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Abstract. Modes of climate variability strongly impact our climate and thus human society. Nevertheless, their statistical prop-

erties remain poorly known due to the short time frame of instrumental measurements. Reconstructing these modes further

back in time using statistical learning methods applied to proxy records is a useful way to improve our understanding of their

behaviours and meteorological impacts. For doing so, several statistical reconstruction methods exist, among which the Princi-

pal Component Regression is one of the most widely used. Additional predictive, and then reconstructive, statistical methods5

have been developed recently, following the advent of big data. Here, we provide to the climate community a multi-statistical

toolbox, based on four statistical learning methods and cross validation algorithms, that enables systematic reconstruction of

any climate mode of variability as long as there are proxy records that overlap in time with the observed variations of the

considered mode. The efficiency of the methods can vary, depending on the statistical properties of the mode and the learning

set, thereby allowing to assess sensitivity related to the reconstruction techniques. This toolbox is modular in the sense that it10

allows different inputs like the proxy database or the chosen variability mode. As an example, the toolbox is here applied to

the reconstruction of the North Atlantic Oscillation by using Pages 2K database. In order to identify the most reliable recon-

struction among those given by the different methods, we also investigate the sensitivity to the methodological setup to other

properties such as the number and the nature of the proxy records used as predictors or the reconstruction period targeted.

The best reconstruction of the NAO that we thus obtain shows significant correlation with former reconstructions, but exhibits15

better validation scores.

1 Introduction

The climate system is composed of interdependent subsystems, such as the atmosphere that can vary at relatively fast timescales

as compared to the ocean or the cryosphere. As a result of the interactions between those components, the climate variabil-

ity spectra is very large and ranges from hourly to multidecadal timescales [Mitchell et al. (1966)]. In the absence of any20

modulations of the external forcings, such variability is still present, as evidenced in preindustrial control simulations with
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global coupled climate models. This variability is frequently referred to as internal variability [Hawkins and Sutton (2009)].

The variations and dynamics of the climatic system are also influenced by external factors such as volcanic aerosols [Mignot

et al. (2011); Swingedouw et al. (2015); Khodri et al. (2017)], solar irradiance [Swingedouw et al. (2011); Seidenglanz et al.

(2012)], anthropogenic aerosols [Evan et al. (2009); Evan et al. (2011); Booth et al. (2012)] and greenhouse gas concentrations

[Stocker et al. (2013)], which alter the Earth’s radiation balance, and hence, deflect the mean climate state. By only considering5

internal variability and the impact of external forcings not due the human activity, one explores the so-called natural climate

variability.

An unequivocal rise in both the greenhouse gas composition in the atmosphere and the global mean temperature has been

observed in instrumental measurements [Bradley (2003); Stocker et al. (2013)]. However, the non-stationary variability around

this trend from a decade to another [Kosaka and Xie (2013); Santer et al. (2014); Swingedouw et al. (2017)] asks the question10

of the role of anthropogenic forcing relatively to that of natural variability for decadal to multidecadal climate variations.

Thereby, improving our knowledge about natural climate variability should allow improving our knowledge and better evaluate

the changes in climate in the near term future (decades, e.g. Hawkins and Sutton (2009)).

The physics driving the climate system induces large-scale variations, organised around recurring climate patterns with spe-

cific regional impacts and temporal properties. These variations are known as climate modes of variability, and their evolution15

is usually quantified by an index that can be calculated from a specific observed climate variable. These indices provide an

evaluation of the corresponding climate variations and their regional impacts [Hurrell (1995); Neelin et al. (1998); Trenberth

and Shea (2006)].

As an example, the North Atlantic Oscillation (NAO), is the leading mode of atmospheric variability in the North Atlantic

basin [Hurrell et al. (2003)]. Generally defined as the sea level pressure (SLP) gradient between the Azores high and the20

Icelandic low, the NAO describes large-scale changes in winter atmospheric circulation in the Northern hemisphere and controls

the strength and direction of westerly winds and storm tracks across the Atlantic [Hurrell (1995)]. A stronger than normal

SLP gradient between the two centers of action induces a northward shift of the eddy-driven jet-stream. Such large-scale

changes in atmospheric circulation lead to precipitation and temperature variations in various regions (North Africa, Eurasia,

North America and Greenland [Casado et al. (2013)]). Moreover, these meteorological impacts have major influences on many25

ecological processes, including marine biology [Drinkwater et al. (2003)] as well as terrestrial ecosystems [Mysterud et al.

(2001)]. This mode also affects the oceanic convection in the Labrador Sea and the Greenland-Iceland-Norwegian Seas through

changes in atmospheric heat, freshwater and momentum fluxes [Dickson et al. (1996); Visbeck et al. (2003)]. These changes

may lead to modifications in the Atlantic Meridional Overturning Circulation (AMOC) which in turn affects the poleward heat

transport and the related SST pattern over the Atlantic [Trenberth and Fasullo (2017)].30

The dynamics of these modes are still not fully understood due to the small duration of the instrumental records, which is

preventing robust statistical evaluation of their properties (spectrum, stability of teleconnections, underlying mechanisms ...).

To partly overcome this limitation, numerous studies have reconstructed climate variations well beyond the period of direct
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measurements of climate variables (since around 1870), and use proxy records to do so [Cook et al. (2002); Mann et al.

(2009); Ortega et al. (2015); Luterbacher et al. (2016); Wang et al. (2017)]. Proxy records provide indirect observations of

local or regional climate in the past, using natural archives coming for instance from sediment cores, speleothems, ice cores or

tree rings. The different records have their own characteristics and limitations, which need to be considered when combined

together to perform the reconstructions. For example, each proxy record has a specific temporal resolution, from years to5

millennia, and then covers a specific period: from hundreds to millions of years. New proxy records are continuously gathered

extending the available datasets and allowing paleoclimatologists to build increasingly consistent reconstructions [Pages 2K

Consortium (2013); Pages 2K Consortium (2017)]. Hence, the last millennium is a period extensively investigated as it contains

the densest network of high-resolution proxy records. [Mann et al. (2009); Luterbacher et al. (2016)].

The last millenium is of a great interest to put in perspective and understand the recent climate variations. Indeed, before the10

early 19th century, the anthropogenic radiative forcing was negligible [Hegerl et al. (2007); Hawkins et al. (2017)], so that the

climate variation was mainly natural. Moreover, proxy records reveal two contrasting climatic periods during that millennium,

as identified by Lamb (1965). These periods are known as the Medieval Climate Anomaly (MCA) and the Little Ice Age

(LIA) [Mann et al. (2009)], which correspond to an anomalously warm and cool period mean temperature in the Northern

hemisphere, respectively.15

Modes of climate variability can have diverse worldwide impacts (usually known as climate fingerprints), which can be

recorded by different proxy records. These records can be thus combined to make reconstructions of their variability. The

selected proxy records need to cover, at least partially, the observational period. That is an important requisite to make a robust

calibration. Based on this assumption, several studies have used statistical predictive methods to reconstruct different climatic

modes on longer timescales [Cook et al. (2002); Gray et al. (2004); Ortega et al. (2015); Wang et al. (2017)].20

For instance, for the NAO, Cook et al. (2002) firstly proposed a complete methodology of nested Principal Component

Regressions (PCRs) using annually resolved proxy records bounding the North Atlantic to reconstruct its variability back

to 1400. Several new proxy records have been documented since this study [Pages 2K Consortium (2013)] and the NAO

reconstruction could probably be largely improved if it was updated to include these new data. More recently, Ortega et al.

(2015) performed a NAO reconstruction from 1073 to 1969 based on the PCR, using 48 proxy records that were significantly25

correlated with the historical NAO index on their common time window. Instead of nesting reconstructions of different sizes,

which leads to inhomogeneities between time windows using different proxy selections, Ortega et al. (2015) used several

random calibration/validation samplings of the overlap period of the NAO index and the proxy records to perform individual

reconstructions on the same time frame. By repeating numerous times that sampling, several reconstructions were obtained

through the different PCR results. This ensemble approach brings two advantages. The first is that since validation/calibration30

periods are not fixed, the validation/calibration skills do not depend on the particular way these periods are split. The second

advantage is that the different reconstructions obtained can be aggregated by averaging each of them to isolate the coherent

features among them. The standard deviation between the individual reconstructions is thereby reduced, as only the most
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emergent patterns are kept. Such kind of ensemble reconstruction, using nested PCR as in Cook et al. (2002), have been

recently made by Wang et al. (2017), but for reconstructing the Atlantic Multidecadal Variability (AMV), a climate variability

index characterising large-scale variations in North Atlantic SST [Trenberth and Shea (2006)].

The recent increasing amount of data is not specific to the paleoclimatology field. Indeed, since the past four decades, the

advent of internet and technological innovation has allowed to store and manage exponentially growing data from various5

sources [Wang et al. (2009)]. Hence, the capacity of decision making through data analysis in several fields has been largely

developed, using many predictive algorithms for all kind of data [Tibshirani (1996); Breiman (2001); Zou and Hastie (2005)].

That field of science, often referred as "big data", is based on several statistical and probability theories and is named Statistical

Learning or Machine Learning which is a subpart of Artificial Intelligence [Vapnik (2000)]. Combined with cross validation

algorithms, the PCR is one of the most efficient statistical learning regression methods [Hotelling (1957)]. It is still considered10

as a performant method in many fields, such as paleoclimatology. However, more recent algorithms provide alternative methods

that can also be used to reconstruct climate modes, and may possibly further improve the quality and the robustness of these

reconstructions.

