
Final author response for the manuscript ​gmd-2018-211:​ ​“Reconstructing 
climatic modes of variability from proxy records: sensitivity to the 

methodological approach” by Michel et al. 
 

This final author response is organised for each comment as follows: 
 
(1) Comment from referee/public 
(2) Author’s response 
(3) Author’s change in the manuscript 
 

- Response to Anonymous Referee #1​: 
 
(1) This paper presents new reconstructions methods and applies them to reconstruct the             
NAO using data primarily from the PAGES2k database. I think this is a good study that                
introduces some potentially useful new paleoclimate reconstruction methodologies. 
(2) ​(3)​ We thank the reviewer for this overall positive evaluation of our work. 
 
I have a number of comments, corrections, and requests for clarification below: 
 
(1) p.1 l.7-9, p.4 l.18, p.20 l.10 These statements are too strongly worded. Not every mode of                 
variability is reconstructable, some occur on too short of time scales to be captured in the                
paleoclimate record (e.g., monthly time scales) and some modes are in locations where there              
are poor covariances with available proxy records (e.g., the Southern Ocean). 
 
(2) We agree with the reviewer that this claim was too strong.  
 
(3) This statement is modified in the corrected manuscript to clarify that our method is not                
able to reconstruct every climate index but only the ones for which sufficient covariances              
between large-scale modes and proxy records are found and for which proxy records exhibit              
fine enough time resolution to resolve the main time scale of the considered variability mode.               
Furthermore, we will also highlight that our approach can be used to reconstruct other kind of                
climate variable time-series such as temperatures or precipitations for a given location. 
 
 
(1) p.2 l.9-11 This sentence is unclearly worded, for example, "non-stationary variability"            
doesn’t "ask" questions, people ask questions.  
 
(2) We agree with the reviewer on this statement.  
 
(3) We replaced “asks the questions of” by “highlights”. 
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(1) Introduction: In general, the introduction takes a long time to get to the main points of the                  
study. The authors might consider revising the introduction to cut down the length. 
 
(2) ​(3) The introduction has been largely cut down by only keeping the most important               
informations relative to the topic of the manuscript.  
 
(1) p.5 l.4-5 Linear interpolation of low resolution proxies artificially increases the influence             
of these records and introduces spectral artifacts in the proxy time series (e.g., Hanhijarvi,              
Tingley, Korhola 2013, doi: 10.1007/s00382-013-1701-4). This process also ignores dating          
uncertainty in such low-resolution proxies, which can be a significant source of            
reconstruction error. Have you accounted for these factors, particularly the dating           
uncertainty? What is the influence of using only annually resolved data? 
 
(2) Indeed, we found that using interpolated low resolution proxy records results in             
overestimating their weights in our reconstruction because of the falsely high correlations            
they have with the NAO index. This is largely due to their respective high auto-correlations at                
the annual time-scale. Hence, as mentioned by the reviewer, using this kind of proxy record               
indeed brings a lot of reconstruction errors due to overestimated weights, dating uncertainties,             
but also, because they induce erroneous validation scores as the link between these proxy              
records and the NAO index is overestimated. ​Concerning the dating uncertainty, it is also              
present in annually-resolved proxy records and this aspect is not accounted for in the present               
version of the code.  
 
(3) ​Following this comment we have updated our code, manuscript and data with the use of                
the 2017 version of the Pages 2k database as suggested by Reviewer 2. Then, using this new                 
proxy database, and in order to address this comment, we decided to remove the proxy               
records that are not annually resolved​. ​For dating uncertainties, this is certainly something to              
be considered in the next version of the code. We thus add a short discussion on this aspect in                   
the discussion section, concerning potential outlooks for the next versions.  
 
 
(1) Section 2.2 Do the methods estimate uncertainty in the reconstruction or just provide a               
single reconstruction? Are the ensembles of reconstructions discussed elsewhere a kind of            
uncertainty estimate of the mean reconstruction? These, or something like them, would be             
essential to use and display because without reliable uncertainty estimates, paleoclimate           
reconstructions are not useful. 
 
(2) This was actually a major omission in the former version of the paper and we thank the                  
reviewer to report it. The uncertainties we now provide are calculated as in Ortega et al.                
(2015) using the residuals calculated over the 50 training periods. These uncertainties are             
represented by the standard errors (s.e.) of the regression, calculated as the root of the sum of                 



the squared residuals divided by the degree of freedom over the training periods divided by               
the degree of freedom: 
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Where is the length of the training sample, the true values of the NAO index over ntrain        Y train         
the training period, and the fitted NAO by the regression model over the training    Y
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period. 
An uncertainty band 2*s.e. is calculated for each of the 50 individual reconstructions and the               
envelope of this 2*s.e. uncertainty bands is our estimate of the total uncertainty range of the                
final reconstruction. 
 
(3) We added regression uncertainties in a table and on the figures where the reconstructions               
are shown. Also, the code we deliver provide standard errors for each member of a given                
final reconstruction. 
 
 
(1) p.7 l.16-19 Using correlation as the only validation metric is problematic, especially when              
it comes to comparing reconstruction methodologies. You really must include additional           
metrics that account not just for the correlation, but the variance and bias as well. If the                 
approaches provide uncertainty estimates, then the skill metrics need to also account for those              
(using, for example, the continuous ranked probability score). 
 
(2) This comment was also highlighted by the other reviewer as well as in the short comment                 
of Eduardo Zorita. We totally agree with this comment and we decided to add both the root                 
mean squared errors and the Nash-Sutcliffe Coefficient of Efficiency (NSCE) as additional            
metrics. The NSCE calculates the ratio of the averaged quadratic distance between the             
reconstruction and the observations and the quadratic distance between the mean of the             
observations and the observations. This metric, defined between and 1 indicates that the        − ∞       
reconstruction is robust when NSCE>0. Otherwise, lower values mean that using the mean of              
the testing series is more robust than performing a reconstruction using the statistical model. 
We thus believe that these two metrics adequately account for the bias and variance in the                
reconstruction, which should then improve the conservation of these properties in our            
reconstruction.  
 
(3) The whole new manuscript now accounts for these two metrics and use the NSCE as the                 
main decision metric. 
 
 
(1) p.16 l.19-20 This statement is incorrect. Previous reconstructions almost never overlook            
this issue, but rather proxy network selection is integral to the reconstruction process. It is               



very rare to have a reconstruction approach, especially one that is regression-based, that does              
not remove proxies because of insufficient correlation with the target climate variable. 
 
(2) For climate index reconstructions we found at least two major studies that have not used                
proxy network selection to perform their reconstruction : Cook et al 2002 (NAO             
reconstruction) and Wang et al 2017 (AMV reconstruction).  
 
(3) Nevertheless, we indeed found that these studies are particular cases and we modified this               
statement to clarify that we were referring mainly to these two studies. 
 
 
(1) p.18 l.1-2 Or the "significant" correlation with the NAO could be spurious. Also note that                
non-stationarity violates one of the fundamental assumptions of these (and nearly all)            
reconstruction approaches. 
 
(2) Indeed, we also ask ourselves if the significant correlations we found could be spurious               
but it is relatively difficult to determine whether they are or not. An indirect way to “verify”                 
this significance of correlation is the location of the proxy records that have high correlations               
with the NAO. A way to rule out spurious correlation is the use of pseudo-proxies like in                 
Ortega et al. (2015), but handling pseudo-proxies from different datasets was an arduous task              
for this multimethod paper. Nevertheless, the fact that most proxy records selected for the              
highest levels of correlation significance (i.e. Greenland, Arctic Canada, North America and            
Europe. See Fig. 6 in the last version of the manuscript) are located in the centers of action of                   
the NAO (which has not been imposed ​a priori​) (e.g. Casado et al. 2013) is a good indicator                  
that most proxy records won’t be spurious NAO predictors. The second comment about             
non-stationarity indeed highlights a problem that not only questions our study, but also all of               
the proxy based reconstructions studies.  
 
(3) In the new version of the manuscript we remove the sentence concerning non-stationarity              
since this type of caveat has to be included in the discussion section. We also highlight that                 
the location of most of the proxy records selected shows that our method seems to adequately                
select reliable predictors. 
 
 
(1) p.19 l.12-15 I think this statement is too strongly worded given that you’ve only validated                
the reconstructions using correlation and haven’t validated reconstruction uncertainties. How          
do the reconstructions compare given the uncertainties? 
 
(2) ​(3) ​As mentioned above, in the revised version we use the coefficient of efficiency to                
validate our reconstructions and we include and discuss regression uncertainties in our main             
text and dedicated figures.  
 



- Response to Anonymous Referee #​2: 
 

1 Scientific Comments 
(1) I’ll start with what I like about the paper: it applies several methods to the same dataset,                  
and the results are fairly consistent among methods and with another recent reconstruction, in              
which one of the authors was involved (Ortegal et al, 2015). That’s about it. 
 
(2) ​(3) We thank the reviewer for this positive comment. Nevertheless, as a general response               
to the main reviewer’s criticisms below, we would like to highlight that our study is               
proposing novel regression methods that have, to our knowledge, not yet been applied to              
climate signal reconstructions. In addition, we found in previous studies cited in this             
manuscript (that concerns the reconstruction of climate modes, but not of climate fields),             
several issues in the classical methodological approaches. Our objective here is to assist             
paleoclimate experts in making the best out of their proxy databases with valid and robust               
statistical assessments. More specifically, using a new metric that we discuss below, we show              
how to evaluate different reconstructions of the same climate index but with different             
methodological choices (regression method, proxy network, length of the period on which the             
regression model is built). The wide range covered by the scores shows that the selection of                
these inputs is an important step to obtain a reconstruction as robust as possible.  

Furthermore, to make the production of such reconstructions more straightforward          
and facilitate its use to potential users, we have developed a code that simply requires a few                 
parameters as input and that provides a set of different alternative reconstructions of a given               
climate index for a given proxy record database. In addition, the code provides an ensemble               
of scores that evaluate the different reconstructions, each produced with different           
methodological choices. Thus the user of CliMoRec (see “​Response to the short comment             
from Astrid Kerkweg: ‘Executive Editor comment on gmd-2018-21​’ ”) can finally pick the             
one that has the best scores. This is why we do not submit this paper to Climate of The Past,                    
as we would like to make climate signal reconstructions more transparent and easily             
accessible and verified by the community. Furthermore, we believe that CliMoRec could be             
improved in the future by including further refinements in follow up versions which             
constitute an additional reason for which we prefer to submit this paper to GMD. Last but not                 
least, we believe that providing sufficient level of details concerning the mathematical            
rationale behind our methods is very useful, an information that is hidden in the appendix in                
journals like Climate of the Past, which are more focused on the scientific results. 
 

 
 
 
1.1 This is no “big data” 
(1) Few things are more irritating than people pretending to do "big data" when they actually                
don’t. The authors only end up using a few dozen proxies, and only reconstruct a single                
index. Nothing wrong with that, but it’s not "big data" by any stretch of the imagination. In                 
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fact, except for the random forest method (which is only useful in the presence of hundreds or                 
thousands of predictors, therefore not very useful here), all of the methods described are              
classic forms of linear regression. Anyone is free to call that "machine learning" (since most               
ML methods are regression in one form or another), but the larger problem is that this is a                  
modeling journal, and I see very little in the way of statistical modeling here. 
 
(2) ​(3) We entirely agree that what is done in this paper is not “big data” and we didn’t intend                    
to claim we did it. The word “big data” was mentioned twice in the submitted text with the                  
only aim of providing a context, once in the abstract (line 6) and once in the introduction                 
(page 4, line 8). We are actually claiming that the emergence of big data that followed the                 
innovation in technologies and data storage has led to the development of new regression              
methods in the 2000’s, in particular elastic net regression and Random Forest (Breiman 2001;              
Zou and Hastie 2005). Those methods have indeed been developed in order to address              
high-dimensional problems (p>n), that Principal Components Regression and Partial Least          
Squares poorly deal with. However, since the word “big data” can be misleading, we have               
decided to remove it in the revised version. Random Forests are indeed particularly useful for               
high dimensional data with numerous predictors such as boosting gradients or neural            
networks. However, in the new version of the code, by using the Nash​-Sutcliffe Coefficient              
of Efficiency, we have found significantly better results for the Random Forest and the              
Elastic-net methods than for the PLS and the PCR methods (this is illustrated in the Fig. R1                 
that will replace Fig.7 of the previous manuscript), which shows that adding these methods              
even in a low-dimension study such as in ours can be more efficient than using classical                
forms of linear regression. Additionally the code we provide allows to choose the network of               
proxy records that is used for the reconstruction. As the number of available paleoclimate              
data is constantly growing (even if it does not reach hundreds of thousands yet), we claim                
that regression methods adapted to high-dimensional problems such as Random Forests will            
sooner or later, become particularly useful for climate index reconstructions. We have added             
a few words on this subject in the discussion of the manuscript. 
 
 
 



Fig. R1: Nash-Sutcliffe Coefficient Efficiency (NSCE) scores obtained for each method for            
the reconstruction period 1000-1970 and for different significance for the correlation test            
performed on the training periods: 95%, 90%, 80% and 0%. Red boxplots give the NSCE               
scores for the Random Forest method. Blue boxplots give the NSCE scores for the Elastic-net               
method. Green boxplots give the NSCE scores for the Principal Components Regression            
method. Yellow boxplots give the NSCE scores for Partial Least Squares method. 
 
 
1.2 Suboptimal Methods 
(1) Furthermore, the chosen methods are unable to deal with missing data, forcing the authors               
to limit the calibration to a set of complete records, thereby jettisoning important information.  
 
