoff between integration and physical detail. There are a 
number of models with some form of inter-temporal optimization such as DNE21 (Akimoto et al., 2010), REMIND (Kriegler 
et al., 2017), MESSAGE-GLOBIOM (Fricko et al., 2017), and WITCH (Bosetti et al., 2007). Economic structures also vary, 
from partial-equilibrium for MESSAGE-GLOBIOM and IMAGE to computable general equilibrium for AIM/CGE (Fujimori 
et al., 2017) and ENV-Linkages (Chateau et al., 2014). Several recent papers provide comparisons of GCAM to these models 25 
and many others, including discussions of model structure, input data, and results (Bauer et al., 2018; Popp et al., 2017; Rao 
et al., 2017). 
 
In the remainder of this paper, we provide an introduction to and an overview of GCAM v5.1, released on July 9, 2018.  Section 
2 describes the model, including each of its component parts. Section 3 describes some simulations to illustrate the capabilities 30 
of the model. Model results are highlighted in Section 4. Section 5 is focused on discussion and conclusions. Finally, Section 
6 provides information on how to obtain the model. This paper provides a general overview of the model. More detailed 
documentation is available on-line at http://jgcri.github.io/gcam-doc.  

                                                        
1 A single 100-year simulation using GCAM runs in 10-15 minutes on a laptop. More complex options, e.g., limiting 
radiative forcing to a particular level, requires numerous sequential 100-year simulations increasing the run time. 
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2 Model Description 

2.1 Overview of GCAM 

GCAM represents five different interacting and interconnected systems: energy, water, land, socioeconomics, and climate 
(Figure 1). These systems are represented at a variety of spatial scales (Figure 2). For example, economic and energy systems 
are represented at 32 geopolitical regions, which is sufficient to gain many insights about broad international socioeconomic 5 
and energy dynamics. The land and water system, however, is subdivided into water basins (resulting in 384 land-water 
regions), because of the need to link water and agriculture in order to effectively represent the interactions between these 
systems (e.g., the implications of future droughts, or the hydrological implications agriculture production). 

2.2 The GCAM Core 

The GCAM core is the model component where the economic decisions and dynamic interactions between the various systems 10 
are represented (Figure 3). It is written in C++, uses XML input files, and generates a hierarchical output database.  
 
The operating principle for GCAM is that of market equilibrium. Representative agents in GCAM use information on prices, 
costs, and other relevant factors to make decisions about the allocation of resources. These representative agents exist 
throughout the model, for example for regional electricity sectors, regional refining sectors, regional energy demand sectors 15 
(e.g., a representative residential building), and agents who allocate land among competing uses within any given region. 
Markets are the means by which these representative agents interact with one another. Agents pass supply and demand for 
goods and services into the markets. Markets exist for physical flows such as electricity or agricultural commodities, but they 
also can exist for other types of goods and services, such as tradable emissions permits. GCAM solves for a set of market 
prices such that supplies and demands are equal for all markets in the model. The GCAM solution process involves iterating 20 
on market prices until this equilibrium is reached within a user-specified tolerance level.  
 
As an example of this process, in any single model period, GCAM derives a demand for natural gas starting with all of the 
uses to which natural gas might be put, such as passenger and freight transport, power generation, hydrogen production, 
heating, cooling and cooking, fertilizer production, and other industrial energy uses. Those demands depend on the external 25 
assumptions about, for example, electricity generating technology efficiencies, but also on the price of all of the commodities 
in the model. GCAM computes the supplies of all of the goods and services in the model. For example, it calculates the amount 
of natural gas that suppliers would like to supply given their available technology for extracting resources, and the market 
price. The model sums all of the supplies and demands for commodities and adjusts prices, so that in every market during that 
period supplies of everything from rice to solar power match demands. 30 
 
GCAM is a dynamic recursive model, i.e., decision-makers base their decisions only on currently available information rather 
than optimizing over the full future, as is the case in intertemporal optimization models. For long-lived capital stocks, decision-
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makers in GCAM factor in potential future costs and revenues but do this assuming today’s market prices. After it solves each 
period, the model uses the resulting state of the world, including the consequences of decisions made in that period (e.g., 
resource depletion, capital stock retirements and installations, changes to the landscape, emissions into the atmosphere), as a 
starting point for the next time step. 
 5 
Decision-making throughout GCAM uses a logit formulation (Clarke and Edmonds, 1993; McFadden, 1973). In such a 
formulation, options are ordered based on preference, with either cost (as in the energy system) or profit (as in the land system) 
determining this ordering. However, the single best choice does not capture the entire market. A variety of factors not captured 
in the model, such as individual preferences, local variations in cost/profit, and simple happenstance, cause some of the market 
to go to alternatives that, based on their cost or profit alone, are theoretically inferior choices. The exact share a given option 10 
receives in GCAM depends on the logit exponent and the share weight:  

!" =
$"%"&

∑ $(%(&)
(*+

 

where si, ci, $" are the share, cost, and share weight of technology i, respectively, and , is the logit exponent.2 Logit exponents 

are exogenously-specified and dictate the degree to which cost or profit determines share; exponents that are larger in absolute 
magnitude result in more winner-take-all behavior. Share weights are mostly calculated in the historical period to ensure that 15 
GCAM replicates historical data; however, these are on occasion over-written in future periods, for example, to represent a 
scenario where a now relatively new technology becomes widely available. The general philosophy in GCAM is to maintain 
share weights at their calibrated values (which ensure the model replicates history) unless: 

(1) We consider that the past is not a good analog for the future, as with emerging technologies (e.g., solar, wind) 
where information barriers or lack of infrastructure may prevent their adoption today, but those factors will likely 20 
be ameliorated with time, or 

(2) The specific scenario being produced necessitates changes to the share weights (e.g., solar and wind in the SSP1). 

2.3 The GCAM Data System 

The GCAM data system produces inputs for the dynamical core. The data system is written as an easily-installable R package, 
uses CSV input files, and generates XML files used as inputs to the GCAM core. These files contain both historical information 25 
used to initialize GCAM, as well as parameters that govern changes in the future. GCAM is an input-driven model (Kim et al., 
2006) where the specific model regions, sectors, and technologies are dynamically created as their data specifications are 
parsed. As a result, many user changes are implemented via changes to the data system and do not require changes in the 
dynamical core.   
 30 

                                                        
2 For some sectors, GCAM uses a slight variation on this formula (see http://jgcri.github.io/gcam-doc/choice.html). 
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For historical information, the GCAM data system starts with country-level inventory data on energy production and 
consumption, agricultural production and consumption, land use and land cover, water demand, and emissions of 24 species. 
These data are aggregated to GCAM regions, commodities, and sectors. Adjustments are made to the data as needed to fill in 
missing information and to ensure that supplies and demands balance during the historical period (1990-2010). For the future 
parameters, the GCAM data system uses information about population and labor productivity, information about technology 5 
cost and performance, information about resource bases, and information on non-CO2 mitigation potential. These data are also 
aggregated and mapped to GCAM regions, technologies and sectors. 
 