In this paper, we provide a toolbox, using multiple statistical approaches, for reconstructing climate modes indices. It is

based on four regression methods: the PCR, the Partial Least Squares regression (PLS), the Elastic-net regression (Enet) and15

the Random Forest (RF). The aim is to propose a systematic reconstruction approach through a computer device. This toolbox

communicates with a large proxy database. This database contains various types of proxy records distributed all over the Earth,

and associated with different climate variables. Therefore, this toolbox allows reconstructing any climatic mode in the past

(Fig. 1). The confidence we have in the reconstruction is then evaluated through training-testing techniques. Some general

statistical learning tools, such as the cross validation, are first presented. The reconstruction methods, are then described in a20

mathematical formalism. We then compare these methods by reconstructing the NAO index over the last millenium. Finally,

we investigate the reconstruction sensitivity to methodological choices, such as the method used, the reconstruction period

targeted, the proxy predictors selection and the size of the training samples.

2 Data, notations and methodologies

2.1 Data25

The assessment of our reconstruction techniques is investigated for the NAO index, as it is the mode of variability that has been

observed for the longest time period. Indeed, this index is relatively simple to calculate from instrumental records because it

only needs two instrumental record locations for SLP: one within the center of action of the Azores anticyclone and one within

the Icelandic low. Thus, because of this simplicity, the NAO index covers a longer instrumentally observed period than any

other indices. The reference NAO index calculated from SLP records in Gibraltar and Reykjavik starts in 1856 [Jones et al.30

(1997)]. An extension to 1823 has been proposed, using new SLP series from Cadiz and San Fernando, approximately 100

kilometers from Gibraltar [Vinther et al. (2003)]. This extended index is chosen as our historical NAO index in this paper.
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Our statistical toolbox is based on a set of proxy predictors essentially composed of the Pages 2k 2014 version database

[Pages 2K Consortium (2013)]. However, some proxy records (Arc_38 to Arc_59, following PAGES encoding) have been

removed because their resolution is longer than ten years, which may have an impact on the interpretation of annual to sub-

decadal climate processes in the reconstruction. All the proxy records with a greater than annual resolution are then linearly

interpolated to that resolution. We also added to this database 69 proxy records used in the Wang et al. (2017) and Ortega et al.5

(2015) studies. All of the North American tree ring series in Pages 2K database have been truncated to 1200 as this is their

oldest common year. 15 of these series extend further back in time and have been considered here in their full length. These

series are encoded as NAm-TR_7, 13, 14, 15, 21, 28, 29, 30, 62, 76, 81, 109, 110, 127, 128 in

the Pages 2K database 2014 version [Pages 2K Consortium (2013)]. We end up with 539 worldwide distributed proxy records,

which can potentially allow to reconstruct any mode of variability. All of the proxy records which are not in the Pages 2K10

2014 version are presented in Supplementary table 1. For the other proxy records, the reader can refer to the Pages 2K 2014

version database. We attribute an ID to each proxy records to make them recognizable by the users of the statistical tool (see

Supplementary table 1). Among the 539 proxy records, only those completely overlapping the reconstruction period are kept.

The statistical tool that we propose adjust the proxy dataset depending on the reconstruction period targeted.

2.2 Methodology15

The reconstruction procedure follows 10 steps, all already implemented in the statistical toolbox. These are applied sequentially

as follows (Fig. 1):

1. An observational time series of the mode of variability is chosen to be used as the predictand

2. A target time period T for the reconstruction is selected

3. The statistical reconstruction method to be applied is selected20

4. The proxy records that overlap with the selected reconstruction period are extracted to be used as predictors

5. The common period between the observed climate index and the selected proxy records is extracted for fitting the

reconstruction

6. This common period is randomly split into two parts, one for training the model (training period), and one for testing it

(testing period). This is repeated R times to generate an ensemble25

7. For each member of the ensemble, the reconstruction is calibrated over the training period for all the different statistical

parameters for a given method, and the best one is identified

8. The corresponding optimal setup is then applied to extend the reconstruction over the target period T for each ensemble

member
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9. A validation score is computed for each member by comparing the true testing series and each individual reconstruction

over the corresponding testing period

10. The final reconstruction is calculated as the average of all the individual R reconstructions

Thus the toolbox provides the mean reconstruction and a vector with R validation scores as final outputs.

The number of proxy records and the reconstruction period are here fixed for the different training/testing period sections,5

in contrast with some previous studies which used nested approaches [Cook et al. (2002); Wang et al. (2017)]. Indeed, we

argue that as the weight of each proxy record is unknown before performing the reconstruction, the nested approaches may

attribute unrealistic weights to the proxy records that bear the longest temporal coverage. In addition, as we want to perform

several reconstructions by changing the set of proxy records employed or the reconstruction period considered, using a nested

approach would have a simultaneous impact on both factors, and may hinder the interpretation of the validation scores.10

2.3 Mathematical formalism of empirical data

To facilitate the mathematical notation, we make the assumption that the proxy record selection and truncation have already

been made (see section 2.2, steps 4 and 5). It is important that all proxy records are truncated on the same time window to

make them mergeable in the same matrix. Each record has to cover at least the chosen reconstruction time window T (section

2.2, step 2). Following these steps, the proxy record matrix does not contain missing values.15

Fig. 2 illustrates how the proxy records data are organised in the input matrix X . We denote X1 = (X1
t )t∈T , . . . ,Xp =

(Xp
t )t∈T , where t stands for the time (with N annual time steps), and p is the number of proxy records on the same period T .

X is thus a N ×p matrix where all these vectors are merged: X = [X1, . . . ,Xp]. Y = (Yt)t∈T is the target mode of variability,

defined on the historical time window T , containing n annual time steps. The period where Y is not known is denoted τ ,

containing m annual time steps (Fig. 2). Thus T = T ∪ τ is the entire reconstruction period, which contains N annual time20

steps. With these notations, the dimensions of the different matrices and vectors are:X ∈ RN×p;X(T ) ∈ Rn×p;X(τ) ∈ Rm×p;

Y ∈ Rn. The period T , on which all the predictors and the predictand are known and the training/testing splits are performed,

is called the learning period. The period T = T ∪τ , covered by the predictors, is called the reconstruction period. The learning

set is then {X(T ),Y }, and the reconstruction set is {X(T )}.

2.4 Terms and notations of learning theory25

To build and validate the reconstruction of Y , the dataset of predictors X is split in two independent subsets, one for training

the statistical model (usually called training set), and another on which the statistical model is tested (called testing dataset or

first seen data).

Building a model consists in estimating all the parameters needed to reconstruct Y given the predictors X1, . . . ,Xp. As an

example, building a PCR model consists in determining the Principal Component of the predictor matrix X and finding the30

6

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-211
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 19 November 2018
c© Author(s) 2018. CC BY 4.0 License.



best linear combination of them to reconstruct Y over the training period. Then, the reconstruction consists in projecting the

first seen data on the orthogonal basis built, and applying the estimated regression coefficients to reconstruct Y over the whole

time window T .

We denote the chosen reconstruction method byM. Each method is defined by a specific number of parameters q, contained

in the vector θ. As an example, the Principal Component Regression has a single parameter that is the number of Principal5

Component used as regressor (Cook et al. (2002); Gray et al. (2004); Ortega et al. (2015); Wang et al. (2017)). We can denote

the function M as a function of: (i) a set on which the model is built ({X,Y }), (ii) observations of the predictors on the

reconstruction period (X(rec)), and (iii) a parameter vector (θ):

M : ({X,Y } ,X(rec),θ)→ Ŷθ (1)

(
{
Rn×p,Rn

}
,Rm×p,Rq)→ Rm n,p,m,q ∈ N (not fixed) (2)10

Hence, theM function gives an entire reconstruction of size m ∈ N, depending on θ for given training/testing periods.

We introduce S as the score function. This function is an indicator that estimates the quality of a prediction Ŷ in comparison

to the observed values Y(obs):

S : (Y(obs), Ŷ )→ s (3)

(Rm,Rm)→ R (4)15

In this paper, two kind of score functions will be considered. The first is a correlation function, and the second is a root mean

squared error (RMSE) function:

Scor(Y(obs), Ŷ ) = Cor(Y(obs), Ŷ ) (5)

SRMSE(Y(obs), Ŷ ) = ‖Y(obs)− Ŷ ‖=

√√√√
m∑

i=1

(Yi (obs)− Ŷi)2 (6)

The first will be used to validate the reconstruction methods over the testing period, and the second will allow to determine20

the optimal parameters (θ) for the reconstruction over the training period.

2.5 Parameter tuning and model comparisons

2.5.1 Parameter tuning by leave-one-out cross validation

To estimate the optimal set of parameters θopt on a given training set {Xtrain,Ytrain}, we use the leave-one-out cross val-

idation (LOOCV; section 2.2, step 7 and 8) [Stone (1974); Geisser (1975)]. Cross Validation (CV) methods, are in general,25

widely used as parametrization and model validation techniques [Kohavi (1995); Browne (2000); Homrighausen and McDon-

ald (2014); Zhang and Yang (2015)]. As presented in Fig. 3, the particularity of the LOOCV is that it use a single observation

7
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for verification and the n− 1 other observations as calibration set [Stone (1974)]. Here it is used to determine an empirically

optimal set of parameters for θ. ∀1≤ i≤ n, we denote
{
X(i),Y(i)

}
, containing only information for the ith time step. Then,

{
X(−i),Y(−i)

}
is the set containing all the initial observations, except the ith. For all possible values of θ contained in Θ, we

scan the n models based on the sets
{
X(−i),Y(−i)

}
1≤i≤n. The empirical optimal set of parameters is obtained by minimizing

the averaged SRMSE functions on the n splits regarding all possible combinations of θ [Stone (1974)]. Mathematically, the5

optimal LOOCV set of parameters θLOO is determined by:

θLOO = argmin
θ∈Θ

1
n

n∑

i=1

SRMSE(Y(i),M(
{
X(−i),Y(−i)

}
,X(i),θ)) (7)

Using this approach, we retain the empirical estimation of the optimal set of parameters θ̂opt = θLOO for the given methodM
and a given learning set {X,Y }.

