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Abstract. Methane is a powerful greenhouse gas produced in wetland environments via 14 

microbial action in anaerobic conditions. If the location and extent of wetlands are unknown, 15 

such as for the Earth many millions of years in the past, a model of wetland fraction is 16 

required in order to calculate methane emissions and thus help reduce uncertainty in the 17 

understanding of past warm greenhouse climates. Here we present an algorithm for predicting 18 

inundated wetland fraction for use in calculating wetland methane emission fluxes in deep 19 

time paleoclimate simulations. The algorithm determines, for each grid cell in a given 20 

paleoclimate simulation, the wetland fraction  predicted by a nearest neighbours search of 21 

modern day data in a space described by a set of environmental, climate and vegetation 22 

variables. To explore this approach, we first test it for a modern day climate with variables 23 

obtained from observations and then for an Eocene climate with variables derived from a 24 

fully coupled global climate model (HadCM3BL-M2.2, Valdes et al., 2017). Two 25 

independent dynamic vegetation models were used to provide two sets of equivalent 26 

vegetation variables which yielded two different wetland predictions. As a first test the 27 

method, using both vegetation models, satisfactorily reproduces modern data wetland fraction 28 

at a course grid resolution, similar to those used in paleoclimate simulations. We then applied 29 

the method to an early Eocene climate, testing its outputs against the locations of Eocene coal 30 

deposits. We predict global mean monthly wetland fraction area for the early Eocene of 8 to 31 

10 × 106 km2 with corresponding total annual methane flux of 656 to 909 Tg CH4 year-1, 32 

depending on which of two different dynamic global vegetation models are used to model 33 

wetland fraction  and methane emission rates. Both values are significantly higher than 34 

estimates for the modern-day of 4 × 106 km2 and around 190 Tg CH4 year-1 (Poulter et. al., 35 

2017, Melton et. al., 2013).  36 

 37 

1 Introduction 38 
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Methane (CH4) is a powerful greenhouse gas. As well as absorbing infrared radiation from 39 

the Earth’s surface it also contributes to additional indirect warming through its 40 

photochemistry and oxidation to CO2 in the atmosphere (IPCC 2013). Along with other trace 41 

gases, methane is therefore an important component of the Earth’s climate system, but for 42 

studies of the past, such as warm greenhouse paleoclimates, we lack suitable geochemical or 43 

biological proxies for methane concentration. Therefore, Earth system models used to 44 

reconstruct ancient climate or develop future climate scenarios must either assume 45 

atmospheric methane concentrations as a boundary condition and/or incorporate dynamic 46 

methane fluxes from natural sources and sinks (Beerling et al. 2011). The main natural source 47 

of methane is wetland environments via microbial action in anaerobic conditions (Whiticar, 48 

1999), but methane fluxes from wetlands are also modulated by climatic factors such as 49 

temperature (Westermann, 1992). Therefore, in order to model fluxes of methane to the 50 

atmosphere both the extent and locations of wetlands need to be known. For modern day, 51 

recent past and near future scenarios, maps of observed wetland extent (Prigent et al. 2007, 52 

Papa et al. 2010, Schroeder et al., 2015, Poulter et al, 2017) can be used or wetland extent can 53 

be calculated at a sub-grid level from fine resolution topographical data (as in the 54 

TOPMODEL approach of Beven and Kirkby (1979), Lu and Zhuang (2012), Stocker et al. 55 

(2014), Lu et al. (2016)), as wetlands only form where the ground is relatively flat. 56 

For the study of deep time paleoclimates (many millions of years in the past) there are no 57 

direct observations of wetland extent, although we may use a proxy such as coal deposit 58 

locations as we discus in section 3.2.1, and the topography is only known on relatively coarse 59 

resolutions of around 0.5 ° at best. Therefore, any model calculation of wetland extent must 60 

either rely on using approximate knowledge of the topography or not rely on the topography 61 

at all. Previous studies (Beerling et al., 2011, Valdes et al., 2005), the only current model-62 

based approach for deep-time paleoclimates, classified grid cells as either producing or not 63 

producing methane, based on either: i) a month being within a defined melt season, for grid 64 

cells where mean monthly temperature drops below 0 °C at some point infor at least one 65 

month of the year; or ii) precipitation being greater than evapotranspiration. They then scaled 66 

emissions by empirically derived functions of the variance or standard deviation of 67 

orography, at the best resolution available. The scaling effectively reduces methane emission 68 

rates in grid cells where elevation varies significantly and are therefore unlikely to have 69 

substantial wetlands within them, but relies on what may be quite coarse resolution 70 

topography not able to resolve sub-grid scale variations. The goal of this paper is to explore 71 

other methodologies for calculating wetland extent in the context of a deep time 72 

paleoclimates. 73 

In this work we develop a nearest neighbour-based algorithm to predict the fraction of a 74 

specified area that is wetland (FW). We base this on a modern day reference data set of  FW 75 

and corresponding environmental variables, empirically associating the FW observations with 76 

corresponding observed climate data and vegetation data calculated using one of two 77 

dynamic global vegetation models (DGVMs), the Sheffield Dynamic Global Vegetation 78 

Model (Woodard et al., 2009; Beerling and Woodward, 2001) and the Lund-Postdam-Jenna 79 

model (Wania et al., 2009).  Wetland is defined in the same manner as for our reference data 80 

(Poulter et al. 2017), discussed in the following section. It includes both permanently and 81 

seasonally flooded soils but excludes lakes, reservoirs, rivers, areas of rice cultivation saline 82 

estuaries and salt marshes. We demonstrate its application by predicting FW and CH4 fluxes 83 
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for an early Eocene (52 Ma) model climate, an interval of greenhouse warming (Zachos et al., 84 

2008) when sedimentary records indicate the existence of large areas of wetlands (Sloan et 85 

al., 1992, Beerling et al., 2009). For the Eocene, the same climate variables are obtained from 86 

a fully coupled global climate model and vegetation variables are derived from the same 87 

DGVMs.  We then predict FW for the Eocene by analysis and comparison to the modern-day 88 

reference data. We note that different reference sets, vegetation models or climate models 89 

will likely yield different results and these should be explored in future work, but our aim 90 

here is to demonstrate this approach and its potential rather than to produce a model-model 91 

intercomparson intercomparison.  92 

In the Data and Methods section we fFirstly, we describe modern day wetland data  at 0.5° 93 

spatial resolution and a monthly time step for a mean modern day year, along with climate 94 

and vegetation data which we later use as a reference data set. We then describe two test data 95 

sets at lower spatial resolution, equivalent to that used in paleoclimate models, again for a 96 

single year. The first of these is for the modern day and derived by interpolation of the 97 

reference data and the second is derived from a paleoclimate model of the early Eocene. We 98 

briefly describe unsuccessful attempts to model FW through analysis of the reference data 99 

set. The main conclusion of these unsuccessful attempts being to indicate that any 100 

relationship between FW and various environmental variables must be quite complex. We 101 

then introduce before moving on to the nNearest nNeighbours method we later found to be 102 

