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Abstract

Modes of climate variability strongly impact our climate and thus human society. Nevertheless, the

statistical properties of these modes remain poorly known due to the short time frame of instrumental

measurements. Reconstructing these modes further back in time using statistical learning methods applied

to proxy records is useful for improving our understanding of their behaviours. For doing so, several sta-

tistical methods exist, among which the Principal Component Regression is one of the most widely used

in paleoclimatology. Here, we provide the software ClimIndRec to the climate community, it is based on

four regression methods (PCR, Partial Least Squares, Elastic Net and Random Forest) and cross validation

algorithms, and enables systematic reconstruction of a given climate index. A prerequisite is that there are

proxy records in the database that overlap in time with its observed variations. The relative e�ciency of

the methods can vary, according to the statistical properties of the mode and the proxy records used. Here,

we assess sensitivity to the reconstruction technique. ClimIndRec is modular as it allows di�erent inputs

like the proxy database or the regression method. As an example, it is here applied to the reconstruction

of the North Atlantic Oscillation by using the PAGES 2k database. In order to identify the most reliable

reconstruction among those given by the di�erent methods, we use the modularity of ClimIndRec to in-

vestigate the sensitivity to the methodological setup to other properties such as the number and the nature

of the proxy records used as predictors or the targeted reconstruction period. The best reconstruction of

the NAO that we obtain is using the Random Forest approach. It shows signi�cant correlation with former

reconstructions, but exhibits higher validation scores.
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1 Introduction

The interdependent components of the climate system, such as the atmosphere and the ocean, vary at

di�erent timescales. The interactions between those components (Mitchell et al., 1966) lead the climate to

vary from the hourly to the multidecadal timescales. Preindustrial control simulations of global coupled

climate models have evidenced that such a variability is still present without any modulation of the external

forcings, which is frequently referred to as internal variability (Hawkins and Sutton, 2009). External factors

such as volcanic aerosols (Mignot et al., 2011 ; Swingedouw et al., 2015 ; Khodri et al., 2017), anthropogenic

aerosols (Evan et al., 2009 ; Evan et al., 2011 ; Booth et al., 2012), solar irradiance (Swingedouw et al., 2011 ;

Seidenglanz et al., 2012), and greenhouse gas concentrations (Stocker et al., 2013), also in�uence the varia-

tions and dynamics of the climate system by altering the Earth’s radiation balance. By only considering

the impact of external forcings which are not due to the human activity, we can characterise the so-called

natural climate variability.

An unequivocal synchronous rise in both the greenhouse gas concentration in the atmosphere and the

global mean temperature has been observed in instrumental measurements (Stocker et al., 2013). However

for temperatures, �uctuations around this trend from a decade to another (Kosaka and Xie, 2013 ; Santer

et al., 2014 ; Swingedouw et al., 2017) highlight the modulating role of natural variability at decadal to

multidecadal scales. Improving our knowledge about past natural climate variability and its sources is

therefore essential to better understand the potential coming changes in climate.

Physics driving the climate system induce large-scale variations, organised around recurring climate

patterns with speci�c regional impacts and temporal properties. These variations are known as climate

modes of variability. Their evolution is usually quanti�ed by an index that can be calculated from a speci-

�c observed climate variable. These indices provide an evaluation of the corresponding climate variations

and their regional impacts (Hurrell, 1995 ; Neelin et al., 1998 ; Trenberth and Shea, 2006). As an example,

the North Atlantic Oscillation (NAO), is the leading mode of atmospheric variability in the North Atlantic

basin (Hurrell et al., 2003]. Generally de�ned as the sea level pressure (SLP) gradient between the Azores

high and the Icelandic low, the NAO describes large-scale changes of winter atmospheric circulation in the

northern hemisphere and controls the strength and direction of westerly winds and storm tracks across

the Atlantic (Hurrell, 1995). A stronger than normal SLP gradient between the two centers of action in-

duces a northward shift of the eddy-driven jet-stream. Such large scale changes in atmospheric circulation

lead to precipitation and temperature variations in various regions (North Africa, Eurasia, North America

and Greenland (Casado et al., 2013)). Moreover, these meteorological impacts have major in�uences on

many ecological processes, including marine biology (Drinkwater et al., 2003) as well as terrestrial eco-

systems (Mysterud et al., 2001]) This mode also a�ects the oceanic convection in the Labrador Sea and

the Greenland-Iceland-Norwegian Seas through changes in atmospheric heat, freshwater and momentum

�uxes (Dickson et al., 1996 ; Visbeck et al., 2003). These changes may lead in turn to modi�cations in the

Atlantic Meridional Overturning Circulation (AMOC) which then a�ect the poleward heat transport and

the related Sea Surface Temperatures (SST) pattern over the Atlantic (Trenberth and Fasullo, 2017).

The dynamics of these modes are still not fully understood due to the relatively short duration of the

instrumental records, which prevents robust statistical evaluation of their properties (e.g. spectrum, sta-

bility of teleconnections, underlying mechanisms). To partly overcome this limitation, reconstructions of

climate beyond the period of direct measurements have been performed in numerous studies that com-

bine appropriate statistical methods and information from proxy records. Proxy records provide indirect
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estimates of past local or regional climate, derived from natural archives coming for instance from sedi-

ment cores, speleothems, ice cores or tree rings. According to its nature, each proxy record has a speci�c

temporal resolution, from years to millennia, and can cover a speci�c period: from hundreds to millions of

years. New proxy records are continuously gathered extending the available datasets and allowing paleo-

climatologists to build increasingly consistent reconstructions (PAGES 2K Consortium, 2013 ; PAGES 2K

Consortium, 2017).

Based on the assumption that climate modes such as the NAO a�ect climate conditions in di�erent

locations, some studies have used regression-based methods on temperature and drought-sensitive proxy

records to reconstruct the variability of these modes over the last thousand years. Luterbacher et al. (2001)

�rstly proposed a partly monthly and seasonal reconstruction of the NAO that extends back to 1500 using

the Principal Component Regressions (Hotelling, 1957) (PCR) method. Another study have reconstructed

the SLP �elds in Europe further back to 1500 using a PCR approach as well (Luterbacher et al., 2002), and

have found consistencies with the Luterbacher et al. (2001) NAO reconstruction. Cook et al. (2002) have

also proposed a complete methodology of nested PCR using annually resolved proxy records bounding

the North Atlantic to reconstruct the NAO variability further back to 1400. More recently, Ortega et al.

(2015) performed a NAO reconstruction from 1073 to 1969, also based on the PCR, using 48 proxy records

that were signi�cantly correlated with the historical NAO index on their common time window. Instead of

nesting reconstructions of di�erent sizes, which can lead to inhomogeneities between time windows using

di�erent proxy selections, this study used several random calibration/validation samplings of the overlap

period of the NAO index and the proxy records to perform individual reconstructions on the same time

frame. Regression-based methods have also been used for reconstructing other climate modes indices than

NAO, such as for instance El-Niño Southern Oscillation index (Li et al., 2013) and the Atlantic Multidecadal

Variability index (Gray et al., 2004 ; Wang et al., 2017).

More recent algorithms than PCR provide alternative regression methods that can also be used to re-

construct climate modes, and may possibly further improve the quality and the robustness of these recons-

tructions. In this paper, we present the computer tool ClimIndRec (Climate Index Reconstruction) version

1.0, which includes multiple statistical approaches, for reconstructing climate modes indices. It is based

on four regression methods: the PCR (Hotelling, 1957), the Partial Least Squares regression (PLS) (Wold

et al., 1984), the Elastic-net regression (E-net) (Zou and Hastie, 2005) and the Random Forest (RF) (Brei-

man, 2001). It communicates with a large proxy database, that contains various types of proxy records

distributed worldwide and which are sensitive to di�erent climate variables. ClimIndRec is thus designed

to reconstruct the past variability of di�erent climate modes (Fig 1). It should be stressed that ClimIndRec

will only be useful with climate indices for which there are enough proxy records representing their re-

gional climate imprints, and that have the appropriate time resolution to capture its preferred timescale of

variability. Besides the climate modes, ClimIndRec can also be used to reconstruct other kinds of climate

timeseries such as temperature or precipitation in a given location.

Section 2 develops the functioning and the value-added of ClimIndRec for climate timeseries recons-

truction. Section 3 compares the four regression methods by reconstructing the NAO index over the last

millenium and investigates the reconstruction sensitivity to methodological choices such as the method

used, the learning period or the proxy records selection for regression. Finally section 4 presents a discus-

sion including some outlooks for next version of ClimIndRec and the conclusions of this study.
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2 Data, notations and methodologies

2.1 General methodology of ClimIndRec
We here compare four models that all consist in regression methods among which the PCR has been

used in many paleoclimate studies (Luterbacher et al., 2001 ; Luterbacher et al., 2002 ; Cook et al., 2002 ; Gray

et al., 2004 ; Ortega et al., 2015 ; Wang et al., 2017). The methods we added (PLS, Enet and RF) aim at exploring

alternative approaches than PCR and comparing di�erent reconstructions using relevant metrics. PLS is a

similar approach to PCR where the di�erence is that the matrix of Empirical Orthogonal Functions (EOFs) is

calculated by maximising the variance of the projected proxies on the EOFs and the targeted climate index

instead of the variance of the projected proxies (Wold et al., 1984). Enet belongs to the regularized regression

methods family that are not usually used in paleoclimate reconstructions (Zou and Hastie, 2005). It is here

investigated in order to �nd if this kind of regression approach is relevant for climate index reconstruction.