2.5.2 Final reconstructions and validation correlations10

In order to find the most performant method for a given dataset, we split the initial learning period T in R partitions of

two subsets:
{
T

(r)
(train),T

(r)
(test)

}
,∀1≤ r ≤R. For all the methods, R reconstructions are build on the R training periods. R is

arbitrarily chosen, but largerR tends to produce reliable ensemble reconstruction by decreasing the variance of theR individual

reconstructions made on the training samples [Browne (2000)]. ∀1≤ r ≤R, we denote
{
X

(r)
(train),Y

(r)
(train)

}
the training set,

and
{
X

(r)
(test),Y

(r)
(test)

}
the test set.15

LOOCV is applied to build a unique optimized reconstruction for every training sets and any given method. Then, for

all the corresponding and independent testing periods, the associated testing series Y (r)
(test) are compared to the individual

reconstructions using the Scor function. This way, R validation correlations are obtained for the four methods. In section 4,

the distributions of the validation correlations will be used as a metric to compare different reconstructions. Fig. 4 shows the

whole procedure to get the validation correlation vectors for a given methodM.20

3 Statistical learning methods

We present each method in two steps: model fitting (training) and reconstruction (testing). We also identify the number of

parameters and their mathematical meaning. For each method the proxy predictor set is denoted as X ∈ Rn×p the proxy

predictor set and the target index as Y ∈ Rn. In this section,X(rec) ∈ Rm×p is the testing dataset on which a Rm reconstruction

vector is evaluated on the testing period. Y and each column of X are here normalized on their own time period.25

8
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3.1 Principal Component Regression (PCR)

3.1.1 Modeling

The Principal Component Regression [Hotelling (1957)] method consists in finding the best linear combination between Y and

the Principal Component ofX . The Principal Component Analysis (PCA) consists in applying an orthogonal transformation of

an initial set of variables, potentially correlated between them, into another set of linearly uncorrelated variables: the Principal5

Component [Pearson (1901); Hotelling (1933)].

The first step consists in building an orthogonal basis where X will be projected. We define S ∈ Rp×p, as the empirical

estimator of the covariance matrix of X:

S =
1
n
XTX ∈ Rp×p (8)

The idea is to calculate the orthogonal basis formed by the vectors v1, . . . ,vp by diagonalizing S:10

v1 = arg max
v∈Rp

‖v‖=1

vTSv (9)

v2 = arg max
v∈Rp

‖v‖=1

〈vT v1〉=0

vTSv (10)

... (11)

vp = arg max
v∈Rp

‖v‖=1

〈vT v1〉=0
...

〈vT vp−1〉=0

vTSv (12)

(13)15

where ‖v‖=
√∑p

j=1(vj)2,∀v ∈ Rp. This procedure is equivalent to maximizing step by step the empirical variance of the

projection of X on each orthogonal axis. Indeed, ∀v ∈ Rp :

vTSv =
1

n− 1
vTXTXv =

1
n− 1

(Xv)T (Xv) = V aremp(Xv) (14)

The vectors (vk)1≤k≤p are called the Empirical Orthogonal Functions (EOFs). Since the columns of X represent the proxy

records, it means that each EOF, which corresponds to the eigenvectors of the covariance matrix, contains a certain part of the20

spatial variability of the dataset. Hence, we attribute them eigenvalues (λk)1≤k≤p, which corresponds to the initial variance of

X translated by each orthogonal projection in the new basis:

λk = V ar(Xvk) = vTk Svk ∀1≤ k ≤ p (15)

9
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The Principal Component (u1, . . . ,up) are then the projections of X on the EOFs. We denote V = (v1, . . . ,vp). We then

calculate the Principal Component matrix U = (u1, . . . ,up), defined as:

U =XV ∈ Rn×p (16)

Now, we regress Y on the q ≤ p (see subsection 3.1.3) first Principal Component. These q Principal Component are merged in

a submatrix of U : U = (uk)1≤k≤q . The model is given by:5

Y = Uβ+ ε (17)

Where ε is a white noise vector of size n.

The best estimator for β = (β1, . . . ,βq), is given by the Ordinary Least Squares (OLS) estimator which minimizes ‖ε̂‖=

‖Y − Ŷ ‖:

β̂OLS = (UTU)−1UTY (18)10

3.1.2 Reconstruction

Using the testing data matrix X(rec) (see section 2.4), we project the former on the pre-calculated orthogonal basis V :

U(rec) =X(rec)V ∈ Rm×p (19)

We then obtain the prediction by applying the estimated coefficient vector on the sub-matrix U(rec) = (U1
(rec), . . . ,U

q
(rec)) ∈

Rm×q:15

Ŷq = U(rec)β̂OLS ∈ Rm (20)

3.1.3 Parameters

Here, q is the unique tuning parameter. The choice of that parameter clearly affects the reconstruction and then the validation

correlations. Here the parameter vector θ is unidimensional and takes its values in the discrete set {i}1≤i≤p.

To our knowledge, this is the first time that a PCR uses the LOOCV method to tune the number of Principal Component used20

at each split in paleoclimatological reconstruction. Previous studies used different criteria to define the number q of Principal

Component U1, . . . ,Uq to be kept. For example, Gray et al. (2004) retained all Principal Component for which the cumulated

eigenvalues weights just exceeds 66% of the initial variance. Wang et al. (2017), selected the q Principal Component for which

λk > 1,∀k ∈ {1, . . . ,p}. Also, Ortega et al. (2015) used the Preisendorfer’s rule N [Preisendorfer (1988)]. In our case, the use

of LOOCV as our parameter selection method is preferred, as it is also valid for the other reconstruction techniques.25

10
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3.2 The Partial Least Squares Regression

The Principal Component Analysis keeps most of the initial variance in X in a lower number of vectors. The major problem of

the PCR in a predictive or reconstructive purpose, is that the EOFs v1, . . . ,vp are constructed without taking into account any

information about the predictand Y . Another possible approach is thus to determine the orthogonal basis in which the empirical

covariance between Y and the projection of X on that former is maximized. This is the Partial Lest Squares regression (PLSr)5

method [Zou and Hastie (2005)].

The first latent variable (LV), denoted ξ1 =
∑p
j=1 v1,jX

j =Xv1, where X ∈ Rn×p and v1 ∈ Rp is the linear combination

of the initial variables X1, . . . ,Xp such as:

v1 = arg max
u∈Rp

‖v‖=1

Cov(Y,Xv), (21)

In a similar approach to the PCR, the second LV is ξ2 =
∑p
j=1 v2,jX

j =Xv2, orthogonal to ξ1, such as:10

v2 = arg max
v∈Rp

‖v‖=1

〈ξ1,Xv〉=0

Cov(Y,Xv) (22)

And so on, until we have r ≤ p LVs. The LV matrix is denoted Ξ = [ξ1, . . . , ξp]. Here, v1, . . . ,vp ∈ Rp, are analogous to the

EOFs in PCA, and are called loadings. The latent variables ξ1, . . . , ξr respectively correspond to the projection of X on the r

loadings.

Finding the loadings is not as trivial as for PCR. This is due to the fact that the empirical covariance matrix is not necessary15

definite positive and thus cannot be inversed. We solve this problem by using the algorithm 1 named PLS1. Analogously to the

PCR, the method provides various alternative reconstructions depending on the value r, which corresponds to the number of

LVs kept as regressors.

Algorithm 1 : PLS1

X0←X

for h= 1, . . . , r

vh← XT
h−1Y

‖XT
h−1Y ‖2

ξh←Xh−1vh

Xh =Xh−1− ξhξ
T
h

‖ξh‖2Xh−1 (deflation phase)

Now we regress Y on the r ≤ p first LVs. These r LVs are merged in a submatrix of Ξ: Ψ = (ξk)1≤k≤r. The model is given

by:20

Y = Ψβ+ ε (23)

Where ε is a white noise vector of size n.

11

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-211
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 19 November 2018
c© Author(s) 2018. CC BY 4.0 License.



The best estimator for β = (β1, . . . ,βq), is given by the Ordinary Least Squares (OLS) estimator which minimizes ‖ε̂‖=

‖Y − ŶqLOO
‖:

β̂OLS = (ΨTΨ)−1ΨTY (24)

3.2.1 Reconstruction

The prediction is done in the same way as for PCR. Using the first seen data matrix X(rec) (section 2.4), we project the latter5

on the pre-calculated orthogonal basis V :

Ξ(val) =X(val)V ∈ Rm×p (25)

We then obtain the prediction by applying the estimated coefficient vector on the sub-matrix Ψ(rec) = (ξ1
(rec), . . . , ξ

r
(rec)) ∈

Rm×r:

Ŷr = Ψ(rec)β̂OLS ∈ Rm (26)10

3.2.2 Parameters

For the PLSr method, r is the unique tuning parameter. Analogously to the Principal Component Analysis, the tuning of that

latter is obtained by LOOCV.