successful and. We finally in this section also describe the model used to calculate wetland 103 

methane emissions.  104 

In the Results and Discussion sectionWe then we first discuss the model results for the 105 

modern day test data set where we expect and then Early Eocene climate. For the modern day 106 

test data set the nearest neighbour method should perform wellyield strong agreement, since 107 

the test data it is simply a downscaled version of the reference data interpolated to lower 108 

spatial resolution; these results, therefore, serve to demonstrate whether or not some a 109 

generalised form of the nearest neighbour method couldan be successfully applied to 110 

prediction of FW for a climate very different to the modern day. We then apply this method 111 

to prediction of FW for the Eocene, and show that we can tune it by using the locations of 112 

coal deposits as wetland proxies.  113 

 114 

2 Data and Methods 115 

2.1 Modern day reference data 116 

We use a  modern-day reference data set of observed FW, the term observed being used to 117 

distinguish this from our later model results, with corresponding environmental data to 118 

develop an algorithm for the prediction of FW in the past, i.e. we assume that there exists a 119 

relationship between FW and the environmental variables compiled in the reference data and 120 

then apply that relationship to predicting FW in the past. We use the recently developed 121 

SWAMPS-GLWD (Poulter et al., 2017), which improves on the Surface Water Microwave 122 

Product Series (SWAMPS) (Schroeder et al., 2015) by adding using the static inventory of 123 

wetland area from the Global Lakes and Wetlands Database (GLWD) (Lehner and Doll 124 

2004) data, correcting the SWAMPS dataset in regions where this satellite derived dataset 125 

fails to detect water beneath closed canopies. We calculated the average monthly FW at each 126 
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0.5° × 0.5° grid cell for the years 2000 to 2012 on a monthly time step to give a modern-day 127 

FW (FWobs; annual max shown in Figure 1). Corresponding climate data on the same spatial 128 

and temporal resolution were obtained from CRU-NCEP v4.0 (Wei et al. 2014) and averaged 129 

to give monthly values for a mean modern-day year over the same time interval. The climate 130 

data for this mean year were then used to drive two DGVMs: the Sheffield Dynamic Global 131 

Vegetation Model (SDGVM) (Woodward et al., 1995; Beerling and Woodward, 2001) and 132 

the Lund-Postdam-Jenna model (LPJ) (Wania et al., 2009) to produce corresponding 133 

vegetation data. The combination of these yielded a reference data set of FW, climate 134 

(temperature and precipitation) and vegetation (leaf area index, net primary productivity, 135 

transpiration, evapotranspiration, soil water content and surface runoff) variables (either 136 

SDGVM or LPJ) for a set of 0.5° × 0.5° spatial and monthly temporal resolution sites for a 137 

single modern-day average year. Some variables, such as transpiration and 138 

evapotranspiration, are available from both climate and vegetation models. In such cases we 139 

use those from the vegetation model as these will be calculated from a more advanced 140 

vegetation scheme. To ensure that wetlands in areas dominated by agriculture or where one 141 

of our vegetation models, SDGVM, predicts bare land, did not bias our FW predictions, such 142 

grid cells were removed from the reference data. For the latter, this was done simply by 143 

removing those grid cells that SDGVM predicted to be bare land. For the former, we 144 

removed those that were 50 % or more, by cover, classed as cultivated and managed or 145 

mosaic cropland (Global Land Cover 2000 database, 2003). 146 

Many of the methods that can be used to analyse the reference data and predict FW require 147 

that the data are scaled, so that each variable covers a similar range of values. Therefore, we 148 

scaled the values of each environmental variable, X, using their global mean, µx, and global 149 

standard deviation, σx, i.e. for a given grid cell, J, each variable was scaled as: 150 

𝑋′ (𝐽) =
𝑋(𝐽)− µ𝑥

𝜎𝑥
           (1) 151 

This scales all variables such that they have global mean of 0 and standard deviation 1. 152 

2.2 Test data sets 153 

A modern-day test data set was made by interpolating the reference climate data to 2.5° × 154 

3.75°, the spatial resolution often used for paleoclimate models.  The DGVMs simulations 155 

were conducted ondriven by this interpolated data to yield the vegetation outputs. All climate 156 

and vegetation variables were scaled in the same way as the reference data, using the global 157 

means and standard deviations of the reference data. The palaeoclimatic assessment of our 158 

model was performed using an early Eocene test data set made using a single year of output, 159 

on a monthly time step, from a three dimensional fully dynamic coupled ocean-atmosphere 160 

global climate model HadCM3BL-M2.2 (Valdes et al., 2017), on a 2.5° latitude by 3.75° 161 

longitude grid and at a monthly time step for a single year. To simulate the early Eocene a 162 

Ypresian paleogeography and high CO2 (4x modern; 1120 ppm; Agnostous et al., 2016) was 163 

used. SDGVM and LPJ were both run with these model-simulated climate data to produce 164 

the vegetation variables required, as was done for the reference data set, whereas temperature 165 

and precipitation were derived directly from the climate model. All variables were again 166 

scaled using the means and standard deviations of the reference data. Therefore, for each 167 

climate, modern day and early Eocene, we have two test data sets for a mean year on a 168 
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monthly time step, at 2.5° x 3.75° spatial resolution, both with the same climate data, one 169 

with SDGVM vegetation data and one with LPJ vegetation data. Predictions for each test data 170 

set were made with the corresponding vegetation model’s reference data set. The reference 171 

and test data sets are summarized in Table 1. 172 

 173 

2.3 Initial unsuccessful models of wetland fraction 174 

Before discussing the model we employed to predict paleoclimate FW, it is useful to describe 175 

briefly other strategies that we attempted but that did not yield robust predictions when 176 

evaluated against modern-day data. The first of these was to examine FW vs individual 177 

environmental variables graphically from the reference data, to ascertain if we could define 178 

ranges for those variables that corresponded to predominantly low or high FW; this is similar 179 

to the approach of Shindell et al. (2004), who proposed threshold values of standard deviation 180 

of topography, ground temperature, ground wetness and downward shortwave flux for 181 

wetland development.  However, this proved unsuccessful, revealing only the rather obvious 182 

relationship that wetlands do not usually occur when mean monthly temperature is below 0 183 

°C. Although we expected to identify relationships for FW with other environmental 184 

variables (i.e. ground wetness), none were found. This is due to the combined effects of 185 

wetland occurrence being the function of multiple factors and the fact that most grid cells 186 

have FW ≈ 0 for all months of the year and the number of grid cells with significantly non-187 

zero FW is quite small. Therefore, environmental variables associated with high values of 188 

FW also tend to be associated with FW ≈ 0. Poor correlation of FW with environmental 189 

variables is also due to the important control exerted by the topography; regardless of 190 

climate, wetlands cannot form in landscapes where excess water flows away rather than 191 

remaining in situ. Collectively, these factors caused significant overlap in the range of 192 

environmental variables associated with both low and high FW.  193 

Another approach was a multiple linear regression using the reference data in order to derive 194 

an equation for FW in terms of linear functions of multiple environmental variables. 195 