Finally, the RF method is an aggregation of multiple predictors called "regression trees", which are non-

linear regression approaches (Breiman, 2001). The mathematical details for each method are developed in

supplementary material 1. Given a climate index and proxies, ClimIndRec optimizes a given regression

method with cross-validation-based techniques and can thus be extrapolated to other regression-based

approaches. Hence, updates of ClimIndRec will be dedicated to propose other regression methods such as

adaptive lasso regression (Zou, 2006).

In the case of the reconstruction of climate indices, regression methods seek to establish for each com-

mon time step the relationships between the proxies and the climate index to be reconstructed over the

period of instrumental measurements. This set of relationships constitutes a statistical model of the consi-

dered climate index. The paleo-variations of proxy records are then translated into a climate index in the

past using the relationships previously established by the statistical model. Since they all use unknown

parameters, they must be optimized to make the reconstruction as robust as possible. In the case of PCR,

for example, the number of principal components of the proxies used to regress the climate index directly

a�ects the reconstruction since it modi�es the set of predictors. The term "control parameter" is used to

design this ensemble of parameters inherent to each method. They are identi�ed for each method in sup-

plementary material 1. Their tuning (or optimization) using cross-validation technics (Stone, 1974 ; Geisser,

1975) are developed later in this section.

Reconstruction of a same climate index obtained from di�erent regression methods may signi�cantly

di�er. Thus, if the same index is reconstructed using di�erent regression methods that each suggest dif-

ferent interpretations of the past, it may be di�cult to compare them directly. A common approach is to

separate the observation years (called learning period) in two to evaluate a statistical model. The �rst per-

iod, called the training (or calibration) period, is used to build the model using control parameter tuning,

and thus to establish relationships between the climate index and proxies. The proxies of the second period,

called the testing (or validation) sample, are then translated into a climate index over the years of obser-

vations of this period. The actual values of the climate index can then be compared with the reconstructed

climate index over the testing period using a given metric which will be de�ned in section 2.3.2. It gives

a score estimating the model ability to reconstruct the climate index using �rst-seen data of proxies. This

procedure is called "hold-out approach" (McCornack, 1959).

The scores obtained for di�erent regression methods for a given training/testing sample might be im-

pacted by the speci�c sampling. This is overcome by repeating the hold-out approach several times where

years of observations between the training and the testing samples are shu�ed. An ensemble of scores is
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obtained, yielding an evaluation of the methods’ ability to reconstruct the climate index. The most robust

regression model is the one that has the highest scores as it means this is the most accurate to reconstruct

the climate index using �rst-seen data of proxies. This most robust regression method is then applied to the

whole learning period to build a �nal model and infer the paleo-variations of the climate index from proxy

records. In our study, and by default in ClimIndRec, the determination of the testing samples is performed

using a block-style approach over time. This means that the �rst testing period of a given size encompasses

the �rst time steps of the learning period. This testing period is then shifted by one time step which gives

the second testing period of same size. And so on until each time step of the learning period has been used

at least once for testing. The reason is that for climate timeseries, autocorrelation is often large, so that one

get skills from persistence alone. Thus sampling is usually used with a block-style approach for climate

timeseries.

The reconstruction might also largely di�er for a same reconstruction method according to both the

proxy records used and the years of observations used. Here, the sources of uncertainties associated with

the proxy selection as well as the learning period used can be reduced using the same hold-out approach

with evaluation and comparison of the most optimal sets using scores.

The number of proxy records and the reconstruction period are thus �xed for the di�erent training/-

testing period sections and the �nal model, in contrast with some previous studies which used nested

approaches (Cook et al., 2002 ; Wang et al., 2017). We make this choice because the aim of this study is

mainly focused on optimizing the methodological approach for the reconstruction and not the reconstruc-

tion itself. Nevertheless, ClimIndRec can be used to perform reconstructions on di�erent time windows

which can then be aggregated to perform a nested reconstruction, with associated scores for each portion

of time.

It should be stressed that the approach of ClimIndRec implicitly assumes that the climate index to

reconstruct is a linear combination of the proxy records. It means assuming that the climate reacts to

proxies while the correct etiological relationship is the other way around (Tingley and Rajaratnam, 2012).

Hence, it has to be speci�ed that since climate variations a�ect proxies variations, we can attempt to

estimate past climate �uctuations using statistical methods. Another caveat to highlight is that the proxy

records used have their own uncertainties that can come from various sources such as the measurement

methodologies, the dating uncertainties or the transfer function used to infer bio/geochemical data into

paleoclimate variations. This inevitably leads to an underestimation of the true link between the climate

index and the climate variable associated to the proxy record and therefore leads to a biased reconstruction

with loss of variance (Isobe et al., 1990). To overcome this issue, previous climate index reconstruction

studies (Ortega et al., 2015 ; Wang et al., 2017) rescaled the variance of the reconstruction according to the

observed climate index variance. However it implies that the variance of the climate index is stationary

which might not be true. In this study we thus present the raw reconstructions and the loss of variance

will be quanti�ed and speci�ed.

ClimIndRec is developed using both bash and R scripts. It uses di�erent R packages (presented supple-

mentary table 5) that could be used independently to blindly perform reconstructions of any climate index.

The added-value of ClimIndRec is to integrate synchronous hold-out approach and cross-validation accor-

ding to the user inputs (proxy records, regression method, reconstruction period targeted, proxy records

pre-selection). It therefore allows several inputs to be tested and provides relevant metrics that can be used

to determine the optimal regression model.
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2.2 Step-by-step procedure for reconstruction and model evaluation
The general reconstruction and model evaluation procedure follows 12 steps (Fig 1), applied sequen-

tially as follows:

1. An observational time series representing modulations of the targeted mode of variability is chosen

to be used as the predictand

2. A target time period T for the reconstruction is selected

3. The statistical reconstruction method to be applied is selected

4. The proxy records that overlap with the selected reconstruction period are extracted to be used as

predictors

5. The common period T between the observed climate index and the selected proxy records is iden-

ti�ed and extracted for evaluating the reconstruction method

6. This common period is split in two, one for training the model (training period), and one for testing

it (testing period). This is repeated R times following a block-style approach to perform splits, R
depending on the size of the learning period and the size of testing periods determined by the user.

7. The proxy records that have a signi�cant correlation at a given threshold with the climate index

over the training period are selected to train the statistical model

8. Each of the R sets of periods and proxies is calibrated over the training window for all the di�erent

sets of control parameters of the given method selected in 3, and the best performing one is identi�ed

9. The corresponding optimal setup is then applied to extend the reconstruction over the testing period

for each member

10. Validation scores are computed by comparing each of the observation-based testing series and each

training sample-based individual reconstruction over the corresponding testing period

11. The corresponding control parameters are tuned over the whole learning period T and the �nal

model is built

12. The �nal reconstruction is obtained by applying the �nal model to the proxies over the reconstruc-

tion period T

Thus ClimIndRec provides the �nal reconstruction with associated uncertainties (supplementary ma-

terial 3) and a vector with of R validation scores following di�erent metrics as �nal outputs.

2.3 Model evaluation and optimization
This section aims to clarify the technical details of the methodology presented in sections 2.1 and 2.2.

It will thus call on the elements mentioned above

2.3.1 Data notation

To simplify the mathematical notation, we make the assumption that the proxy record selection and

truncation to their common time window with the climate index have already been made (see section 2.2,

steps 4 and 5). In this study, it is important that all proxy records are truncated on the same time window

to make them mergeable in the same matrix. Each record has to cover at least the chosen reconstruction

time window T and it is excluded otherwise (section 2.2, step 2). ,Hence, the proxy records matrix does

not contain missing values.
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Fig 2 illustrates how the proxy data are organised in the input matrix X. We denote X1 = (X1
t )t∈T , . . . , Xp =

(Xp
t )t∈T , where t stands for the time (with N annual time steps), and p is the number of proxy records on the

same period T . X is thus a N × p matrix grouping the individual records: X = [X1, . . . , Xp]. Y = (Yt)t∈T is

the target climate index, de�ned on the historical time window T called the learning period, that contains

n annual time steps. The period where Y is not known is denoted τ, containing m annual time steps (Fig 2).

ThusT = T ∪τ is the entire reconstruction period, which contains N = n+m annual time steps. With these

notations, the dimensions of the di�erent matrices and vectors are: X ∈ RN×p
; X(T ) ∈ R

n×p
; X(τ) ∈ R

m×p
;

Y ∈ Rn
. The learning set is denoted {X(T ),Y}, and the reconstruction set is denoted {X(T )}.

2.3.2 Terms and validation metrics

We denote the chosen reconstruction method byM. Each method is de�ned by a speci�c number of

control parameters q, contained in the vector denoted θ. We can denote the functionM as a function of: (i)
a set on which the model is built ({X,Y}), (ii) observations of the predictors on the reconstruction period

(X(rec)), and (iii) an control parameters vector (θ):

M : ({X,Y} , X(rec), θ)→ Ŷθ (1)

(
{
Rn×p,Rn} ,Rm×p,Rs)→ Rm n, p,m, s ∈ N (not �xed) (2)

Hence, theM function gives an entire reconstruction of size m ∈ N, depending on θ.