3.3 The Elastic Net regression

3.3.1 Modeling15

Without using orthogonal transformation of the initial variables as in PCR and PLSr, the most simple predictive model is the

multiple linear regression model:

Y =X1β1 + · · ·+Xpβp + ε (27)

Where ε∼N (0,σ2) and Cov(εi, εj) = 0 if i 6= j.

The prediction of Y , given p proxy records X1, . . . ,Xp is obtained by the equation:20

Ŷ =X1β̂1 + · · ·+Xpβ̂p (28)

β̂ = (β̂1, . . . , β̂p) are the regression coefficients, which are obtained by the OLS predictor. However, this usual regression model

is known to present frequently a poor prediction accuracy due to the several assumptions made on the original data [Poole and

O’Farrell (1971)], which are often not verified: such as homoscedasticity and errors normality. Several studies developed

regularized (or penalized) regression methods to overcome the OLS defaults. Here we focus on the Elastic Net regression25

[Zou and Hastie (2005)], which is a combination of the Ridge regression [Hoerl and Kennard (1970)] and the Lasso regression
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[Tibshirani (1996)]. All these methods have been developed to avoid the high variability of the OLS predictor when the number

of predictors is relatively high. The Ridge regression shrinks towards zero the estimated coefficients associated to predictors

unlinked to the predictand. No predictor selection is made by this method, but the shrunken estimated coefficients modulate

the importance of these in the model. By contrast, the lasso also reduces the variability of the estimates, but in this case by

shrinking to zero the estimated coefficients associated to unreliable variables. Hence, a selection is made by rejecting variables5

associated to coefficients shrunk to zero.

The idea of a regularized (or penalized) regression is to add a threshold constraint using the lk norm of β: ‖β‖kk =
∑k
j=1 |betaj |

k.

With k = 1 in Lasso regression, and k = 2 in Ridge regression. The penalized loss functions are given by:

Lridge(β) = ‖Y −
p∑

j=1

βjX
j‖2 +λ2

p∑

j=1

β2
j (29)

Llasso(β) = ‖Y −
p∑

j=1

βjX
j‖2 +λ1

p∑

j=1

|βj | (30)10

Lenet(β) = ‖Y −
p∑

j=1

βjX
j‖2 +λ1

p∑

j=1

|βj |+λ2

p∑

j=1

β2
j (31)

λ1 penalizes the sum of the absolute values of the regression coefficients while λ2 penalizes their summed squares. Here,

λ1,λ2 > 0.

Let w = (wj)1≤j≤p = (sgn(βj))1≤j≤p, where sgn is the sign function. The loss functions can then be denoted as:

Lridge = ‖Y −Xβ‖2 +λ2β
Tβ (32)15

Llasso = ‖Y −Xβ‖2 +λ1w
Tβ (33)

Lenet = ‖Y −Xβ‖2 +λ1w
Tβ+λ2β

Tβ (34)

The estimated regression coefficients obtained by minimizing the Lasso and the Ridge loss functions are:

β̂lasso = (XTX)−1(XTY − λ1

2
w) (35)

β̂ridge = (XTX +λ2I)−1XTY (36)20

The Elastic Net regression coefficients are then estimated by minimizing Lenet:

β̂enet = (XTX +λ2I)−1(XTY − λ1

2
w) (37)

An alternative way to write this equation as a linear combination of β̂lasso and β̂ridge is:

β̂enet = (XTX + (1−α)λI)−1(XTY − αλ

2
w) (38)

where α ∈ [0,1]. If α= 1, a Rigde regression is applied, and if α= 0, we apply a Lasso regression.25
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3.3.2 Reconstruction

The prediction is obtained by applying the estimated regression coefficients β̂enet on the validation variables X1
val, . . . ,X

p
val:

Ŷλ,α =
p∑

j=1

Xj
(val)β̂

enet
j (39)

3.3.3 Parameters

For Enet method, the tuning parameters are λ and α. The latter controls the relative balance between the lasso and ridge regu-5

larization, while the former controls the overall intensity of regularization as λ1 (resp. λ2) in lasso (resp. ridge regularization).

A high α suggests a dense model with many but small non-zero coefficients. A low α suggests a sparse model with many zero

coefficients. In our case, since we want a general methodology performant for each random split, we apply two simultaneous

LOOCV to find the best estimated pair (λ̂, α̂).

Since λ and α take respectively their values in the continuous sets Rp and [0,1], we have to discretize their respective10

intervals for the parameter estimation. The finer these discretizations are, the more reliable the parameters will be, but the

longer the required computational time will be.

3.4 Random Forest regression

The random forest has been introduced by Breiman (2001) as a learning method for regression. The method relies on using

randomization to minimize the prediction uncertainty given by regression trees. Random forests encompass a large variety15

of regression methods [Breiman (2001)]. Here, we present the most classical kind of random forests known as random-input

random forests [Breiman (2001)].

3.4.1 Modeling

First we have to define regression trees. We denote each set of predictand/predictors by {Yi,Xi)1≤i≤n}whereXi = (X1
i , . . . ,X

p
i ),

is the ensemble of proxy records for the ith time step, and Yi the corresponding values of the climate index at the same time20

step, ∀1≤ i≤ p. All the observations, {Yi,Xi)1≤i≤n}, ∀1≤ i≤ p, are put on the root of the tree. The first step consists in

cutting that root in two child nodes. A cut is defined as:

{
Xj ≤ d

}
∪
{
Xj ≥ d

}
(40)

where j = {1, . . . ,p} and d ∈ R. Cutting a node with
{
Xj ≤ d

}
∪
{
Xj ≥ d

}
means that all observations with a jth variable

lower than d are placed in the left child node. Hence, all observations with a jth variable greater than d are placed in the right25

child node. The method selects the best pair (j,d) which minimize a loss function. Here, we aim at minimizing the variance of

the child nodes. The variance of a given node t is defined as:
∑

i:Xi∈t
(Yi− Ȳt)2 (41)
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where Ȳt is the averaged Yi in the node t.

The same procedure is then applied recursively to the child nodes using the same variables until a stop criterion is reached.

The procedure automatically stops if each node contains a unique observation. Hence, the maximal depth of a regression tree

is n− 1. An illustration of such tree is presented in Fig. 5.

A random-input regression tree is used here. This is a particular case of regression trees, in which a set of m< p variables is5

randomly preselected before applying the regression tree. A large number K of random-input trees is computed. For each tree,

we randomly select m< p variables with probability 1
p and we apply the method until it reaches its maximal depth.

3.4.2 Reconstruction

The prediction is obtained by splitting each testing series in the different trees previously constructed. In each tree, the estima-

tion attributed to an observation is the empirical average of Y inside the node where the corresponding observation ends up,10

given the cut made on the corresponding predictors. For each testing series, theK reconstructions are averaged to give the final

prediction.

3.4.3 Parameters

A priori, this method requires the optimization of two parameters: the number of trees K and the number of variables selected

for each tree m. In practice K does not require to be tuned, as long as the number of trees is sufficiently high given p, which15

guarantees convergent results for any value of m [Breiman (2001)]. m is then the only parameter to optimize. The LOOCV is

then applied on m with a high K (here set to 1000), to select empirically the most efficient model.

4 Results

4.1 Methodological sources of uncertainty in the reconstruction

We apply the former methods to the reconstruction of the NAO. In the following, each reconstruction is obtained by averaging20

R= 50 individual reconstructions performed for R training/testing random draws. Validation scores (based on correlations

over the testing periods) are also produced, and stored in a vector of R elements. This vector will thus be used as a quality

metric to characterize the methodological uncertainty in the reconstruction. The following actions were undertaken to minimize

the reconstruction uncertainty, and estimate its sensitivity:

1. Pre-selecting the most relevant proxy records25

2. Choosing the most appropriate training/testing window length

3. Selecting the best learning period
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4.1.1 Proxy pre-selection

In order to investigate the sensitivity related to the selection of the initial set of predictors, we set the reconstruction period to

T = {1000,1970}, and the learning period to T = {1823,1970}, with n= 148. In addition, the training window length is set at

ntrain = 111, which gives ntest = 37. Only 122 of the 539 proxy records of the initial dataset are covering this reconstruction

period.5

We run 4 different reconstructions, for each method, each based on a different proxy group chosen according to a correlation

significance test with the original NAO index on the period T . The first group contains all the available proxy records on

the period T (122 proxy records). The three other groups respectively contain the proxy records significantly correlated with

the NAO index at the confidence levels 80% (61 proxy records), 90% (35 proxy records) and 95% (18 proxy records). The

proxy records, and their respective correlation significance level with the NAO index are presented in Fig. 6. Fig. 7 gives the10

validation scores related to each reconstruction and each proxy selection.

First, it appears that for each method, the validation scores are improved when we use the most significantly correlated proxy

records with the NAO index over the historical period (Fig. 7). In addition, not all the methods have the same sensitivity to the

proxy pre-selection. Indeed, Enet, PCR and RF methods have better validation results than PLS when all of the available proxy

records are used as predictors.15

Our results suggest that enhancing the spatial coverage of the proxy records is not a necessary condition to improve the

reconstruction. Indeed, we showed that using the densest proxy network (i.e., all of the available proxy records on T ) does not

lead to better validation scores, due to the noise introduced by predictors that covary weakly with the target index (Fig. 6 and 7).