Meanwhile, at least three methods have been proposed to estimate past climates using             
discontinuous records: 
 
1. The Expectation-Maximization algorithm (Dempster et al., 1977) and its regularized           
variants (Schneider, 2001; Guillot et al., 2015), as used by Mann et al. (2008) to reconstruct                
the global mean surface temperature, for instance. 
2. Bayesian Hierarchical Models, that treat missing observations as extra parameters (Tingley            
and Huybers, 2010a,b; Tingley et al., 2012; Tingley and Huybers, 2013; Barboza et al.,              
2014). 



3. Data assimilation approaches, for instance the Last Millennium Reanalysis framework           
(Hakim et al., 2016; Singh et al., 2018). 
 
All of these methods have code that is publicly archived, often in open-source languages like               
R. Restricting themselves to antiquated regression methods forces the authors play a dubious             
game of optimization on the various training and verification sets, to offset the disadvantage              
of restricting the network to a gap-less training set. This is suboptimal on methodological and               
computational grounds. 
 
(2) In this study, we focus on climate variability modes, which is only a part of the global                  
climate. We applied dedicated methods aiming at improving the reconstruction of these            
modes. Our techniques can certainly be further improved, but as it stands, ​we believe that               
they add new potentialities to the regression approaches currently at use​. This paper is              
actually clarifying and adding methodological clue and gives an accessible tool to help             
paleoclimatologists to build more robust climate index reconstructions. Although our          
approach and the approaches mentioned by the reviewer aim at reconstructing past climate,             
the question and focus of the paper is not to show if one is better than the other, but to try to                      
further develop one of them. Concerning data assimilation methods, we certainly agree that             
these are very useful methods, but we do not believe that these methods, difficult to               
implement and thus not accessible to all paleoclimatologists, necessarily discard other more            
simple statistical models. We believe that science can benefit from a variety of approaches,              
all together contributing to identify robust results.  
 
(3) Therefore, we acknowledge the existence of the three methods depicted by the reviewer,              
and discuss them shortly in our manuscript, but we do not think there are decisive arguments                
showing that our approach is necessarily weaker, although this is not the scope of this paper                
to prove it at this stage.  
 
 
1.3 How uncertain? 
(1) An even more serious issue is that the authors do not provide any measure of uncertainty                 
for their reconstructions. They could do so via any defensible method that has been applied in                
paleoclimate investigations, e.g. parametric or non-parametric bootstrap, jackknife, or         
maximum-entropy bootstrap (Vinod and de Lacalle, 2009). 
 
(2) We thank the reviewer for pointing out this major omission (also mentioned by              
Anonymous Reviewer 1): that is the importance of assessing the reliability of our             
reconstruction. The uncertainties we now provide are calculated as in Ortega et al. (2015)               
using the residuals calculated over the 50 training periods. These regression uncertainties are             
represented by the standard errors (s.e.) of the regression, calculated as the root of the sum of                 
the squared residuals over the training periods divided by the degree of freedom: 
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Where is the length of the training sample, the true values of the NAO index over ntrain        Y train         
the training period, and the fitted NAO by the regression model over the training    Y
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period. 
An uncertainty band 2*s.e. is calculated for each of the 50 individual reconstructions and the               
envelope of this 2*s.e. uncertainty bands is our estimate of the total uncertainty range of the                
final reconstruction (as a sum of the regression uncertainty plus the parameter uncertainty). 
 
(3) We added regression uncertainties in a table and on the figures where the reconstructions               
are shown (Fig. 11 of the last version of the manuscript). Also, the code we deliver provide                 
standard errors for each member of a given final reconstruction. 
 
 
1.4 Statistical Models are Models too 
(1) I feel compelled to point out that this is a journal about models, so it would be desirable to                    
discuss the advantages of the methodological choices on modeling grounds: each of them             
models the data and uncertainties in various ways, and it would seem natural for such               
modeling assumptions and choices to be discussed here (more so than say, Climate of the               
Past, where the current manuscript would be a better fit in present form). One implicit               
modeling assumption they make is that the NAO is a linear combination of the proxy data,                
whereas the correct etiological relationship is the other way around (proxies react to climate,              
not climate to proxies). This inevitably leads to important biases (Frost and Thompson,             
2000). Again, some of the methods mentioned above can deal with that, and the authors               
should consider using them. 
 
(2) We have explained before our motivation for submitting the paper to this journal rather               
than to ​Climate of the Past​: the idea is to propose a statistical modelling tool, which will be                  
available to the community and could be further developed in a transparent way, rather than               
to only propose a new NAO reconstruction. We have been encouraged for this by the               
editorial guidelines of GMD which include ‘statistical models’. Nevertheless, we leave it to             
the editor to decide whether our study is suited for GMD or not. Regarding the modelling                
assumption: stating that the NAO is a linear combination of the proxy data is something               
about which we have been unclear in the manuscript but this is not what we have meant                 
literally. “NAO index can be reconstructed from a linear combination” would be a more              
suited sentence.  
 
(3) We have revised the manuscript so as to avoid such shortcuts following proposition              
described above. 
 
 



 
1.5 Perfunctory Validation 
(1) Another major problem is that the authors carry out a very perfunctory validation using a                
metric (correlation) that is known to only reward phase coherence (Wang et al., 2014). At the                
very least, the authors should explore the Reduction of Error and Coefficient of Efficiently              
(Nash and Sutcliffe, 1970) statistics, which have been used for more than 25 years in the                
dendrochronological literature (Cook et al., 1994). Another useful measure for point forecasts            
is the Continuous Ranked Probability Score (Gneiting and Raftery, 2007). 
 
(2) ​(3) ​We agree that the results may be sensitive to the choice of the calibration/validation                
metric. Thus, we have also calculated Root Mean Squared Errors as a new validation score.               
We thank the reviewer to suggest this more sophisticated metrics that have been added and               
used as the main metric in the manuscript on top of the correlations and RMSE: The                
Nash-Sutcliffe Coefficient of Efficiency (NSCE). The NSCE scores is indeed helping us in             
many ways. It shows that all the reconstruction made using the Vinther et al (2003) NAO                
index are not reliable since their NSCE scores are not significantly different to 0 (following               
student test on the scores obtained from the individual reconstructions). However, using the             
Jones et al (1999) index (which is exactly the same as Vinther et al (2003) index on their                  
common period) we obtain more robust validation scores (i.e. significantly higher than 0 at              
95% ).  
 

 
(1) If the authors were making interval forecasts, which they should, the sharpness of their               
prediction bands should be evaluated by an Interval Score (Gneiting and Raftery, 2007).  
 
(2) ​(3) We thank the reviewer for this interesting comment. Nevertheless we should confess              
that what the reviewer is requesting here is not very clear to us even after carefully reading                 
the reference mentioned. As a response, we can say that in the revised version of the                
manuscript, we are now properly computing uncertainties (cf. point 1.3) and notably for the              
validation scores, which correspond to the “forecast section” from our methodology. 
 
 
(1) Finally, an obligatory measure of any statistical forecasting is to inspect the quality of               
residuals: since regression relies on residuals being Gaussian, independent and identically           
distributed, any statistics book (e.g. Wilks, 2011) says that the residuals should be tested for               
these features. This should at least be present in an Appendix. 
 
(2) We agree that this is an important assumption to check.  
 
(3) We have then check this assumption for the best reconstruction of each method (presented               
Fig. 11 of the previous manuscript) and we have added a figure showing the p-values of                
Shapiro-Wilk tests obtained for the 50 individual reconstructions for each of them (which             



have the best NSCE scores on average). Also, we have updated the code to provide the                
p-values of this test as an additional output. 
 
 
1.6 Double dipping 
(1) The authors pre-screen the proxy network for correlation to the NAO index. What isn’t               
clear is whether that is done as part over the model training, or whether this is done over the                   
entire instrumental era (or the parts of it that overlap with each proxy series). ​If the latter, this                  
is an example of “double-dipping”, whereby information from the test set is used as part of                
training, leading to overoptimistic results. I could not ascertain this from the paper, so a               
clarification is necessary. 
 
(2) This comment is very useful firstly because we have been unclear on this point and                
secondly because it helps us to actually find out that we were doing double-dipping. Indeed,               
as the proxy records are selected over the entire instrumental era, the model built over the                
training period uses proxy records that are, at least partially, coherent with the NAO index               
over the testing period, which is supposed to be independent.  
 
(3) To correct this issue, we decided that the subselection of proxy records based on               
correlation test with the NAO has to be made always on training period, which means that                
there is no ​a priori ​information about the coherence between the NAO index and the selected                
proxy records made over the overlap period with the NAO. We have modified the code and                
all the results following this improvement in our approach. This does not affect much our               
results in the end, but is clearly an improvement in the coherence and rigor of our method, for                  
which we thank the reviewer again. 
 
 
(1) Why use the PAGES2k version 1, and not PAGES 2k version 2 (PAGES 2k Consortium, 
2017)?  
 
(2) Pages 2k version 2 was not available when we started this study.  
 
(3) We thank the reviewer for highlighting the updated version, which is now used in the new                 
version of the manuscript. 
  
(1) Also, the forcing of Gao et al. (2008) is known to contain many errors, which have been 
corrected by the vastly more complete dataset of Sigl et al. (2014). This could explain the 
very weak signals observed in the paper’s Superposed Epoch Analysis. I recommend using 
the best available data. 
 



(2) We thank the reviewer for pointing us to the potential errors present in the Gao et al.                  
(2008) reconstruction. Indeed, this reconstruction is now quite old, and we agree that the              
more recent reconstructions may have corrected some of the errors from former ones.  
 
(3) Thus, we have removed the use of the Gao et al. (2008) reconstruction and only kept Sigl                  
et al (2014) and Crowley et al. (2013) in the analysis of the manuscript. The inclusion of Gao                  
et al. (2008) in the submitted manuscript was aiming to better explore potential uncertainties,              
but we agree with the reviewer that since Sigl et al. (2014) built on the reconstruction of Gao                  
et al (2008) trying to improve it, this latter one has been superseded. 
 
2 Editorial Comments 
(1) The manuscript reads like a literal translation of a chapter from a French PhD thesis. That                 
means it is 1) overloaded with tedium intended to show that the main author knows what                
(s)he is talking about; (b) chock full of gallicisms. 
 
(2) We have worked hard for improving the language in this revised version and a native                
english colleague has agreed to review it before submission.  
 
(3) As mentioned by Anonymous reviewer 1, the introduction of this paper was very heavy               
and difficult to read, with a lot of technical details that were not always useful. The                
introduction of the paper has been largely reduced. 
 
 
2.1 Tedious writing 
(1) The description of methods is incredibly tedious. Sections 3.1.2, 3.2.1, 3.3.2 explain the              
obvious step of linear model prediction as a matrix multiplication. ​None of this is useful in                
any way as long as the code is shared. Also, an entire appendix is devoted to a user’s guide,                   
which should really be a readme file on GitHub. Please do not waste the readers’ disk space                 
and printer ink with this. 
  
(2) While writing the first version of the manuscript we indeed hesitated to put section 3 in                 
the main text and not in the appendix. We believe that it may be useful to have all the                   
necessary details in the main text, which was one of the reasons why we choose GMD. We                 
have asked the editor about this issue and she supports our choice since it may improve                
clarity for people that are non-expert in statistical models. Indeed, we acknowledge that the              
reviewer is a great expert in statistical modelling, but our aim here is to gather a larger                 
audience, and notably the paleoclimate record experts, who may be interested in having             
further details to precisely follow our methodology. Thus, we believe that this level of details               
is useful and this explain why we chose GMD instead of Climate of the Past. 
 



(3) Following the reviewer’s advice, the user’s guide has been removed from the appendix              
and is now available in a readme file on GitHub, where codes and data are also available (see                  
section 2.3 of this response). 
 
 
1) One of the most tedious parts is that the ​PAGES 2k Consortium ​(2013) paper is                
consistently referred to as “the Pages 2K database 2014 version". Since it was published in               
2013, why insist on calling it 2014? Also, the consortium’s name is “PAGES 2k”, not Pages                
2K. 
 
(2) ​(3) As we have updated the database in our code, we now call it the “P2k-2017 database”                  
in the new version of the manuscript.  
 
(1) In section 3.1.3, several approaches are mentioned to choose the truncation parameter             
(none, it should be said, with the aid of any statistical theory), but they are not used. Either                  
leave them unsaid, or mention them and use them (e.g. by comparing what choice is obtained                
with those methods vs cross-validation). 
 
(2) We have actually tested them for the Principal Components Regression because they only              
are specific to this method. Results show that cross-validation gives better results but we              
decided not to show it in the manuscript as it was already quite dense. Nevertheless, we agree                 
that it should be shown or mentioned.  
 
(3) Thus, we have added a supplementary figure and a supplementary table in order to show                
that the use of cross validation provides better results than previous methods (only for PCR). 
 
 
2.2 Gallicisms 
(1) The manuscript is generally well organized, but the writing suffers from many gallicisms.              
Since I happen to know a little French, here is an attempt at translating them: 
• page 6, line 11: facilitate → simplify 
• page 8, line 11: most performant → best-performing 
• page 11, line 16: inversed → inverted 
• page 12, line 23: to present frequently a → to often result in a • page 15, line 15: require to                      
be tuned → require tuning 
 
(2) ​(3)​ We thank the reviewer for these corrections that have been added in the manuscript.  
 
2.3 Unavailability 
(1) I understand the need to protect data and code until the paper is published. However,                
acting like they are public, and linking to a non-functional Zenodo link (https:             



//zenodo.org/record/1403146#.W4UMUGaB2qA) is bad form. Either give a complete link or          
mention that the data/code will be shared upon publication. 
 