However, this yielded equations that predicted a widespread occurrence of very low FW, 196 

including those areas where FWobs is very high either seasonally or throughout the year. 197 

Similarly, poor predictive models were obtained whether derived for all sites or just those 198 

restricted to specific plant functional types. These outcomes likely occur because linear 199 

regression optimises a function by minimising the error between predicted and observed 200 

values. As most grid cells have FW ≈ 0 (Figure 1) the ‘best’ regression equation is one that 201 

predicts FW very low almost everywhere, since in the majority of cases this is quite accurate. 202 

Efforts were made to use other optimisation criteria with customised functions that attempted 203 

to put more weight on predicting high FW correctly at the expense of larger errors where FW 204 

is low. However, these simply over predicted FW. Therefore, we were unable to find any 205 

satisfactory solution based on linear regression. That we do not find a satisfactory regression 206 

equation for FW on the reference data suggests that any relationship between FW and the 207 

environmental variables must be complex and therefore another approach is required if we 208 

are to be able to predict FW. 209 

 210 

 211 
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2.4 FW predicted by a nearest neighbour search 212 

Given that we were unable to find simple mathematical formula with which to predict FW we 213 

must consider another approach. Nearest neighbour searches can be used to predict a property 214 

for a query by comparing data for that query to similar such data from a reference data set. 215 

We find the entry in the reference data set that is most similar to, i.e. the nearest neighbour of, 216 

the query and predict the query has the same value in the property of interest as its nearest 217 

neighbour. The reference data set of FW and environmental variables sites on a 0.5° grid at a 218 

monthly time step can be viewed as a set of data points yielding FW at many different 219 

locations in a multi-dimensional space. The eight dimensions of that space are the two 220 

climate and six vegetation variables; temperature, precipitation, leaf area index, net primary 221 

productivity, transpiration, evapotranspiration, soil water content and surface runoff. It is 222 

logical to assume that points close to each other in such a space probably have similar FW.  223 

Therefore, iIf we have the same environmental variables for a site of unknown FW, we can 224 

search the reference data set for its nearest neighbour and , i.e. the point  in the dataset nearest 225 

to it. We then predict it would have the same FW as that for the nearest neighbour in the 226 

reference set, as illustrated schematically below. 227 

1. The set of N environmental variables, suitably scaled, X1, X2 … XN, defines an N-228 

dimensional space  229 

2. The Euclidean distance between two points, I and J, in this space is given by DIJ 230 

 𝐷𝐼𝐽 =  √∑ (𝑋𝑘 (𝐼) −  𝑋𝑘(𝐽))
2

𝑘=1,𝑁        (2) 231 

3. We calculate DIJ for site I of unknown FW and all sites, J , in the reference data set, 232 

for each of which we know FW(J) 233 

4. We find Jmin , the nearest neighbour, that which gives the lowest DIJ 234 

5. We then predict FW (I) = FW (Jmin) 235 

6. If site I is classed as bare land by the DGVM, thereby having all vegetation variables 236 

= 0, we predict FW(I) = 0 237 

This nearest neighbour (NN) method can, if necessary, be extended to a KNN method, 238 

whereby rather than predicting FW based solely on the single nearest neighbour we instead 239 

consider some function of the K nearest neighbours.  240 

 241 

2.5 Calculating wetland methane emissions 242 

The aim of this study was to derive an algorithm for predicting wetland fraction that can then 243 

be used to calculate methane emissions. For the latter, we use the empirical method described 244 

by Cao et al. (1996), where methane production, mp, and methane oxidation, mo, rates for a 245 

specific grid cell and month, both in g CH4 m
-2 month-1, are given by: 246 

𝑚𝑝 =  𝑅ℎ 𝑓𝑡            (3) 247 

𝑚𝑜 = 𝑚𝑝 (0.6 + 0.3
𝐺𝑃𝑃

𝐺𝑃𝑃𝑚𝑎𝑥
)         (4) 248 

Where Rh is absolute soil respiration and absolute GPP is gross primary productivity, both in 249 

g C m-2 month-1 and obtained from the respective vegetation model. GPPmax is the maximum 250 
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value of GPP for that grid cell for any month of the year. ft is a function that scales for air 251 

temperature, TMP, in °C.   252 

𝑓𝑡 =  
exp (0.04055 𝑇𝑀𝑃)

3.375
           (5) 253 

This is capped at a maximum value of 1. In principle there would also be a scaling function 254 

for water table depth, but this is defined as 1 for inundated wetlands and we are only 255 

modelling inundated wetland fraction, as that is how the SWAMPS-GLWD FW dataset is 256 

defined. 257 

Methane emission rate, me, is then the difference between methane produced and methane 258 

oxidised, scaled by the wetland fraction for that grid cell and month 259 

𝑚𝑒 =  (𝑚𝑝 − 𝑚𝑜) 𝐹𝑊          (6) 260 

 261 

3 Results and Discussion 262 

3.1 Modern day test data set 263 

The modern-day test set explained in Sect. 2.2 was used as a first, simple, test of the nearest 264 

neighbour algorithm for predicting FW described in Sect. 2.4. Since the modern-day test set 265 

is simply the reference climate data downscaled interpolated from 0.5° to the courser 266 

HadCM3BL-M2.2 model grid of 2.5° by 3.75° (with vegetation from the DGVMs), we 267 

expect the NN algorithm to yield predicted FW reasonably consistent with a similar 268 

downscaling of the SWAMPS-GLWD observed FW. If the NN predicted FW does not 269 

achieve this, then that would indicate that the NN algorithm has failed to predict FW 270 

sufficiently accurately. Therefore this test is primarily designed to indicate that a nearest 271 

neighbour algorithm either does or does not have the potential to be applied to paleoclimates.  272 

Fig. 2 shows maps of seasonal, June–July–August and December–January–February, average 273 

FW from the observed SWAMPS-GLWD data interpolated to 2.5° x 3.75° along with the 274 

predicted FW using either SDGVM or LPJ vegetation data test sets. For both vegetation 275 

models, the predicted FW maps are similar to the observed-interpolated data. Sparse patches 276 

of high FW occur in the tropics, especially the Amazon, throughout the year, and large areas 277 

of seasonal summer wetlands occur in Alaska, Canada and Siberia. The monthly variation of 278 

FW north and south of 30° N, i.e. essentially comparing boreal and tropical wetlands is 279 

shown in Figure 3. We split the global values into these two zones because there are virtually 280 

no southern hemisphere boreal wetlands, and any division based purely on latitude is 281 

arbitrary. The nearest–neighbour algorithm generates the correct seasonal FW pattern in 282 

boreal regions and, as expected, a relatively constant monthly FW in the tropics. However, 283 