Among the previous reconstruction studies, this kind of investigation have often been overlooked at the expense of increasing

the spatial density of the proxy records [Cook et al. (2002); Gray et al. (2004); Wang et al. (2017)]. Ortega et al. (2015) already20

showed the advantage of subsampling the proxy records more significantly correlated (i.e. 90%) with the NAO. The validation

correlations obtained in their study are weaker than those we obtained here by using PCR on the 35 proxy records significantly

correlated with the NAO index at the 90% confidence level, from which 19 are the same in both studies.

Here, the best score (s̄' 0.46 on average) are obtained for the PLS method when only the proxy records significantly

correlated with the NAO index at the 95% confidence level are kept (16 proxy records). These results are better than those25

obtained by Ortega et al. (2015), for the calibration constrained reconstruction (rval ∈ [−0.14;0.58]; s̄' 0.24) as well as for

the model constrained reconstruction (r ∈ [0.14;0.64]; s̄' 0.42) (see Ortega et al. (2015)). Nevertheless, it should be noted that

these results have been obtained for a particular length of the training and the testing windows of (111 and 37, respectively).

The sensitivity to this length will be assessed in the next section.
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4.1.2 Sensitivity to the length of training and testing periods

To estimate the sensitivity to the length of the training and the testing window, we set again the reconstruction period to

T = {1000, . . . ,1970}, and the learning period to T = {1823, . . . ,1970}, with n= 148. Based on the findings of the previous

section, we only keep the proxy records which are significantly correlated with the NAO index at the 95% confidence level

(18 proxy records, see section 4.1.1 and Fig. 6). We run R reconstructions with different window sampling for each method5

by gradually increasing the length of the training window: from 5% to 95% of the initial size of the learning period, with a

step of 5%. Fig. 8 shows the validation correlations obtained for these simulations. Small training windows length, may leads

to an overlook of the general information in the data, which translates into negative and non-significant validation correlations

(Fig. 8). On the contrary, using a very long training window gives very high validation correlations close to 1, but it also give

negative ones (Fig. 8), i.e. a very wide range of validation scores, suggesting that the testing period is too short to robustly10

validate the reconstruction.

Between these two extremes we find a large window where validation scores are relatively similar (from around 30% to

70%). To assess the best reconstruction, we search the score vector which has the highest validation scores on average among

the vectors that own only significant and positive testing correlations. Following this rule, the optimal window split is 75%

of the total for the training (ntrain = 111;ntest = 37) for PLS . For PCR, we find an optimal split for by using training15

samples with a length of 70% of the length of the training period (ntrain = 104;ntest = 44). For RF, the optimal split is 45%

(ntrain = 67;ntest = 81), while for Enet, the optimal split is 65% (ntrain = 96;ntest = 52) . Overall method which gives the

highest validation correlations on average is the PLS, closely followed by PCR and Enet (Fig. 8).

We now address the degree of uncertainty associated to the way the training/testing windows are partitioned. Fig. 9 shows

the correlation between the reconstructions in the optimal window split (identified above), and the other alternative partitions.20

All correlation values thus obtained are particularly high, especially for training windows length representing at least a 45% of

the total period, for which correlations are greater than 0.96, regardless of the method, except RF, for a training window length

of correlations of 85% of the length of the initial periods . This suggests that the choice of the training period is not a crucial

methodological source of uncertainty for the reconstruction, although it is worth to optimize it.

4.1.3 Sensitivity to the reconstruction period25

In this section, we focus on the most efficient method (PLS) with the optimal training/testing windows length (ntrain =

104,ntest = 44, see section 4.1.2) and we explore the impact of the reconstruction period, and hence, the learning period and

the proxy set. Changing this period affects the final reconstruction in two different ways, both related with the final proxy

selection. Firstly, it modifies the initial set of proxy records considered (as they need to cover the whole reconstruction period).

Secondly, by changing the period of overlap with the observations, it leads to different correlations between the proxy records30

and the NAO index, which would affect their significances and therefore the final proxy selection. Indeed, a proxy record

significantly correlated with the NAO index at a given confidence level on a given time window, can be non-significantly
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correlated with the NAO index with the same confidence level, but on another time window. This may be induced by physical

processes that modifies the stationarity of the NAO and its teleconnections.

We run the reconstruction on 36 periods T : from 1000-1965 to 1000-2000, with an increment of one year. By doing so,

the number of available proxy records is not the same for each of the periods. Each reconstruction is performed by using only

proxy records significantly correlated at the 95% confidence level with the NAO on the corresponding learning period.5

Fig. 10 shows the evolution of the proxy predictor set and the validation correlations obtained for the different reconstructions

and learning periods. Using the validation correlations as a quality metric, we find that the best reconstruction time window is

1000-1967 (19 proxy records used; Fig. 10). Indeed, the associated validation correlations (s̄= 0.48;r ∈ [0.11,0.68]) are on

average significantly greater than all of the others (at the 95% confidence level). In addition, we observe two significant drops

in validation correlations at the 95% confidence level, depending on the size of the reconstruction period: One from 1978 to10

1979 and one from 1994 to 1995 (Fig. 10). Both can be associated to important changes in the number and the nature of proxy

predictor sets (Fig. 10). For the other methods, we found that the optimal reconstruction period for Enet and RF is 1000-1973

(not shown), while the optimal reconstruction period for PCR is 1000-1970 (not shown).

In contrast with the length of the training periods, the choice of the reconstruction period appears as an important source of

reconstruction uncertainty. This parameter strongly affects the reconstruction by modifying directly or indirectly the predictors.15

Thus, we recommend to determine this period carefully with numerous simulations on different time windows, following the

approach we presented here.

4.2 Reconstructions assessment

We now compare the best reconstructions obtained for each of the methods. The four optimized reconstructions are obtained

by maximizing the validation correlations on the training/testing period (see section 4.1.2) and the total reconstruction period20

(PLS: see section 4.1.3; other methods: not shown), using the proxy records significantly correlated at the 95% confidence

level with the NAO on the corresponding learning period (section 4.1.1 and 4.1.3).

4.2.1 Comparison with previous work

Fig. 11 shows the different reconstructions of the NAO, including the Ortega et al. (2015) calibration constrained reconstruction

(only proxy-based), and Tab. 1 exhibits the paired correlations between the 5 reconstructions. All the reconstructions are25

significantly correlated with each other at the 99% confidence level on their overlap periods even if they were performed with

different proxy groups and learning periods (Tab. 1). As they also have been optimised for multiple sources of sensitivity for the

reconstruction, these results strongly support the fact that the reconstructions we propose are reliable to translate the variations

of the NAO index over the past millenium.

According to the validation scores, the best reconstruction that we found has been obtained using the PLS method on the30

reconstruction period 1000-1967, using the 19 proxy records significantly correlated with the NAO index on this period. The
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averaged validation scores attributed to each of the best reconstruction for each method are: s̄PCR = 0.41, s̄RF = 0.41, s̄RF =

0.43, s̄PLS = 0.48. The correlation coefficient between the original NAO index and the PLS reconstruction is about 0.63

(p<0.01) on the time window 1823-1967 while its correlation with the Ortega et al. (2015) reconstruction is about 0.45 (p<0.01)

on the time window 1823-1969. Furthermore, the PLS validation correlations are greater than those from Ortega et al. (2015),

on average. This is true both for the calibration constrained reconstruction (rval ∈ [−0.14;0.58]; s̄= 0.24) and the model5

constrained reconstruction (r ∈ [0.14;0.64]; s̄= 0.42) (see Ortega et al. (2015)). To understand this difference it is important

to note that the best performing reconstruction in Ortega et al. (2015) has a substantially weaker correlation with the observed

NAO in their overlap period (r=0.45, p<0.01) that all the NAO reconstructions discussed here for the different methods (r ∈
[0.56,0.63], p < 0.01). The 5 reconstructions, including Ortega et al. (2015) do not show a predominant positive NAO phase

during the MCA, contrary to the hypothesis formulated by Trouet et al. (2009). This means that NAO may had not been directly10

involved in the onset of the MCA and LIA as suggested Trouet et al. (2009).

The different optimizations performed on the different methods allowed us to find the optimal reconstruction. Hence, we

statistically verified that the reconstruction from this study is more robust and reliable than those in Ortega et al. (2015). This

improvement in performance may also arise from the inclusion of new relevant proxy records into the reconstruction, but also

the use of a new statistical regression method. The PLS reconstruction uses 19 different proxy records, 12 of them have been15

used in the NAO reconstruction from Ortega et al. (2015) (see Fig. 12). Among the 7 proxy records we added, there is a tree

ring proxy record from Asia, with a medium negative weight in the reconstruction (Fig. 12). This proxy record (" Asi_221")

belongs to the Pages2K database 2014 version [Pages 2K Consortium (2013)], but no associated reference is provided. The

six other proxy records come from ice cores and are located in the Arctic area: three of them have been recorded in Greenland

[Vinther et al. (2010)], two have been recorded in North Canada [Vinther et al. (2008), Meeker and Mayewski (2002)] , and20

the last one has been record in Northern Sweden [Young et al. (2012)] (Fig. 12). For the other proxy records, the weight we

attributed to them have the same signs than those found in Ortega et al. (2015).

4.2.2 Response to external forcing

We now focus on the response of the NAO to external forcing: volcanic aerosols, Total Solar Irradiance (TSI), and CO2

concentration. Indeed, Ortega et al. (2015) suggested that a positive NAO phase is triggered after strong volcanic eruptions,25

a response that is not reproduced over the last millennium by model simulations [Swingedouw et al. (2017)]. By applying

composite analysis of the NAO response to the 10 strongest volcanic eruptions (see Supplementary table 2) which occurred

during the last millenium, and using dates from 4 different reconstructions of the last millenium volcanic activity [Gao et al.