Additional information on the data used in each module is described in the sections below. Additional information on the data 
system’s code and processing steps is given in Bond-Lamberty et al. (2018). 10 

2.4. Major Changes from Previous Versions 

Over time, GCAM has evolved to incorporate new features and more detail, such as more detailed land use (starting with 
GCAM v3), increased regional resolution (starting with GCAM v4), and incorporating water demand (starting with v5). The 
most recent updates (relative to GCAM v4) include: 

• Incorporating water demands, 15 

• Changing the land regions to be based on water basins, instead of agro-ecological zones,  

• Including multiple agricultural management practices, which enables intensification,  

• Including five alternative socioeconomic pathways,  

• Updating to a newer version of the climate model, and 

• Including a new data processing system. 20 

2.5 Socioeconomics 

The scale of human systems in GCAM is set by two variables, population and the Gross Domestic Product (GDP). Population 
is an externally prescribed input to the model. GCAM requires values for population for each of the 32 geopolitical regions in 
each simulation period, both historical and future. GDP in each region and each period is a function of the previous period’s 
GDP, the size of the labor force, and the labor productivity growth rate for that period. The size of the labor force is determined 25 
by the population size and the exogenously-specified labor force participation rate. The labor productivity growth rate is an 
externally prescribed value, which measures inflation-adjusted growth in the value of goods and services produced, the method 
originally used by Edmonds and Reilly (1983a). The initial, historical year GDP value is a model input. At present 
socioeconomic variables, population and GDP, are independent of other GCAM components. That is, while population and 
GDP are determinants of activity levels in energy, water, land, and climate modules, activities in those sectors do not influence 30 
either population or GDP in GCAM v5.1.  
 

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at:
 0.25" + Indent at:  0.5"

Deleted: 4 



6 
 

Population data is from the Shared Socioeconomic Pathway 2 (SSP2), “Middle-of-the-Road,” scenario, as developed by KC 
and Lutz (2017). Initial year GDP, labor productivity growth rates, and labor force participation rates are derived to match 
external GDP data and forecasts from three sources: 1) the USDA (2015) for 1990, 2005, and 2010; 2) the International 
Monetary Fund (2014) for 2011 to 2020; and 3) Delink et al. (2017), using the SSP2, for 2021 through 2100. 
 5 
The two primary outputs are population and GDP by region and time period. GDP is provided in constant United States dollars 
for all regions. For non-U.S. regions, GDP is available at either market exchange rates (MER) or purchasing power parity 
(PPP). 

2.6 Energy 

The energy system of GCAM includes a comprehensive representation of energy production, transformation, distribution, and 10 
use, in each of 32 geopolitical regions. It starts with the resource bases of nine primary fuels in each region, the outputs of 
which pass through a series of energy handling, transformation, and distribution processes, finishing with the consumption of 
primary and final energy commodities by end-use sectors. The fundamental drivers of the energy system in each region are 
the population and GDP, which set the scale of the demands in the end-use sectors. Along any energy supply chain, the outputs 
of each modeled process are the inputs to the next. 15 
 
For most primary fuels, resource production is modeled with exogenous supply curves, which prescribe the availability of 
energy production as a function of the energy price. Resources may be renewable (e.g., wind, solar), or depletable (e.g., fossil 
fuels and uranium). Renewable resource supply curves are indicated in EJ per year, whereas depletable resources are indicated 
as cumulative resource quantities (in EJ), which are drawn down in each time period as each resource is consumed. Resource 20 
costs, including depletion-related increases in fossil resource prices, may be counter-acted by exogenous technical change, 
which lowers extraction costs.  
 
Aside from primary resource production, each sector, or process, in the energy system is represented with explicit technologies 
that consume inputs and produce outputs that then serve as inputs to other sectors. For example, the energy transformation 25 
sectors include a variety of technologies representing different electricity generation facilities (including different fuel sources 
and different technologies), different refineries (e.g., petroleum, bioliquids, coal-to-liquids, gas-to-liquids), different gas 
processing facilities, and different hydrogen production facilities. Each technology is specified with a different set of inputs, 
costs, and performance characteristics. End-use demands form the end-point of the modeled energy supply chains. Structurally, 
each sector consists of at least one subsector, each of which has at least one technology. At both the subsector and technology 30 
levels, multiple options may compete for share on the basis of the relative costs, as well as preferences which are calibrated 
from historical choices. The market share of each technology within a subsector, or for each subsector within a sector, is 
endogenous based on the logit choice formulation. 
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Subsector costs are computed as the output-weighted average of technology costs, and sector costs are computed as the 
weighted average of subsector costs. As such, the fundamental determinant of the cost of each modeled sector (i.e., commodity, 
or market good) is the weighted average cost of its production technologies. These are computed as the sum of three explicitly 
represented cost components, each of which is indicated in dollars per unit of output: energy-input costs (i.e., the sum of the 
costs of all modeled inputs to the technology), exogenous “non-energy-input” costs (e.g., amortized capital costs and operations 5 
and maintenance costs), and ancillary costs such as emissions penalties. The costs of each energy-input are equal to the price 
of the relevant commodity multiplied by its exogenous input-output coefficient. Ancillary costs are specific to the policy type; 
for policies with an emissions price, the additional cost is equal to the emissions price multiplied by the amount of emissions 
of the specified species released per unit of output. Emissions prices can be exogenously specified or generated by the model 
if a constraint or target is imposed; these prices can vary across time, region, and gas. 10 
 
Technologies in the energy system may produce emissions of a variety of species. The CO2 emissions are computed as the 
sum of each energy-input times its exogenous carbon content, minus the fuel carbon content of the output fuel (if non-zero). 
For technologies with carbon capture and storage (CCS), or that are otherwise assumed to sequester carbon for a long time 
(e.g., industrial feedstocks), the amount sequestered is also deducted from the reported emissions. 15 
 
Non-CO2 emissions from any modeled technology may include greenhouse gases (e.g., CH4, HFCs) and air pollutants (e.g., 
CO, NOx, black carbon). The emissions of each species in each region, technology, and time period is computed as the 
technology’s output multiplied by an emissions factor, which is generally derived from historical data in the model calibration 
years. In future years the emission factor may evolve as control rates change in response to growth in per-capita GDP and/or 20 
carbon pricing. This allows, for instance, reduction in the emissions factors of pollutants as countries become more wealthy 
(e.g., (Smith, 2005)), and reduction in emissions factors of greenhouse gases in response to climate policies (e.g., (EPA, 2013)). 
This approach is designed to capture general trends in emissions factors, but does not explicitly represent individual 
technologies or policies that may be adopted.  
 25 
The primary data source for all energy flow volumes in the historical years is the IEA Energy Balances (IEA, 2012), which is 
used for calibration of energy production, transformation, energy losses in distribution, and consumption. Global production 
and consumption volumes of coal, gas, and oil are scaled to remove any statistical differences and net stock changes, and 
electricity demand volumes are similarly scaled within each region so as to remove any net trade and statistical differences.  
 30 
Primary resource supply curves for coal, gas, and oil are from Rogner (1997). Wind and distributed solar photovoltaic (PV) 
supply curves are from Zhou et al. (2012) and Denholm (2008), respectively. Supply curves for municipal waste-derived 
biomass energy are from Gregg and Smith (2010); other sources of biomass energy are supplied by the land component and 
discussed later. Hydropower is modeled as an exogenous output in all future years; the quantities are based generally on 
economic and technical potentials estimated by the International Hydropower Association (2000). Almost all technologies in 35 
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the energy system are assigned exogenous costs and efficiencies (or, input-output coefficients); electric power plant costs and 
efficiencies are from the inputs to the 2016 Annual Energy Outlook (EIA, 2016), though historical efficiencies are calibrated 
based on the energy balance data. A similar approach is taken for other technologies. 
 