SDGVM consistently underestimates the amount of tropical wetland, whilst LPJ agrees 284 

reasonably well with observations; mean monthly values are 2.11, 1.47 and 1.90 x 106 km2 285 

for the observed, SDGVM and LPJ respectively. This is due to the fact that SDGVM classes 286 

some grid cells as bare land, assumed to have FW = 0 in our algorithm, even though some of 287 

these have non-zero FW in the SWAMPS-GLWD database. LPJ does not classify these grid 288 

cells as bare land but instead treats them as very low amounts of vegetation, therefore 289 

yielding higher global FW that is more consistent with observations. If we exclude from the 290 

observed data those grid cells SDGVM predicts as bare land, then the SDGVM prediction 291 
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matches better the observed data and LPJ predictions (Table 21). These results give 292 

confidence that a nearest neighbour algorithm is able to reproduce acceptable FW based on 293 

these specific climate and vegetation variables.  294 

Figure 4 shows the monthly variation in wetland methane emissions for boreal and tropical 295 

areas, calculated using: the observed or predicted FW, both vegetation models’ outputs and 296 

Eq. 3 to 6. The annual methane emissions totals are summarised in Table 32, along with other 297 

recent estimates from model intercomparisons. The annual and monthly zonal methane 298 

emissions are broadly similar for a given vegetation model regardless of whether the 299 

observed or predicted FW is used. SDGVM gives global emissions in line with the other 300 

modelling studies, whereas those from LPJ are somewhat lower. This is mainly due to 301 

differences in tropical emissions. SDGVM yields higher tropical emissions than LPJ but 302 

slightly lower emissions north of 30°N. The main factors influencing the modelled methane 303 

emissions (other than FW) are, according to equations (3) to (5), temperature (which is the 304 

same for both vegetation models), soil respiration (Rh) and gross primary productivity (GPP), 305 

the latter two differing between the two vegetation models. It appears that differences in Rh 306 

lead to the different zonal methane totals. South of 30° N SDGVM and LPJ model annual 307 

total Rh of 46,000 Tg C year-1 and 35,000 Tg C year-1 respectively and, using the same 308 

observed FW, SDGVM and LPJ model annual methane emissions of 123 Tg CH4 year-1 and 309 

69 Tg CH4 year-1 respectively. Therefore, in the tropics the differences in the predicted 310 

methane emissions seem to be due to differences in calculated Rh. North of 30° N both 311 

DGVMs have similar Rh,, 20,000 Tg C year-1 and 22,000 Tg C year-1 respectively for 312 

SDGVM and LPJ, and similar values of methane emissions, 64 Tg CH4 year-1 and 65 Tg CH4 313 

year-1 respectively. 314 

We stress that this was simple test for a nearest-neighbour approach, for reasons outlined at 315 

the beginning of this section, and the satisfactory results obtained here merely indicate this is 316 

an approach that has potential to be useful in predicting FW for a paleoclimate. 317 

 318 

3.2 Early Eocene climate 319 

In the previous section we have shown that a NN method can reproduce FW for a modern 320 

day climate, justifying its application to the early Eocene climate described in section 2.2. 321 

However, as noted at the end of section 2.4 a NN method can be extended to KNN, whereby 322 

we predict FW based on some function of the FW of K nearest neighbours (noting that in 3.1, 323 

NN is simply 1NN, i.e. KNN with K=1). A 1NN algorithm that works well to predict modern 324 

day FW may not work as well for a paleo climate of many millions of years in the past. The 325 

reference data set we use, section 2.1, is very similar to the modern day test set, the latter’s 326 

climate data is simply obtained by interpolating the former to a courser spatial grid. 327 

Therefore, we expected and observed high correlation between modern day FW predicted 328 

from the nearest neighbour in the reference data and the actual FW.  The early Eocene test 329 

data has significant differences to the reference data since the climate of the early Eocene is 330 

obviously not the same as the modern day. Therefore, it will be harder for a nearest neighbour 331 

based method, searching a space described by climate and vegetation data, to find a nearest 332 

neighbour in the modern day reference data with the correct early Eocene FW, whatever that 333 

may be. It may be that for a high FW early Eocene grid cell the nearest neighbour happens to 334 

have quite low FW and vice versa. Figure.1 shows that FW can change from very high to 335 
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almost zero over relatively small distances, for example in the Amazon basin, and that 336 

therefore sites with similar climate and vegetation can have very different FW. The greater 337 

the degree of difference between the early Eocene and the modern day reference data sets, the 338 

more likely it is that the first nearest neighbour does not have the correct FW. 339 

FW calculated for the Early Eocene using the exact same 1NN method as used for the 340 

modern day test set yields values of global monthly mean wetland area of 4.07 x 106 km2 341 

using SDGVM. This is around 33% higher than that for the modern day, 3.00 x 106 km2 from 342 

Table 21.  However, this includes a contribution of 1.53 x106 km2 from areas south of 30° S, 343 

which have an almost negligible contribution for the modern day, so the tropics and northern 344 

Boreal regions actually have lower FW for the Early Eocene. Given that the Early Eocene 345 

was significantly warmer and wetter than the modern day (Carmichael et. al. 2017), we 346 

expect greater wetland area than the modern day. Beerling et al. (2011) reported global 347 

wetland area for an Early Eocene climate using SDGVM; employing their method to our 348 

Early Eocene climate, so as to eliminate differences arising from the specific HadCM3 model 349 

climate and spatial resolution, yields global monthly mean FW area of 16.29 x 106 km2, four 350 

times higher  than the value we would calculate from a 1NN method. Therefore, based on 351 

comparison with both the modern day and a previous Eocene study, it appears that a 1NN 352 

method may be unsuitable for a paleoclimate that is very different to our modern day 353 

reference climate, and we consider KNN with higher values of K. 354 

 355 

3.2.1 maxKNN Maximum of K nearest neighbours FW prediction  356 

If indeed the 1NN results are too low then that implies that for some hypothetical high FW 357 

sites from the Early Eocene, the first nearest neighbours in the reference data have very low 358 

FW. Therefore, if we consider higher values of K we may improve our estimate by predicting 359 

FW to be the maximum FW of K nearest neighbours (maxKNN) in the reference data. 360 

However, applying this approach will yield  increasingly higher FW as K increases,  361 

requiring a data-constrained optimisation of K. Clearly there are no observations of Eocene 362 

wetland distributions with which to properly train any predictive algorithm, but we may 363 

utilise a suitable proxy for wetlands to try and obtain such a constraint. Here we use the 364 

distribution of coal deposits in the Eocene, (Boucot et al., 2013) shown in Figure 5 as such 365 

constraints. There are some limitations to this approach. Coal is formed in wetlands, but can 366 

also form in other settings such as lakes; and of course, these datasets do not document where 367 

wetlands were present but the sedimentary record is missing or has not been published. In the 368 

tropics, coal may not have formed in wetland environments due to a very high rate of carbon 369 

cycling and in northern latitudes subsequent glaciations could have eroded coal deposits 370 

away. Moreover, data will be sparse or non-existent for remote or inaccessible modern day 371 

regions, such as under the Antarctic ice sheet. We also note that precise age and location, 372 

especially when comparing to low resolution climate simulations, could cause disagreement 373 