(2008); Crowley and Unterman (2013); Sigl (2014); Ortega et al. (2015); Supplementary table 2], we obtained consistent

results with Ortega et al. (2015) for the four regression methods developed here: a positive NAO response 2 years following30

the eruption onset (Fig. 13). Contrary to the findings of Ortega et al. (2015), we did not find a second significant NAO response

after 4 years. By using a Monte-Carlo approach as in Ortega et al. (2015), the 2-years lagged NAO response we obtain has

significance levels greater than 90% for all methods, all volcanic reconstructions and all composites, except for the composite
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RF based on the volcanic activity reconstruction from Gao et al. (2008) (Fig. 13). The RF reconstruction is the less reliable

among our four reconstructions, since it has the worst validation scores on average between our four reconstructions (section

4.2.1), so that the NAO response two years after the eruption is a robust result.

On the other hand, we did not find any significant correlation of the NAO with any available reconstructgions of the TSI

[Crowley (2000); Vieira et al. (2011)]. Moreover, none of the reconstructions (including Ortega et al. (2015)) shows clear5

negative phases during the Maunder and the Sporer minima as some model simulations were suggesting [Shindell et al. (2004)].

In addition, no significant correlation on the pre-industrial era has been found with a CO2 reconstruction based on a Law Dome

(East Antarctica) ice core [Etheridge et al. (1996)], indicating that the NAO is not linearly associated with CO2 variations.

5 Conclusions

We have proposed and described four statistical methods for reconstructing any modes of climate variability and have compared10

them for a particular example: the reconstruction of the NAO. By investigating and minimizing the sources of reconstruction

uncertainty, due to the method used (sections 3, 4.1.2 and 4.2.1), the time frame considered (section 4.1.3) and the proxy

selection (sections 4.1.1 and 4.1.3), we found the optimal NAO reconstructions, all providing better validation and calibration

results than previous studies (section 4.2.1). All the reconstructions show a positive NAO response the year 2 following volcanic

eruptions, in agreement with Ortega et al. (2015). Moreover they also presents low-frequency negative phases at the multi-15

decadal scale (section 4.2.1), which may induce anomalously cold winter conditions in Europe during these periods (e.g.

11th,12th,15th and 18th centuries).

We have showed that using proxy records with a strong correlation with the index to be reconstructed over the overlapping

period is a good means for improving the validation scores, and hence allow more reliable reconstructions. Among the 539

available proxy records collected, containing the PAGES 2K database 2014 version [Pages 2K Consortium (2013)], which is a20

well-verified high resolution proxy collection, only 19 covers the reconstruction period 1000-1967 and are significantly corre-

lated with the NAO index (at the 95% confidence level) on the period 1823-1967. Gathering new proxy records, significantly

correlated with the NAO, may be a reliable source of reconstruction improvement. The toolbox we developed in this paper

should allow to perform such new reconstructions, thanks to a device made available to the community (cf. code availability

and section 2).25

In order to extract the most robust reconstruction, numerous simulations are needed. To facilitate it, the statistical tool we

developed performs a reconstruction by considering several entries: an index of the climate mode, the reconstruction period,

the length of the training window (in proportion of the total length of the learning window), the number of training/testing

period samplings, and a threshold confidence level for the correlation between the proxy records and the target index (appendix

1). This modular statistical tool is an opportunity to reconstruct quickly, and with quantified reliability, several climate modes.30

This may allow us to improve our understanding of the last millennium large-scale climate variations, such as the MCA and

the LIA, as well as the interactions between different climatic modes, which will be analysed in future studies.

20
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Code and data availability. The statistical toolbox code and the proxy records database are available at the link: https://zenodo.org/record/

1403146#.W4UMUGaB2qA.
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Appendix A: Supplementary table 1 : Proxy records not in Pages 2K

N ◦ Code Location Longitude (◦E) Latitude (◦N) First year Laste year Archive Proxy type Related variable Seasonality Ref.

1 accr-b18-yr B18 -36.40 76.60 1000 1992 Ice core Snow accumulation Precip. Annual Miller and Schwager (2004)

2 accr-crete-yr Crete -38.50 71.00 1000 1973 Ice core Snow accumulation Precip. Annual Andersen et al. (2006)

3 accr-GISP2-yr GISP2 -38.50 72.60 1000 1988 Ice core Snow accumulation Precip. Annual Cuffey et al. (1995)

4 d18O-agass-79 Agassiz -77.00 80.70 1000 1972 Ice core δ18O SAT Annual Fisher et al. (1995)

5 d18O-dasuopu-yr Dasuopu 85.00 28.00 1010 1997 Ice core δ18O SAT JJAS Thompson et al. (2003)

6 icecore-GISP2-ssNA GISP2 -39.00 73.00 1000 1986 Ice core Sea salt Na SLP DJF Meeker and Mayewski (2002)

7 lake-allos-flood Allos Lake 5.00 44.23 1000 2009 Lake sediment Flood deposit thickness Precip. SON Wilhelm et al. (2012)

8 lake-bigrou-vthick Big round Lake -71.00 69.87 1000 1995 Lake sediment Varve thickness SAT JAS Thomas and Briner (2008)

9 lake-braya-temp Braya Lake -51.03 66.99 1001 2005 Lake sediment Alkenone UK37 SAT Annual von Gunten et al. (2012)

10 lake-castor-lime Castor Lake and Lime Lake -118.45 48.71 1000 2000 Lake sediment δ18O Precip. NDJF Steinman et al. (2012)

11 lake-donard-varves Donard Lake -61.35 66.67 1000 1995 Lake sediment Varve thickness SAT JJA Moore et al. (2001)

12 lake-hvitar-icel Hvtarvatn Lake -19.80 64.60 1000 2000 Lake sediment Varve thickness SAT JJAS Larsen et al. (2011)

13 lake-itilliq-bsi Itilliq Lake 67.10 69.90 1000 2005 Lake sediment Organic matter and insect assemblages SAT Annual Thomas et al. (2011)

14 lake-lowmur-maccum Lower Murray Lake -69.50 81.33 1000 1969 Lake sediment Mass accumulation SAT JJA Cook et al. (2008)

15 lake-ximencuo-toc Ximencuo Lake 101.11 33.38 1005 2004 Lake sediment δ13C Precip. Annual Pu et al. (2013)

16 ocsed-capeghir-sst Cape Ghir -10.09 30.84 1000 1971 Ocean sediment UK37 SST Annual McGregor et al. (2007)

17 ocsed-md99-2275 MD992275 -17.70 66.60 1000 2001 Ocean sediment Alkenone SST Annual Sicre et al. (2008),Sicre et al. (2011)

18 ocsed-subnatlan-Ausst Subpolar North Atlantic -27.91 57.45 1000 2004 Ocean sediment Diatom SST August Miettinen et al. (2012)

19 speleo-crystal-d18O Crystal cave -121.00 36.90 1000 2007 Speleothem δ18O SAT Annual McCabe-Glynn et al. (2013)

20 speleo-juxtla-rain Juxtlahuaca cave -99.20 17.40 1000 1999 Speleothem δ18O Precip MAM Lachniet et al. (2012)

21 speleo-so-1 Sofular cave 31.93 41.42 1000 2006 Speleothem δ18O precip annual Fleitmann et al. (2009)

22 speleo-su-96-7 Uamh an Tartair cave -4.93 58.14 1000 1995 Speleothem Bandwidth Precip. DJFM Baker et al. (2002)

23 tree-alps-Tjjas European Alps 9.00 46.00 1000 2004 Tree ring Tree ring MXD SAT JJAS Büntgen et al. (2012)

24 tree-AR050-stah Black Swamp -91.30 35.15 1019 1980 Tree ring Tree ring width SAT Annual Stahle (1996a)

25 tree-AR052-stah Mayberry Slough -89.00 35.50 1000 1990 Tree ring Tree ring width SAT Annual Stahle and Cleaveland (2005a)

26 tree-CA051-tosh San Gorgonio -116.82 33.40 1000 1970 Tree ring Tree ring width SAT Annual Tosh (1994)

27 tree-CA528-grayb Flower lake -115.70 39.90 1000 1987 Tree ring Tree ring width Precip. NDJFM Bunn et al. (2005)

28 tree-CA529-grayb Timber Gap Upper -117.00 37.30 1000 1987 Tree ring Tree ring width Precip. NDJFM Bunn et al. (2005)

29 tree-CA530-grayb irque Peak -117.50 35.00 1000 1987 Tree ring Tree ring width Precip NDJFM Bunn et al. (2005)

30 tree-ca605-king Mammoth Peak -119.00 41.00 1000 1996 Tree ring Tree ring width Precip. NDJFM Bunn et al. (2005)

31 tree-CA636-graum Boreal Plateau -119.50 36.45 1000 1992 Tree ring Tree ring width Precip. NDJFM Bunn et al. (2005)

32 tree-CA637-graum Upper Wright Lakes -115.60 35.50 1000 1992 Tree ring Tree ring width Precip. NDJFM Bunn et al. (2005)

33 tree-CA640-graum Hamilton -118.92 39.00 1000 1988 Tree ring Tree ring width Precip. NDJFM Bunn et al. (2005)

34 tree-co572-woodho Lily Lake -105.60 40.30 1000 1998 Tree ring Tree ring width SAT Annual Woodhouse and Brown (2006)