Final demand sectors include buildings (residential and commercial), transportation (passenger and freight, including road, 5 
rail, air, and shipping), and industrial (fertilizer, cement, and general industry) sectors. The input data to the transportation 
sector is documented in Mishra et al. (2013), and the input data to the buildings sector is documented in Clarke et al. (2018). 
Fertilizer production assumptions come mostly from IEA (2007), and cement production assumptions are from Worrell et al. 
(2001) and IEA (2007). The energy module also includes simple representations of a number of urban processes, such as 
wastewater treatment, landfills, and industrial processes that generate emissions.  10 
 
In GCAM v5.1 equipment vintages are explicitly accounted for in several sectors: electric generation, passenger cars and 
trucks, freight trucks, liquid refining plants, and fertilizer production. Older technologies operate as long as the price of the 
good produced exceeds the variable cost of operation. New technologies are always assumed to operate, but the decision to 
construct these technologies depends on both the variable cost and the investment cost.  15 
 
The primary outputs of the energy system are: energy consumption by all sectors, energy production by the transformation 
sectors, energy prices, and emissions of CO2 and other species. The final demands include passenger-kilometers travelled, 
freight tonne-kilometers shipped, buildings sector floorspace levels and service outputs, cement production and associated 
emissions and energy requirements, and fertilizer production volumes. 20 

2.7 Land 

The land component of GCAM calculates supply, demand, and land use for food, feed, fiber, forestry, and bioenergy products, 
as well as land cover for natural ecosystem types. GCAM includes all commodities reported by the FAO, but aggregates them 
into 15 commodity classes (e.g., Corn, Rice, Wheat, SugarCrop, OilCrop, Forest, Pasture, etc.). Demands for food, fiber, and 
forestry are driven by the size of the population, their income levels, and commodity prices. Food demand is price responsive, 25 
but with relatively low price elasticities (-0.08 for crops and -0.25 for meat and dairy). Livestock can be pasture-fed or fed a 
mix of grains and pasture; future shares of each type depend on initial shares, the logit exponent and the costs of inputs. Feed 
demand is determined by the size of the livestock herd, the share of grain-fed animals, and the feed mix. Demand for 
commercial bioenergy is determined by the energy system, as described above, and includes primary (solid) biomass and 
secondary gases and liquids derived from biomass. Agricultural demands are modeled at the economic region level, with 32 30 
regions globally represented in GCAM v5.1. 
 
Supply for these products depends on the land allocated to that use and its yield. Land is allocated among a number of uses 
assuming that land owners maximize expected profit. However, GCAM uses a logit formulation, assuming that the cost of 
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production is not identical across all producers. As a result, an increase in the profit rate for one type of land will result in an 
increase in the share of that land; however, all land is not typically allocated to the type with the highest profit rate, see Wise 
et al. (2014a) for more information. GCAM includes a comprehensive set of land use (e.g., crops, pasture, commercial forest, 
urban) and land cover types (e.g., grass, shrub, tundra, non-commercial forest, other arable land). Land allocation and 
agricultural supply are determined within each land use region, which is specified by a combination of economic region and 5 
water basin, i.e. GCAM v5.1 has 384 land use regions (see Figure 2).  
 
GCAM v5.1 includes endogenous future agricultural yield changes, including the potential for price-induced intensification. 
The model includes four different technologies for each commodity within each region: irrigated/high fertilizer, irrigated/low 
fertilizer, rainfed/high fertilizer, and rainfed/low fertilizer, each with a different yield and cost of production. The share that 10 
each technology receives depends on the profitability of that technology. In general, increases in water costs will lead to higher 
shares of rainfed crops; increases in fertilizer costs will lead to higher shares of low-fertilizer technologies; and increases in 
land competition will result in movement toward higher yielding technologies.  
 
Most agricultural products are traded on the global market using a net trade approach, in which global supply matches global 15 
demand at each time step. Bioenergy is modeled as a regional market, with the potential for trade. GCAM v5.1 uses a logit 
formulation to determine the share of domestic versus imported bioenergy consumed in each region, as well as the regions’ 
contribution to the traded bioenergy market.  
 
Agriculture and land use emissions are calculated at each time step. GCAM calculates land-use change CO2 emissions using 20 
an accounting-style approach, similar to that of Houghton (1995). GCAM estimates the equilibrium change in carbon due to a 
change in land use/land cover and then allocates that change across time. The profile of emissions across time varies depending 
on whether the carbon is above or below ground, whether there is an increase in carbon or a decrease, and the user-specified 
time to maturity (i.e. peak standing carbon stock; slow-growing higher latitudes having longer times to maturity). For example, 
a decrease in forest cover will result in an immediate pulse of aboveground carbon to the atmosphere, while the carbon 25 
sequestered as a result of an increase in forest will be spread over time. Non-CO2 emissions depend on the level of activity, 
the initial emissions coefficient, and any emissions controls applied. For example, CH4 emissions from livestock will increase 
as the livestock production increases but decline with a carbon price due to the imposition of a Marginal Abatement Cost 
(MAC) curve. 
 30 
GCAM includes the ability to represent multiple different types of land-related policies, including afforestation, protected 
lands, bioenergy constraints (e.g., lower or upper bounds on total bioenergy consumption or the share of bioenergy in liquid 
fuels), and bioenergy taxes (Calvin et al., 2014). These options can be specified by region and time period. The default policy 
assumption is that 90% of natural ecosystems are protected. 
 35 



10 
 

There are three primary types of input data for the land component: historical data used for calibration, information related to 
competition, and future driver data. The historical data includes: supply, demand, prices, and variable costs of production for 
agriculture and forestry products; land use and land cover; the value of unmanaged land; carbon cycle parameters; and 
emissions and/or emissions factors for non-CO2s. Supply, demand, and prices are derived from Food and Agriculture 
Organization statistics (FAO, 2018). Production costs are obtained from the U.S. Department of Agriculture (USDA, 2018). 5 
Land use and land cover are derived from a variety of sources, as documented in Di Vittorio et al. (2016). The carbon cycle 
parameters include carbon densities for above and below ground stocks, and the number of years to maturity. Emissions and 
emissions factors for non-CO2 gases are derived from EDGAR (JRC, 2011) for most gases and Bond et al. (2007) and 
Lamarque et al. (2011) for black carbon and organic carbon. The competition information includes the logit exponents dictating 
the competition between various land types.  10 
 
The future driver data includes income and price elasticities for demand; agricultural productivity growth rates; and MAC 
curves. Additionally, demand is driven by the income and population as described earlier. Income elasticities are derived from 
FAO estimates of future agricultural demand or are estimated to ensure demand is consistent with historical relationships 
between income and caloric intake, depending on the scenario.  15 
 
The primary outputs of the land component of GCAM are supply of agriculture and forestry products; demand for agriculture 
and forestry products; prices for agriculture and forestry products; land use and land cover by type; and agriculture, land use, 
and land use change emissions for all greenhouse gases, short-lived species, and ozone precursors. 