(2) ​(3) When we submitted the paper we tested the Zenodo link (as advised by GMD), and it                  
worked well. We figured out, thanks to this comment, that it is now broken, and we do not                  
know since when neither why. We did not mean to protect our code nor our data and we                  
actually are glad to share it as we have worked hard to build it. Codes and data can now be                    
found on the following GitHub link: ​https://github.com/SimMiche/CliMoRec 
 
 
 

-  ​Response to the short comment from Eduardo Zorita: "Reconstruction 
Variance?" 

 
(1) The study uses one metric to evaluate the quality of the reconstruction methods : the                
correlation between observed and reconstructed index over a test period. However, other            
properties of the reconstructed indices may also be relevant, for instance, the variance. Many              
regression-based reconstruction methods underestimate past variability. This can be         
illustrated in a simple one-dimensional set up. Considering one proxy record P that reacts to               
variations of the NAO index: 
P (t) = αNAO(t) + ε(t) 
where ε is random noise. 
A simple, but widely used, reconstruction method is the statistical regression model: 
NÂO(t) = βP(t) + η(t) 
where η represents the variability not captured by the regression model. Using Ordinary Least              
Squares regression to estimate β leads to underestimation of the true value of β and, therefore,                
of the true NAO variance (see for instance Isobe et al 1990 Linear regression in astronomy                
for a review of different regression flavours and their properties). 
This problem may or not be present in the methods used in this study. It would be useful if                   
the authors could report in Table 4 also the variance of the reconstructed NAO index in the                 
test period wrt. to the observations and also the variance of the reconstructed index over the                
full period. 
 
(2) We thank Eduardo Zorita for this constructive and useful comment.  
 
(3) We decided to add a table showing the variance for the best reconstructions from each                
method (i.e. the reconstructions presented in figure 11). The variance of the reconstructions is              
presented for the whole instrumental period, the testing period, the training period, the full              
reconstruction period and its portion before instrumental observations of the Jones et al.             
(1997) NAO index (the years before 1856 being excluded). We also add discussions in the               
main text of the manuscript about this well-known problem in paleoclimate reconstructions.  
 

https://github.com/SimMiche/CLIMOREC
https://editor.copernicus.org/index.php/gmd-2018-211-AC1.pdf?_mdl=msover_md&_jrl=365&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=71096&c=158596&salt=20675339972059562746
https://editor.copernicus.org/index.php/gmd-2018-211-AC1.pdf?_mdl=msover_md&_jrl=365&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=71096&c=158596&salt=20675339972059562746


(1) Also, it would be informative if the time series in figure 11 were not normalized to unit                  
variance (?), but showed the actual reconstructed variability. 
 
(2) Normalizing to unit variance is a useful way to easily quantify NAO variability using               
standard deviations as unit. Nonetheless, as Eduardo Zorita is mentioning, it is actually hiding              
important informations about the reconstruction we performed.  
 
(3) Thus, we decided to modify figure 11 in order to keep the actual reconstructed variability                
by our code. +1 and -1 standard deviation levels for each reconstruction have also been added                
in this figure in addition of their regression uncertainties (see response to 1.3 comment of               
“Response to Anonymous Referee #2”). 
 
 

- 'Response to the short comment from Astrid Kerkweg: "Executive Editor 
comment on gmd-2018-211"' 

 
(1) Dear authors, 
in my role as Executive editor of GMD, I would like to bring to your attention our Editorial                  
version 1.1:  
http://www.geosci-model-dev.net/8/3487/2015/gmd-8-3487-2015.html 
 
This highlights some requirements of papers published in GMD, which is also available on              
the GMD website in the ‘Manuscript Types’ section: 
http://www.geoscientific-model-development.net/submission/manuscript_types.html 
 
In particular, please note that for your paper, the following requirements have not been met in                
the Discussions paper: 
• "The main paper must give the model name and version number (or other unique identifier)                
in the title." 
 
In order to simplify reference to your developments, please add the name of your software               
tool (e.g., "statistical toolbox") and its version number in the title of your article in your                
revised submission to GMD. The title could be something like "Reconstructing climatic            
modes of variability from proxy records using the statistical toolbox version 1.0: sensitivity to              
the methodological approach" 
 
(2) We thank the executive Editor Astrid Kerkweg for reminding us the guideline for              
submission.  
 
(3) We decided to attribute the name CliMoRec (Climate Mode Reconstruction) to our             
statistical toolbox and we have changed the name of the manuscript to: “Reconstructing             

https://editor.copernicus.org/index.php/gmd-2018-211-AC2.pdf?_mdl=msover_md&_jrl=365&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=71096&c=158597&salt=5903949331126625199
https://editor.copernicus.org/index.php/gmd-2018-211-AC2.pdf?_mdl=msover_md&_jrl=365&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=71096&c=158597&salt=5903949331126625199
http://www.geosci-model-dev.net/8/3487/2015/gmd-8-3487-2015.html


climatic modes of variability from proxy records using CliMoRec version 1.0: sensitivity to             
the methodological approach”. Also, we have modified the references “statistical toolbox” to            
“CliMoRec version 1.0” in the main text of the manuscript. 



Reconstructing climatic modes of variability from proxy
records : sensitivity to the methodological approach

::::::::
using

::::::::::::::
CliMoRec

:::::::::::
version

:::::
1.0

S. Michel1, D. Swingedouw1, M. Chavent2, P. Ortega3, J. Mignot4, M. Khodri4

26 avril 2019

1 : Environnements et Paleoenvironnements Oceaniques et Continentaux (EPOC), UMR CNRS 5805
EPOC-OASU-Universite de Bordeaux, Allee Geo�roy Saint-Hilaire, Pessac 33615, France.

2 : Institut National de la Recherche en Informatique et Automatique (INRIA), CQFD, F-33400 Talence,
France.

3 : BSC, Barcelona, Spain.

4 : Sorbonne Universites (UPMC, Univ. Paris 06)-CNRS-IRD-MNHN, LOCEAN Laboratory, 4 place Jus-
sieu, F-75005 Paris, France.

1



Abstract

Modes of climate variability strongly impact our climate and thus human society. Nevertheless, their
statistical properties

:::
the

::::::::
statistical

:::::::::
properties

::
of

:::::
these

::::::
modes remain poorly known due to the short time

frame of instrumental measurements. Reconstructing these modes further back in time using statistical
learning methods applied to proxy records is a useful way to improve

:::::
useful

:::
for

:::::::::
improving our unders-

tanding of their behavioursand meteorological impacts. For doing so, several statistical reconstruction me-
thods exist, among which the Principal Component Regression is one of the most widely used . Additional
predictive, and then reconstructive, statistical methods have been developed recently, following the advent
of big data.

:
in

:::::::::::::::
paleoclimatology.

:
Here, we provide to the climate community a multi-statistical toolbox

:::
the

::::::::
computer

:::::
device

:::::::::
CliMoRec, based on four statistical learning methods and

::::::::
regression

:::::::
methods

:::::
(PCR,

::::::
Partial

::::
Least

::::::::
Squares,

:::::
Elastic

::::
Net

:::
and

:::::::
Random

::::::
Forest)

::::
and cross validation algorithms, that enables systematic re-

construction of any climate mode of variability as long as
:
a

:::::
given

::::::
climate

::::::
mode

:::::
index.

:::
A

::::::::::
prerequisite

:
is
::::
that

:
there are proxy records

::
in

:::
the

::::::::
database that overlap in time with the observed variations of the

considered mode. The
::
its

::::::::
observed

::::::::::
timeseries.

:::
The

:::::::
relative e�ciency of the methods can vary, depending

on
::::::::
according

::
to the statistical properties of the mode and the learning set

:::::
proxy

:::::::
records

::::
used, thereby al-

lowing to assess sensitivity related to the reconstruction techniques. This toolbox is modular in the sense
that

::::::::
technique.

:::::::::
CliMoRec

::
is

::::::::
modular

::
as

:
it allows di�erent inputs like the proxy database or the chosen

variability mode
:::::::::
regression

:::::::
method. As an example, the toolbox

::
it is here applied to the reconstruction of

the North Atlantic Oscillation by using Pages 2K database. In order to identify the most reliable reconstruc-
tion among those given by the di�erent methods, we also

:::
use

:::
the

:::::::::
modularity

::
of

:::::::::
CliMoRec

::
to investigate the

sensitivity to the methodological setup to other properties such as the number and the nature of the proxy
records used as predictors or the reconstruction period targeted. The best reconstruction of the NAO that
we thus obtain

:::::
obtain

::
is

:::::
using

:::
the

:::::::
Random

::::::
Forest

::::::::
approach.

::
It
:
shows signi�cant correlation with former

reconstructions, but exhibits better validation scores. .
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1 Introduction

The climate system is composed of interdependent subsystems
:::
The

:::::::::::::
interdependent

:::::::::::
components

::
of

:::
the

::::::
climate

::::::
system, such as the atmosphere that can vary at relatively fast timescales and is more chaotic as

compared to the oceanor the cryosphere. As a result of the
:::
and

:::
the

::::::
ocean,

:::::
vary

::
at

:::::::
di�erent

::::::::::
timescales.

:::
The

:
interactions between those components [Mitchell et al., 1966] , the climate variability spectra is very

large and ranges from hourly to
:::
lead

:::
the

:::::::
climate

::
to

::::
vary

:::::
from

:::
the

::::::
hourly

::
to

::::
the multidecadal timescales.

In the absence of any modulations of the external forcings, such variability is still present, as evidenced
in preindustrial control simulations with

:::::::::::
Preindustrial

::::::
control

::::::::::
simulations

::
of

:
global coupled climate mo-

dels . This variability is
::::
have

::::::::
evidenced

::::
that

:::::
such

:
a
:::::::::
variability

::
is

::::
still

::::::
present

:::::::
without

::::
any

::::::::::
modulation

::
of

:::
the

:::::::
external

::::::::
forcings,

:::::
which

::
is

:
frequently referred to as internal variability [Hawkins and Sutton, 2009].

The variations and dynamics of the climatic system are also in�uenced by external
:::::::
External factors such

as volcanic aerosols [Mignot et al., 2011 ; Swingedouw et al., 2015 ; Khodri et al., 2017], solar irradiance ;
Seidenglanz et al., anthropogenic aerosols [Evan et al., 2009 ; Evan et al., 2011 ; Booth et al., 2012],

:::::
solar

::::::::
irradiance

:
[
:::::::::::::::::::
Swingedouw et al., 2011

:
;
::::::::::::::::::::
Seidenglanz et al., 2012]

:
,
:
and greenhouse gas concentrations [Sto-

cker et al., 2013], which alter the Earth ?
:::
also

::::::::
in�uence

:::
the

:::::::::
variations

::::
and

::::::::
dynamics

::
of

:::
the

:::::::
climate

::::::
system

::
by

:::::::
altering

:::
the

::::::
Earth’s radiation balance, and hence, de�ect the mean climate state. By only considering

the impact of external forcings which are not due the of the
::
to

:::
the

:
human activity, one explores

:::
we

:::
can

::::::::::
characterise the so-called natural climate variability.

An unequivocal
::
An

:::::::::::
unequivocal

:::::::::::
synchronous rise in both the greenhouse gas composition

:::::::::::
concentration in the atmos-

phere and the global mean temperature has been observed in instrumental measurements [Bradley, 2003 ;
?
:::::::::::::::
Stocker et al., 2013]. However , the nonstationary variability

:::
for

::::::::::::
temperatures,

::::::::::
�uctuations

:
around this

trend from a decade to another [Kosaka and Xie, 2013 ; Santer et al., 2014 ; Swingedouw et al., 2017] , asks the
question about the relative role of anthropogenic forcing relatively to that of

::::::::
highlight

:::
the

:::::::::
modulating

::::
role

::
of natural variability at decadal to multidecadal climate variations

::::
scales. Thereby, improving our know-

ledge about
:::
past

:
natural climate variability should allow improving our knowledge and better evaluate the

:::
and

:::
its

::::::
sources

::
is

::::::::
essential

::
to

:::::
better

::::::::::
understand

:::
the

::::::::
potential

:::::::
coming changes in climatein the near term

future (decades, e. g. Hawkins and Sutton (Hawkins and Sutton)). .
:

The physics
::::::
Physics

:
driving the climate system induces large-scale variations, organised around recurring climate

patterns with speci�c regional impacts and temporal properties. These variations are known as climate
modes of variability, and their

:
.
:::::
Their evolution is usually quanti�ed by an index that can be calculated from

a speci�c observed climate variable. These indices provide an evaluation of the corresponding climate va-
riations and their regional impacts [?

::::::::::
Hurrell, 1995 ; Neelin et al., 1998 ; ?

:::::::::::::::::::::
Trenberth and Shea, 2006]. As an

example, the North Atlantic Oscillation (NAO), is the leading mode of atmospheric variability in the North
Atlantic basin [?

:::::::::::::::
Hurrell et al., 2003]. Generally de�ned as the sea level pressure (SLP) gradient between the

Azores high and the Icelandic low, the NAO describes large-scale changes on
::
of

:
winter atmospheric cir-

culation in the northern hemisphere and controls the strength and direction of westerly winds and storm
tracks across the Atlantic [?

::::::::::
Hurrell, 1995]. A stronger than normal SLP gradient between the two centers

of action induces a northward shift of the eddy-driven jet-stream. Such large scale changes in atmosphe-
ric circulation lead to precipitation and temperature variations in various regions (North Africa, Eurasia,
North America and Greenland [?

:::::::::::::::
Casado et al., 2013]). Moreover, these meteorological impacts have major

in�uences on many ecological processes, including marine biology [Drinkwater et al., 2003] as well as ter-
restrial ecosystems [Mysterud et al., 2001]. This mode also a�ects the oceanic convection in the Labrador
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Sea and the Greenland-Iceland-Norwegian Seas through changes in atmospheric heat, freshwater and mo-
mentum �uxes [Dickson et al., 1996 ; Visbeck et al., 2003]. These changes may lead

:
in
::::
turn

:
to modi�cations

in the Atlantic Meridional Overturning Circulation (AMOC) which in turn a�ects
::::
then

:::::
a�ect the poleward

heat transport and the related SST
:::
Sea

:::::::
Surface

:::::::::::
Temperatures

:::::
(SST)

:
pattern over the Atlantic [Trenberth

and Fasullo, 2017].