for grid-by-grid comparisons. A final and critical complication is that FW is a number 374 

between 0 and 1, corresponding to the fraction of a site that is wetland, whereas the coal data 375 

is a binary measure: either a grid cell has or does not have a coal deposit within it. For all of 376 

these reasons, data-model comparisons must be done cautiously; nonetheless, these data are 377 

useful for identifying the most effective K value for reconstructing likely wetlands.  378 
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We defined two functions to assess how well a model FW matched the locations of Eocene 379 

coal deposits. Firstly, f1 is defined as the mean distance, in km, of a coal deposit location to a 380 

grid cell  with model FW predicted to be > 0.2. The choice of 0.2 representing significant FW 381 

is arbitrary but the analysis was repeated with other values and the same conclusions were 382 

found. Secondly, f2 is defined as the mean FW of the grid cell closest to each coal deposit 383 

location, providing that site is within 2 grid points of that coal deposit location, to allow some 384 

leeway with regard to different projected locations of land masses in the early Eocene. Again 385 

the choice of a 2-pixel limit is arbitrary but the analysis was repeated with other limits and 386 

the same conclusions found.  387 

Figure 6 shows the values of f1 and f2 for maxKNN predictions of FW with increasing K for 388 

both the SDGVM and LPJ Early Eocene data sets, compared to a data set of coal deposit 389 

locations. As explained, since FW increases with K then by extension, so does the likelihood 390 

of a site with a coal deposit in or close to it coinciding with a site of significant FW. 391 

Therefore, we do not seek to find the value of K that will give the lowest value of f1 and 392 

highest value of f2 as that would simply be K equal to the size of the entire reference data set. 393 

Instead, we try to find the lowest value of K that gives a “good” prediction for both f1 and f2.  394 

Although “good” is a subjective measure, we define it based on where increases in K result in 395 

marginal improvements in f1 and f2. For both vegetation models as K increases from 1 to 3 f1 396 

decreases significantly and f2 increases significantly. For K > 3 the decrease in f1 levels out 397 

and the increase in f2 also declines. Therefore, we conclude that based on comparison of 398 

predicted FW and locations of coal deposits, K=3 is a reasonable choice to make predictions 399 

for our early Eocene climate via a maxKNN algorithm.   400 

 401 

3.2.2 FW predicted by max3NN  402 

Figure 7 shows annual maximum FW (i.e. for each pixel the highest of the 12 monthly 403 

values) calculated by a max3NN model using SDGVM or LPJ vegetation data, as described 404 

above, with the locations of early Eocene coal deposits also shown. The annual maximum 405 

FW is shown here as FW might only need to be high at some point during the year to give 406 

rise to coal deposits.  The areas of predicted high FW are much larger than for the modern 407 

day (Fig. 1); moreover, at this spatial resolution there are often abrupt changes from low-408 

medium (yellow) to much higher (red) values leading to some isolated patches of high FW. 409 

The approach makes it difficult to interrogate specific factors that drive the increase in 410 

Eocene FW compared to today but given the wetter climate of the Early Eocene higher FW 411 

than the modern day is to be expected. The patchiness is partly a consequence of using annual 412 

maximum FW but also reflects the challenge of predicting a characteristic of a 413 

paleoenvironment based on modern day reference data. Considering zonal total FW and 414 

seasonal average FW maps, i.e. averaging out some of the small scale spatial and temporal 415 

variability, is likely a better approach for understanding ancient methane cycling and these 416 

are discussed later.  417 

The maps of predicted FW are quite different for the two vegetation models, but the greatest 418 

differences are in areas with very little or no coal deposits, e.g. the tropics, north eastern 419 

North America and Antarctica, making it difficult to critically evaluate them against the data. 420 

However, the monthly variations given by the two vegetation models in total FW (Figure 8) 421 

and methane emissions (Figure 9), for the three latitudinal zones are reasonably similar with 422 
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respect to seasonal variations, in that both have their highest values in the late spring and 423 

summer months for zones north of 30° N and south of 30° S and no clear seasonal variation 424 

in the tropics. In the tropical zone, predictions of monthly FW area are similar in magnitude 425 

for the two vegetation models, with SDGVM usually predicting higher FW than LPJ. 426 

However, in the zone north of 30° N LPJ predicts much higher FW than SDGVM throughout 427 

June to October with a peak in September, whereas SDGVM peaks in May. A similar but less 428 

striking pattern occurs for the zone south of 30°S where again LPJ predicts higher summer 429 

FW area than SDGVM. These differences between the two vegetation models are also 430 

evident in maps of seasonal average predicted FW (Figure 10). In June to August, SDGVM 431 

predicts very little wetland area in the northern hemisphere, whereas LPJ predicts moderate to 432 

high FW areas over much of the land north of around 50° N. In December to February both 433 

models predict almost zero FW north of around 50° N. In the tropics and the southern 434 

hemisphere, the two models predict similar amounts of wetland area, but with SDGVM 435 

predicting slightly higher FW overall between 30° S to 30° N and LPJ predicting slightly 436 

higher FW south of 30° N.  437 

This differs from the modern day distribution of wetlands (Figure 1) and likely arises from a 438 

variety of method-dependent factors.  First, the coarser resolution leads to more patchy 439 

distribution, as is evident in the modern day data in Figures 1 and 2 (top row) at 0.5° x 0.5° 440 

and 2.5° x 3.75° spatial resolution. This is particularly true for the tropics where wetlands do 441 

occur in small areas. Secondly, the nature of the nearest neighbour algorithm relies on the 442 

principle that a grid cell in a paleoclimate with specific values of environmental variables will 443 

have the same FW as a grid cell in a modern day reference data set with similar values for 444 

those environmental variables; however, other factors influence wetland fraction, such as the 445 

topography. Therefore, a nearest neighbour method predicting FW for a paleoclimate from a 446 

modern day reference data may well have errors for a given grid cell and month. These errors 447 

should reduce when averaged over latitudinal zones or seasonal averages.    448 

The differences between methane emissions from the two vegetation models likely arise from 449 

their respective impacts onf soil water balance, via the magnitude of evapotranspiration 450 

(EVT) relative to precipitation (PRC). As the vegetation model, used to calculate EVT, and 451 

climate model, used to calculate PRC,s are not dynamically coupled, PRC will be the same in 452 

all Eocene simulations, but EVT will vary; thus, vegetation models that yield elevated EVT 453 

in a given grid cell are more likely to yield negative water balance (PRC-EVT) and low FW. 454 

Figure 11 shows the June to August mean PRC-EVT for SDGVM and LPJ, revealing that it 455 

is negative in most places north of 30° N for SDGVM but is slightly positive or at least much 456 

closer to zero for LPJ. Therefore, SDVGM will generally predict lower FW by identifying 457 

modern day nearest neighbours where PRC < EVT and unlikely to be wetland. The lack of 458 

extensive coal deposits in the high northern latitudes, especially where the LPJ-based 459 

approach predicts wetlands, could indicate that the LPJ approach has over-predicted FW.  460 