We introduce S as the score function, or validation metric. This function is an indicator that estimates

the quality of a reconstruction Ŷ with respect to the observed values Y(obs):

S : (Y(obs), Ŷ)→ s (3)

(Rm,Rm)→ R (4)

In this paper, three kind of validation metrics are used for di�erent tasks. The �rst is a correlation function,

the second is a root mean squared error (RMSE) function and the third is a Nash-Sutcli�e coe�cient of

e�ciency (Nash and Sutcli�e, 1970):

S cor(Y(obs), Ŷ) = Cor(Y(obs), Ŷ) (5)

S RMS E(Y(obs), Ŷ) = ‖Y(obs) − Ŷ‖ =

√√ m∑
i=1

(Yi (obs) − Ŷi)2
(6)

S NS CE(Y(obs), Ŷ) = 1 −
∑m

i=1(Yi (obs) − Ŷi)2∑m
i=1(Yi (obs) − Ȳ(obs))2

, withȲ(obs) =
1
m

m∑
i=1

Yi(obs) (7)

S NS CE is used to validate the reconstruction methods over the testing period, and S RMS E allows to

determine the optimal control parameters (θ) for the reconstruction. We use S cor because it is used in the

last NAO reconstruction of Ortega et al (2015), with which we will compare our results. S NS CE is a metric

de�ned between −∞ and 1, values lower than 0 mean that using the mean over the training period is better

than the proposed statistical model (Nash and Sutcli�e, 1970), additional informations about this metric are

presented in the supplementary material 2. Here, we will consider that a �nal reconstruction is robust and

reliable when its R NSCE scores are signi�cantly positive at the 99% con�dence level using a Student test.

As the possible values of the NSCE score is not symmetric around 0, the best reconstruction is identi�ed

as the one that has the higher median of NSCE scores.

8



2.3.3 control parameter tuning by cross-validation and �nal reconstruction

As mentioned above, the initial learning sample is split into R partitions of two subsets:

{
T (r)

(train),T
(r)
(test)

}
,∀1 ≤ r ≤ R

(section 2.2, step 6). For a given methodM, R reconstructions are build on the R training samples.∀1 ≤ r ≤ R,

we denote

{
X(r)

(train),Y
(r)
(train)

}
the training set, and

{
X(r)

(test),Y
(r)
(test)

}
the test set. At each step, the columns of X,

X(train) and Xtest are normalized to the mean and the standard deviation of the respective columns of X(train).

To estimate the optimal set of control parameters θopt on a given training set {Xtrain,Ytrain}, we use

the K-fold cross validation approach (KFCV; section 2.2, step 8 and 9) (Stone, 1974 ; Geisser, 1975). Cross

Validation (CV) methods, are in general, widely used as parametrization and model validation techniques

(Kohavi, 1995 ; Browne, 2000 ; Homrighausen and McDonald, 2014 ; Zhang and Yang, 2015). Here, it is used

as an optimization method to empirically determine an optimal set of control parameters for θ. As presented

in Fig3, the KFCV splits the observations into a partition of n groups of same sizes (or approximately same

sizes if the length of the training set is not divisible by K). ∀1 ≤ k ≤ K, we denote

{
X(k),Y(k)

}
, containing

only information for the kth
drawn sample. Then,

{
X(−k),Y(−k)

}
is the set containing all the K-1 other sets.

For all possible values of θ contained in Θ, we scan the K models based on the sets s

{
X(−k),Y(−k

}
1≤k≤K . The

empirical optimal set of control parameters is obtained by minimizing the averaged S RMS E functions on

the K splits by considering all possible combinations of θ (Stone, 1974). Mathematically, the optimal KFCV

set of control parameters θKF is determined by:

θKF = arg min
θ∈Θ

1
K

K∑
k=1

S RMS E(Y(k),M(
{
X(−k),Y(−k)

}
, X(k), θ)) (8)

It should be noted that if dim(θ) > 1, then the di�erent control parameters need to be optimized simulta-

neously, with nested KFCVs.

Using this approach, we retain the control parameters vector θ̂opt = θKF for the given methodM and

a given learning set {X,Y}. KFCV is applied to build a unique optimized reconstruction for every training

sets and any given method. Then, for all the corresponding and independent testing periods, the associated

testing series Y (r)
(test) are compared to the individual reconstructions using the S NS CE function. This way, R

NSCE scores are obtained forM. In section 3, the distributions of the NSCE scores will be used as a metric

to compare di�erent reconstructions. Fig4 shows the the calculations that gives the NSCE scores for a given

methodM.

It should be stressed that the K-fold cross validation sampling is also implemented following a block-

style approach in ClimIndRec for the same reasons than for the hold-out approach. This means that the

K groups of observations are constructed along time instead of being randomly split. Also, the choice of

K can have implications for the estimation of optimal control parameters. Large K leads to more diverse

training samples, thereby bringing more variable estimates of RMSE. On the other hand, small K leads to a

low number of samples used, thereby increasing the bias due to the particular way splits have been made.

Additional works have shown that this choice is poorly in�uencing the �nal reconstruction obtained (not

shown) so that we decided to set it to K=5 for this study. It is set at K=5 by default in ClimIndRec but it can

certainly be changed in order to produce alternative reconstructions.

Once the model has been evaluated, it is launched over the whole learning set {X(T ),Y} with a K-fold

cross-validation to optimize the control parameters such as done previously for training samples.
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2.4 Data
The assessment of the proposed reconstruction techniques is investigated for the NAO index, as it is

probably the mode of variability that has been observed for the longest time period. This index is indeed re-

latively simple to calculate from SLP timeseries as it only requires two locations with instrumental records:

one within the center of action of the Azores anticyclone (typically Gibraltar) and one within the Icelandic

low (typically Reykjavik). The reference NAO index is then calculated as the normalized SLP di�erence

between these two locations. We here use the Jones et al. (1997) index spanning the whole historical period

since 1856.

In terms of proxies, we use the state-of-the-art PAGES 2k database (PAGES 2K Consortium, 2017) in its

latest 2017 version (hereafter P2k2017). Proxy records with resolutions lower than annual were removed.

Even if these proxy records could be interpolated to a �ner temporal scale and used for the reconstruction,

their use is not recommended as the interpolated timeseries will present high auto-correlation coe�cients,

which could in�ate the correlations with the NAO and thus their weight in the �nal reconstruction, po-

tentially leading to spurious results (Hanhijarvi et al., 2013). We added 44 annually-resolved proxy records

used in Ortega et al. (2015) and not present in P2k2017 (see supplementary table 1). We end up with a

database of 554 well-veri�ed and worldwide distributed annually-resolved proxy records.

3 Results

3.1 Methodological sources of uncertainty in the reconstruction
We apply ClimIndRec with the four methods presented above to the reconstruction of the NAO. In

the following, each reconstruction is obtained by averaging R individual reconstructions performed for

R training/testing splits. R depends on the size of the testing samples relative to the size of the learning

period as we perform block-style splits of the data to produce training and testing samples (section 2.1 and

2.2). Here, we set the relative length of the training splits as 80% of the learning period. NSCE scores are

thus produced and stored in a vector of R elements. This vector will thus be used as a quality metric to

characterize the methodological uncertainty in the reconstruction. The following actions were undertaken

to minimize the reconstruction uncertainty identi�ed in section 2.1, and estimate its sensitivity:

1. Pre-selecting the most relevant proxy records

2. Selecting the best learning period

These two steps are described below, before assessing the reconstruction itself.

3.1.1 Proxy pre-selection

Among the previous climate reconstruction studies, Ortega et al. (2015) have performed a proxy selec-

tion over the training periods at the 90% con�dence level using the correlation test from McCarthy et al.

(2015) while Cook et al. (2002) and Wang et al. (2017) have selected their proxies by focusing on the regions

a�ected by the modes they respectively reconstructed. Here we run 4 reconstructions of R = 50 individual

members for each method. These reconstructions are respectively performed with di�erent signi�cance le-

vels for the proxy selection by correlation over the training periods. These levels are 0% (which means that

all the records are used at each training/testing split), 80%, 90% and 95%. The reconstructions are performed

for the reconstruction period T = J1000, 1970K and the learning period T = J1856, 1970K encompassing

110 available proxy records with n = 115.
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Fig 6 shows that RF method, particularly useful for larger datasets, is more e�cient using the proxy

records correlated at the 80% con�dence level with med(S NS CE) = 0.15 (med is the median function), even

if using proxy records uncorrelated with the NAO or not located in regions a�ected by NAO variations.

On the other hand, the 3 other regression methods are more adapted when the �nest proxy selection (95%)

is applied, as highlighted by Ortega et al. (2015) for the PCR. Fig 6 is also evidencing that the widely used

PCR method and PLS have to be employed cautiously with a statistically-based proxy selection over the

training periods in further studies. Indeed the reconstructions performed with these methods are only

signi�cantly robust at the 99% con�dence level (see section 2.3.2) by using any pre-selection of proxies. On

the opposite, for RF and Enet methods, the proxy selection is not a�ecting the statistical robustness of the

reconstruction, with reconstructions signi�cantly robust at the 99% con�dence level (see section 2.3.2) for

every choice of proxy selection.

Overall, RF gives the best NSCE scores. Nevertheless, it should be stressed that these results have been

obtained for a particular learning period (1856-1970). The sensitivity to this is assessed in the next section.

3.1.2 Sensitivity to the learning period

In this section, we keep for each method the optimal selection of proxy records over the training periods

(see section 3.1.1). We explore the impact of the reconstruction period. This a�ects the �nal reconstruction

in two di�erent ways, both related to the �nal proxy selection, as explained in section 2.1.

We run the reconstruction for 31 periods T : from 1000-1970 to 1000-2000, with an increment of one

year. By doing so, the number of available proxy records is not the same for each of the periods (see Fig

7). Fig 7.a) shows the NSCE scores obtained for the di�erent reconstruction/learning periods. Using the

NSCE metric, we �nd that the best reconstruction time window is 1000-1972 for PLS and RF methods and

1000-1971 for Enet and PCR methods.

Following the optimal setup for each method from section 3.1.1, RF uses 47 records and the three others

uses 21 records. (Fig 7b). Among these four optimized reconstructions which are the �nal ones of this study,

the RF gives the highest NSCE scores with med(S NS CE) ' 0.16 and S NS CE ∈ [−0.4, 0.4] (Fig 7a).

Results show that the four methods are strongly a�ected by the choice of the reconstruction period.