The dynamics of these modes are still not fully understood due to the small
::::::::
relatively

::::
short

:
duration

of the instrumental records, which is preventing
:::::::
prevents

:
robust statistical evaluation of their properties

(
::
e.g.

:
spectrum, stability of teleconnections, underlying mechanisms...). To partly overcome this limitation,

numerous studies have reconstructed climate variations well
::::::::::::
reconstructions

::
of

:::::::
climate beyond the period

of climate measurements (since around 1870), based on proxy recordsCook et al., 2002 ; Mann et al., 2009 ;
Ortega et al., 2015 ; Luterbacher et al., 2016 ; Wang et al., 2017

:::::
direct

::::::::::::
measurements

::::
have

:::::
been

:::::::::
performed

::
in

::::::::
numerous

:::::::
studies

::::
that

:::::::
combine

:::::::::::
appropriate

::::::::
statistical

::::::::
methods

:::
and

:::::::::::
information

::::
from

::::::
proxy

:::::::
records.

Proxy records provide indirect observations of
::::::::
estimates

::
of

:::
past

:
local or regional climatein the past, using ,

::::::
derived

::::
from

:
natural archives coming for instance from sediment cores, speleothems, ice cores or tree rings.

The di�erent records have their own characteristics and limitations, which need to be considered when
combined together to perform the reconstructions. For example

::::::::
According

::
to

:::
its

:::::
nature, each proxy record

has a speci�c temporal resolution, from years to millennia, and then covers
:::
can

:::::
cover a speci�c period: from

hundreds to millions of years. New proxy records are continuously gathered extending the available data-
sets and allowing paleoclimatologists to build increasingly consistent reconstructions [Pages 2K Consor-
tium, 2013 ; Pages 2K Consortium, 2017]. The last millennium is a period extensively investigated as it
contains the densest network of high-resolution proxy records. Mann et al., 2009 ; Luterbacher et al., 2016.

The last millenium is of a great interest to put in perspective and understand the recent climate variations.
Indeed, before the early 19th century, the anthropogenic radiative forcing was negligible Hegerl et al., 2007 ;
Hawkins et al., 2017. Moreover, proxy records reveal two contrasting climatic periods during that millennium,
as identi�ed by Lamb (1965). These periods are known as the Medieval Climate Anomaly (MCA) and the
Little Ice Age (LIA) Mann et al., 2009, which correspond to an anomalously warm and cool period of north
hemispheric mean temperature, respectively. Modes of climate variability can have diverse worldwide
impacts (usually known as climate �ngerprints), which can be recorded by di�erent proxy time series.
This can be thus combined to make reconstructions of their variability. The selected proxy records need to
cover, at least partially, the observational period. That is an important requisite to make a robust calibration.
Based on this assumption, several

:::::
Based

:::
on

:::
the

::::::::::
assumption

::::
that

::::::
climate

::::::
modes

:::::
such

::
as

:::
the

:::::
NAO

:::::
a�ect

:::::::
climate

:::::::::
conditions

::
in

::::::::
di�erent

::::::::
locations,

:::::
some studies have used statistical predictive methods to reconstruct di�erent climatic modes on

longer timescales Cook et al., 2002 ; Gray et al., 2004 ; Ortega et al., 2015 ; Wang et al., 2017. For instance,
for the NAO, Cook et al. (2011

::::::::::::::
regression-based

:::::::
methods

:::
on

::::::::::
temperature

:::
and

:::::::::::::::
drought-sensitive

:::::
proxy

::::::
records

::
to

:::::::::
reconstruct

::::
the

::::::::
variability

:::
of

::::
these

::::::
modes

::::
over

:::
the

::::
last

::::::::
thousand

:::::
years.

::::::::::::::
Cook et al. (2002) �rstly propo-

sed a complete methodology of nested Principal Component Regressions (PCRs) [
::::::::::::
Hotelling, 1957] using

annually resolved proxy records bounding the North Atlantic to reconstruct its
:::
the

::::
NAO variability further

back to 1400. Several new proxy records have been documented since this date Pages 2K Consortium, 2017and
the NAO reconstruction could probably be largely improved if it was updated to include these new data.
More recently, Mignot et al. (2011

:::::::::::::::
Ortega et al. (2015) performed a NAO reconstruction from 1073 to 1969,

:::
also

:
based on the PCR, using 48 proxy records that were signi�cantly correlated with the the historical NAO

index on their common time window. Instead of nesting reconstructions of di�erent sizes, which leads
:::
can
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:::
lead

:
to inhomogeneities between time windows using di�erent proxy selections, this study used several

random calibration/validation samplings of the overlap period of the NAO index and the proxy records to
perform individual reconstructions on the same time frame. By repeating numerous times that sampling,
several reconstructions were obtained through the di�erent PCR results. This ensemble approach brings
two advantages. The �rst is that since validation/calibration periods are not �xed, the validation/calibration
skills do not depend on the particular way these periods are split. The second advantage is that the
di�erent reconstructions obtained can be aggregated by averaging each of them to isolate the coherent
features among them. The standard deviation between the individual reconstructions is thereby reduced,
as only the most emergent patterns are kept. Such kind of ensemble reconstruction, using nested PCR as
in Cook et al. (2002), have been recently made by Wang et al. (2017), but for reconstructing the Atlantic
Multidecadal Variability (AMV), a climate variability index characterising large-scale variations in North
Atlantic SST

:::::::::::::::
Regression-based

:::::::
methods

::::
have

::::
also

::::
been

::::
used

:::
for

::::::::::::
reconstructing

:::::
other

::::::
climate

::::::
modes

::::::
indices

::::
than

:::::
NAO,

::::
such

::
as

::
for

::::::::
instance

::::::
El-Niño

::::::::
Southern

:::::::::
Oscillation

:::::
index [Trenberth and Shea, 2006

::::::::::
Li et al., 2013]

. The recent increasing amount of data is not speci�c to the paleoclimatology �eld. Indeed, since the
past four decades, the advent of internet and technological innovation has allowed to store and manage
exponentially growing data from various sources

:::
and

:::
the

:::::::
Atlantic

::::::::::::
Multidecadal

:::::::::
Variability

:::::
index

:
[Wang

et al.
:::::::::::::
Gray et al., 2004

:
;
::::::::::::::
Wang et al., 2017]. Hence, the bene�cial capacity of decision making through data

analysis in several �elds has been largely developed, using many predictive algorithms for all kind of data
Tibshirani, 1996 ; Breiman, 2001 ; Zou and Hastie, 2005. That �eld of science, often referred as "big data", is
based on several statistical and probability theories and is named Statistical Learning or Machine Learning
which is a subpart of Arti�cial Intelligence Vapnik, 2000 ; Breiman, 2001 ; Zou and Hastie, 2005. Combined
with cross validation algorithms, the PCR is one of the most e�cient statistical learning regression methods
Hotelling, 1957. It is still considered as a performant method in many �elds, such as paleoclimatology.
However, more recent algorithms provide alternative

::::
More

::::::
recent

:::::::::
algorithms

:::::
than

::::
PCR

::::::
provide

::::::::::
alternative

:::::::::
regression methods that can also be used to re-

construct climate modes, and may possibly further improve the quality and the robustness of these re-
constructions. In this paper, we provide a toolbox, using

::::::
present

:::
the

::::::::
computer

::::::
device

::::::::
CliMoRec

::::::::
(Climate

:::::
Mode

:::::::::::::
Reconstruction)

:::::::
version

:::
1.0,

::::::
which

:::::::
includes

:
multiple statistical approaches, for reconstructing cli-

mate modes indices. It is based on four regression methods: the PCR, the Partial Least Squares regression
(PLS), the Elastic-net regression (E-net) and the Random Forest (RF). The aim is to propose a systematic
reconstruction approach through a computer device. This toolbox

:
It
:
communicates with a large proxy

database. This database ,
::::
that

:
contains various types of proxy records distributed all over the Earth, and

associated with
:::::::::
worldwide

::::
and

:::::
which

:::
are

::::::::
sensitive

::
to

:
di�erent climate variables. Therefore, this toolbox

allows reconstructing any climatic mode in the past
::::::::
CliMoRec

::
is
::::
thus

::::::::
designed

:::
to

::::::::::
reconstruct

:::
the

::::
past

::::::::
variability

::
of

::::::::
di�erent

::::::
climate

::::::
modes (Fig. 1). The con�dence we have in the reconstruction is then evaluated

through training-testing techniques. Some general statistical learning tools, such as the cross validation,
:
It
::::::
should

:::
be

:::::::
stressed

::::
that

::::::::
CliMoRec

::::
will

::::
only

:::
be

:::::
useful

:::::
with

::::::
climate

:::::::
indices

:::
for

:::::
which

:::::
there

:::
are

:::::::
enough

:::::
proxy

::::::
records

:::::::::::
representing

:::::
their

:::::::
regional

::::::
climate

::::::::
imprints,

::::
and

:::
that

:::::
have

:::
the

::::::::::
appropriate

::::
time

:::::::::
resolution

::
to

::::::
capture

:::
its

::::::::
preferred

::::::::
timescale

::
of

::::::::::
variability.

::::::
Besides

:::
the

:::::::
climate

::::::
modes,

:::::::::
CliMoRec

:::
can

::::
also

::
be

:::::
used

::
to

:::::::::
reconstruct

:::::
other

:::::
kinds

::
of

:::::::
climate

:::::::::
time-series

::::
such

:::
as

:::::::::::
temperatures

::
or

::::::::::::
precipitations

::
in

:
a
:::::
given

::::::::
location.

::
In

::::::
section

::
2,

:::
the

:::::::
database

::::
and

:::::
some

::::::
general

::::::::
statistical

:::::
tools are �rst presented. The reconstruction me-

thods, are then described in a mathematical formalism . We then compare
::
in

::::::
section

::
3.

::::::
Section

::
4
::::::::
compares

these methods by reconstructing the NAO index over the last millenium . Finally, we investigate
:::
and

::::::::::
investigates the reconstruction sensitivity to methodological choices

::::
such

:
as the method used, the lear-

ning period, the proxy predictors selection and the size of the calibration samples.
:::::::
training

:::::::
samples.

:::::
Final
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::::::
section

:
5
::::::::
presents

:
a
:::::::::
discussion

::::::::
including

:::::
some

:::::::
outlooks

:::
for

::::
next

:::::::
version

::
of

::::::::
CliMoRec

::::
and

:::
the

::::::::::
conclusions

::
of

:::
this

:::::
study.

:

2 Data, notations and methodologies

2.1 Data
The assessment of our reconstruction techniques is investigated for the NAO index, as it is

:::::::
probably

the mode of variability that has been observed for the longest time period. Indeed, this index is
::::
This

:::::
index

:
is
::::::
indeed

:
relatively simple to calculate from instrumental records because it only needs two instrumental

record locations for SLP
:::
SLP

::::
time

::::::
series

::
as

::
it

::::
only

:::::::
requires

::::
two

::::::::
locations

::::
with

:::::::::::
instrumental

:::::::
records: one

within the center of action of the Azores anticyclone
::::::::
(typically

::::::::
Gibraltar)

:
and one within the Icelandic

low . Thus, because of this simplicity, the NAO index covers a longer instrumentally observed period than
other indices.

::::::::
(typically

:::::::::
Reykjavik).

:
The reference NAO index calculated from SLP records in Gibraltar

and Reykjavik starts in 1856 Jones et al., 1997. An extension to 1823 has been proposed , using new SLP
series from Cadiz and San Fernando, approximately 100 kilometers from Gibraltar Vinther et al., 2003.
That Gibraltar/Cadiz-Reykjavik index is chosen as our reference observational NAO index in this paper.

:
is

::::
then

::::::::
calculated

:::
as

:::
the

:::::::::
normalized

::::
SLP

:::::::::
di�erence

:::::::
between

:::::
these

::::
two

::::::::
locations.

:::::::::::::::
Jones et al. (1997)

::::
have

:::
for

:::::::
example

::::::::
proposed

::
an

:::::
index

::::::::
spanning

:::
the

::::::
whole

::::::
period

::::
since

:::::
1856.

:

Our statistical toolbox is based on a set of proxy predictors essentially composed of the
::
In

:::::
terms

::
of

::::::
proxies,

:::
we

:::
use

:::
the

:::::::::::::
state-of-the-art Pages 2k 2014 version database [Pages 2K Consortium, 2013

::::::::::::::::::::::
Pages 2K Consortium, 2017]

. However, some proxy records (Arc_38 to Arc59, following PAGES encoding)
:
in

:::
its

:::::
latest

::::
2017

:::::::
version

::::::::
(P2k2017).

::::
The

::::::
proxy

::::::
records

::::::
which

:::::::::
resolutions

::::
are

:::::
lower

::::
than

::::::
annual

:
have been removedbecause their

resolution is longer than ten years, which may have an impact on the interpretation of annual to subdecadal
climate processes in the reconstruction. All the proxy records with a greater than annual resolution are
then linearly interpolated to that resolution.