However, we caution that this could be a data limitation issue and future work is required to 461 

interrogate the forecasts of these two methods. Regardless, both models yield broadly similar 462 

results on global and zonal terms (Table 43) indicating that the KNN algorithm could be a 463 

useful complementary approach for interrogating ancient wetland extent and methane 464 

emissions. Global monthly mean FW for the Eocene is 8.5 x 106 km2 and 10.3 x 106 km2 465 

predicted by SDGVM and LPJ respectively. Both of these values are larger than for the 466 

modern day value of 3.0 x 106 km2, as we would have expected. 467 
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4. Conclusions 468 

We have presented a nearest neighbour method by which FW can be calculated at sites on the 469 

Earth’s surface for an Eocene paleoclimate based on a set of environmental variables 470 

obtained from climate and vegetation models and comparison of these to a modern day 471 

reference data set. This has been used as an offline tool using data obtained from climate and 472 

vegetation models, rather than by embedding this within existing Earth systems models, as 473 

the goal of this work was to explore and improve on methods of predicting FW for deep time 474 

paleoclimates. The precise formulation of the nearest neighbour approach was determined 475 

through comparison to locations of Eocene coal deposits and indicated that a max3NN 476 

method was best suited in this case. That should not be taken to imply that a max3NN would 477 

be the best in general; for another paleoclimate a similar analysis to that performed here 478 

would be required to determine the optimum implementation of KNN. It would therefore be 479 

of interest in future work to apply this methodology to other paleoclimates to see if similar 480 

results are obtained, perhaps using different environmental variables to those we have used to 481 

find nearest neighbours and perhaps other proxies for paleo-FW, should they become 482 

available. The predicted distributions of FW are much higher than those of today, as we 483 

would expect. We have assessed this using two different global vegetation models, and whilst 484 

these do yield some geographical differences in FW arising from different evapotranspiration 485 

estimates, they are broadly similar when considering zonal means. For both vegetation 486 

models, global monthly mean modelled FW area is less than, around half to two thirds, that 487 

of Beerling et al., 2011, as are the values of the wetland methane emissions. However, our 488 

new method does not rely on the standard deviation of orography, a variable which is only 489 

known to a relatively coarse resolution for deep paleoclimates.  490 

 491 
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 620 
Figure 1: Annual monthly maximum observed FW from the SWAMPS-GLWD data set 621 

(Poulter et. al., 2017), mean of 2000 to 2012. Grey shading indicates bare land, as 622 

predicted by SDGVM, or > 50% cultivated (Global Land Cover 2000 database, 2003). 623 

 624 
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 625 
Figure 2: Seasonal mean FW.  Observed interpolated to model grid; (a) Jun–Jul–Aug 626 

and (b) Dec–Jan–Feb. 1NN prediction by SDGVM (c) Jun–Jul–Aug and (d) Dec–Jan–627 

Feb.  1NN prediction by LPJ (e) Jun–Jul–Aug and (f) Dec–Jan–Feb. 628 

 629 
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 630 
Figure 3: Monthly zonal variations of FW calculated for the mean 2000-12 climate on a 631 

2.5 x 3.75° grid, (a) North of 30° N and (b) South of 30° N. 632 

 633 
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 635 

Figure 4: Monthly zonal variations of wetland CH4  emissions / Tg CH4 calculated from 636 

DGVM model data and observed or modelled FW, for the mean 2000-12 climate on a 637 
2.5 x 3.75 ° grid. (a) SDGVM North of 30° N, (b) LPJ north of 30° N, (c) SDGVM South 638 

of 30° N and (d) LPJ south of 30° N. 639 
 640 
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 641 
Figure 5: Locations of Eocene coal deposits plotted on our Eocene model land mask.□ 642 

indicates an Eocene coal deposit location (Boucot et al., 2013) 643 
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 644 
Figure 6: Variations of statistics for match between Eocene maxKNN predicted high 645 

FW and coal locations (Boucot et al., 2013). f1 is the mean distance of a coal location to 646 

site with FW > 0.2 for model based on (a) SDGVM and (b) LPJ. f2  is the mean FW of 647 

sites within 2 pixels of a coal location for model based on (c) SDGVM and (d) LPJ data. 648 

  649 
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 650 
Figure 7: Annual maximum FW calculated by the max3NN method by SDGVM and 651 

LPJ for the  Eocene climate, compared with coal deposit locations 652 

  653 
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 654 
Figure 8: Monthly variations of total wetland area calculated for the Eocene climate by 655 

SDGVM and LPJ, for (a) all areas north of 30° N, (b) all areas between 30° S and 30° N 656 

and (c) all areas south of 30° S.  657 
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 658 
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 659 

 Figure 9: Monthly variations of wetland CH4 emissions /Tg CH4 calculated from 660 
predicted FW, for the Eocene climate by SDGVM and LPJ, for (a) all areas north of 30° 661 
N, (b) all areas between 30° S and 30° N and (c) all areas south of 30° S. 662 
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 663 
Figure 10: Seasonal mean FW predicted for the Eocene climate by SDGVM and LPJ 664 

using the max3NN (a) SDGVM June–July–August, (b) SDGVM December–January–665 

February, (c) LPJ June–July–August, (d) LPJ December–January–February 666 

  667 
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 668 
Figure 11: June–July–August mean precipitation minus evapotranspiration for the 669 
Eocene climate, using evapotranspiration from (a) SDGVM or (b) LPJ. 670 

  671 
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Data set Time Climate data source DGVM used 

SDGVM reference Modern day CRU-NCEP v4.0 SDGVM 

LPJ reference Modern day CRU-NCEP v4.0 LPJ 

SDGVM modern test Modern day Interpolated CRU-NCEP v4.0 SDGVM 

LPJ modern test Modern day Interpolated CRU-NCEP v4.0 LPJ 

SDGVM Eocene test Early Eocene HadCM3BL-M2.2 SDGVM 

LPJ Eocene test Early Eocene HadCM3BL-M2.2 LPJ 

 672 
Table 1. Summary of reference and test data sets used combining data from dynamic 673 
global vegetation models SDGVM (Woodward et al., 1995; Beerling and Woodward, 674 
2001) and LPJ (Wania et al., 2009) with climate data from CRU-NCEP v4.0 (Wei et al. 675 
2014), for the modern day, and HadCM3BL-M2.2 (Valdes et al. 2017), for the Early 676 

Eocene.   677 
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 > 30° N 

FW 

< 30° N FW Global FW 

Observed 1.84 2.11 3.95 

Observed  

excluding SDGVM bare land 

1.47 1.41 2.88 

SDGVM 1.53 1.47 3.00 

LPJ 1.95 1.90 3.86 

 678 

Table 21: Modern day monthly mean FW area (106 km2), for observed data interpolated 679 

to the 2.5° x 3.75° grid or calculated by vegetation model. 680 

  681 
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Model FW data > 30° N CH4 < 30° N CH4 Global CH4 