Thus, we recommend to determine this period carefully with di�erent simulations on di�erent time win-

dows, following the approach we presented here, easily performable using ClimIndRec. Overall, this study

shows that for each optimisation, PCR and PLS are less reliable to reconstruct the NAO than RF and Enet

(section 3.1.1 and this section).

3.2 Scienti�c results
We compare and investigates the reconstruction with highest scores for each method following section

3.1. The four optimized reconstructions are obtained by using the full set of proxy records for RF and only

using the proxy records signi�cantly correlated at the 95% con�dence level with the NAO index over the

learning period for the other methods (see section 3.1.1). RF and Enet reconstructions are performed for

the period 1000-1972 while PCR and PLS reconstructions are performed for the period 1000-1970 (section

3.1.2).

11



3.2.1 Comparison with previous work

Fig 8 shows the di�erent reconstructions of the NAO, including the Ortega et al. (2015) calibration

constrained reconstruction (only proxy-based), and Tab. 1 exhibits the paired correlations between the 5

reconstructions. The regression uncertainties (see supplementary material 3) are also shown for the four

reconstructions of this study on Fig 8. The normality of the residuals for the fours methods has been veri�ed

for both the models built over the training samples and the �nal model as demonstrated in Fig 10. Tab. 1

and Fig 8 shows that the NAO reconstruction based on RF is distinguishable from the four others including

Ortega et al. (2015). Indeed its correlation with the other indices ranges between 0.49 and 0.67 (Tab. 1)

while the paired correlations obtained between the others are greater than 0.88. Additionally Fig 9 shows

that the RF reconstruction has a higher correlation with the Jones et al. (1997) NAO index than the other

indices: r=0.98 (p<0.01), while Ortega et al. (2015) reconstruction has a correlation of 0.45 (p<0.01). The RF

reconstruction that uses 46 proxy records (22 common proxies with Ortega et al. 2015) presented in Fig 11,

has the best NSCE scores (med(S NS CE) = 0.16; S NS CE ∈ [−0.24, 0.33]) (section 3.1.1) and its correlation

scores (med(S cor) ' 0.43; S cor ∈ [0.06, 0.63]) are signi�cantly higher at the 99% con�dence level than

Ortega et al. (2015 ) calibration constrained reconstruction (S cor ∈ [−0.14; 0.58]; med(S cor) ' 0.24) and

model constrained reconstruction (S cor ∈ [0.14; 0.64]; med(S cor) ' 0.43). We thus statistically veri�ed

that the best reconstruction from this study is more robust and reliable than those from Ortega et al.

(2015). This improvement in performance may arise from the inclusion of new relevant proxy records

into the reconstruction, but also from the use of a new statistical regression methods for climate index

reconstruction: the RF. Finally, it has to be stressed that the 5 reconstructions presented in Fig 8, including

Ortega et al. (2015), do not show a predominant positive NAO phase during the Medieval Climate Anomaly,

contrary to the hypothesis formulated by Trouet et al. (2009).

3.2.2 Response to external forcing

No signi�cant correlation is found between the NAO reconstruction based on RF method and the Total

Solar Irradiance (TSI) reconstruction from Vieira et al. (2011)(r ' −0.11; p > 0.18). The same is true for the

best reconstruction of the other methods (not shown) and Ortega et al. (2015). None of the reconstructions

(including Ortega et al. (2015) shows clear negative phases during the Maunder and the Spörer minima

as suggested by some model simulations (Shindell et al., 2004). In addition, no signi�cant correlation on

the pre-industrial era has been found with the CO2 reconstruction based on a Law Dome (East Antarctica)

ice core (Etheridge et al., 1996) (not shown), indicating that the NAO is not linearly associated with CO2
variations over this time frame.

Ortega et al. (2015) suggested that a positive NAO phase is triggered two years after strong volcanic

eruptions, a response that is not reproduced over the last millennium by model simulations (Swingedouw

et al., 2017). We use the 10 large volcanic eruptions selected in Ortega et al. (2015) and a second selection

(see supplementary table 2) of the 11 largest volcanic eruptions from the well-veri�ed reconstruction of Sigl

et al. (2015). By using a superposed epoch analysis and Rao et al. (2019) Monte-Carlo approach to calculate

signi�cance (see supplementary material 4), we �nd that using the same set of eruptions than Ortega et

al. (2015) leads to the same result: a signi�cant positive response of the NAO two years after the eruption.

However, for RF this result is not signi�cant with its p-value just under 0.1 (Fig 12). On the opposite, by

using the Sigl et al. (2015) 11 largest volcanic eruptions, we �nd a signi�cant response at the 90% con�dence

level for PLS, but one year after the eruption with a p-value under 0.05 (Fig 12). For RF, Enet and PCR, the

positive NAO response is signi�cant 1 to 3 years after the eruption (Fig 12). Here again, the signi�cance

for the RF composite is smaller than for the other methods while this reconstruction is associated with
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the highest NSCE scores. Individual response analysis shows that for the RF reconstruction, this result is

particularly signi�cant for the 2 larget eruptions of the millennium (Samalas, 1257 and Kuwae, 1458) and

not so clear for the 9 others (not shown). This result suggests that the positive NAO response might be

mainly associated to volcanic eruptions with very large and rare intensities such as Samalas or Kuwae

eruptions and concerns less eruptions with weaker intensities. However, further studies might be useful

to verify the statistical robustness of this result, as this kind of event (eruption at least as strong as Kuwae,

1453) is very rare, thus only providing two events for this study.

4 Discussion and conclusion

4.1 Discussion, caveats and outlooks
The results presented above regarding the NAO have all been obtained using ClimIndRec. Indeed, they

require advanced programming and statistical knowledge to ensure a good estimation of the reliability of

the reconstruction performed. This is possible because ClimIndRec o�ers an integrated package through

which parameters and methods can be e�ciently tested and compared, together with reliable validation

metrics such as the NSCE. Nevertheless, the methodology proposed in ClimIndRec could be further impro-

ved in di�erent ways.

ClimIndRec does not deal with missing data in proxy records. This implies selecting exclusively the

proxy records that entirely cover the reconstruction period, which thus excludes some existing proxy re-

cords. Also, proxy records with gaps are not used in the present version of ClimIndRec as their use in

an interpolated version would arti�cially increase their weight in the reconstruction and thus possibly

induce spectral artefacts in the reconstruction (Hanhijarvi et al., 2013). The most optimal way to deve-

lop a statistical model over the instrumental period is to use as many proxies as possible and as many

years of observations as possible. This leads to a paradox since periods that are well covered by obser-

vation data are the most recent ones, which are generally less well covered by proxies. However, future

versions of ClimIndRec will be dedicated to develop other probabilistic-based reconstruction approaches

to deal with missing data such as Bayesian Hierarchical Models (Tingley and Huybers, 2010a ; Tingley and

Huybers, 2010b ; Tingley, 2012 ; Tingley and Huybers, 2013 ; Cahill et al., 2016) or regularized Expectation-

Maximization algortihms (Schneider, 2001 ; Mann et al., 2008 ; Guillot et al., 2015). Another point that is

limiting the capacities of ClimIndRec is that it is based on the assumption that teleconnections of the re-

constructed mode are stationary in time, while they may depend on the state of the climate system. This

is a classical limit for statistical climate reconstructions but it can be evaluated by use of pseudo-proxy

methods (e.g. Lehner et al., 2012, Ortega et al. 2015). On this aspect, more complex methods like data as-

similation can clearly overcome this weakness by combining model and data. The use of such approaches

for last millennium remains nevertheless very complex primarily because of their computational cost and

the lack of data. They are however emerging (e.g. Hakim et al., 2016 ; Singh et al., 2018). Data assimilation

techniques can be very model dependent as highlighted for the ocean over the recent period (Karspeck

et al., 2015) so that their reconstruction of a given regional climatic modes can su�er from interferences

with reconstructions of other aspect of the climate. Thus, dedicated approaches like the ones developed

here can be seen as very complementary approach and may increase our con�dence in the reconstructions.

Indeed, if di�erent approaches provide very similar results, this can be interpreted as a source of robustness

for a given result or reconstruction.

Another caveat concerns the fact that the present version of ClimIndRec does not account for dating
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uncertainties in proxy records. Future developments of ClimIndRec may allow to take into account these

uncertainties and to provide their estimation along time. For doing so, deeper investigations for each proxy

record are needed as these sources of uncertainty are not exhaustively provided in P2k2017. Also, we found

that the reconstructions performed by ClimIndRec provide a clear loss of variance over the learning period

and the reconstructed period (before 1856) (see supplementary table 4). The RF method is the only one that

reproduces adequately the NAO amplitude only over the learning period but also provide a signi�cant loss

of variance over the reconstructed period. This indicates that the loss of variance over the reconstruction

period could partly be due to the proxy records themselves and not only to the statistical approach.

A key aspect that has been found within this study is the sensitivity of the results to the validation

metric used. Indeed, we also used correlation as the main score for the test period. It appears that this metric

was mainly capturing the phasing of the modes in their reconstruction (not shown) (Wang et al., 2014). By

using NSCE, we improved the strength of our reconstruction since other aspects than the synchronisation

were accounted for. This latter metric, which is more classical in prediction evaluation further highlights

that the RF method outperforms most of the others methods, and notably the PCR which is a classical

method used in paleoclimatology (Cook et al., 2002 ; Gray et al., 2004 ; Ortega et al., 2015 ; Wang et al.,

2017). Other metrics of prediction validation exist (e.g. Continuous Ranked Probability Score, Gneiting and

Raftery, 2007) so that a more extensive analysis of the sensitivity of the reconstruction to other metrics

for the validation period might be very useful. Thus, the development of other validation metrics in next

versions of ClimIndRec appears as an interesting avenue to explore.