:::::
Even

::
if

:::::
these

:::::
proxy

:::::::
records

:::::
could

::
be

:::::::::::
interpolated

::
to

::
a

::::
�ner

:::::::
temporal

:::::
scale

::::
and

::::
used

:::
for

::::
the

:::::::::::::
reconstruction,

::::
their

::::
use

::
is

:::
not

:::::::::::::
recommended [

::::::::::::::::::
Hanhijarvi et al., 2013],

::
as

:::
the

:::::::::::
interpolated

::::
time

::::::
series

::::
will

:::::::
present

::::
high

::::::::::::::
auto-correlation

:::::::::::
coe�cients,

:::::
which

::::::
could

::::::
in�ate

:::
the

::::::::::
correlations

::::
with

:::
the

::::
NAO

::::
and

::::
thus

::::
their

::::::
weight

::
in

:::
the

::::
�nal

:::::::::::::
reconstruction,

:::::::::
potentially

:::::::
leading

::
to

:::::::
spurious

:::::
results. We also added to this database 69

::
44

:::::::::::::::
annually-resolved proxy records used in the Wang et al.

::::::
Ortega

et al. (2017) and Ortega et al. et al. (2015)studies. All of the North American tree ring series in Pages
2K database have been truncated to 1200 as this is their oldest common year. 15 of these series extend
further back in time and have been considered here in their full length. These series are encoded as
NAm − TR_7, 13, 14, 15, 21, 28, 29, 30, 62, 76, 81, 109, 110, 127, 128 in the Pages 2K database 2014 version
Pages2K2014. Thus, we

::::
2015)

::::
and

:::
not

:::::::
present

::
in

::::::::
P2k2017

:::
(see

:::::::::::::
supplementary

::::::::::::
informations).

::::
We end up

with 540 worldwide distributed proxy records, which can potentially allow to reconstruct any mode of
variability. All of the proxy records which are not in the Pages 2K 2014 version are presented in the
supplementary table 1. For the other proxy records, the reader can refer to the Pages 2K 2014 version
database. We attribute an ID to each proxy records to make them recognizable by the users of the statistical
tool (see supplementary table 1). Among the 540 proxy records, only those completely overlapping the
reconstruction period are kept. The statistical tool that we propose adjust the proxy dataset depending on
the reconstruction period targeted.

:
a
::::::::
database

::
of

:::
554

::::::::::
well-veri�ed

::::
and

:::::::::
worldwide

:::::::::
distributed

:::::::::::::::
annually-resolved

:::::
proxy

:::::::
records.
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2.2 Methodology
The

::::::
general reconstruction procedure follows 10 steps, all

::
11

:::::
steps,

::::::
among

::::::
which

:::
the

::::
�rst

:::::
three

:::
are

:::::
inputs

::::::::
selection

::::
and

:::
the

::::::
others

:::
are

:
already implemented in the statistical toolbox

::::::::
CliMoRec. These are

applied sequentially as follows (Fig. 1):
1. An observational time series of the mode of variability is chosen to be used as the predictand
2. A target time period T for the reconstruction is selected
3. The statistical reconstruction method to be applied is selected
4. The proxy records that overlap with the selected reconstruction period are extracted to be used as

predictors
5. The common period between the observed climate index and the selected proxy records is extracted

for �tting
::::::::
identi�ed

::::
and

::::::::
extracted

:::
for

:::::::::
calibrating the reconstruction

6. This common period is randomly split in two, one for training the model (training period), and one
for testing it (testing period). This is repeated R times to generate an ensemble of reconstructions

7. For each member of the ensemble, the reconstruction
:::
The

:::::
proxy

:::::::
records

::::
that

:::::
have

:
a
::::::::::
signi�cant

:::::::::
correlation

::
at

:
a
:::::
given

::::::::
threshold

:::::
with

:::
the

::::::
climate

:::::
index

::::
over

:::
the

:::::::
training

::::::
period

:::
are

:::::::
selected

::
to

:::::
train

:::
the

::::::::
statistical

:::::
model

:

8.
::::
Each

::
of

:::
the

::
R
::::
sets

::
of

:::::::
periods

:::
and

:::::::
proxies is calibrated over the training period

:::::::
window for all the

di�erent statistical parameters for a given method
::
of

:::
the

:::::
given

:::::::
method

:::::::
selected

::
in

:
3, and the best

one is identi�edd
:::::::::
performing

:::
set

:
is
:::::::::
identi�ed

9. The corresponding optimal setup is then applied to extend the reconstruction over the target period
T

:
T

:
for each ensemble member

10. A validation
::::::::::
Avalidation score is computed for each member by comparing the true

::::::::::::::
observation-based

testing series and each individual reconstruction over the corresponding testing period
11. The �nal reconstruction is calculated as the average of all the individual R reconstructions

Thus the toolbox
::::::::
CliMoRec

:
provides the mean reconstruction

::
of

:::
the

:::::::
chosen

:::::
mode

:
with associated un-

certainties and a vector with en
::
an

:
ensemble of R validation scores following di�erent metrics as �nal

outputs.

The number of proxy records and the reconstruction period are here �xed for the di�erent training/-
testing period sections, in contrast with some previous studies which used nested approaches [Cook et al.,
2002 ; Wang et al., 2017]. As the weight of each proxy record is unknown before performing the reconstruction,
the nested approaches may attribute unrealistic weights to the proxy records that bear the longest temporal
coverage. In addition, as we want to perform several reconstructions by changing the set of proxy records
employed or the reconstruction period considered, using a nested approach would have a simultaneous
impact on both factors, and may hinder the interpretation of the validation

:::
We

::::
make

::::
this

:::::
choice

:::::::
because

:::
the

:::
aim

::
of

::::
this

:::::
study

:
is
:::::::
mainly

::::::
focused

:::
on

:::::::::
optimizing

:::
the

:::::::::::::
methodological

::::::::
approach

:::
for

:::
the

:::::::::::::
reconstruction

:::
and

:::
not

:::
the

::::::::::::
reconstruction

:::::
itself.

::::::::::::
Nevertheless,

::::::::
CliMoRec

::::
can

::
be

::::
used

:::
to

:::::::
perform

:::::::::::::
reconstructions

:::
on

:::::::
di�erent

::::
time

::::::::
windows

:::::
which

:::
can

:::
be

::::
then

::::::::::
aggregated

::
to

:::::::
perform

:
a
::::::
nested

:::::::::::::
reconstruction,

::::
with

:::::::::
associated

:
scores.

2.3 Mathematical formalism of empirical data
To facilitate

:::::::
simplify the mathematical notation, we make the assumption that the proxy record selec-

tion and truncation
::
to

:::
the

::::
their

::::::::
common

::::
time

:::::::
window

::::
with

:::
the

:::::::
climate

::::
index

:
have already been made (see
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section 2.2, steps 4 and 5). It is important that all proxy records are truncated on the same time window to
make them mergeable in the same matrix. Each record has to cover at least the chosen reconstruction time
window T (section 2.2, step 2). Following these steps, the proxy record matrix does not contain missing
values.

Fig. 2 illustrates how the proxy data are organised in the input matrix X. We denote X1 = (X1
t )t∈T , . . . , Xp =

(Xp
t )t∈T , where t stands for the time (with N annual time steps), and p is the number of proxy records on the

same period T . X is thus a N× p matrix where all these vectors are merged
:::::::
grouping

:::
the

:::::::::
individual

:::::::
records:

X = [X1, . . . , Xp]. Y = (Yt)t∈T is the target mode of variability
::::::
climate

:::::
index, de�ned on the historical time

window T , containing
:::::
called

:::
the

:::::::
learning

::::::
period,

::::
that

:::::::
contains

:
n annual time steps. The period where Y is

not known is denoted τ, containing m annual time steps (Fig. 2). Thus T = T ∪ τ is the entire reconstruc-
tion period, which contains N

:::::::::
N = n + m annual time steps. With these notations, the dimensions of the

di�erent matrices and vectors are: X ∈ RN×p ; X(T ) ∈ R
n×p ; X(τ) ∈ R

m×p ; Y ∈ Rn. The period T , on which
all the predictors and the predictand are known and the training/testing splits are performed, is called the
learning period. The period T = T ∪ τ, covered by the predictors, is called the reconstruction period. The
learning set is then

:::::::
learning

:::
set

::
is

:::::::
denoted {X(T ),Y}, and the reconstruction set is

:::::::
denoted {X(T )}.

2.4 Termsand ,
:
notations of learning theory

::::
and

::::::::::::
validation

::::::::
metrics

To build and validate the reconstruction of Y , the dataset of predictors X is split in two independent
subsets as shown in section 2.2, one for the training (usually called training set), and another on which the
model is tested (called testing dataset or �rst seen data).

Building a model consists in estimating all the parameters needed to reconstruct Y given the predictors
X1, . . . , Xp. As an example, building a PCR model consists in determining the Principal Component of the
predictor matrix X and �nding the best linear combination of them to reconstruct Y over the training
period. Then, the reconstruction consists in projecting the �rst seen data on the orthogonal basis built, and
applying the estimated regression coe�cients to reconstruct Y over the whole time window T .

We denote the chosen reconstruction method byM. Each method is de�ned by a speci�c number of
parameters q, contained in the vector

:::::::
denoted θ. As an example, the Principal Component Regression has

a single parameter that is the number of Principal Component used as regressor [Cook et al., 2002 ; Gray
et al., 2004 ; Ortega et al., 2015 ; Wang et al., 2017]. We can denote the functionM as a function of: (i) a set
on which the model is built ({X,Y}), (ii) observations of the predictors on the reconstruction period (X(rec)),
and (iii) a parameter vector (θ):

M : ({X,Y} , X(rec), θ)→ Ŷθ (1)
(
{
Rn×p,Rn} ,Rm×p,Rqs)→ Rm n, p,m, qs ∈ N (not �xed) (2)

Hence, theM function gives an entire reconstruction of size m ∈ N, depending on θ for given training/-
testing periods.

We introduce S as the score function, or validation metric. This function is an indicator that estimates
the quality of a prediction

::::::::::::
reconstruction Ŷ in comparison

::::
with

::::::
respect

:
to the observed values Y(obs):

S : (Y(obs), Ŷ)→ s (3)
(Rm,Rm)→ R (4)
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In this paper, three kind of validation metrics will be considered. The �rst is a correlation function, the se-
cond is a root mean squared error (RMSE) function and the third is a Nash-Sutcli�e coe�cient of e�ciency
: [

:::::::::::::::::::
Nash and Sutcli�e, 1970]:

:

S cor(Y(obs), Ŷ) = Cor(Y(obs), Ŷ) (5)

S RMS E(Y(obs), Ŷ) = ‖Y(obs) − Ŷ‖ =

√√ m∑
i=1

(Yi (obs) − Ŷi)2 (6)

S NS CE(Y(obs),
::::::::::

Ŷ) = 1 −
∑m

i=1(Yi (obs) − Ŷi)2∑m
i=1(Yi (obs) − Ȳ(obs))2

, with
::::::::::::::::::::::::::::

Ȳ (obs) =
1
m

m∑
i=1

Yi(obs)

:::::::::::::::

(7)

The �rst
:::::
S NS CE:

will be used to validate the reconstruction methods over the testing period, and the
second

::::::
S RMS E will allow to determine the optimal parameters (θ̂

:
θ) for the reconstruction over the training

period.
:::
We

:::
use

::::
S cor :::::::

because
:
it
::
is

::::
used

::
in

:::
the

::::
last

::::
NAO

:::::::::::::
reconstruction

::
of

::::::
Ortega

::
et

::
al

:::::
(2015),

:::::
with

:::::
which

:::
we

:::
will

::::::::
compare

:::
our

::::::
results.

::::::
S NS CE :

is
::
a

:::::
metric

:::::::
de�ned

:::::::
between

:::
−∞

::::
and

::
1,

:::::
values

:::::
lower

::::
than

::
0

::::
mean

::::
that

:::::
using

:::
the

:::::
mean

::::
over

:::
the

:::::::
training

::::::
period

::
is

:::::
better

::::
than

:::
the

::::::::
proposed

:::::::::
statistical

:::::
model

:
[
::::::::::::::::::::
Nash and Sutcli�e, 1970].

::::
Here,

::::
we

:::
will

::::::::
consider

::::
that

::
a
::::
�nal

:::::::::::::
reconstruction

::
is
::::::

robust
::::

and
:::::::

reliable
:::::
when

:::
its

::
R
::::::

NSCE
::::::
scores

:::
are

::::::::::
signi�cantly

:::::::
positive

::
at

:::
the

::::
99%

:::::::::
con�dence

:::::
level

:::::
using

:
a
:::::::
Student

::::
test.

::
As

::::
the

:::::::
possible

:::::
values

:::
of

:::
the

:::::
NSCE

::::
score

::
is

:::
not

:::::::::
symmetric

::::::
around

::
0,
:::
the

::::
best

::::::::::::
reconstruction

::
is
::::::::
identi�ed

::
as

:::
the

::::
one

::::
that

:::
has

:::
the

::::::
higher

::::::
median

::
of

:::::
NSCE

::::::
scores.

2.5 Parameter tuning
:::::
Final

:::::::::::::::::
reconstruction

:
and model comparison

:::::::::::
parameter

:::::::
tuning

2.5.1 Parameter tuning by leave-one-out cross validation

:::
We

::::
split

:::
the

::::::
initial

:::::::
learning

::::::
period

::
T

::
in

::
R
:::::::::
partitions

::
of

::::
two

:::::::
subsets:

:::::::::::::::::::::::

{
T (r)

(train),T
(r)
(test)

}
,∀1 ≤ r ≤ R.

:::
For

:
a
:::::
given

:::::::
method

:::
M,

::
R
::::::::::::::

reconstructions
:::
are

:::::
build

:::
on

:::
the

::
R

:::::::
training

::::::::
samples.

::
R

::
is

:::::::::
arbitrarily

:::::::
chosen,

:::
but

:::::
larger

::
R

::::
tends

:::
to

:::::::
produce

::::::
reliable

::::::::
ensemble

:::::::::::::
reconstruction

::
by

::::::::::
decreasing

:::
the

:::::::
variance

::
of

::::
the

:
R
:::::::::
individual

:::::::::::::
reconstructions

:::::
made

::
on

:::
the

:::::::
training

::::::::
samples.