2.8 Water 20 

The water component of GCAM calculates water supply and demand for each region and sector within the model. In GCAM 
v5.1, water supply is an unlimited resource, including all sources of water (e.g., freshwater, groundwater, seawater). The price 
for this resource can be specified by the user. GCAM tracks water demand for irrigation (Kim et al., 2016), electricity 
generation (Davies et al., 2013; Kyle et al., 2013; Liu et al., 2014), municipal uses (Hejazi et al., 2013), industrial 
manufacturing, primary energy production, and livestock (Hejazi et al., 2014a). For each type of water, GCAM tracks both 25 
withdrawals and consumption. In general, water withdrawal indicates the total water extracted from a water supply system, 
while water consumption indicates that the water is used by consumers in a way that it cannot be returned and reused 
immediately. Municipal water demands are driven by changes in population, per capita GDP, and technological change (Hejazi 
et al., 2013); all other water demands are modeled as inputs to otherwise existing technologies in the energy and land systems.  
 30 
Water demand for irrigation depends on the share of irrigated land (see Section 2.6), other available water, and the water 
coefficient (water demand per unit output). Water coefficients vary by crop and region. In term of irrigation, water withdrawals 
refer to irrigation water applied to agricultural fields, including evapotranspiration requirements of crops that are met by 
irrigation water plus any field losses of water. Water consumption refers to the evapotranspiration requirements of the crops 
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that is met by irrigation water. In addition to tracking withdrawals and consumption, GCAM also tracks biophysical water 
consumption for crops, which applies to both rainfed and irrigated technologies within any basin and crop type, is the sum of 
water consumption (as described above) and soil moisture from precipitation, used by plants via transpiration. Livestock water 
demand depends on a region-specific coefficient which represents both animal drinking water, plus any other water used by 
the animal production operations. The coefficients are in units of cubic meters of water per kilogram of animal commodity 5 
produced (e.g., beef, dairy, etc). 
 
For electricity  water demands (Davies et al., 2013; Kyle et al., 2013; Liu et al., 2014), GCAM has exogenously assigned water 
withdrawal and consumption coefficients for each region and generation technology based on Macknick et al. (2011). Cooling 
system options compete using the logit formulation described above. While the competition between cooling system options 10 
is endogenous and cost-based, because water prices are constant in GCAM v5.1, the model output tends to largely reflect the 
exogenous share-weight assumptions, which follow Davies et al. (2013). Specifically, most regions are assumed to shift from 
once-through to recirculating systems over time, but regions that primarily use seawater at present are assumed to continue to 
do so in all future time periods. 
 15 
The industrial manufacturing sector's water demands scale with industrial output. Water demands for primary energy 
production depends on fuel production and the bottom-up estimates of water demand per unit energy produced for the 
following fuels: coal, oil (conventional and unconventional), natural gas, and uranium (Hejazi et al., 2014a).  
 
Historical water withdrawal and consumption data are from multiple sources including FAO-AQUASTAT (FAO, 2016) and 20 
the USGS (USGS, 2016). The irrigation water demand estimates are derived from gridded and nation-level estimates of 
Mekonnen and Hoekstra (2011). The loss coefficients for conveyance and other field losses are from the country-level 
estimates according to Rohwer et al. (2007). The livestock coefficients are calculated from Mekonnen and Hoekstra (2010), 
which provide total water demands in liters of water per animal per day, by country, for a base year of 2000. The water 
withdrawal and consumption coefficients for each region and electricity generation technology are from Macknick et al. 25 
(2011). The capital costs of different cooling technologies are obtained from National Energy Technology Lab (2008). Water 
consumption data for manufacturing is obtained from the Vassolo and Döll (2005) global inventory of manufacturing and 
electric power water demands for a base year of 1995, augmented with some additional data from Kenny et al. (2009). 
Municipal water prices obtained from the International Benchmarking Network for Water and Sanitation Utilities (IBNET, 
2016), and overall municipal water supply efficiency are based on Shiklomanov (2000). Water demand for primary energy 30 
production is from Maheu (2009), augmented with some additional data from Kenny et al. (2009) and Solley et al. (1998). 
 
The primary outputs of the water component of GCAM are water withdrawals and consumption for each region, sector, and 
technology. Additionally, GCAM computes biophysical water consumption for crop production. 
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2.9 Climate 

GCAM v5.1 includes Hector v2.0, an open-source, object oriented, reduced form climate carbon-cycle model. Reduced-
complexity or simple climate models represent the most critical global-scale earth system processes with low spatial and 
temporal resolution. Hector v2.0, like other simple climate models, calculates future concentrations of greenhouse gases from 
a given emissions pathway while modeling carbon and other gas cycles; calculates global mean radiative forcing from 5 
greenhouse gas concentrations and short-lived climate forcers; and converts the radiative forcing to global mean temperature 
and other Earth system variables (Hartin et al., 2015; Meinshausen et al., 2011).   
 
Hector has a three-part carbon cycle: atmosphere, land and ocean. The atmosphere is treated as a single well-mixed box, where 
a change in atmospheric carbon is a function of anthropogenic fossil fuel and industrial emissions, land-use change emissions, 10 
the atmosphere-ocean and the atmosphere-land carbon fluxes. In Hector’s default terrestrial carbon cycle, vegetation, detritus, 
and soil are linked with one another and to the atmosphere by first-order differential equations. Net primary production is a 
function of atmospheric CO2 and temperature. Carbon flows from vegetation to the detritus and then down to soil, where some 
fraction is lost due to heterotrophic respiration. The terrestrial carbon balance at any time is the difference between net primary 
production (NPP) and heterotrophic respiration (RH) summed over the user-specified geographical regions (global in GCAM 15 
5.1). NPP is modified by a user-defined carbon fertilization parameter. Changes in RH are controlled by a user-defined 
temperature sensitivity.  
 
The surface ocean carbon flux is dependent upon the solubility of CO2 within high and low latitude surface boxes which are 
calculated from an inorganic chemistry submodule (Hartin et al., 2016). Hector calculates pCO2, pH and carbonate saturations 20 
in the surface boxes; once carbon enters the surface boxes, it is circulated through the intermediate and deep ocean layers via 
water mass advection and exchanges, simulating a simple thermohaline circulation.  
 
Radiative forcing is calculated from each individual atmospheric constituent; CO2, halocarbons, NMVOC, black carbon, 
organic carbon, sulfate aerosols, CH4, and N2O, along with forcing from tropospheric ozone and stratospheric water vapor. 25 
CO2, CH4, N2O, and halocarbons are converted to concentrations, while NMVOC, and aerosols are left as emissions (Hartin 
et al., 2015).  
 
Global atmospheric temperature is a function of user-specified climate feedback parameter, which indicates the equilibrium 
climate sensitivity for a doubling of CO2, total radiative forcing and oceanic heat flux. Atmosphere-ocean heat exchange in 30 
Hector v2.0 consists of a one-dimensional diffusive heat and energy-balance model, DOECLIM (Kriegler, 2005). This is a 
significant improvement over Hector v1.1, better representing the ocean’s mixed layer and deep ocean heat uptake, and 
resulting in an improved simulation of global mean temperature.   
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At every simulation time step, beginning in 2005 GCAM supplies Hector with global emissions of: fossil fuel and industrial 
CO2, land-use change CO2, CH4, N2O, BC, OC, CO, NMVOC, and halocarbons (C2F6, CF4, SF6, HFC134a, HFC32, HFC125, 
HFC227ea, HFC23, HFC134a, HFC245fa). The parameter values used in Hector are documented in Hartin et al. (2015). 
 