SDGVM observed 64.32 122.69 187.01 

predicted 57.95 108.63 166.58 

LPJ observed 65.43 68.60 134.03 

predicted 73.11 83.78 156.89 

  

GCP-CH4* observed 0.5°   ~ 184 

WETCHIMP** model specific 51±15 126±31 190±39 

 682 
* GCP-CH4 (Poulter et al., 2017) results are the mean of 11 different methane emission 683 

models with the same observed wetland data as used to produce Figure 1 here. They are 684 

quoted as means over specific ranges of years; : 2000–2006 = 184.0 ± 21.1, 2007–2012 = 685 

183.5 ± 23.1, 2012 = 185.7 ± 23.2. As our results are for a single mean 2000–12 year we 686 

therefore only quote an approximate value from this source for comparison. 687 

** WETCHIMP (Melton et al., 2013) results are the mean of 8 different models, 1993-2004, 688 

each of which used their own definition of wetland extent rather than observed data  689 

 690 

Table 32: Modern day annual total wetland CH4  emission (Tg CH4 year-1),  calculated 691 

by vegetation model using either observed FW data (interpolated to the 2.5° x 3.75° 692 

grid) or model predicted FW, compared with other modelling studies. 693 

  694 
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 695 

FW model > 30°N 30°S to 30°N < 30°S Global 

SDGVM 2.82 4.11 1.53 8.48 

LPJ 4.84 3.39 2.06 10.29 

     

Table 43: Eocene monthly mean max3NN modelled FW area / 106 km2 696 

 697 

  698 
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Final response to Referees #1 and #2 

We thank both anonymous referees for their comments and recommendations. Below we give our 

responses, in italics, to each of those and indicate where revisions have been made to the 

manuscript. The line numbers given refer to the above tracked changes version of the manuscript. 

 

Response to Referee 1 

The main confusion I have is on the validation of this approach. It is not convincing that 
using one reference dataset to train their algorithm, and then evaluate the simulated 
results with the same reference dataset. It would be necessary to compare with independent 
inundation products to justify their approach, or the authors need to provide 
the uncertainty in the estimated inundation using their approach given that there are large 
uncertainties in wetland extent among existing inundation products (Melton et al., 
2013). 

There is no training and evaluation in the sense that would normally be understood from a 

machine learning perspective. For the Eocene results, section 3.2, we clearly have no wetland data 

with which to train and evaluate our predictions. We simply use the coal deposits as a proxy, 

comparing those to our wetland predictions to give us the best value of K for the maxKNN approach 

with this particular data set.  

We have added to the text in section 3.2.1 to make this clearer, L362 – 364. 

Nor are we using a training set for the modern day test data, section 3.1. These results were 

included simply to show whether some form of nearest-neighour approach might, in principle, be 

useful (lines 236-238); we were exploring the potential of this approach. It was a test that if failed 

would have meant we would not have continued developing a nearest neighbour method; it would 

have been another unsuccessful attempt along with those briefly discussed in section 2.3. That the 

method passed this test merely indicated we could explore some form of nearest neighbour method 

in the context of the Eocene climate.  

We have added to the text at the end of section 3.1 to stress this point, L315-317 

 

The logic of this approach is a bit confusing to me. If I understand it correctly, this 
nearest neighbor-based algorithm implicitly assumes the locations of wetlands should 
close to each other and inundation is correlated with eight variables the authors proposed. 
But according to the modern dataset, is there any analysis/evidence prove that 
this relationship exist 

The nearest neighbour approach assumes that sites with similar values of wetland fraction 

should have some similarity in terms of their values of the 8 climate & vegetation variables we use; or 

to put it another way, if sites with similar FW show no similarity at all between their values of at least 

some of those 8 variables, then a nearest neighbour approach will simply not work. There is certainly 

no simple correlation between FW and those 8 variables in the modern day data, as we briefly 

explain in our “Initial unsuccessful models” section 2.3; a multiple-linear regression on those 8 

variables did not produce a good predictive model of FW. This suggests that any relationship 

between FW and those 8 variables must be complex.  

We have added a sentence to the end of section 2.3 to reflect this, L206 – 209 
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We have also the revised section 2.4 text should make this clearer, L213 - 227 

 
Fan (2011) suggest that water table depth is a key to simulate 

wetland distribution - at least it is an important variable to capture the distribution of 
peatlands in high latitudes as some of the peatlands don’t show inundated condition 
but still emit CH4. 
 

We use soil water content, defined as the amount of water in in the top 1m of soil. This is 
produced by both vegetation models whereas water table depth is not.   
 

I’m not sure that comparing the simulated wetland distribution with coal deposit can 
be helpful as the authors have already mentioned some of the limitations using coal 
deposit. Also, it’s hard to tell how good the fit is from reading Figure 7. 

Clearly coal deposits are not an ideal proxy for wetland fraction, but they are all we have. 

Without them we would have had no way of deciding on a value for K in the maxKNN algorithm. 

Therefore, despite the limitations, they are useful to explore this approach. 

 

It would be great to address a bit more about the background why it’s important 
to develop a dynamic inundation algorithm for deep time paleoclimate simulation and 
what’s the current status of research on this topic. 

As explained in the introduction, there is great interest in understanding how the extent of 

wetlands changed through geological time and what role that could have had on methane cycling.  

However, there is currently only one model-based approach for deep time paleoclimates (Beerling et 

al., 2011).  The goal of this paper is to explore other methodologies and compare them to this 

original work, better understanding the potential of the new approaches and the robustness of the 

previous work.  

We have revised the text in a number of places in the introduction, L41-44, 58-59, 62-63, 71-

73. 

 

Response to Referee 2 

“I am fairly convinced this is a sensible and useful approach, but I must admit to being 
slightly baffled about the exact methods employed – I found the paper rather unclear 
in quite a few places. I would encourage the authors to revise the description of the 
methods to make it clearer. “ 
 

In addition to the changes in the introduction recommended by referee 1 we have further 
added to and revised the text outlining the structure of the paper here, L93 – 110. 

We have also revised the description of the nearest neighbour method, L213 - 227 
 
 

Some clarification on how this approach should be employed 
by the wider modelling community would also be appreciated – can the method 
be embedded within ESMs to calculate wetland emissions online? Or is it envisaged 
as an offline only tool? I wasn’t clear. If the authors can clarify the methods 
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This has been used as an offline tool with the emphasis in this work on exploring methods for 

predicting FW. We have added to the conclusion with respect to this point and also added that 
further work on other paleoclimates and other data would be naturally be of interest, L472-475 
and L479-483 

 

L43 ESMs must either prescribe CH4 concentrations as boundary conditions, or “incorporate 
dynamic methane fluxes from natural sources: : :”. If the latter, they must not 
only simulate the sources but also the sinks of the CH4 (i.e the whole budget) in order 
to reasonably represent concentrations. 
 

Changed to “… sources and sinks”, L47 
 
 
L55 ‘: : :no direct observations of wetland extent’ – it should be stated that there are 
however proxies, that you later utilise (i.e. coal deposits). 
 