35 tree-firth-anchuk Firth River -141.63 68.65 1073 2002 Tree ring Tree ring MXD SAT JJA Anchukaitis et al. (2013)

36 tree-FL001-stah Choctawhatchee River -85.92 30.45 1000 1992 Tree ring Tree ring width SAT Annual Stahle and Cleaveland (2005b)

37 tree-forfjo-cloud Forfjorddalen 15.73 68.80 1000 2001 Tree ring Tree ring δ13C Cloud % JJA Young et al. (2012)

38 tree-LA001-stah Big Cypress -92.97 32.25 1000 1988 Tree ring Tree ring width SAT Annual Stahle (1996b)

39 tree-mor-pdsi Morocco -5.00 33.75 1049 2001 Tree ring Tree ring width SPI FMAMJ Esper et al. (2007)

40 tree-mt112-king Yellow Mountain Ridge I -112.00 45.30 1000 1998 Tree ring Tree ring width Precip. NDJFM Graumlich et al. (2003)

41 tree-mt113-wagon Yellow Mountain Ridge (Entire Bark Trees) -109.80 45.60 1000 1998 Tree ring Tree ring width Precip. NDJFM Graumlich et al. (2003)

42 tree-NM584-touch Mesa Alta -106.60 36.20 1000 2007 Tree ring Tree ring width Precip. ONDJFMAMJ Touchan et al. (2011)

43 tree-NV516-grayb Hill 10842 -114.20 38.90 1000 1984 Tree ring Tree ring width SAT Annual Graybill (1994a)

44 tree-nv517-grayb Spring Mountains Lower -114.70 34.30 1000 1984 Tree ring Tree ring width SAT Annual Graybill (1994b)

45 tree-SCpla-precip S. Colorado Plateau I -109.30 37.50 1000 1987 Tree ring Tree ring width Precip. October-July Salzer and Kipfmueller (2005)

46 tree-SCpla-temp S. Colorado Plateau II -110.70 36.50 1000 1996 Tree ring Tree ring width SAT Annual Salzer and Kipfmueller (2005)

47 tree-sc004-stahle Four Holes Swamp -80.42 33.18 1001 1985 Tree ring Tree ring width Precip. MAMJ Stahle and Cleaveland (2005a)

48 tree-siber-temp Taimyr-Putoran 103.00 71.29 1000 1996 Tree ring Tree ring width SAT Annual Naurzbaev et al. (2002)

49 tree-swit177-schwein Lauenen + div. Stao 6.50 46.42 1000 1976 Tree ring Tree ring width SAT JJA H (1995)

50 tree-UT508-grayb Wild Horse Ridge -110.10 40.00 1000 1985 Tree ring Tree ring width SAT Annual Graybill (1994c)

51 tree-UT509-grayb Mammoth Creak -112.67 37.65 1000 1989 Tree ring Tree ring width SAT Annual Graybill (1994d)

52 tree-albermale-trw Albermale Sound -76.00 36.00 934 2005 Tree ring Tree ring width PDSI July Stahle et al. (2013)

53 tree-arjeplog-bi Arjeplog 17.90 66.50 1200 2010 Tree ring Tree ring BI SAT JJA Björklund et al. (2014)

54 tree-jamtland-mxd Jamtland 15.00 63.10 800 2011 Tree ring Tree ring MXD SAT AMJJAS Zhang et al. (2016)

55 tree-colzad-trw Col du Zad -5.10 33.00 984 1984 Tree ring Tree ring width PSI FMAMJ Esper et al. (2007)

56 tree-forf-mxd Forfjorffalen-x 15.70 68.80 978 2005 Tree ring Tree ring MXD SAT AMJJAS McCarroll et al. (2013)

57 tree-khibiny-bi Khibiny 33.50 67.50 821 2005 Tree ring Tree ring BI SAT JJA McCarroll et al. (2013)

58 tree-laanila-mxd Laanila 27.30 68.50 800 2005 Tree ring Tree ring MXD SAT JJA McCarroll et al. (2013)

59 tree-manitoba-trw S Manitoba -97.10 49.50 1409 1998 Tree ring Tree ring width Precip. Annual George and Nielsen (2002)

60 tree-mesoamerica-trw Mesoamerica -100.00 20.00 800 2008 Tree ring Tree ring width PDSI June Stahle et al. (2011)

61 accr-NGRIPs-yr NGRIP-s -42.00 76.00 800 1995 Ice core Snow accumulation Precip Annual Andersen et al. (2007)

62 tree-potoriv-trw Potomac River -77.50 39.30 950 2001 Tree ring Tree ring width Stream flow MJJAS Maxwell et al. (2011)

63 tree-quebecx-mxd Quebec-x -77.50 39.30 1373 1988 Tree ring Tree ring MXD SAT MJJAS Schneider et al. (2015)

64 tree-SCengland-trw SC England -1.40 51.50 950 2009 Tree ring Tree ring width Precip. MJJ Wilson et al. (2013)

65 tree-sodankyla-thi Sodankyla 27.00 67.00 800 2007 Tree ring Tree height increment SAT JJA Lindholm and Jalkanen (2011)

66 tree-southfin-mxd Southern Finland 28.50 61.50 800 2000 Tree ring Tree ring MXD SAT MJJAS Helama et al. (2014)

67 tree-SWturkey-trw SW Turkey 31.00 37.00 1339 1998 Tree ring Tree ring width Precip. MJ Touchan et al. (2003)

68 tree-tyrol-mxd Tyrol 12.50 48.00 1053 2003 Tree ring Tree ring MXD SAT JAS Schneider et al. (2015)

69 d18O-NIshelf-yr North Icelandic Shelf 66.53 -18.20 953 2000 Ice core δ18O SAT Annual Reynolds et al. (2016)
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Appendix B: Supplementary table 2 : Ten large volcanic eruption common to four reconstructions and studies

Volcano Location Gao et al. (2008) Crowley and Unterman (2013) Sigl (2014) Ortega et al. (2015)

Unknown Unknown 1227 1229 1229 1229

Samalas Indonesia 1258 1258 1257 1257

Unknown Unknown 1284 1286 1285 1285

Huaynaputina Peru 1600 1600 1600 1600

Parker Phillippines 1641 1641 1641 1640

Serua Indonesia 1693 1696 1694 1693

Unknown Unknown 1809 1809. 1809 1809

Tambora Indonesia 1815 1816 1815 1815

Cosiguina Nicaragua 1835 1835 1834 1835

Krakatau Indonesia 1883 1884 1884 1883
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Appendix C: Using of the multi-statistical tool

Data files, source codes, parameter setting files and a description file with all useful informations and examples are available

here : LINK. This tool works as a model. First, the files "db_proxy.txt", "params.txt", "run.sh", "runR.txt" and the source code

"mov_reconstruction.r" have to be store in the same directory. A file containing the target index has to be added to this folder. It

must contains two informations : the first is observations years and the second is the target index values. "csv" and "txt" format5

are available for this file. Finally, whatever the name of this file it has to be informed in "params.txt".

The following informations have to be gave by the user in "params.txt" :

1. Name : Name of the reconstruction. Gives the name of the folder where results will be output.

2. y_start : Year where the reconstruction begins.

3. y_stop : Year where the reconstruction stops.10

4. method : Statistical learning method. Currently available possibilities are :

– pls, PLS : Partial Least Squares.

– pcr, PCR : Principal Components Regression.

– rf, RF : Random Forest.

– enet, ENET : Elastic Net regularization.15

5. R : Number of repetitions of calibration/validation splits. The computational time hardly depend on this parameter.

6. train_window : Length of the training window (as % of the learning set)

7. tests : If T (or TRUE), a proxy selection is made. If F (or FALSE), all proxy records available are used for the

reconstruction.

8. conf : Confidence level of significance correlation test for proxy selection. Must be between 0 and 1 excluded. If20

tests=F, this argument is ignored.

9. index_file : path to the txt or csv file containing the climate index. It has to own two columns: the first has to be the

years of observation, and the second, the observations.

10. seed : [Optional] set the seed for random sampling. If the user run different methods for reconstructing the same indices,

setting the same seed for the different runs allows to use the same random samples.25
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Once the parameter file is set, the user just has to run the script "run.sh". When the run is done, a folder named as it is

informed in "params.txt" file is created. Otherwise, a suite of files is given :

1. final_reconstruction.txt : A two dimensional array containing two columns : Reconstruction years and re-

constructed index.

2. val_samples.txt : A two dimensional array containing all the validation year samples by row (R rows).5

3. reconstructions.txt : A two dimensional array of size R×N containing the R individual reconstructions on the

R samples.

4. val_cors.txt : A vector containing validation correlations.

5. val_rmse.txt : A vector containing validation root mean squared errors.

6. proxy_records.txt : A vector containing the IDs (see, Pages 2K database metadata and supplementary table 1)10

of the proxy used for reconstruction. These proxy records are those which overlap the reconstruction period given and

which are significantly correlated with the target index (if "tests" is T) at the confidence level given in "conf".

The source code is commented such that it can be modified using a few R knowledges.