The primary outputs of the climate component of GCAM v5.1 are global mean temperature, ocean heat uptake (both mixed 5 
layer and deep ocean), CO2, CH4, N2O and halocarbon concentrations, radiative forcing (both total and individual components), 
carbon fluxes both on land and ocean, and carbon cycle output (e.g., NPP, RH, ocean pH, carbonate saturations). 

2.10 Example of a Coupled System: Bioenergy 

The five GCAM components are linked in code, with different types of information exchanged among them depending on the 
component and the variable of interest. As an example, we describe GCAM v5.1’s representation of bioenergy. Bioenergy 10 
demand is determined by the energy system and depends on the scale of the economy (determined by the socioeconomic 
system), the price of bioenergy, the capital and O&M costs of bioenergy technologies, as well as the cost and prices of 
competing energy technologies. Supply of bioenergy is determined largely by the land system and depends on the price and 
cost of bioenergy, as well as the price and cost of competing land types. The cost of bioenergy includes costs of fertilizer 
(produced by the energy system) and irrigation (supplied by the water system) if these management practices are used. The 15 
price of bioenergy is adjusted by the solution mechanism until supply and demand equilibrate to within the user-specified 
solution tolerance. 
 
In the land system, the production of bioenergy can result in emissions of CO2 due to land use change and non-CO2 emissions 
(e.g., N2O emissions from fertilizer application). In the energy system, GCAM accounts for the uptake of carbon during the 20 
growth of bioenergy, as well as the release of carbon during combustion. Without the use of CO2 capture and storage (CCS), 
this combination of uptake and release results in net zero emissions. If a technology with CCS is used together with bioenergy, 
net negative emissions result. These emissions are passed to the climate system (summed with all other global CO2 emissions), 
which calculates the effect of bioenergy on atmospheric CO2 concentration, radiative forcing, and temperature rise.  
 25 
GCAM v5.1 includes a limit on the amount of net negative emissions in any period that is linked to GDP (from the 
socioeconomic system). This limit is to reflect that once emissions are net negative a carbon tax generates an expense to the 
economy and not a revenue. Currently, GCAM assumes that each region will allocate no more than 1% of GDP to negative 
emissions. The cost (and thus deployment) of bioenergy is adjusted to ensure this limit is not exceeded. 
 30 
Fertilizer is another example of a tightly coupled system, with its production determined by the energy system and consumption 
determined by the land system. Additionally, many other aspects of GCAM create direct or indirect linkages among sectors 
(e.g., water demand is linked to the energy and agricultural production, climate is linked to emissions produced by the energy 
and land systems).  

Deleted: 9 35 

Formatted: Font: Not Italic



14 
 

3 Description of the Scenarios 

The results presented in the following sections include six different socioeconomic pathways: a core scenario (CORE,  
described in Section 2.4) and the five SSPs, as described in Calvin et al. (Calvin et al., 2017).3 We combine each socioeconomic 
pathway with two different climate policy assumptions, resulting in twelve possible scenarios (Table 1). However, GCAM 
cannot limit radiative forcing to 2.6 W/m2 in the SSP3 pathway due to limited technology and incomplete control of agriculture 5 
and land use emissions (Calvin et al., 2017; Fujimori et al., 2017). Thus, we include eleven scenarios in this paper. 
 
Table 1: Scenarios included in this paper. Scenarios are categorized by their socioeconomic pathway (columns) and their 
mitigation policy (rows). Cell values are the names of the scenarios used in the rest of the paper. Note that the SSP3-2.6 is 
infeasible and thus omitted from the table and the rest of the paper. 10 

 Socioeconomic Pathway 

CORE SSP1 SSP2 SSP3 SSP4 SSP5 
Climate Policy No climate policy CORE SSP1 SSP2 SSP3 SSP4 SSP5 

Radiative forcing 
limited to 2.6 W/m2 
in 2100 

CORE-26 SSP1-26 SSP2-26  SSP4-26 SSP5-26 

 

4 Results 

The output file produced by GCAM v5.1 is approximately 2 Gigabytes per scenario, with more than 38,000 output variables 
per region and time period. In this section, we show highlights of these results for each major area. We begin by examining 
results for the CORE and CORE-26 (Sections 4.1 to 4.5), before looking at results from the alternative socioeconomic pathways 15 
(Section 4.6). 

4.1 Socioeconomics 

In the CORE scenario, global population grows through 2070, peaking at 9.5 billion, before declining (Figure 4, left panel). 
Global GDP increases by a factor of 6 between 2010 and 2100, an average growth of 2% per year (Figure 4, right). In GCAM 
v5.1, GDP and population are unaffected by other model components; thus, these variables are identical in the CORE and 20 
CORE-26 scenarios. 

                                                        
3 Note that the CORE scenario is similar to the SSP2. However, these two scenarios differ slightly in near-term GDP as 
described in Section 2.4, as well as small differences in non-CO2 emissions factors and CCS assumptions as described in 
Calvin et al. (2017). 
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4.2 Energy 

In the CORE scenario, electricity generation (Figure 5, top) and primary energy use (Figure 5, bottom) continue to rise over 
the rest of this century, as increases in income and population drive increased demand for energy services (e.g., passenger 
kilometers travelled, building energy, etc.). Fossil fuels remain the dominant source of energy, accounting for 86% of total 
primary energy consumption (60% of electricity) in 2100. However, the use of non-biomass renewables for electricity 5 
generation continues to rise, growing from 20% in 2010 to 27% in 2100. Despite this increase, non-biomass renewables remain 
a very small fraction of global primary energy consumption throughout the century. The continued dependence on fossil fuels 
in the CORE scenario results in an increase in fossil fuel and industrial CO2 emissions, which increase from 8.9 GtC/year in 
2010 to 19.7 GtC/year in 2100. 
 10 
Imposing a carbon price, as in the CORE-26, increases the cost of fossil fuel use, incentivizing substitution by lower carbon 
fuels. The result is an increase in electricity generation in total, as end users shift from direct consumption of oil and gas to 
electricity use. Additionally, the electricity generation mix shifts dramatically, with 11% of generation met by bioenergy with 
CCS, 26% from nuclear, and 43% by non-biomass renewables in 2100. Bioenergy’s contribution to refined liquids also 
increases substantially in the CORE-26. As a result, bioenergy with CCS accounts for 40% of total primary energy 15 
consumption in 2100 (Figure 5, bottom right). The transition to low carbon (e.g., natural gas), no carbon (e.g., nuclear, 
renewables), and net negative carbon (e.g., bioenergy with CCS) fuels results in a substantial decrease in fossil fuel and 
industrial CO2 emissions, with emissions in 2100 reaching -3 GtC/yr. 
 