::::::::::
∀1 ≤ r ≤ R,

::
we

::::::
denote

:::::::::::::

{
X(r)

(train),Y
(r)
(train)

}
:::
the

:::::::
training

::::
set,

:::
and

:::::::::::

{
X(r)

(test),Y
(r)
(test)

}
:::
the

:::
test

::::
set.

::
At

::::
each

:::::
step,

:::
the

:::::::
columns

::
of

:::
X,

:::::
X(train)::::

and
::::
Xtest :::

are
:::::::::
normalized

::
to

::::
the

::::
mean

::::
and

:::
the

:::::::
standard

::::::::
deviation

::
of

::::
the

::::::::
respective

::::::::
columns

::
of

::::::
X(train).

To estimate the optimal set of parameters θopt on a given training set {Xtrain,Ytrain}, we use the K-
fold cross validation

::::::::
approach (KFCV; section 2.2, step 7 and 8

:::
and

::
9) [Stone, 1974 ; Geisser, 1975]. Cross

Validation (CV) methods, are in general, widely used as parametrization and model validation techniques
[Kohavi, 1995 ; Browne, 2000 ; Homrighausen and McDonald, 2014 ; Zhang and Yang, 2015]. As presented
in Fig. 3, the particularity of the LOOCV is that it uses a single observation for veri�cation and the n − 1
other observations as calibration set Stone. Here it is used to determine an empirically

:::::
Here,

::
it

::
is

::::
used

::
as

::
an

:::::::::::
optimization

:::::::
method

:::
to

::::::::::
empirically

:::::::::
determine

::
an

:
optimal set of parameters for θ. ∀1 ≤ i ≤ n, we

denote {X(i); Y(i)} ::
As

:::::::::
presented

::
in

:::::
Fig.3,

:::
the

::::::
KFCV

:::::
splits

:::
the

:::::::::::
observations

::::
into

::
a

:::::::
partition

:::
of

:
n
:::::::

groups
::
of

::::
same

:::::
sizes

::
(or

:::::::::::::
approximately

::::
same

:::::
sizes

:
if
:::
the

::::::
length

::
of

:::
the

:::::::
training

:::
set

::
is

:::
not

:::::::
divisible

:::
by

:::
K).

::::::::::
∀1 ≤ k ≤ K,

::
we

::::::
denote

:::::::::

{
X(k),Y(k)

},
:
containing only information for the ith time step

::
kth

::::::
drawn

::::::
sample. Then, {X(−i); Y(−i)}

::::::::::

{
X(−k),Y(−k)

} is the set containing all the initial observations, except the ith
:::
K-1

:::::
other

::::
sets. For all possible

values of θ contained in Θ, we scan the n
:
K
:
models based on the sets {X(−i); Y(−i)}1≤i≤n :

s
::::::::::::::

{
X(−k),Y(−k

}
1≤k≤K .
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The empirical optimal set of parameters is obtained by minimizing the averaged S RMS E functions on the
n splits regarding

:
K

:::::
splits

::
by

::::::::::
considering

:
all possible combinations of θ [Stone, 1974]. Mathematically, the

optimal LOOCV
:::::
KFCV set of parameters θLOO :::

θKF is determined by:

θLOOKF
::

= arg min
θ∈Θ

1
n

1
K
:

∑
i=1k=1

::

KS RMS E(Y (i)(k)
:
,M(

{
X(−i)(−k)

::
,Y (−i)(−k)

::

}
, X(i)(k)

:
, θ)) (8)

Using this approach, we retain the empirical estimation of the optimal set of parameters θ̂opt = θLOO:::::::::
θ̂opt = θKF

for the given methodM and a given learning set {X,Y}.

2.5.1 Final reconstructions and validation correlations

In order to �nd the most performant method for a given dataset, we split the initial learning period
T in R partitions of two subsets: {T (r)

(train),T
(r)
(test)}, ∀1 ≤ r ≤ R. For all the methods, R reconstructions are

build on the R training periods. R is arbitrarily chosen, but larger R tends to produce reliable ensemble
reconstruction by decreasing the variance of the R individual reconstructions made on the training samples
Browne, 2000. ∀1 ≤ r ≤ R}, we denote {X(r)

(train),Y
(r)
(train)} the training set, and {X(r)

(test),Y
(r)
(test)} the test set.

::
In

:::
this

:::::
study,

:::::
KFCV

:::::::
method

:::
will

::
be

:::::
used

::
on

:::::
every

:::::::
training

:::
sets

::
in

:::::
order

::
to

:::::::
perform

::::
each

:::::::::
individual

:::::::::::::
reconstructions

::::::::
according

::
to

:::
the

::::::::
di�erent

:::::::::::::
training/testing

:::::
splits.

:

LOOCV
:::::
KFCV

:
is applied to build a unique optimized reconstruction for every training sets and any

given method. Then, for all the corresponding and independent testing periods, the associated testing
series Y (r)

(test) ::::
Y (r)

(test) are compared to the individual reconstructions using the S cor :::::
S NS CE function. This way,

R validation correlations
::::
NSCE

::::::
scores are obtained for the four methods

::
M. In section 4, the distributions

of the validation correlations
:::::
NSCE

::::::
scores will be used as a metric to compare di�erent reconstructions.

Fig.4 shows the whole procedure
:
4
:::::
shows

:::
the

:::
the

::::::::::
calculation to get the validation correlation vectors

:::::
NSCE

:::::
scores

:
for a given method M

:::
M.

3 Statistical regression
::::::::::::::
Regression

:
methods

We present each method in two steps: model �tting (
:::
for training) and reconstruction (

:::
for testing).

We also identify the number of parameters and their mathematical meaning. For each method the proxy
predictor set

:::::
matrix

:
is denoted as X ∈ Rn×p the proxy predictor set and the target

::::::
climate

:
index as Y ∈ Rn.

In this section, X(rec) ∈ R
m×p is the testing dataset on

::::
from which a Rm reconstruction vector is evaluated

on the testing period. Y and each column of X are here normalized on their own time period.
::
is

::::
build

:::::
using

:::
the

:::::::::
regression

::::::
method

:

3.1 Principal Component Regression (PCR)

3.1.1 Modeling

The Principal Component Regression [Hotelling, 1957] method consists in �nding the best linear com-
bination between Y and the Principal Component of X. The Principal Component Analysis (PCA) consists
in applying an orthogonal transformation of an initial set of variables, potentially correlated between them,
into another set of linearly uncorrelated variables: the Principal Component [Pearson, 1901 ; Hotelling,
1933].
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The �rst step consists in building an orthogonal basis where X will be projected. We de�ne S ∈ Rp×p,
as the empirical estimator of the covariance matrix of X:

S =
1
n

XT X ∈ Rp×p (9)

The idea is to
:::
We

:
calculate the orthogonal basis formed by the vectors v1, . . . , vp by diagonalizing S :

v1 = arg max
v∈Rp

‖v‖=1

vT S v (10)

v2 = arg max
v∈Rp

‖v‖=1
〈vT v1〉=0

vT S v (11)

... (12)
vp = arg max

v∈Rp

‖v‖=1
〈vT v1〉=0

...
〈vT vp−1〉=0

vT S v (13)

(14)

where ‖v‖ =
√∑p

j=1(v j)2,∀v ∈ Rp. This procedure
:
It
:
is equivalent to maximizing step by step the empirical

variance of the projection of X on each orthogonal axis. Indeed, ∀v ∈ Rp :

vT S v =
1

n − 1
vT XT Xv =

1
n − 1

(Xv)T (Xv) = Varemp(Xv) (15)

The vectors (vk)1≤k≤p are called the Empirical Orthogonal Functions (EOFs). Since the columns of X
represent the proxy records, it means that each EOF, which

:
It corresponds to the eigenvectors of the co-

variance matrix , contains a certain
:::
and

::::
each

::::::::
contains

:
a
:::::
given

:
part of the spatial variability of the dataset.

Hence, we attribute them
:::::
proxy

:::::::
dataset.

:::
We

::::::::
attribute

::::
them

::::
the eigenvalues (λk)1≤k≤p, which corresponds

to the initial variance of X translated by each orthogonal projection in the new basis:

λk = Var(Xvk) = vT
k S vk ∀1 ≤ k ≤ p (16)

The Principal Component
::::::::::
Components

:
(u1, . . . , up) are then the projections of X on the EOFs. We denote

V = (v1, . . . , vp). We then calculate the Principal Component matrix U = (u1, . . . , up), de�ned as:

U = XV ∈ Rn×p (17)

Now, we regress Y on the q ≤ p (see subsection 3.1.3) �rst Principal Component. These q Principal Com-
ponent are merged in a submatrix of U:U = (uk)1≤k≤q. The model is given by:

Y = Uβ + ε (18)

Where ε is a white noise vector of size n.

The best estimator for β = (β1, . . . , βq), is given by the Ordinary Least Squares (OLS) estimator which
minimizes ‖ε̂‖ = ‖Y − Ŷ‖:

β̂OLS = (UTU)−1UT Y (19)
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3.1.2 Reconstruction

Using the testing data
::
We

:::::::
project

:::
the

::::::
testing

:
matrix X(rec) (see section 2.4), we project the former on

the pre-calculated orthogonal basis V :

U(rec) = X(rec)V ∈ Rm×p (20)

We then obtain the prediction
::::::::::::
reconstruction by applying the estimated coe�cient vector on the sub-matrix

U(rec) = (U1
(rec), . . . ,U

q
(rec)) ∈ R

m×q:

Ŷq = U(rec)β̂OLS ∈ R
m (21)

3.1.3 Parameters

Here, q is the unique tuning parameter. The choice of that parameter clearly a�ects the reconstruction
and then the validation NSCE

:::::
NSCE

::::::
scores. Here the parameter vector θ is unidimensional and takes its

values in the discrete set {i}1≤i≤p.

To our knowledge, this is the �rst time that a PCR uses the KFCV method to tune the number of Principal
Component used at each split in paleoclimatological reconstruction. Previous studies used di�erent criteria
to de�ne the number q of Principal Component U1, . . . ,Uq to be kept. For example, Gray et al. (2004)
retained all Principal Component for which the cumulated eigenvalues weights just exceeds 66% of the
initial variance. Wang et al. (2017), selected the q Principal Component for which λk > 1,∀k ∈ {1, . . . , p}.
Also, Ortega et al. (2015) used the Preisendorfer’s rule N Preisendorfer, 1988. In our case, the use of KFCV
as our parameter selection method is preferred, as it is also valid for the other reconstruction techniques.

3.2 The Partial Least Squares Regression
The Principal Component Analysis

::::
PCA keeps most of the initial variance in X in a lower number

of vectors. The major problem of the PCR in a predictive or reconstructive purpose, is that the
:::
But

:
EOFs

v1, . . . , vp are constructed without taking into account any information about the predictand Y . Another
possible approach is thus to determine the orthogonal basis in which the empirical covariance between
Y and the projection of X on that former is maximized. This is the Partial Lest

::::
Least

:
Squares regression

(PLSr) method [Zou and Hastie, 2005
:::::::::::::
Wold et al., 1984].

The �rst latent variable (LV), denoted ξ1 =
∑p

j=1 v1, jX j = Xv1, where X ∈ Rn×p and v1 ∈ R
p is the linear

combination of the initial variables X1, . . . , Xp such as:

v1 = arg max
u∈Rp

‖v‖=1

Cov(Y, Xv), (22)

In a similar approach to the PCR, the second LV is ξ2 =
∑p

j=1 v2, jX j = Xv2, orthogonal to ξ1, such as:

v2 = arg max
v∈Rp

‖v‖=1
〈ξ1,Xv〉=0

Cov(Y, Xv) (23)

And so on, until we have r ≤ p LVs. The LV matrix is denoted Ξ = [ξ1, . . . , ξp]. Here, v1, . . . , vp ∈ R
p,

are analogous to the EOFs in PCA, and are
:::
here

:
called loadings. The latent variables ξ1, . . . , ξr respectively

correspond to the projection of X on the r loadings.
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Finding the loadings is not as trivial as for PCR. This is due to the fact that the
::::::
Indeed

:::
the empirical

covariance matrix is not necessary de�nite positive and thus cannot be inversed
::::::::::
diagonalized. We solve

this problem by using the algorithm 1 named PLS1. Analogously to the PCR, the method provides various
alternative reconstructions depending on the value

::
of r, which corresponds to the number of LVs kept as

regressors.

Algorithm 1

1: procedure PLS1
2: X0 ← X
3: for h = 1, . . . , r
4: vh ←

XT
h−1Y

‖XT
h−1Y‖2

5: ξh ← Xh−1vh

6: Xh = Xh−1 −
ξhξ

T
h

‖ξh‖
2 Xh−1 (de�ation phase)

7: end procedure

Now we regress Y on the r ≤ p �rst LVs. These r LVs are merged in a submatrix of Ξ: Ψ = (ξk)1≤k≤r .
The model is given by:

Y = Ψβ + ε (24)

Where ε is a white noise vector of size n.