4.2 Conclusions
We have proposed and described here four statistical methods for reconstructing modes of climate

variability and have compared them for a particular example: the reconstruction of the NAO. By identifying

and minimizing the sources of reconstruction uncertainty due to the method used (section 3.1.1, 3.1.2),

the time frame considered (section 3.1.2) and the proxy selection (sections 3.1.1), we found the optimal

NAO reconstructions. It was obtained for the RF method over the time frame 1000-1972 using the 46 proxy

records available on this time frame (section 3.2.1). This method has not been used yet to our knowledge for

climate index reconstructions while it clearly outperforms the other methods (section 3.1) and seems thus

promising. The reconstruction we obtained is distinguishable from the Ortega et al. (2015) reconstruction

but remains signi�cantly correlated with it (r=0.49 ; p<0.01 over the period 1073-1855).

We have shown that for Enet, PLS and particularly PCR which is frequently used in paleoclimatology,

selecting proxy records with a strong correlation with the index to be reconstructed over the training per-

iods is a good way to improve the NSCE scores, and hence it allows more reliable reconstructions (section

3.1.1). Contrarily, RF gives more reliable reconstructions using the proxy records signi�cantly correlated

at the 80% con�dence level with the NAO (section 3.1.1). This may be due to the fact that it has been

mainly developed for large datasets [Breiman, 2001]. For both cases, gathering new proxy records to the

554 available proxy records collected, may be a reliable source of reconstruction improvement. The inclu-

sion of new NAO-sensitive proxy records in the future may thus lead to better reconstructions. ClimIndRec

should allow to easily perform such new reconstructions.
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Figure 1 – Scheme summarising the main features of ClimIndRec.
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Figure 2 – Scheme of the initial data. X and Y are respectively the proxy records matrix and the index of the considered
mode of variability. N is the size of the common period of all proxy records. n is the size of the common period of all proxy
records and the index of the mode of variability. m is the size of the common period of all proxy records, where the mode
of variability is not known. p is the number of proxy records. X(T ) is the sub-matrix of X where the mode of variability is
known. X(τ) is the sub-matrix of X where the mode of variability is not known.
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Figure 3 – Scheme of a K-Fold cross validation procedure to select the optimal control parameter of a speci�c learning
method M. X is the input set of predictors and Y the corresponding variability mode index. ∀1 ≤ i ≤ n, {X(k),Y(k)} is the
kth block-style based group of observation and {X(−k),Y(−k)} contains all observations except the ith. Θ = (θ1, . . . , θQ) is the
ensemble of possibles values of the s control parameters θ ∈ Rs.
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Figure 4 – Scheme of the whole procedure for scores calculation for a given methodM. Y is the index of the chosen mode of
variability. X(T ) is the proxy dataset restricted to the period where Y known. {X(r)

(train),Y
(r)
(train)} is the rth training sample and

{X(r)
(test),Y

(r)
(test)} is the rth testing sample. θKF is the empirically optimal set of parameters obtained by applying the KFCV (Fig

3 ; section 2.3.3)
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Figure 5 – Dyadic partition of the unit square (le�) and its corresponding regression tree (right). Y is the predictand and
X1, X2, X3 are the predictors. d1, d2 and d3 are the optimal thresholds of the three steps respectively.
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Figure 6 – Boxplot of NSCE scores obtained for the fourmethods and di�erent groups of proxy records by reconstructing the
NAO index on the period 1000-1970 with R = 50 training/testing samples. Green boxplots are the NSCE scores obtained for
the PCRmethod. Yellow boxplots are the NSCE scores obtained for the PLSmethod. Red boxplots are the NSCE scores obtained
for the RF method. Blue boxplots are the NSCE scores obtained for the Enet method. The �rst cluster of boxplots is the NSCE
scores obtained by using all the available proxy records over the period (110 proxy records). The second cluster of boxplots is
the NSCE scores obtained by using only proxy records signi�cantly correlated with the NAO index at the 80% con�dence level
over the training periods. The third cluster of boxplots is the NSCE scores obtained by using only proxy records signi�cantly
correlated with the NAO index at the 90% con�dence level over the training periods. The fourth cluster of boxplots is the
NSCE scores obtained by using only proxy records signi�cantly correlated with the NAO index at the 95% con�dence level
over the training periods. Boxplots with blue edges are the scores signi�cantly positives at the 99% con�dence level. Boxplots
with red edges correspond to the scores associated with the best reconstruction for each method.
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Figure 7 – a) Reconstructions are performed using 31 reconstruction period for the four methods: from 1000-1970 to 1000-
2000 by moving the superior born by 1 with R = 50 training/testing samples. RF reconstructions are performed using the
proxy records signi�cantly correlated at the 80% con�dence level with the NAO over the training periods (section 3.1.1).
PCR reconstructions are performed using by selecting the proxy records signi�cantly correlated at the 95% con�dence level
with the NAO over the training periods (section 3.1.1). PLS and Enet reconstructions are performed using by selecting the
proxy records signi�cantly correlated at the 95% con�dence level with the NAO over the training periods (section 3.1.1).
a) Red boxplots are the NSCE scores obtained using RF method. Blue boxplots are the NSCE scores obtained using Enet
method. Red green are the NSCE scores obtained using PCR methodh. Yellow boxplots are the NSCE scores obtained using
PLS method. Boxplots with blue edges are the scores signi�cantly positives at the 99% con�dence level. Boxplots with red
edges correspond to the scores associated with the best reconstruction for each method. b) Proxy records available/used by
reconstruction period. Red area gives: Number of records used for. Green area: Number of records used for Enet, PCR and
PLS for each reconstruction period.
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Figure 8 – Red line: RF reconstruction on the period 1000-1972 (section 3.1.2), using proxy records signi�cantly correlated
at the 80% con�dence level with the NAO over the training periods(section 3.1.1). Blue line: Enet reconstruction on the period
1000-1971 (section 3.1.2) by selecting the proxy records signi�cantly correlatedwith theNAO index at the 95% con�dence level
over the training periods (section 3.1.1). Green line: PCR reconstruction on the period 1000-1971 (section 3.1.2) by selecting the
proxy records signi�cantly correlated with the NAO index at the 95% con�dence level over the training periods (section 3.1.1).
Orange line: PLS reconstruction on the period 1000-1972 (section 3.1.2) by selecting the proxy records signi�cantly correlated
with the NAO index at the 95% con�dence level over the training periods (section 3.1.1). Black line (tiny): Ortega et al.
calibration constrained reconstruction [Ortega et al., 2015]. Red area: Regression uncertainties (see supplementarymaterial
3) for RF reconstruction. Blue area: Regression uncertainties for Enet reconstruction. Blue area: Regression uncertainties for
PCR reconstruction. Orange area: Regression uncertainties for PLS reconstruction. Heavy black lines are the corresponding
11-year �ltered reconstructions for each method. Purple lines: superposed 11-years �ltered Jones et al. (1997) NAO index.
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Figure 9 – Comparison of reconstructions from this study with the original Jones et al. (1997) NAO index (Purple line)
over their common period. a) RF reconstruction. b) Enet reconstruction. c) PCR reconstruction. d) PLS reconstruction. NSCE,
RMSE and correlation statistics are provided.
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Figure 10 – P-values obtained from Shapiro-Wilk normality tests on the residuals from each reconstruction of Fig 8. For
a), b) c) and d), the repartition of the 50 p-values obtained for each training/testing split are presented. Red dashed lines
indicates the 90% con�dence level for non-normality. For 0 ≤ α ≤ 1, if p-value<=α, it means that the residuals distributions
is signi�cantly not gaussian at the 1 − α con�dence level (see shapiro.test R documentation). Black dots indicates the p-
values of the residuals obtained for the �nal models.
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Figure 11 – Map of the 46 proxy records used for the reconstruction of the NAO index form Jones et al. (1997) on the time
window 1000-1972 using the RF method. Points with a black dot are the proxy records also used in Ortega et al. (2015)
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Figure 12 – Superposed epoch analysis of the NAO response from two years (N-1) before to �ve years a�er (N+4) to the largest
volcanic eruptions used by Ortega et al. (2015) (10 eruptions) and the 11 largest from Sigl et al. (2015). All of the composites
are centred to their values at the year of the volcanic eruption occurrence. a) Red line: Composite for RF reconstruction
response to Sigl et al. (2015) volcanic eruptions. Dashed red line: Composite for RF reconstruction response to Ortega et al.
(2015) volcanic eruptions. Dashed purple line: Monte-Carlo 90% con�dence level (Rao et al., 2019, supplementary material
4). b) Blue line: Composite for Enet reconstruction response Sigl et al. (2015) volcanic eruptions. Dashed blue line: Composite
for Enet reconstruction response to Ortega et al. (2015) volcanic eruptions. Dashed purple line: Monte-Carlo 90% con�dence
level (Rao et al., 2019, supplementary material 4). c) Green line: Composite for PCR reconstruction response Sigl et al. (2015)
volcanic eruptions. Dashed green line: Composite for PCR reconstruction response to Ortega et al. (2015) volcanic eruptions.
Dashed purple line: Monte-Carlo 90% con�dence level (Rao et al., 2019, supplementarymaterial 4). d) Orange line: Composite
for PLS reconstruction response Sigl et al. (2015) volcanic eruptions. Dashed orange line: Composite for PLS reconstruction
response to Ortega et al. (2015) volcanic eruptions. Dashed purple line: Monte-Carlo 90% con�dence level (Rao et al., 2019,
supplementary material 4).
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RF Enet PCR PLS Ortega

RF 1.00 0.7 0.65 0.54 0.55

Enet 0.7 1.00 0.92 0.88 0.65

PCR 0.65 0.92 1.00 0.8 0.48

PLS 0.54 0.88 0.8 1.00 0.68

Ortega 0.55 0.65 0.48 0.68 1.00

Table 1 – Table of correlations between �ve reconstructions: Ortega et al. (2015) reconstruction ; RF reconstruction on the
period 1000-1972 using the proxy records signi�cantly correlated with the NAO at the 80% con�dence level ; Enet recons-
truction on the period 1000-1972 only using the proxy records signi�cantly correlated with the 95% con�dence level ; PCR
reconstruction on the period 1000-1970 only using the proxy records signi�cantly correlated with the NAO at the 95% con�-
dence level ; PLS reconstruction on the period 1000-1970 only using the proxy records signi�cantly correlated with the NAO
at the 95% con�dence level.
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Code and data availability: ClimIndRec’s code and the proxy records database are available at the link:

https://github.com/SimMiche/ClimIndRec, and the following Zenodo link: https://
zenodo.org/record/3464293#.Xgsr2i2ZOgw.