Energy consumption varies across region, in terms of both total consumption and fuel mix (Figure 6). Furthermore, these 20 
regional differences change over time due to differences in socioeconomic growth across regions, so the largest consumers 
today are not the largest consumers in the future. For example, the USA and China have the highest primary energy 
consumption in 2010, with 86 and 102 EJ/yr, respectively. In 2100, however, India and Africa_Western have the highest in 
energy consumption in both the CORE (164 and 127 EJ/yr, respectively) and CORE-26 scenarios (75 and 86 EJ/yr, 
respectively). For fuel mix, there are regional differences in the share of fossil fuels used in 2010, with much lower shares in 25 
Africa_Western and Africa_Eastern than the rest of the world. However, in 2100, the biggest differences are across scenarios 
and not across regions, with fossil fuel consumption ranging from 70-95% of total primary energy in the CORE scenario and 
much lower use in the CORE-26. 

4.3 Land 

In the CORE scenario, income and population growth in the first half of the century result in increasing demand for agricultural 30 
products through 2050 (Figure 7, top left). Increases in agricultural productivity throughout the century balance these increases 
in production, resulting in nearly constant cropland area through 2050 (Figure 7, bottom left). Post-2050 the projected 
population declines together with continued yield improvements result in decreases in total agricultural production and 
cropland area. The CORE scenario has modest demand for bioenergy (Figure 5), resulting in a small amount of land devoted 
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to its production. Total agricultural area (crops, biomass, pasture) increases slightly throughout the century at the expense of 
natural ecosystems (forest, grass, and shrub). 
 
In the CORE-26 scenario, the imposition of a carbon price incentivizes low carbon fuels in the energy system, resulting in 
substantial increases in bioenergy demand. This results in a large expansion of bioenergy land, with ~7% of land devoted to 5 
bioenergy production in 2100 (Figure 7, bottom right). Increased competition for land with bioenergy results in increased food 
prices and consequently reduced demand (Figure 7, top right). Total agricultural area (crops, biomass, pasture) increases by 
7.5% between 2010 and 2100 in the CORE-26 scenario, resulting in a decline in the extent of natural ecosystems. For example, 
forest cover decreases by 0.9 million km2 (3%) between 2010 and 2100. 
 10 
There are significant differences in land use across regions (Figure 8). However, regions that have large shares of cropland 
today (e.g., India, Europe, China, USA MidWest, Argentina) also have large shares of cropland in the future in both the CORE 
and CORE-26 scenarios. In the CORE scenario, bioenergy land is spread throughout the world’s agricultural producing regions 
with only 16 of the 384 regions in GCAM devoting more than 10% of their land to bioenergy and only 1 very small region in 
Southeast Asia devoting more than 20%. In the CORE-26, higher amounts of bioenergy land are required, resulting in shares 15 
of bioenergy land ranging from 0% to 58%. Note that some of the regions with large shares of bioenergy land are small in size. 
The largest amounts of bioenergy land in absolute value are in the Nile River basin in Africa_Eastern and the Niger River 
basin in Africa_Western, with 470 and 459 thous km2 of bioenergy land in 2100 in the CORE-26, respectively. Only 10 
region/basin combinations have more than 150 thous km2 of bioenergy; these region/basins are found in Africa_Eastern, 
Africa_Western, India, Canada, and Russia. 20 
 
For non-bioenergy crops, irrigation shares remain relatively constant over time, with approximately 20% of crops irrigated 
globally in both the CORE and CORE-26. Bioenergy crops are predominantly rainfed, with only 3-6% of these crops using 
irrigation. The use of the high fertilizer technology increases over the century, particularly in the CORE-26 scenario, rising 
from 50% to 56% between 2010 and 2100. As a result of both exogenous and endogenous yield growth, global average yields 25 
increase by 58% in the CORE and double in the CORE-26 between 2010 and 2100. 

4.4 Water 

In the CORE scenario, increases in demands for energy and agriculture result in increasing water consumption (Figure 9, top 
left) and withdrawal (Figure 9, bottom left) across all water sectors, with both consumption and withdrawal roughly doubling 
by the end of this century. The irrigation sector dominates water withdrawals and consumption throughout the century, with a 30 
much larger share of consumptive use. Industrial (manufacturing and electricity) and municipal water use are the next largest 
users of water, while livestock and primary energy production account for only 1-2% of total water use.   
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In the CORE-26 scenario, the imposition of a carbon price incentivizes low carbon fuels in the energy system. As a result, 
water use for electricity generation increases significantly under the CORE-26 scenario, mainly due to the large increase in 
water intensive technologies such as CCS (see Figure 5) and increased demand for electricity (Figure 5, top row). The CORE-
26 also leads to large increases in bioenergy use; however, water use for bioenergy remains a small part of the overall total 
due to the dependence on rainfed bioenergy as described previously. Overall, climate policy results in a 14% increase in water 5 
consumption and a 17% increase in water withdrawal relative to the CORE scenario in 2100. 
 
Water withdrawals differ significantly across region (Figure 10). The basins with the largest irrigation water withdrawals in 
2010 are the Ganges, the Indus, and the Sabarmati. In 2100, the largest irrigation water withdrawals come from these three 
basins plus the Nile River basin (in both the CORE and CORE-26) and the Arabian Peninsula (in the CORE-26 only). The two 10 
largest regions in terms of non-irrigation water withdrawals are the USA and China in 2010 and India and China in 2100 in 
both the CORE and CORE-26 scenarios. 

4.5 Climate 

Absent any effort to mitigate (i.e., the CORE scenario), emissions of GHGs continue to rise throughout the century. 
Additionally, increases in pollution controls induced by rising incomes result in reduced emissions of sulfur and other aerosols. 15 
These increases lead to a rise in GHG concentrations, total radiative forcing, and global mean temperature. In particular, CO2 
concentration exceeds 700 ppmv and total radiative forcing exceeds 6 W/m2 in 2100 (Figure 11).  
 
In the CORE-26, a carbon price is applied to constrain the radiative forcing limit to 2.6 W/m2 in 2100. This results in substantial 
reductions in GHG emissions. In this scenario, CO2 concentration peaks around 450 ppmv mid-century, before declining to 20 
400 ppmv (Figure 11, left panel). Total radiative forcing peaks around the same time at approximately 3.5 W/m2 before 
declining to 2.6 W/m2 (Figure 11, right panel) by the end of this century. 

4.6 Alternative Socioeconomic Pathways 

In addition to the default socioeconomic scenario (CORE), GCAM v5.1 includes five alternative scenarios, based on the SSPs 
(Riahi et al., 2017a). These scenarios span a range of challenges to mitigation and challenges to adaptation, with SSP1 having 25 
the lowest challenges, SSP2 having medium challenges, and SSP3 having high challenges. SSP4 has low challenges to 
mitigation, but high challenges to adaptation. SSP5 has high challenges to mitigation, but low challenges to adaptation. 
Storylines for all five SSPs are articulated in O’Neill et al. (2017).  
 
The quantifications of population (Figure 12, left panel) and GDP (Figure 12, right panel) were developed by KC and Lutz 30 
(2017) and Dellink et al. (2017). Global population in 2100 varies across the five SSPs, with SSP1 and SSP5 having relatively 
low population (<7 billion) and SSP3 having high population (>12 billion). GDP, and GDP per capita, are highest in the SSP5, 
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with total global GDP exceeding 700 trillion 2005$ per year. Despite its high population, SSP3 has the lowest GDP due to 
stagnant growth in income. 
 