The best estimator for β = (β1, . . . , βq), is given by the Ordinary Least Squares (OLS) estimator which
minimizes ‖ε̂‖ = ‖Y − ŶqLOO‖:::::::::::::

‖ε̂‖ = ‖Y − ŶqKF ‖:

β̂OLS = (ΨT Ψ)−1ΨT Y (25)

3.2.1 Reconstruction

The prediction
::::::::::::
reconstruction

:
is done in the same way as for PCR. Using the �rst seen data matrix X(rec)

(section 2.4), we project the latter on the pre-calculated orthogonal basis V :

Ξ(val)(rec)
::

= X(val)(rec)
::

V ∈ Rm×p (26)

We then obtain the prediction
:::
The

::::::::::::
reconstruction

::
is
::::::::
obtained by applying the estimated coe�cient vector

on the sub-matrix Ψ(rec) = (ξ1
(rec), . . . , ξ

r
(rec)) ∈ R

m×r:

Ŷr = Ψ(rec)β̂OLS ∈ R
m (27)

3.2.2 Parameters

For the PLSr method, r is the unique tuning parameter. Analogously to the Principal Component Ana-
lysis, the tuning of that latter is obtained by KFCV.
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3.3 The Elastic Net regression

3.3.1 Modeling

Without using orthogonal transformation of the initial variables as in PCR and PLSr, the most simple
predictive model is the multiple linear regression model:

Y = X1β1 + · · · + Xpβp + ε (28)

Where ε ∼ N(0, σ2) and Cov(εi, ε j) = 0 if i , j.

The prediction
:::::::::::
reconstruction

:
of Y , given p proxy records X1, . . . , Xp is obtained by the equation:

Ŷ = X1β̂1 + · · · + Xpβ̂p (29)

β̂ = (β̂1, . . . , β̂p) are the regression coe�cients, which are obtained by the OLS predictor. However, this
usual regression model is known to present frequently a poor prediction

::::
often

:::::
result

::
in

:
a
::::
poor

:::::::::::::
reconstruction

accuracy due to the several assumptions made on the original data [Poole and O’Farrell, 1971], which are
often not veri�ed:

:
, such as homoscedasticity and errors normality. Several studies developed regularized

(or penalized) regression methods to overcome the OLS defaults. Here we focus on the Elastic Net regres-
sion [Zou and Hastie, 2005], which is a combination of the Ridge regression [Hoerl and Kennard, 1970] and
the Lasso regression [Tibshirani, 1996]. All these methods have been developed to avoid the high variabi-
lity of the OLS predictor when the number of predictors is relatively high. The Ridge regression shrinks
towards zero the estimated coe�cients associated to predictors unlinked to the predictand. No predictor
selection is made by this method, but the shrunken estimated coe�cients modulate the importance of these
in the model. By contrast, the lasso

:::::
Lasso also reduces the variability of the estimates, but in this case by

shrinking to zero the estimated coe�cients associated to unreliable variables. Hence, a selection is made
by rejecting variables associated to coe�cients shrunk to zero.

The idea of a regularized (or penalized) regression is to add a threshold constraint using the lk norm
of β: ‖β‖kk =

∑k
j=1

∣∣∣β j

∣∣∣k. With k = 1 in Lasso regression, and k = 2 in Ridge regression. The penalized loss
functions are given by:

Lridge(β) = ‖Y −
p∑

j=1

β jX j‖2 + λ2

p∑
j=1

β2
j (30)

Llasso(β) = ‖Y −
p∑

j=1

β jX j‖2 + λ1

p∑
j=1

∣∣∣β j

∣∣∣ (31)

Lenet(β) = ‖Y −
p∑

j=1

β jX j‖2 + λ1

p∑
j=1

∣∣∣β j

∣∣∣ + λ2

p∑
j=1

β2
j (32)

λ1 penalizes the sum of the absolute values of the regression coe�cients while λ2 penalizes their summed
squares. Here, λ1, λ2 > 0.

Let w = (w j)1≤ j≤p = (sgn(β j))1≤ j≤p, where sgn is the sign function. The loss functions can then be
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denoted as:

Lridge = ‖Y − Xβ‖2 + λ2β
Tβ (33)

Llasso = ‖Y − Xβ‖2 + λ1wTβ (34)
Lenet = ‖Y − Xβ‖2 + λ1wTβ + λ2β

Tβ (35)

The estimated regression coe�cients obtained by minimizing the Lasso and the Ridge loss functions
are:

β̂lasso = (XT X)−1(XT Y −
λ1

2
w) (36)

β̂ridge = (XT X + λ2I)−1XT Y (37)

The Elastic Net regression coe�cients are then estimated by minimizing Lenet:

β̂enet = (XT X + λ2I)−1(XT Y −
λ1

2
w) (38)

An alternative way to write this equation as a linear combination of β̂lasso and β̂ridge is:

β̂enet = (XT X + (1 − α)λI)−1(XT Y −
αλ

2
w) (39)

where α ∈ [0, 1]. If α = 1, a Rigde regression is applied, and if α = 0, we apply a Lasso regression.

3.3.2 Reconstruction

The prediction
::::::::::::
reconstruction

:
is obtained by applying the estimated regression coe�cients β̂enet on the

validation variables X1
val, . . . , X

p
val:

Ŷλ,α =

p∑
j=1

X j
(val)β̂

enet
j (40)

3.3.3 Parameters

For Enet method, the tuning parameters are λ and α. The latter controls the relative balance between
the lasso and ridge

:::::
Lasso

:::
and

::::::
Ridge regularization, while the former controls the overall intensity of re-

gularization as λ1 (resp. λ2) in lasso
:::::
Lasso

:
(resp. ridge

::::
Ridge

:
regularization). A high α suggests a dense

model with many but small non-zero coe�cients. A low α suggests a sparse model with many zero coe�-
cients. In our case, since we want a general methodology performant for each random split, we apply two
simultaneous KFCV to �nd the best estimated pair (λ̂, α̂).

Since λ and α take respectively their values in the continuous sets Rp and [0, 1], we have to discre-
tize their respective intervals for the parameter estimation. The �ner these discretizations are, the more
reliable the parameters will be, but the longer the required computational timewill be

::
at

:::
the

:::::::
expanse

::
of

:::
the

::::::::::::
computational

::::
time.
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3.4 Random Forest regression
The random forest has been introduced by Breiman (2001) as a learning method for regression. The

method relies on using randomization to minimize the prediction
::::::::::::
reconstruction

:
uncertainty given by

regression trees. Random forests encompass a large variety of regression methods [Breiman, 2001]. Here,
we present the most classical kind of random forests known as random-input random forests [Breiman,
2001].

3.4.1 Modeling

First we have to de�ne regression trees. We denote each set of predictand/predictors by {Yi, Xi)1≤i≤n}

where Xi = (X1
i , . . . , X

p
i ), is the ensemble of proxy records for the ith time step, and Yi the corresponding

values of the climate index at the same time step, ∀1 ≤ i ≤ p. All the observations, {Yi, Xi)1≤i≤n}, ∀1 ≤ i ≤ p,
are put on the root of the tree. The �rst step consists in cutting that root in two child nodes. A cut is de�ned
as: {

X j ≤ d
}
∪

{
X j ≥ d

}
(41)

where j = {1, . . . , p} and d ∈ R. Cutting a node with
{
X j ≤ d

}
∪

{
X j ≥ d

}
means that all observations with

a jth variable lower than d are placed in the left child node. Hence, all observations with a jth variable
greater than d are placed in the right child node. The method selects the best pair ( j, d) which minimize a
loss function. Here, we aim at minimizing the variance of the child nodes. The variance of a given node t
is de�ned as: ∑

i:Xi∈t

(Yi − Ȳt)2 (42)

where Ȳt is the averaged Yi in the node t.

The same procedure is then applied recursively to the
:::
next

:
child nodes using the same variables until

a certain stop criterion is reached. The procedure automatically stops if each node contains a unique ob-
servation. Hence, the maximal depth of a regression tree is n − 1. An illustration of such tree is presented
in Fig. 5.

A random-input regression tree is used here. This is a particular case of regression trees, in which a
set of m < p variables is randomly preselected before applying the regression tree. A large number K of
random-input trees is computed. For each tree, we randomly select m < p variables with probability 1

p and
we apply the method until it reaches its maximal depth.

3.4.2 Reconstruction

The prediction
::::::::::::
reconstruction

:
is obtained by splitting each testing series in the di�erent treespreviously

constructed. In each tree, the estimation attributed to an observation is the empirical average of Y inside the
node where the corresponding observation ends up, given the cut made on the corresponding predictors.
For each testing series, the K reconstructions are averaged to give the �nal prediction.

::::::::::::
reconstruction.

:
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3.4.3 Parameters

A priori, this method requires the optimization of two parameters: the number of trees K and the
number of variables selected for each tree m. In practice K does not require to be tuned

:::::
tuning, as long as

the number of trees is su�ciently high given p, which guarantees convergent results for any value of m
[Breiman, 2001]. m is then the only parameter to optimize. The KFCV is then applied on m with a high K
(here set to 1000), to select empirically the most e�cient model.

4 Results

4.1 Methodological sources of uncertainty in the reconstruction
We apply the former methods

::::::::
CliMoRec

::::
with

:::
the

::::
four

:::::::
methods

:::::::::
presented

:::::
above to the reconstruction of

the NAO. In the following, each reconstruction is obtained by averaging R = 50 individual reconstructions
performed for R training/testing random draws. Validation scores (based on correlations over the testing
periods)

:::::
NSCE

:::::
scores

:
are also produced, and stored in a vector of R elements. This vector will thus be used

as a quality metric to characterize the methodological uncertainty in the reconstruction. The following
actions were undertaken to minimize the reconstruction uncertainty, and estimate its sensitivity:

1. Pre-selecting the most relevant proxy records
2. Choosing the most appropriate training/testing window length
3. Selecting the best learning period

:::::
These

:::::
three

::::
steps

:::
are

::::::::
described

::::::
below,

::::::
before

::::::::
assessing

:::
the

::::::::::::
reconstruction

:::::
itself.

:

4.1.1 Proxy pre-selection

In order to investigate the sensitivity related to the selection of the initial set of predictors, we set the
reconstruction period to T = J1000, 1970K, and the learning period to T = J1823, 1970K, with n = 148. In
addition, the training window length is set at ntrain = 111, which gives ntest = 37. Only 122 of the 540 proxy
recors of the initial dataset are covering this reconstruction period. We

4.1.1
:::::
Proxy

:::::::::::::
pre-selection

::::
over

::::
the

::::::::
training

:::::::
periods

::::::
Among

:::
the

:::::::
previous

:::::::
climate

::::::::::::
reconstruction

::::::
studies,

::::::
Ortega

::
et

::
al.

::::::
(2015)

::::
have

:::::::::
performed

:
a
:::::
proxy

::::::::
selection

::::
over

:::
the

:::::::
training

:::::::
periods

:::
at

:::
the

::::
90%

:::::::::
con�dence

:::::
level

:::::
using

::::
the

::::::::::
correlation

:::
test

:::::
from

:::::::::
McCarthy

::
et

:::
al.

:::::
(2015)

:::::
while

:::::
Cook

:::
et

::
al.

::::::
(2002)

::::
and

:::::
Wang

:::
et

::
al.

::::::
(2017)

:::::
have

:::::::
selected

:::::
their

::::::
proxies

:::
by

::::::::
focusing

:::
on

:::
the

::::::
regions

:::::::
a�ected

:::
by

:::
the

::::::
modes

::::
they

:::::::::::
respectively

::::::::::::
reconstructed.

:::::
Here

:::
we

:
run 4 di�erent reconstructions

,
:::::::::::::
reconstructions

::
of

::::::
R = 50

:::::::::
individual

::::::::
members

:
for each method, each based on a di�erent proxy group

chosen according to a correlation signi�cance test with the original NAO index on the period T . The �rst
group contains all the available proxy records on the

:
.
:::::
These

:::::::::::::
reconstructions

:::
are

:::::::::::
respectively

:::::::::
performed

::::
with

:::::::
di�erent

:::::::::::
signi�cance

:::::
levels

:::
for

:::
the

::::::
proxy

:::::::
selection

:::
by

::::::::::
correlation

::::
over

:::
the

:::::::
training

::::::::
periods.

:::::
These

:::::
levels

:::
are

:::
0%

::::::
(which

::::::
means

::::
that

:::
all

::::
the

::::::
records

::::
are

::::
used

:::
at

::::
each

::::::::::::::
training/testing

:::::
split),

::::
80%,

::::
90%

::::
and

::::
95%.

:::
The

::::::::::::::
reconstructions

:::
are

:::::::::
performed

:::
for

:::
the

:::::::::::::
reconstruction

:
period T (122 proxy records). The three

other groups respectively contain the proxy records signi�cantly correlated with the NAO index at the
con�dence levels 80% (61 proxy records ), 90% (35 proxy records) and 95% (18 proxy records). The proxy
records, and their respective correlation signi�cance level with the NAO index are presented in Fig. ??.
Fig. 6 gives the validation scores related to each reconstruction and each proxy selection. First, it appears
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that for each method, the validation scores are improved when we use the most signi�cantly correlated
::::::::::::::
T = J1000, 1970K

::::
and

::::
the

:::::::
learning

::::::
period

:::::::::::::::
T = J1856, 1970K

::::::::::::
encompassing

::::
110

::::::::
available

:
proxy records

with the NAO index over the historical period (Fig. 6). In addition, not all the methods have the same
sensitivity to the proxy pre-selection. Indeed, Enet, PCR and RF methods have better validation results
than PLS when all of the available proxy records are used as predictors.

:::::::
n = 115.

::
In

::::
this

::::::
section

:::
the

:::::::
training

::::::
periods

::::::
length

::
is

::
set

:::
to

::
92

:::
and

::::::
testing

:::::::
periods

::::::
length

::
to

:::
23.

Our results suggest that enhancing the spatial coverage of the proxy records is not a necessary condition
to improve the reconstruction. Indeed, we showed that using the densest proxy network (i.e., all of the
available proxy records on T ) does not lead to better validation scores, due to the noise introduced by
predictors that covary weakly with the target index (Fig. ?? and 6). Among the previous reconstruction
studies, this kind of investigation have often been overlooked at the expense of increasing the spatial
density of the proxy

:::
Fig.