Amended the text to refer to coal deposits as a proxy, L58-59 
 
 
L60 ‘: : :mean monthly temperature drops below 0 _C at some point in the year: : :’ I 
found this slightly confusing. Do you mean if there is one (or more) month in the year 
below 0 _C, then that grid-cell is classified as producing methane? Clarify. 
  

Changed to “mean monthly temperature drops below 0°C for at least one month of the year” 
L65-66 

 
 

L71 So you are using DGVMs to simulate vegetation distributions, rather than using 
present-day observational datasets. It may be worth saying that the DGVMs have 
(presumably) been evaluated elsewhere. 
  

We have now named and included the references for the DGVMS used at this point, L78-80 
 
L68 Is it worth briefly defining wetland? Perhaps earlier. E.g. the RAMSAR definition. Is it obvious 
how such definitions translate into a climate model-specific definition? 
(Water depth, etc.). What is the basis of the modern day reference data set of FW? 
Can you say it is ‘known’ or ‘observed’ FW? 
 

We have added a sentence here to say how we define wetlands, L80-83 
 This is the same definition as for our reference data set. However wetland may be defined, 
what we are predicting is wetland as defined by the reference data. 

We have also explained the use of ‘observed’ to distinguish the reference data from our 
model results L117-118. 

That the reference data is partly derived from satellite observations was already included in 
the text, in response to a later point we have now also included further detail on the other 
observations it is derived from, L 123-124 
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L80 Typo: intercomparson 
 
 Corrected, L92 

 
L87/90 Capitalise Nearest Neighbours or not? (Is it a well enough known method to be 
considered a proper noun? I don’t know, but at least be consistent.) 
 
 Changed to nearest neighbours, L102 
 
L105 So SWAMPS is based on microwave satellite observations – what is the observational 
data that GLWD is based on? 
 
 Added that it is static inventory of wetland area, L123-124 
 
L127 I didn’t fully understand the scaling – are the mean/standard deviation global 
values? 
  

They are global, added this L149 
 
L130 As previous comment – is the global mean 0? 
 
 They are global, added this L152 

Also add to later discussion of the test data sets L157 
  
L132 A modern-day test data set… 
 
 Added ‘data’, L154 
 
L134 conducted on -> driven by? 
 
 Changed L156 
 
L136 Use the same terminology as l132 to avoid confusion, i.e.: “The paleoclimatic 
assessment of our model was performed using an early Eocene: : :” -> An early Eocene 
test data set was made using: : : ? 
 

Changed L159-160 
 
L145 It would be useful to provide a summary table of the test/reference data sets to 
clarify exactly how you are going to evaluate your approach; I didn’t find the current 
explanation completely clear. 
 

Added sentence referring to new Table 1, L171-172 
New Table 1 appears at L672 – 676 
Subsequent changes to previous tables, increasing all numbers by 1 
The tables section L678, 690, 695 
In the main text where these are referred to L292, 297, 343, 463 
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L163 The number of what? Months or grid cells? 
 
 It is grid cells, text amended L187 
 
L214 Is Rh an absolute or scaled (0-1) value? If absolute, what are the units? Similarly 
for GPP in the next equation (I guess it must be absolute value to make sense.) 
 
 It is absolute and units of g C m-2 month-1 in both cases, text amended L249-250 
 
L218 Is TMP soil, surface, or surface air temperature? 
 

It is air temperature, added L251 
 
L226 Presumably me >= 0? Is there a test for mp >= mo? What are the units of me?  
 
 mo is defined as fraction of mp by eq(4), therefore me, by eg (6), has to be >= 0, so no test for 
mp > mo is done. The units of me, mo and mp are all g CH4 m-2month-1 these have been added 
earlier where mp and mo defined L220. 
 
L232 ‘downscaled’ – I think the definition of downscaling is to infer something at high 
resolution from something at low resolution. You seem to be using the word in the 
opposite sense. I don’t think we (scientists) normally use ‘upscaled’, so I am unsure 
what to call this (degrading?), but I don’t think it is downscaling (also l234). 
 
 Changed “downscaled” to “interpolated” L266 
 
L318 I think the term ‘maxKNN’ appears here for the first time and isn’t defined. Is it 
just KNN with K>1? (As suggested by l316.) 
 

We have changed the section title to “Maximum of K nearest neighbours FW prediction” 
L356  
We have now defined maxKNN later L360 
 
 
L364 In a similar vein to the last comment – why not just 3NN rather than max3NN? 
 
  “3NN” does not indicate it is the maximum of those 3 nearest neighbours, it could imply any 
relationship to the three nearest neighbours 
 
L383 ‘: : :both [FW and CH4 emissions] have their highest values in summer months: : :’ 
This is not so clear in Figure 8 for SDGVM. It is clear in Figure 9. 
 
 We have changed the text to “ … values in the late spring and summer months .. “ L423 
 
L409 ‘: : :their respective impacts of soil water balance: : :’. Clarify. Is this just a typo of 
-> on? 
 
 Corrected to “on” L450 
 
L409 I got a bit confused here about EVT. It seems EVT is from the vegetation models; 
but EVT must also be calculated in the underlying climate model – I guess with a much 
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more simplified vegetation scheme. Is there a large discrepancy between the EVT in 
the vegetation and climate models? Isn’t this a bit of a problem? This decoupling of the 
simulated water budget between the climate model and the vegetation model should be 
clearly explained earlier in the methods section, and the implications discussed here. 
 

EVT, as used throughout the paper, is always from the vegetation models. We have not 
considered EVT from the climate model. So long as it is the same EVT used at all times in our 
modelling of FW, i.e. same definition for reference and test data sets, this should not be an 
problem. 

 
We have clarified this in section 2.1, L138-141 as well as in section 3.2.2 L451-452 

 
 
L423 Global monthly mean FW for the Eocene: : : 
 
 Inserted “for the Eocene” L465 
 
L572 Figure 1 caption – Annual monthly maximum: : : 
 
 Inserted “monthly” L621 
 
L586 Figure 4 caption and y-axes – clarify these are CH4 emissions – what are the 
units? (Tg CH4/month?) 
 

Captions and figure titles (there are no y-axes labels on this and similar figures as it makes 
them too crowded) changed to “CH4 emissions / Tg CH4

”, L634-636  
 
We have made similar changes made to Figure 9, L658-660 

 
 

L628 Incorrect punctuation for list. 

 Changed ; to : L684 

 

 

Additional 

Deleted repeated spaces between the following words on the given lines 

 “fraction” and “predicted”, L21 

“fraction” and “methane”, L34 

“data” and “at”, L93 

“models.” and “The”, L155 

“deposits.” and “The”, L407 

Added a reference in the Abstract for the HadCM3BL-M2.2 climate model, L25 

Added “a”, L75 
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Deleted “:”, L296 

Added an acknowledgement to the referees, L505-506 

Corrected some citations. Removed extra “.” or added missing “,” in  “et al.,” L35, 36, 346, 622 

Corrected misspellings of 

 “wetlands”, L584 

 “Evaluation”, L597 

 

 

 