In addition to population and GDP, the GCAM implementation of the SSPs includes changes in the cost and performance of 
different technologies, as well as differences in effectiveness of air pollution policy and in the implementation of climate 5 
policy. These assumptions are documented in detail in Calvin et al. (2017). These changes result in a wide range of potential 
future pathways for energy (Figure 13), land (Figure 14), water, and climate. For example, primary energy use is highest in 
the SSP5, which has a high GDP. In addition, inexpensive fossil fuels in this scenario result in a continued dependence on 
coal, gas, and oil, which account for more than 90% of energy consumption in the SSP5 in 2100. In contrast, the SSP1 has low 
energy consumption and an increased dependence on renewables, due to its focus on sustainability (including both energy 10 
efficiency gains and low carbon fuel preferences).  
 
If radiative forcing is limited to 2.6 W/m2 by 2100, all scenarios transition towards low carbon fuels, with increased use of 
bioenergy with CCS (BECCS) in all cases. However, deployment of BECCS varies across scenarios, ranging from 200 EJ/year 
in the SSP2-26 to 323 EJ/year in the SSP5-26. Fossil fuel use in 2100 in these scenarios ranges from 35% in SSP1-26 to 53% 15 
in SSP5-26, as SSP5-26 has significant use of CCS. SSP1-26 has the highest deployment of non-biomass renewables, with 
11% of total primary energy in 2100. 
 
Land use and land cover also differ significantly across SSPs. The combination of high population and low agricultural 
productivity growth results in a large expansion of cropland area in the SSP3 (Figure 14). In contrast, SSP1 has a small 20 
population, with lower preferences for ruminant meat, and high agricultural productivity. As a result, cropland contracts in this 
scenario. Under the 2.6 W/m2 policy, all scenarios show increases in land area devoted to bioenergy, but this trend is most 
prominent in the SSP4-26 and SSP5-26 due to the high demand for bioenergy with CCS described above. The SSPs also show 
increases in forest cover in the 2.6 W/m2 scenarios due to the imposition of an afforestation incentive as part of the policy 
environment (Calvin et al., 2017; Kriegler et al., 2014). In the SSP1, SSP2, and SSP5, this policy is globally applied, resulting 25 
in increased forest cover in all regions. In the SSP4, afforestation is concentrated in middle and high income regions. This 
incentive is not included in the CORE-26; as a result, forest cover in the CORE-26 declines.  
 

4.7 Comparison to Historical Data and Other Future Scenarios 

This section compares GCAM results to both historical inventory data and other future projections. We include inventory data 30 
for energy, land, and CO2 emissions. Energy data is from the International Energy Agency (IEA); in particular, we use total 
production of coal, gas, and oil from the IEA energy balances. Land data is from the Food and Agricultural Organization 
(FAO); in particular, we use cropland, pasture land, and forest land from FAOSTAT (FAO, 2018). CO2 emissions are from 
the Carbon Dioxide Information Analysis Center (CDIAC; https://cdiac.ess-dive.lbl.gov/); in particular, we use total fossil fuel 
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and industrial CO2 emissions. GCAM uses IEA energy consumption and CDIAC CO2 emission as inputs to the model; 
however, in the comparison presented, we use raw data from the various sources for comparison. For land cover, GCAM does 
not currently use FAOSTAT land cover variables.  
 
For future projections, we compare GCAM results to the IPCC AR5 scenario database, described in Clarke et al. (2014), and 5 
the SSP scenario database, described in Riahi et al. (2017b). These databases have a large number of outputs from numerous 
scenarios and models (e.g., the AR5 database has ~1000 scenarios). We use all scenarios that include outputs for the full time 
period of interest (2010-2100), but focus on a small number of variables. 

4.7.1 Historical Data 

GCAM is initialized in the historical period to a variety of different datasets, depending on the variable of interest (see Section 10 
2). Most of these variables are calibrated; that is, GCAM ensures that its model outputs exactly match the read-in observations. 
For example, GCAM reads in electricity generation by region, fuel types, and technology options. The calibration routines 
estimate the unobserved parameters (share weights) to ensure that the calculated values match the read in values. To test the 
validity of the calibration routine, Figure 15 compares GCAM outputs (x-axis) to observational data (y-axis) for global fossil 
fuel consumption (top left), global land cover (top right), and global CO2 emission (bottom left). As presented in this figure, 15 
GCAM matches these data sources almost exactly, for the calibration period. Note that the biggest differences between GCAM 
and observational data are for forest area. GCAM uses information from Meiyappan and Jain (2012), while the observational 
data shown in Figure 15 is from FAOSTAT. 

4.7.3 Other Future Scenarios 

In addition to comparing GCAM results to historical data, we also compare GCAM results to other scenarios in the literature, 20 
including both the database generated for the IPCC’s 5th Assessment Report (Figure 16) and the SSP database (Figure 17).  
 
In general, the eleven GCAM scenarios span the range of results presented in the literature, with the CORE scenario falling 
near the median. For example, primary energy consumption in 2100 in the GCAM v5.1 scenarios ranges from 735 to 1500 EJ 
per year without climate policy and from 480 to 900 EJ per year in the 2.6 W/m2 scenarios, depending on the socioeconomic 25 
pathway (Figure 16, top left). In contrast, primary energy in the AR5 database ranges from 750 to 1850 EJ per year for the no 
climate policy scenarios and between 260 and 1000 EJ per year for the 2.6 W/m2 scenarios. For fossil fuel and industrial CO2 
emissions (Figure 16, bottom left), the GCAM v5.1 no climate policy scenarios span a smaller range than those in the AR5, 
with 2100 emissions in GCAM v5.1 ranging from 10,600 MtC per year to 25,700 MtC per year. The AR5 database, in contrast, 
had a range of -2000 to 47,000 MtC per year. There is a similar difference in the range of total radiative forcing between 30 
GCAM v5.1 and AR5 (Figure 16, bottom right). For the 2.6 W/m2 scenarios, GCAM v5.1 tends to overshoot more in the near-
term (see Figure 16, bottom panels) than the AR5 scenarios. Some of these differences have to do with the timing of the climate 
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policy; some of the AR5 scenarios, e.g., those from Clarke et al. (2009), had climate policy beginning in 2010. Other 
differences have to do with the availability and deployment of net negative emissions technologies, like BECCS. 
 
Since the GCAM v5.1 scenarios include replications of the SSPs, we also compare our results to the SSPs presented in Riahi 
et al. (2017a). In this comparison, we can match specific socioeconomic scenarios and climate policies (Figure 17). The largest 5 
difference between GCAM v5.1 and the originally published GCAM SSP scenarios is for SSP3 and SSP5. In each of these 
scenarios, GCAM v5.1 uses less total primary energy (Figure 17, top), leading to lower fossil fuel and industrial CO2 emissions 
(Figure 17, 2nd from bottom), and lower radiative forcing in the no climate policy scenarios (Figure 17, bottom). In each case, 
the GCAM v5.1 results are 20-25% below the median value from the SSPs. The difference in energy use and fuel mix between 
the GCAM4 results from the originally published GCAM SSPs and those presented in this paper are primarily due to updates 10 
in technology cost, as documented in Muratori et al. (2017). 