29

https://github.com/SimMiche/ClimIndRec
https://zenodo.org/record/3464293#.Xgsr2i2ZOgw
https://zenodo.org/record/3464293#.Xgsr2i2ZOgw


Références

Andersen, K., Ditlevsen, P., Rasmussen, S., Clausen, H., Vinther, B., Johnsen, S., and Ste�ensen, J.: Retrieving

a comon accumulation record from Greenland ice cores for the past 1800 years, Journal of geophysical

research, 111, D15 106, doi: 0.1029/2005JD006765, 2006.

Andersen, K. K., Bigler, M., Buchardt, S. L., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Fischer, H.,

Goto-Azuma, K., Hansson, M. E., Heinemeier, J., Johnsen, S. J., Larsen, L. B., Mischeler, R., Olsen, G. J.,

Rasmussen, S. O., Röthlisberger, R., Ruth, U., Seierstad, I. K., Siggaard-Andersen, M.-L., Ste�ense, J. P.,

Svensson, A. M., and Vinther, B. M.: Greenland Ice Core Chronology 2005 (GICC05) and 20 year means

of oxygen isotope data from ice core NGRIP, URL https://doi.org/10.1594/PANGAEA.
586838, 2007.

Björklund, J. A., Gunnarson, B. E., Seftigen, K., Esper, J., and Linderholm, H. W.: Blue intensity and den-

sity from northern Fennoscandian tree rings, exploring the potential to improve summer temperature

reconstructions with earlywood information, Clim. Past., 10, 877–885, doi: 10.5194/cp-10-877-2014, 2014.

Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin, N.: Aerosols implicated as a

prime driver of twentieth-century North Atlantic climate variability, Nature, 484, 228–233, doi: 10.1038/

nature10946, 2012.

Breiman, L.: Random Forests, Machine Learning, 45, 5–32, 2001.

Browne, M. W.: Cross-Validation Methods, Astronomy, Astrophysics, 44, 108–132, 2000.

Bunn, A. G., Graumlich, L. J., and Urban, D. L.: Trends in twentieth-century tree growth at high ele-

vations in the Sierra Nevada and White Mountains, USA, The Holocene, 15, 481–488, doi: 10.1191/

0959683605hl827rp, 2005.

Büntgen, U., Franck, D. C., Nievergelt, D., and Esper, J.: Summer Temperature Variations in the European

Alps, a.d. 755-ĂŞ2004, Journal of Climate, 19, 5606–5623, 2006.

Cahill, N., Kemp, A. C., Horton, B. P., and Parnell, A. C.: A Bayesian hierarchical model for reconstructing

relative sea level: from raw data to rates of change, Climate of the Past, 12, 525–542, 2016.

Casado, M., Ortega, P., Masson-delmotte, V., Risi, C., Swingedouw, D., Daux, V., Genty, D., Maignan, F., Solo-

mina, O., Vinther, B., Viovy, N., and Yiou, P.: Impact of precipitation intermittency on NAO-temperature

signals in proxy records, Climate of the Past, 9, 871–886, doi: 10.5194/cp-9-871-2013, 2013.

Cook, E. R., D’Arrigo, R. D., and Mann, M. E.: A Well-Veri�ed, Multiproxy Reconstruction of the Winter

North Atlantic Oscillation Index since A.D. 1400, Journal of Climate, 15, 1754–1764, 2002.

Cu�ey, K. M., Clow, G. D., Alley, R. B., Stuiver, M., Waddington, E. D., and Saltus, R. W.: Large Arctic

temperature change at the Wisconsin-Holocene glacial transition, Science, 270, 455–458, 1995.

Dickson, R., Lazier, J., Meincke, J., Rhines, P., and Swift, J.: Long-term coordinated changes in the convec-

tive activity of the North Atlantic, Progress in Oceanography, 38, 241–295, doi: 10.1016/S0079-6611(97)

00002-5, 1996.

30

https://doi.org/10.1594/PANGAEA.586838
https://doi.org/10.1594/PANGAEA.586838


Drinkwater, K. F., Belgrano, A., Borja, A., Conversi, A., Edwards, M., Greene, C. H., Ottersen, A., Pershing,

J., and Walker, H. A.: The North Atlantic Oscillation : Climate signi�cance and meteorological impacts,

in: The response of marine ecosystems to climate variability with the North Atlantic Oscillation, edited

by Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M., chap. 10, American Geophysical Union, doi:

10.1029/134GM10, 2003.

Esper, J., Büntgen, U., Frank, D., Verstege, A., Nievergelt, D., and Liebhold, A.: 1200 years of regular out-

breaks in alpine insects, Proc. Biol. Sci., 274 (1610), 671–679, 2006.

Esper, J., Frank, D., Büntgen, U., Verstege, A., Luterbacher, J., and Xoplaki, E.: Long-term drought severity

variations in Morocco, Geophysical research letters, 34, L17 702, doi: 10.1029/2007GL030844, 2007.

Etheridge, D. M., Steele, L. P., Langenfelds, R. L., and Francey, R. J.: Natural and anthropogenic changes

in atmospheric CO 2 over the last 1000 years from air in Antarctic ice and �rn, Journal of Geophysical

Research, 101, 4115–4128, 1996.

Evan, A. T., Vimont, D. J., Heidinger, A. K., Kossin, J. P., and Bennartz, R.: The Role of Aerosols in the

Evolution of Tropical North Atlantic Ocean Temperature Anomalies, Science, 324, 778–781, doi: 10.1126/

science.1167404, 2009.

Evan, A. T., Foltz, G. R., Zhang, D., and Vimont, D. J.: In�uence of African dust on oceanâĂŞatmosphere

variability in the tropical Atlantic, Nature Geoscience, 4, 762–765, doi: 10.1038/NGEO1276, 2011.

Fisher, D. A., Koerner, R. M., and Reeh, N.: Holocene climatic records from Agassiz Ice Cap, Ellesmere

Island, NWT, Canada, The Holocene, 5, 19–24, 1995.

Friedman, J., Hastie, T., and Tibshirani, R.: Regularization Paths for Generalized Linear Models via Coordi-

nate Descent, Journal of Statistical Software, 33, 1–22, 2010.

Geisser, S.: The predictive sample reuse method with applications, Journal of the Royal Statistical Society,

70, 320–328, 1975.

George, S. S. and Nielsen, E.: Hydroclimatic Change in Southern Manitoba Since A.D. 1409 Inferred from

Tree Rings, Quaternary Research, 58, 103–111, doi: 0033-5894/02, 2002.

Gneiting, T. and Raftery, A. E.: Strictly Proper Scoring Rules, Prediction, and Estimation, Journal of the

American Statistical Association, 102, 359–378, 2007.

Graumlich, L. J., Pisaric, M. F. J., Waggoner, L. A., Littell, J. S., and King, J. C.: Upper Yellowstone river

�ow and teleconnections with Paci�c basin climate variability during the past three centuries, Climatic

change, 59, 245–262, 2003.

Gray, S. T., Graumlich, L. J., Betancourt, J. L., and Pederson, G. T.: A tree-ring based reconstruction of the

Atlantic Multidecadal Oscillation since 1567 A.D., Geophysical Research Letters, 31, 1–4, doi: 0.1029/

2004GL019932, 2004.

Graybill, D. A.: International Tree-ring Data Bank NV516, URL https://www.ncdc.noaa.gov/
data-access/paleoclimatology-data/datasets/tree-ring, 1994a.

Graybill, D. A.: International Tree-ring Data Bank NV517, URL https://www.ncdc.noaa.gov/
data-access/paleoclimatology-data/datasets/tree-ring, 1994b.

31

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring


Graybill, D. A.: International Tree-ring Data Bank UT508, URL https://www.ncdc.noaa.gov/
data-access/paleoclimatology-data/datasets/tree-ring, 1994c.

Graybill, D. A.: International Tree-ring Data Bank UT509, URL https://www.ncdc.noaa.gov/
data-access/paleoclimatology-data/datasets/tree-ring, 1994d.

Guillot, D., Rajaratnam, B., and Emile-Geay, J.: Evaluating climate �eld reconstruction techniques using

improved emulations of real-world conditions, Climate of the Past, 9, 324–352, 2015.

Hakim, G. J., Emile-Geay, J., Steig, E. J., Tardif, R., Steiger, N., and Perkins, W. A.: The last millennium

climate reanalysis project: Framework and �rst results, Journal of Geophysical Research: Atmospheres,

121, 6745–6764, 2016.

Hanhijarvi, M., Tingley, M. P., and Korhola, A.: Pairwise Comparisons to Reconstruct Mean Temperature

in the Arctic Atlantic Region Over the Last 2000 Years, Climate dynamics, 41, 2039–2060, 2013.

Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in regional climate predictions, American

Meteorological Society, August, 1095–1107, doi: 10.1175/2009BAMS2607.1, 2009.

Helama, S., Holopainen, J., Timonen, M., and Mielikäinen, K.: An 854-Year Tree-ring chronology of Scots

Pine for South-West Finland, Studia Quaternaria, 31, 61–68, doi: 10.2478/squa-2014-0006, 2014.

Homrighausen, D. and McDonald, D. J.: Leave-one-out cross-validation is risk consistent for lasso, Machin

Learning, 97, 65–78, doi: 10.1007/s10994-014-5438-z, 2014.

Hotelling, H.: The relations of the newer multivariate statistical methods to factor analysis, British Journal

of Statistical Psychology, 10, 69–76, 1957.

Hurrell, J. W.: Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation,

Science, 269, 676–679, 1995.

Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An overview of the North Atlantic Oscillation,

Geophysical Monograph, 134, 1–35, doi: 10.1029/134GM01, 2003.

Isobe, T., Feigelson, E. D., Akritas, M. G., and Babu, G. J.: Linear regression in astronomy, Astrophysical

Journal, Part 1, 364, 104–113, 1990.

Jones, P. D., Jonsson, T., and Wheeler, D.: Extension to the North Atlantic Oscillation using early instrumen-

tal pressure observations from Gibraltar and south-west Iceland, International Journal of Climatology,

17, 1433–1450, doi: 0899-8418/97/131433-18\$17.50, 1997.

Karspeck, A. R., Stammer, D., Kohl, A., ..., and Rosati, A.: Comparison of the Atlantic meridional overturning

circulation between 1960 and 2007 in six ocean reanalysis products, Journal of Climate, 26, 7392–7413,

2015.

Khodri, M., Izumo, T., Vialard, J., Janicot, S., Cassou, C., Lengaigne, M., Mignot, J., Gastineau, G., Guilyardi,

E., Lebas, N., Robock, A., and McPhaden, M. J.: Tropical explosive volcanic eruptions can trigger El Niño

by cooling tropical Africa, Nature Communications, 8, No. 778, doi: 10.1038/s41467-017-00755-6, 2017.

Kohavi, R.: A study of Cross-Validation and Boostrap for Accuracy Estimation and Model Selection, 1995.

32

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring


Kosaka, Y. and Xie, S.-p.: Recent global-warming hiatus tied to equatorial Paci�c surface cooling, Nature,

501, 403–407, doi: 10.1038/nature12534, 2013.

Lehner, F., Raible, C. C., and Stocker, T. F.: Testing the robustness of a precipitation proxy-based North

Atlantic Oscillation reconstruction, Quaternary Science Reviews, 45, 85–94, 2012.

Li, J., Xie, S., Cook, E. R., Morales, M. S., Christie, N. C. J., Chen, F., D’Arrigo, R., Fowler, A. M., and Gou,

X.: El Niño modulations over the past seven centuries, Nature climate change, 3, 822–826, 2013.

Liaw, A. and Wiener, M.: Classi�cation and Regression by randomForest, R News, 2, 18–22, 2002.

Lindholm, M. and Jalkanen, R.: Subcentury scale variability in height-increment and tree-ring width chro-

nologies of Scots pine since AD 745 in northern Finland, The Holocene, 22, 571–577, doi: 10.1177/

0959683611427332, 2011.

Luterbacher, J., Xoplaki, E., Dietrich, D., Jones, P. D., Davies, T. D., Portis, D., Gonzalez-Rouco, J. F., von

Storch, H., Gyalistras, D., Casty, C., and Wanner, H.: Extending North Atlantic Oscillation Reconstruc-

tions Back to 1500, Atmos. Sci. Lett., 2, 114–124, 2001.

Luterbacher, J., Xoplaki, E., Dietrich, D., Rickli, R., Jacobeit, J., Beck, G., Gyalistras, D., Schmutz, C., and

Wanner, H.: Reconstruction of Sea Level Pressure �elds over the Eastern North Atlantic and Europe

back to 1500, Clim. Dyn., 18, 545–561, 2002.

Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., and Ni, F.: Proxy-based

reconstructions of hemispheric and global surface temperature variations over the past two millennia,

PNAS, 35, 13 252–13 257, 2008.

Maxwell, R. S., Hessl, A. E., Cook, E. R., and Pederson, N.: A multispecies tree ring reconstruction of Potomac

River stream�ow (950-2001), Water resources research, 47, W05 512, doi: 10.1029/2010WR010019, 2011.

McCabe-Glynn, S., Johnson, K. R., Strong, C., Berkelhammer, M., Sinhan, A., Cheng, H., and Edwards, R. L.:

Variable North Paci�c in�uence on drought in southwestern North America, Nature Geoscience, 6, 617–

621, doi: 10.1038/ngeo1862, 2013.

McCarroll, D., Loader, N. J., Jalkanen, R., Gagen, M. H., Hakan Grudd, H., and Gunnarson, B. E.: Fennoscan-

dia 1200 Year Tree Growth Data and Summer Temperature Reconstruction, The Holocene, 23, 471–484,

2013.

McCornack, R. L.: An evaluation of two methods of cross-validation, Psychological Reports, 5, 127–130,

1959.

Meeker, L. D. and Mayewski, P. A.: A 1400-year high-resolution record of atmospheric circulation over the

North Atlantic and Asia, The Holocene, 12, 257–266, 2002.

Mevik, B., Wehrens, R., and Liland, K. H.: The pls Package: Principal Component and Partial Least Squares

Regression in R, Journal of Statistical Software, 18, 1–23, 2007.

Mignot, J., Khodri, M., Frankignoul, C., and Servonnat, J.: Volcanic impact on the Atlantic ocean over the

last millenium, Clim. Past. Discuss., 7, 2511–2554, doi: 10.5194/cpd-7-2511-2011, 2011.

33



Mitchell, J. M. J., Dzerdzeevskii, B., Flohn, H., Hofmeyr, W. L., Lamb, H. H., Rao, K. N., and Wallén, C. C.:

Climatic change: Technical note No. 79, report of a working group for the commission of climatology,

World Meteorologicl Organization, Geneva, Switzerland, 1966.

Mysterud, A., Stenseth, N. C., Yoccoz, N. G., Langvatn, R., and Steinheim, G.: Nonlinear e�ects of large-

scale climatic variability on wild and domestic herbivores, Nature, 410, 1096–1099, doi: 10.1038/35074099,

2001.

Nash, J. E. and Sutcli�e, J. V.: River �ow forecasting through conceptual models part I: A discussion of

principles, Journal of climatology, 10, 282–290, 1970.

Naurzbaev, M. M., Vaganov, E. A., Sidorova, O. V., and Schweingruber, F. H.: Summer temperatures in

eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier �oating series,

The Holocene, 12, 727–736, doi: 10.1191/0959683602hl586rp, 2002.

Neelin, J. D., Anthony, S. B., Hirst, A. C., Jin, F.-f., Wakata, Y., Yamagata, T., and Zebiak, S. E.: ENSO theory,

Journal of Geophysical Research, 103, 14 261–14 290, doi: 0148-0227/98/97JC-03424509.00, 1998.

Ortega, P., Lehner, F., Swingedouw, D., Masson-Delmotte, V., Raible, C. C., Casado, M., and Yiou, P.: A

model-tested North Atlantic Oscillation reconstruction for the past millennium, Nature, 523, 71–74, doi:

10.1038/nature14518, 2015.

PAGES 2K Consortium: Continental-scale temperature variability during the past two millennia, Nature

Geoscience, 6, 339–346, doi: 10.1038/NGEO1797, 2013.

PAGES 2K Consortium: A global multiproxy database for temperature reconstructions of the Common Era,

Scienti�c Data, 4, doi: 10.1038/sdata.2017.88, 2017.

Pierce, D.: ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files, URL https:
//CRAN.R-project.org/package=ncdf4, r package version 1.16, 2017.

Rao, M. P., Cook, E. R., Cook, B I an Anchukaitis, K. J., D’Arrigo, R. D., Krusic, P. J., and LeGrande, A. N.:

A double bootstrap approach to Superposed Epoch Analysis to evaluate response uncertainty, Dendro-

chronologia, 55, 119–124, 2019.

Reynolds, D. J., Scourse, J. D., Halloran, P. R., Nederbragt, A. J., Wanamaker, A. D., Butler, P. G., Richardson,

C. A., Heinemeier, J., Eiriksson, J., Knudsen, K. L., and Hall, I. R.: Annually resolved North Atlantic marine

climate over the last millennium, Nature Communications, 7, doi: 10.1038/ncomms13502, 2016.

Salzer, M. W. and Kipfmueller, K. F.: Reconstructed Temperature and Precipitation on a Millennial Timescale

from Tree-Rings in the Southern Colorado Plateau, U.S.A, Climatic change, 70, 465–487, 2005.

Santer, B. D., Bon�ls, C., Painter, J. F., Zelinka, M. D., Mears, C., Solomon, S., Schmidt, G. A., Fyfe, J. C.,

Cole, J. N. S., Nazarenko, L., Taylor, K. E., and Wentz, F. J.: Volcanic contribution to decadal changes in

tropospheric temperatures, Nature Geoscience, 7, 185–189, doi: 10.1038/ngeo2098, 2014.

Schneider, T.: Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices

and Imputation of Missing Values, Journal of Climate, 14, 853–871, 2001.

Schweingruber, F. H.: International Tree-ring Data Bank SWIT177, URL https://www.ncdc.noaa.
gov/data-access/paleoclimatology-data/datasets/tree-ring, 1998.