Important remark: If you aim to find the same results, please use the NAO index provided with codes and data (see code and

data availability). You also need to set the seed at 3, as the results are obtained from random eperiments.15
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Appendix D: Statistical test for correlation significance

The statistical test we use in all the study as been firstly proposed by Bretherton et al. (1999) to avoid the individual autocorre-

lation effects on the correlation between two series. This is done by adjusting the degree of freedom. However, a simplification

of this test has been proposed by McCarthy et al. (2015) by only using the first order autocorrelations to modify the degree of

freedom.5

Let X = (Xt)t∈T and Y = (Yt)t∈T two time series of same length. The correlation between the two series is given by :

r = cor(X,Y ) =
cov(X,Y )√

V ar(X) ·
√
V ar(Y )

(D1)

We denote a(X)
1 and a(Y )

1 the first order lag of the respective autocorrelation functions of X and Y . The effective number of

degrees of freedom [Bretherton et al. (1999)] is then given by :

Neff =Nobs ·
1− a(X)

1 · a(Y )
1

1 + a
(X)
1 ȧ

(Y )
1

(D2)10

The statistics is then calculated as :

tstat =
√
Neff ·

r√
1− r2

(D3)

For α ∈]0,1[, the statistic tstat is compared to the 1− α
2 order quantile of a Student distribution withNeff degrees of freedom.
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Figure 1. Scheme summarising the main features of the proposed statistical toolbox.
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Figure 2. Scheme of the initial data.X and Y are respectively the proxy records matrix and the index of the considered mode of variability

(M.O.V) index. N is the size of the common period of all proxy records. n is the size of the common period of all proxy records and the

index of the mode of variability. m is the size of the common period of all proxy records, where the mode of variability is not known. p is

the number of proxy records. X(T ) is the sub-matrix of X where the mode of variability is known. X(τ) is the sub-matrix of X where the

mode of variability is not known.
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Figure 3. Scheme of a leave-one-out cross validation process to select the optimal parameter of a specific learning methodM. X is the

input set of predictors and Y the corresponding variability mode index. ∀1≤ i≤ n, {X(i),Y(i)} is the ith observation and {X(−i),Y(−i)}
contains all observations except the ith. Θ = (θ1, . . . ,θK) is the ensemble of possible values of θ ∈ Rq .
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(r)

(train),Y
(r)

(train)} is the rth training sample and {X(r)

(test),Y
(r)

(test)} is

the rth testing sample. θLOO is the empirically optimal set of parameters obtained by applying the LOOCV (Fig. A3; section 2.5.1)

30

Figure 4. Scheme of the whole process for scores calculation for a given methodM. Y is the index of the chosen mode of variability.

X(T ) is the proxy dataset restricted to the period where Y is known. {X
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Figure 5. Dyadic partition of the unit square (left) and its corresponding regression tree (right). Y is the predictand and X1,X2,X3 are

the predictors. d1, d2 and d3 are the optimal thresholds of the three steps respectively.
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Figure 6. Geolocation, types and correlation confidence level between the 122 available proxy records for the period 1000-1970, and the

NAO index on the period 1823-1970
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Figure 7. Boxplot of validation correlations obtained for the four methods and different groups of proxy records by reconstructing the

NAO index on the period 1000-1970 with R= 50 validation/calibration samples. Calibration samples size is ntrain = 111, and validation

samples size is ntest = 37. Green boxplots are the validation correlations obtained for the PCR method. Yellow boxplots are the validation

correlations obtained for the PLS method. Red boxplots are the validation correlations obtained for the RF method. Blue boxplots are the

validation correlations obtained for the Enet method. The first cluster of boxplots is the validation correlations obtained by using all the

available proxy records over the period (122 proxy records). The second cluster of boxplots is the validation correlations obtained by using

only proxy records significantly correlated with the NAO index at the 80% confidence level (61 proxy records). The third cluster of boxplots

is the validation correlations obtained by using only proxy records significantly correlated with the NAO index at the 90% confidence level

(35 proxy records). The fourth cluster of boxplots is the validation correlations obtained by using only proxy records significantly correlated

with the NAO index at the 95% confidence level (18 proxy records).
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Figure 8. Validation correlations obtained for different sizes of the calibration samples: from 5% to 95% of the length of the learning

period (n= 148) with a 5% step. Red boxplots are validation correlations obtained by 100 training/testing sampling using the RF method.

Blue boxplots are validation correlations obtained by 100 training/testing sampling using the Enet method. Yellow boxplots are validation

correlations obtained by 100 training/testing sampling using the PLS method. Green boxplots are validation correlations obtained by 100

training/testing sampling using the PCR method. All of the reconstructions are made using the reconstruction period 1000-1970 and the 18

proxy records significantly correlated with the NAO index at the 95% confidence level over the learning period 1823-1970.
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Figure 9. Correlations between the best reconstruction of each method given the calibration samples size and those obtained from all of the

investigated calibration samples size: from 5% to 95% of the size of the learning period (n= 148) with a 5% step. The best PCR proportion

for the training samples length is 70% of the length of th learning period (ntrain = 104;ntest = 44), the best Enet proportion for the training

sample length is 65% of the training period ntrain = 96;ntest = 52), the best PLS proportion for the training samples length is 75% of the

length of the learning period (ntrain = 111;ntest = 37), while the best RF training samples size is 45% of the length of the learning period

(ntrain = 81;ntest = 67). Red line gives the corresponding correlations for the RF method. Blue line gives the corresponding correlations

for the Enet method. Yellow lines gives the corresponding correlations for the PLS method. Green line gives the corresponding correlations

for the PCR method.
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Figure 10. All of the reconstructions are made by R= 50 sampling calibration/validation, using the PLS method. The proportion of

the length of the training samples is fixed to 70% and only the proxy significantly correlated with the NAO index at the 95% confidence

level on the learning period are used for reconstruction. The yellow boxplots are the validation correlations obtained for each of the 36

reconstruction period: from 1000-1965 to 1000-2000 by moving the superior born by 1. Filled areas: Evolution of the proxy predictor set.

For each reconstruction period, the selected proxy records are those which cover the reconstruction period and are significantly correlated

with the NAO index at the 95% confidence level on corresponding the learning period. Cyan area: proxy records finishing before 1970

included. Red area: proxy records finishing after 1970 excluded and before 1980 included. Green area: proxy records finishing after 1980

excluded and before 1990 included. Blue area: proxy records finishing after 1990 excluded and before 2000 included. Purple area: proxy

records finishing after 2000 excluded.
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Figure 11. Red line: RF reconstruction on the period 1000-1973, using 18 proxy records significantly correlated at the 95% confidence

level, with a proportion of the length of the training samples of 45%. Dark red line: ten years low-pass filter of the RF reconstruction.

Blue line: Enet reconstruction on the period 1000-1973, using 18 proxy records significantly correlated at the 95% confidence level, with a

proportion of the length of the training samples of 65%. Dark blue line: ten years low-pass filter of the Enet reconstruction. Yellow line: PLS

reconstruction on the period 1000-1967, using 19 proxy records significantly correlated at the 95% confidence level, with a proportion of the

length of the training samples of 70%. Dark yellow line: ten years low-pass filter of the RF reconstruction. Green line: PCR reconstruction

on the period 1000-1970, using 19 proxy records significantly correlated at the 95% confidence level, with a proportion of the length of

the training samples of 70%. Dark green line: ten years low-pass filter of the RF reconstruction. Grey line: Calibration constrained NAO

reconstruction [Ortega et al. (2015)] on the period 1073-1969. Heavy black line: ten years low-pass filter of the calibration constrained NAO

reconstruction [Ortega et al. (2015)].
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Figure 12. Map and weights of the 19 proxy records significantly correlated with the original NAO index on the time window 1000-1967.

These weights are obtained from the PLS method and are calculated by projecting regression coefficients on the loadings (see Cook et al.

(2002) and section 3.2). The shapes marked by a black circle are the proxy records used in Ortega et al. (2015).
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Figure 13. Composite of the NAO response from two years (N-2) before to five years after (N+5) ten strong volcanic eruptions considering4

volcanic activity reconstructions. Red lines: Composites from the RF NAO reconstruction. Blue lines: Composites from the Enet NAO

reconstruction. Yellow lines: Composites from the PLS NAO reconstruction. Green lines: Composites from the PCR NAO reconstructions.

Light lines: composites determined using the Gao et al. (2008) volcanic activity reconstruction. Light dashed lines: composites determined

using the Sigl (2014) volcanic activity reconstruction. Heavy lines: composites determined using the same volcanic activity reconstruction

than Ortega et al. (2015). Heavy dashed lines: composites determined using the Crowley and Uterman (2013) volcanic activity reconstruction.

All of the composites are centered to their values at the year of the volcanic eruption occurrences. For each method a 99% confidence level

have been calculated by Monte-Carlo simulations using 1000 composites of eleven sampled 8 years long sub-series. The confidence born is

calculated as the 90th percentile of the 1000 differences between the 5th and the 3rd values of the sample composite series (i.e between N+2

and N). Black dashed lines indicate for each method the 0 level and the 90% confidence level. All of the composite series have been centered

to the values at the time N.
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RF Enet PLS PCR Ortega

RF 1.00 0.88 0.79 0.83 0.61

Enet 0.88 1.00 0.82 0.90 0.68

PLS 0.79 0.82 1.00 0.88 0.52

PCR 0.83 0.90 0.88 1.00 0.66

Ortega 0.61 0.68 0.52 0.66 1.00
Table 1. Table of correlations between five reconstructions: Ortega et al. (2015) reconstruction; RF reconstruction on the period 1000-1973

with a proportion of the length of the training samples of 45%; Enet reconstruction on the period 1000-1973 with a proportion of the length

of the training samples of 70%; PLS reconstruction on the period 1000-1967 with a proportion of the length of the training samples of 75%;

PCR reconstruction on the period 1000-1970 with a proportion of the length of the training samples of 70%.
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