5 Discussion and Conclusions 

GCAM and similar models attempt to integrate a large set of human and Earth system dynamics and interactions taking place 
over many decades in the future into flexible and computationally tractable platforms. To date, the scientific capabilities 
embodied in GCAM and similar models have been important for informing both our scientific understanding of these 15 
interactions and the decisions taken to better manage these systems. GCAM v5.1 describes a new version of GCAM, including 
several major enhancements from previous versions (e.g., water demand, multiple agricultural management practices, new 
land regions, new data system, newer climate model, alternative socioeconomic pathways). 
 
At the same time, there is also a large set of dynamics and interactions that are not included in GCAM. For example, the 20 
version of GCAM presented in this paper does not include feedbacks from the global or regional climate to key systems such 
as energy (e.g., altering wind and solar power, air conditioning), water (altering water supplies, droughts), agriculture (altering 
crop yields through changes in temperature, precipitation, and growing seasons), among others. Similarly, GCAM v5.1 does 
not include dynamics at subregional scales such as counties or cities, although versions of GCAM with sub-regional detail 
have been produced. Across the modeling community, groups are attempting to address these issues, adding more and more 25 
scope and complexity to their models. Of particular importance in GCAM development is the effect of a changing Earth 
system, and climate in particular, on energy, water, land, and economic systems. Research versions of GCAM already include 
new dynamics such as the effects of climate on water supplies (Hejazi et al., 2014b), energy demands (Clarke et al., 2018), 
and crop yields (Calvin and Fisher-Vanden, 2017; Kyle et al., 2014).  
 30 
But these increases in scope and complexity raise challenges. With finer resolution and greater scope has come an increase in 
the computational demands of models like GCAM, including data storage needs. GCAM is increasingly being used on high-
end computing clusters or other platforms with greater computational power and storage capabilities, which risks making it 
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less useful to users without access to such high-end computational platforms. This is pushing towards a great focus in GCAM 
on computational efficiency and on data management.  
 
Finally, whereas all dynamics were previously included in the GCAM core, GCAM development is increasingly focused on 
creating an ecosystem of submodels that are designed to operate with GCAM and can be coupled in code. This includes, for 5 
example, a range of tools for providing information at spatial scales finer than those in the GCAM core. These options can be 
included or not included depending on scientific questions, the modeling needs and computational capabilities.  

6 Code Availability 

GCAM is an open source model. The version of GCAM described in this paper is archived on both GitHub and Zenodo 
(doi:10.5281/zenodo.1308172). All code and inputs are available at: https://github.com/JGCRI/gcam-core. A user guide for 10 
GCAM is available at: http://jgcri.github.io/gcam-doc/user-guide.html. The GCAM development team hosts annual trainings 
for GCAM (see http://www.globalchange.umd.edu/ for more information). 
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Figure 1: Linkages between the five major systems (energy, water, land, socioeconomics, climate) in GCAM v5.1 

 



29 
 

 
Figure 2: GCAM regional mapping for energy & economy (top left), land (top right), water (bottom left), and climate (bottom right). 
Regions are based on geopolitical boundaries for energy and economy, on water basins for water, and on a combination of geopolitical 
boundaries and water basins for land. 
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Figure 3: Conceptual Schematic of the Operation of the GCAM Core. 
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Figure 4: Global population (left) and Gross Domestic Product (GDP) (right) for the CORE and CORE-26 scenarios. GDP is reported 
in constant U.S. dollars (2005$), using market exchange rates. Note that both population and GDP are exogenous in GCAM v5.1, and thus, 
do not change with mitigation policy or any other factor. 
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Figure 5: Global electricity generation (top) and global primary energy consumption (bottom) for the CORE (left) and CORE-26 
(right) scenarios. Primary energy is reported using direct equivalent; that is, 1 EJ of nuclear or renewable electricity is reported as 1 EJ of 
primary energy consumption. 

 

 
Figure 6: Regional primary energy consumption (top) and % of primary energy from fossil fuels (bottom) in 2010 (left) and 2100 in 5 
the CORE (middle) and CORE-26 (right) scenarios. Primary energy is reported using direct equivalent; that is, 1 EJ of nuclear or 
renewable electricity is reported as 1 EJ of primary energy consumption. 
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Figure 7: Global agricultural production (top) and global land allocation (bottom) for the CORE (left) and CORE-26 (right). Note 
bioenergy and forest are excluded from agricultural production (top) as they are modeled in different units, EJ/yr and m3/yr, respectively. 
Land cover data (bottom) are aggregated from the more detailed categories included in GCAM v5.1 for purposes of plotting. 
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Figure 8: Percentage of regional land area devoted to cropland (top) and bioenergy (bottom) in 2010 (left) and 2100 in the CORE 
(middle) and CORE-26 (right) scenarios. Note that there is no dedicated bioenergy cropland in 2010 in GCAM; hence, the lower left map 
has zero values everywhere. 

 
Figure 9: Global water consumption (top) and global water withdrawals (bottom) by sector for the CORE (left) and CORE-26 (right) 5 
scenarios. Data are aggregated from technology to sector for purposes of plotting. 
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Figure 10: Regional water withdrawals for irrigation in 2010 (left) and 2100 for the CORE (middle) and CORE-26 (right) scenarios. 
Figure shows total irrigation, including both bioenergy and crops.  

 

  
Figure 11: CO2 concentrations (left) and total radiative forcing (right) for the CORE (solid) and CORE-26 (dashed) scenarios. 5 
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Figure 12: Global Population and GDP for all scenarios. The CORE scenario is virtually identical to the SSP2, but does differ in near-
term GDP. Note that GCAM v5.1 does not model the effects of climate policy on either GDP or population. 

 

 
Figure 13: Global Primary Energy by Fuel for all Scenarios. Top row is without climate policy; bottom row are the 2.6 W/m2 scenarios. 5 
Columns indicate the underlying socioeconomic assumptions. 
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Figure 14: Global land cover by type for all scenarios. Top row is without climate policy; bottom row are the 2.6 W/m2 scenarios. Columns 
indicate the underlying socioeconomic assumptions. 
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Figure 15: GCAM results versus historical inventory data. Left is primary energy consumption for fossil fuels, compared to IEA. Middle 
is global land cover by type, compared to FAO. Right is global fossil fuel and industrial CO2 emissions, compared to CDIAC. Data is from 
the CORE scenario, but all GCAM scenarios are identical in the historical period. 
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Figure 16: Global primary energy (top left), global cropland (top right), global fossil fuel and industrial CO2 emissions (bottom left), 
and total radiative forcing (bottom right). Solid gray lines are no climate policy scenarios from the AR5 database (Clarke et al., 2014), 
i.e., scenarios with a carbon price of $0 in 2100. Dashed gray lines are scenarios in the AR5 database that are roughly consistent with 2.6 
W/m2; specifically, we include any scenario with 2100 radiative forcing below 2.9 W/m2. Black and colored lines are the GCAM v5.1 
scenarios, with color indicating the socioeconomic scenario and line type indicating the climate policy (no policy = solid; 2.6 W/m2 = 5 
dashed). 
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Figure 17: Global primary energy (top), global cropland (2nd from top), global fossil fuel and industrial CO2 emissions (2nd from 
bottom), and total radiative forcing (bottom) in 2100. GCAM v5.1 results are shown with “X”. Data from the SSP database (Riahi et al., 
2017a) are shown as lower case letters. Colors indicate SSP. Left panel is the no climate policy results; right panel show scenarios that limit 
2100 radiative forcing to 2.6 W/m2. 
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