34

https://CRAN.R-project.org/package=ncdf4
https://CRAN.R-project.org/package=ncdf4
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring


Seidenglanz, A., Prange, M., Varma, V., and Schulz, M.: Ocean temperature response to idealized Gleissberg

and de Vries solar cycles in a comprehensive climate model, Geophysical Research Letters, 39, 1–6, doi:

10.1029/2012GL053624, 2012.

Shindell, D. T., Schmidt, G. A., Mann, M. E., and Faluvegi, G.: Dynamic winter climate response to large

tropical volcanic eruptions since 1600, Journal of Geophysical Research, 109, D05 104, doi: 10.1029/

2003JD004151, 2004.

Sigl, M., Winstrup, M., McConnell, J. R., ..., and Woodru�, T. E.: Timing and climate forcing of volcanic

eruptions for the past 2,500 years, Nature, 523, 543–549, 2015.

Singh, H. K. A., Hakim, G. J., Tardif, R., Emile-Geay, J., and Noone, D. C.: Insights into Atlantic multi-

decadal variability using the Last Millennium Reanalysis framework, Journal of Geophysical Research:

Atmospheres, 14, 157–174, 2018.

Stahle, D. K., Burnette, D. J., and Stahle, D. W.: A Moisture Balance Reconstruction for the Drainage Basin of

Albemarle Sound, North Carolina, Estuaries and Coasts, 36, 1340–1353, doi: 10.1007/s12237-013-9643-y,

2013.

Stahle, D. W.: International Tree-ring Data Bank AR050, URL https://www.ncdc.noaa.gov/
data-access/paleoclimatology-data/datasets/tree-ring, 1996a.

Stahle, D. W.: International Tree-ring Data Bank LA001, URL https://www.ncdc.noaa.gov/
data-access/paleoclimatology-data/datasets/tree-ring, 1996b.

Stahle, D. W. and Cleaveland, M. K.: International Tree-ring Data Bank AR052, URL https:
//www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/
tree-ring, 2005a.

Stahle, D. W. and Cleaveland, M. K.: International Tree-ring Data Bank FL001, URL https:
//www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/
tree-ring, 2005b.

Stahle, D. W., Villanueva Diaz, J., Brunette, D. J., Cerano Paredes, J., Heim Jr., R. R., Fye, F. K., Acuna Soto, R.,

Therell, M. D., Cleaveland, M. K., and Stahle, D. K.: Major Mesoamerican droughts of the past millennium,

Geophysical research letters, 38, L05 703, doi: 10.1029/2010GL046472, 2011.

Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V.,

and Midgley, P. M.: Climate Change 2013, The Physical Science Basis. Working Group I Contribution to

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.

Stone, M.: Cross-Validatory choice and assesment of statistical predictions, Journal of the Royal Statistical

Society, 36, 111–147, 1974.

Swingedouw, D., Terray, L., Cassou, C., Voldoire, A., Salas-Mélia, D., and Servonnat, J.: Natural forcing of

climate during the last millennium: �ngerprint of solar variability, Climate Dynamics, 36, 1349–1364,

doi: 10.1007/s00382-010-0803-5, 2011.

Swingedouw, D., Ortega, P., Mignot, J., Guilyardi, E., Masson-delmotte, V., Butler, P. G., Khodri, M., and Séfé-

rian, R.: Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions,

Nature Communications, 6, No. 6545, doi: 10.1038/ncomms7545, 2015.

35

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring


Swingedouw, D., Mignot, J., Ortega, P., Khodri, M., Menegoz, M., Cassou, C., and Hanquiez, V.: Impact of

explosive volcanic eruptions on the main climate variability modes, Global and Planetary Change, 150,

24–45, doi: 10.1016/j.gloplacha.2017.01.006, 2017.

Tingley, M P, C. P. F. H. M. L. B. M. E. and Rajaratnam, B.: Piecing together the past: statistical insights into

paleoclimatic reconstructions, Quaternary Science Reviews, 35, 1–22, 2012.

Tingley, M. P.: A Bayesian ANOVA Scheme for Calculating Climate Anomalies, with Applications to the

Instrumental Temperature Record, Journal of Climate, 25, 777–791, 2012.

Tingley, M. P. and Huybers, P.: A Bayesian Algorithm for Reconstructing Climate Anomalies in Space

and Time. Part I: Development and Applications to Paleoclimate Reconstruction Problems, Journal of

Climate, 23, 2759–2781, 2010a.

Tingley, M. P. and Huybers, P.: A Bayesian Algorithm for Reconstructing Climate Anomalies in Space

and Time. Part II: Comparison with the Regularized Expectation-Maximization Algorithm, Journal of

Climate, 23, 2782–2800, 2010b.

Tingley, M. P. and Huybers, P.: Recent temperature extremes at high northern latitudes unprecedented in

the past 600 years, Nature, 496, 201–5, 2013.

Tosh, R.: International Tree-ring Data Bank CA051, URL https://www.ncdc.noaa.gov/
data-access/paleoclimatology-data/datasets/tree-ring, 1994.

Touchan, R., Gar�n, G. M., Meko, D. M., Funkhouser, G., Erkan, N., Hughes, M. K., and Wallin, B. S.: Prelimi-

nary reconstructions of spring precipitation in southwestern Turkey from tree-ring width, International

journal of climatology, 23, 157–171, doi: 10.1002/joc.850, 2003.

Touchan, R., Woodhouse, C. A., Meko, D. M., and Allen, C.: Millennial precipitation reconstruction for the

Jemez Mountains, New Mexico, reveals changing drought signal, International journal of climatology,

31, 896–906, 2011.

Trenberth, K. E. and Fasullo, J. T.: Atlantic meridional heat transports computed from balancing EarthâĂŹs

energy locally, Geophysical Research Letters, 44, 1919–1927, doi: 10.1002/2016GL072475, 2017.

Trenberth, K. E. and Shea, D. J.: Atlantic hurricanes and natural variability in 2005, Geophysical Research

Letters, 33, 1–4, doi: 10.1029/2006GL026894, 2006.

Trouet, V., Esper, J., Graham, N., Baker, A., Scourse, J., and Frank, D.: Persistent positive North Atlantic

oscillation mode dominated the Medieval Climate Anomaly, Science, 324, 78–80, 2009.

Vieira, L. E. A., Solanki, S. K., Krivova, N. A., and Usoskin: Evolution of the solar irradiance during the

Holocene, Astronomy, Astrophysics, 531, A6, 2011.

Visbeck, M., Chassignet, E. P., Curry, R. G., Delworth, T. L., Dickson, R. R., and Krahmann, G.: The Ocean’s

Response to North Atlantic Oscillation Variability, in: The North Atlantic : Climatic Signi�cance and

Environmental impacts, edited by Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M., doi: 10.1029/

134GM06, 2003.

Wang, J., Emile-Geay, J., Guillot, D., Smerdson, J. E., and Rajaratnam, B.: Statistical paleoclimate recons-

tructions via Markov random �elds, PNAS, 10, 1–19, 2014.

36

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring


Wang, J., Yang, B., Ljungqvist, F. C., Luterbacher, J., Osborn, T. J., Bri�a, K. R., and Zorita, E.: Internal and

external forcing of multidecadal Atlantic climate variability over the past 1,200 years, Nature Geoscience,

2017.

Wickham, H.: stringr: Simple, Consistent Wrappers for Common String Operations, URL https://
CRAN.R-project.org/package=stringr, r package version 1.2.0, 2017.

Wilson, R., Miles, D., Loader, N. J., Cooper, R., and Bri�a, K.: A millennial long March-July precipitation

reconstruction for southern-central England, Climate Dynamics, doi: 10.1007/s00382-012-1318-z, 2013.

Wold, S., Ruhe, A., Wold, H., and Dunn III, W. J.: The collinearity problem in linear regression. The Partial

Least Squares (PLS) approach to generalized inverses, J. Sci. Stat. Comput., 5, 735–743, 1984.

Woodhouse, C. A. and Brown, P. M.: Internation Tree-ring Data Bank CO572, URL https:
//www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/
tree-ring, 2006.

Young, G. H. F., McCarroll, D., Loader, N. J., Gagen, M., Kirchhefer, A. J., and Demmler, J. C.: Changes

in atmospheric circulation and the Arctic Oscillation preserved within a millennial length recons-

truction of summer cloud cover from northern Fennoscandia, Climate Dynamics, 39, 495–507, doi:

10.1177/0959683609351902, 2012.

Zhang, P., Linderholm, H. W., Gunnarson, B. E., Björklund, J. A., and Chen, D.: 1200 years of warm-season

temperature variability in central Scandinavia inferred from tree-ring density, Clim. Past., 12, 1297–1312,

doi: 10.5194/cp-12-1297-2016, 2016.

Zhang, Y. and Yang, Y.: Cross-validation for selecting a model selection procedure, Journal of Econometrics,

187, 95–112, doi: 10.1016/j.jeconom.2015.02.006, 2015.

Zou, H.: The Adaptive Lasso and its Oracle Properties, Journal of the American Statistical Association, 101,

1418–1429, 2006.

Zou, H. and Hastie, T.: Regularization and variable selection via the elastic net, Journal of the Royal Statis-

tical Society, 67, 301–320, 2005.

37

https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringr
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring

	Introduction
	Data, notations and methodologies
	General methodology of ClimIndRec
	Step-by-step procedure for reconstruction and model evaluation
	Model evaluation and optimization
	Data notation
	Terms and validation metrics
	control parameter tuning by cross-validation and final reconstruction

	Data

	Results
	Methodological sources of uncertainty in the reconstruction
	Proxy pre-selection
	Sensitivity to the learning period

	Scientific results
	Comparison with previous work
	Response to external forcing


	Discussion and conclusion
	Discussion, caveats and outlooks
	Conclusions