:
6
::::::
shows

::::
that

::
RF

:::::::
method,

::::::::::
particularly

::::::
useful

::
for

:::::
large

:::::::
datasets,

::
is
:::::
more

:::::::
e�cient

:::::
using

:::
the

:::::
whole

:::
set

::
of

:::::
proxy records Cook et al., 2002 ; Gray et al., 2004 ; Wang et al., 2017. Ortega et al. (2015) already showed

the advantage of subsampling the proxy records more signi�cantly correlated (i. e. 90%) with
::::
with

::::::::::::::::
med(S NS CE) = 0.18

::::
(med

::
is the NAO. The validation NSCE obtained in their study are weaker than those we obtained here by

using PCR on the 35 proxy records signi�cantly correlated with the NAO index at the 90% con�dence
level , from which 19 are the same in both studies. Here, the best score (r̄ ' 0.46 on average) are obtained
for

::::::
median

:::::::::
function),

::::
even

::
if
:::::
using

::::::
proxy

::::::
records

:::::::::::
uncorrelated

:::::
with

:::
the

:::::
NAO

::
or

:::
not

:::::::
located

::
in

:::::::
regions

::::::
a�ected

:::
by

::::
NAO

:::::::::
variations.

:::
On

:::
the

:::::
other

:::::
hand,

:
the PLS method when only the proxy records signi�cantly

correlated with the NAO index at the 95% con�dence level are kept (16 proxy records) . These results are
better than those obtained by Ortega et al. (2015),

:
3
:::::
other

:::::::::
regression

:::::::
methods

:::
are

:::::
more

:::::::
adapted

:::::
when

:::
the

:::::
�nest

:::::
proxy

:::::::
selection

:::::
(95%)

::
is

:::::::
applied,

::
as

::::::::::
highlighted

::
by

::::::
Ortega

::
et

:::
al.

:::::
(2015) for the calibration constrained

reconstruction (rval ∈ [−0.14; 0.58]; r̄ ' 0.24) as well as for the model constrained reconstruction
::::
PCR.

:::
Fig.

:
6
::
is

::::
also

:::::::::
evidencing

::::
that

:::
the

:::::::
widely

::::
used

::::
PCR

::::::::
methods

:::
and

::::
PLS

:::::
have

::
to

::
be

:::::::::
employed

:::::::::
cautiously

::::
with

::
a

:::::::::::::::
statistically-based

:::::
proxy

::::::::
selection

::::
over

:::
the

:::::::
training

:::::::
periods

::
in

::::::
further

:::::::
studies.

::::::
Indeed

:::
the

:::::::::::::
reconstructions

:::::::::
performed

::::
with

:::::
these

:::::::
methods

::::
are

::::
only

:::::::::::
signi�cantly

:::::
robust

:::
at

:::
the

:::
99%

::::::::::
con�dence

::::
level

::::
(see

::::::
section

::::
2.4)

::
by

:::::
using

:::
the

:::::
most

::::::::::
constraining

:::::::::::
pre-selection

::
of

:::::::
proxies.

::
In

::::::::
addition,

::::
even

:::::
their

::::
best

:::::
NSCE

:::::
scores

::::
(for

::::
95%)

:::
are

::::::::
relatively

:::::
weak,

:::::
with

::::
their

::::
�rst

:::::::
quartile

:::::::
slightly

:::::
under

::
0.

:::
On

:::
the

::::::::
opposite,

:::
for

:::
RF

::::
and

::::
Enet

::::::::
methods,

:::
the

:::::
proxy

::::::::
selection

::
is

:::
not

::::::::
a�ecting

:::
the

::::::::
statistical

::::::::::
robustness

::
of

:::
the

:::::::::::::
reconstruction,

:::::
with

:::::::::::::
reconstructions

::::::::::
signi�cantly

::::::
robust

::
at

::
the

::::
99%

:::::::::
con�dence

::::
level

:
(r ∈ [0.14; 0.64]; r̄ = 0.42) (see Ortega et al., 2015)

::
see

::::::
section

:::
2.4)

:::
for

:::::
every

::::::
choice

::
of

:::::
proxy

::::::::
selection.

:

::::::
Overall,

:::
RF

:::::
gives

::
the

::::
best

:::::
NSCE

::::::
scores

:::
and

::::
also

:::::::
provides

:::
the

::::
best

::::::::::::
reconstruction. Nevertheless, it should

be noted
::::::
stressed

:
that these results have been obtained for a particular length in the training/testing win-

dows of (111
::
92/37

::
23). The sensitivity to this will be

::
is assessed in the next section.

4.1.2 Sensitivity to the length of training and testing periods

To estimate the sensitivity
:
of
::::

the
::::::::::::
reconstruction

:::::::::::
performance

:
to the length of the training and the

testing window
::::::
periods, we set again the reconstruction period to T = {1000, . . . , 1970}, and the learning

period to T = {1823, . . . , 1970}, with n = 148
:::::::::::::::::
T = {1856, . . . , 1970},

:::::
with

::::::
n = 115. Based on the �ndings of

the previous section
::::::::
subsection, we only keep the proxy records which are signi�cantly correlated with

the NAO index at the 95% con�dence level (18 proxy records, see section 4.1.1 and Fig. ??
::::
over

:::
the

:::::::
training

::::::
periods

:::
for

::::
PCR,

::::
PLS

:::
and

:::::
Enet

:::
and

:::
we

:::
use

:::
the

::::::
whole

::
set

::
of

::::::
proxy

::::::
records

::
at

::::
each

::::
split

:::
for

:::
RF

:::
(110

:::::::
records).

We run R
::::::
R = 50 reconstructions with di�erent window sampling for each method by gradually increasing
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the length of the training window: from 5% to 95%
:::::::
periods:

:::::
from

:::
30%

:::
to

::::
90% of the initial size of the

learning period, with a step of 5%. Fig. 7 shows the validation NSCE obtained for these simulations. Small
training window, this may related to an overlook of the general information in the data, which translates
into negative and non-signi�cant validation NSCE (Fig. 7). On the contrary, using a very long training
window gives very high validation NSCE close to 1, but it also give negative ones (Fig. 7), i.e. a very
wide range of validation scores , suggesting that the testing period is too short to robustly validate the
reconstruction.

:::
5%.

:::::::
Training

:::::::
periods

:::::::
lengths

:::
out

::
of

::::
this

:::::::
interval

:::::
gives

:::::::
extreme

:::::::
negative

::::::
scores

::::
and

::::
have

::::
thus

:::
not

::::
been

::::::::::
considered.

Between these two extremes
::::::::
According

:::
to

:::
the

:::::
NSCE

::::::
metric we �nd a large window where

::::
range

:::
of

:::::::
splitting

::::::
periods

:::
for

::::::
which va-

lidation scores are relatively similar
:::
and

:::::::::::
signi�cantly

:::::::
positive

:::
for

::
RF

::::
and

::::
Enet

:
(from around 30% to 70%)

. To assess the best reconstruction, we search the score vector which has the most signi�cant positive
validation NSCE and which is the highest on average. Following this rule, the optimal window split is
70%

:::
35%

:::
to

::::
85%)

::::
(Fig.

::
7).

::::
For

:::
PLS

:::
the

:::::
only

:::::::::
acceptable

:::::
setup

:
is
::::::::
obtained

:::
by

:::::
using

:::
the

::::
split

:::
80%

:
of the total

:::
size

::
of

::::
the

:::::::
learning

::::::
period for the training (ntrain = 104; ntest = 44)for PLS and PCR . For RF, the optimal

split is 45%
::::::::::::::::::
ntrain = 92; ntest = 23).

::::
The

::::
only

:::::::
optimal

:::::::
window

:::::
split

::
is

::::
70%

::
of

::::
the

::::
total

:::
for

::::
the

:::::::
training

::
for

:::::
PCR (ntrain = 67; ntest = 81), while for Enet, the optimal split is 65% (ntrain = 96; ntest = 52) . Overall

method which gives the highest validation NSCE on average is the PLS, closely followed by PCR and
Enet (

:::::::::::::::::
ntrain = 80; ntest = 35)

:
(Fig. 7). We now address the degree of uncertainty associated to the way the

training/testing windows are partitioned. Fig. ?? shows the correlation between the reconstructions in the
optimal window split (identi�ed above), and the other alternative partitions. All correlation values thus
obtained are particularly high, specially for training windows length representing at least a 45% of the
total period, for which correlations are greater than 0.96, regardless of the method , except RF, for a training
window length of correlations of 85% of the length of the initial periods . This suggests that the choice of
the training period is not an important methodological source of uncertainty for the reconstruction .

::::
Here,

::
we

:::::
have

::::::
shown

:::::
again

::::
that

:::::::
classical

:::::::::
regression

::::::::
methods

::::
such

::
as

::::
PLS

:::
and

:::::
PCR

:::
are

:::
not

:::::::::
producing

:::
the

::::
best

:::::::::::::
reconstructions

::
of

:::
the

:::::
NAO.

::::
For

::::
this

:::
set

::
of

::::::::::::::
reconstructions,

:::
the

:::::::
method

::::::
which

:::::
gives

:::
the

:::::::
highest

:::::
NSCE

:::::
scores

::::
and

::::::
provide

:::
the

::::
best

:::::::::::::
reconstruction

:
is
:::::
again

:::
RF

::::
(Fig.

:::
7).

4.1.3 Sensitivity to the reconstruction period

In this section, we focus on the most e�cient method (PLS) with
::::
keep

:::
for

::::
each

:::::::
method

:::
the

:::::::
optimal

:::::::
selection

:::
of

:::::
proxy

:::::::
records

::::
over

:::
the

::::::::
training

::::::
periods

::::
(see

:::::::
section

:::::
4.1.1)

:::
and

:
the optimal training/testing

windows length (ntrain = 104, ntest = 44, see section 4.1.2)and we .
::::
We explore the impact of the recons-

truction period, and hence, the learning period and the proxy set. Changing this period
:
.
::::
This

:
a�ects the

�nal reconstruction in two di�erent ways, both related to the �nal proxy selection. First, by modifying
:::::
Firstly

::
it

:::::::
modi�es

:
the initial set of proxy records considered (as they need to cover the whole reconstruc-

tion period). Secondly, by changing
::
it

:::::::
changes the period of overlap with the observations , which lead to

di�erent correlations between the proxy records and the NAO index, which would a�ect their signi�cances
and therefore the �nal proxy selection. Indeed, a proxy record signi�cantly correlated with the NAO index
at a given con�dence level on a given time window, can be non-signi�cantly correlated with the NAO
index with the same con�dence level, but on another time window. This may be induced by physical
processes that modi�es the stationarity of the NAO and its teleconnections.

:::
and

::::
then

:::
the

::::::::
randomly

::::::
drawn

:::::::::::::
training/testing

:::::
splits.

We run the reconstruction on 36
::
for

:::
31 periods T : from 1000-1965

::::::::
1000-1970

:
to 1000-2000, with an
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increment of one year. By doing so, the number of available proxy records is not the same for each of the
periods . Each reconstruction is performed by using only proxy records signi�cantly correlated at the 95%
con�dence level with the NAO on the corresponding learning period.

:::
(see

::::
Fig.

::
8). Fig. 8shows the evolution

of the proxy predictor set and the validation NSCE
::
.a)

:::::
shows

::::
the

:::::
NSCE

::::::
scores obtained for the di�erent

reconstructions and
::::::::::::
reconstruction/learning periods. Using the validation NSCE as a quality

:::::
NSCE metric,

we �nd that the best reconstruction time window is 1000-1967 (19 proxy records used ; Fig. 8). Indeed, the
associated validation NSCE (r̄ = 0.48; r ∈ [0.11, 0.68]) are on average signi�cantly greater than all of the
others at least at the 95% con�dence level. In addition, we observe two signi�cant drops in validation NSCE
at the 95% con�dence level, depending on the size of the reconstruction period: One from 1978 to 1979 and
one from 1994 to 1995 (Fig. 8). Both can be associated to important changes in the number and the nature
of proxy predictor sets (Fig. 8). For the other methods, we found that the optimal reconstruction period for
Enet and RF is 1000-1973 (not shown), while the optimal reconstruction period for PCR is 1000-1970 (not
shown).

::
for

:::
the

:::
RF

:::::::
method

:::
and

:::::::::
1000-1970

:::
for

:::
the

:
3
::::::
others.

:

::::::::
Following

:::
the

:::::::
optimal

:::::
setup

:::
for

:::::
each

:::::::
method

::::
from

:::::::
section

::::
4.1.1

::::
and

::::
4.1.2,

:::
RF

::::
uses

::::
110

:::::::
records,

::::
PCR

::::
uses

:
a
::::
total

:::
65

::::::
records

::::
with

:::::
16.28

:::::::
records

:::::::
selected

:::
per

:::::::::::::
training/testing

::::
split

:::
on

:::::::
average.

:::::
Enet

:::
and

::::
PLS

:::
use

:
a
::::
total

::
of
:::

60
:::::::
records

::::
with

:::::
17.26

::::::
records

:::::::
selected

::::
per

:::::::::::::
training/testing

::::
split

:::
on

:::::::
average.

:::::::
Among

:::::
these

::::
four

::::::::
optimized

:::::::::::::
reconstructions

::::::
which

:::
are

:::
the

::::
�nal

::::
ones

::
of

:::
this

::::::
study,

:::
the

::
RF

:::::
gives

:::
the

::::::
highest

:::::
NSCE

::::::
scores

::::
with

::::::::::::::::
med(S NS CE) ' 0.18

:::
and

:::::::::::::::::::
S NS CE ∈ [−0.33, 0.39]

::::
(Fig.

::
8).

:

In contrast with the length of the training periods, the
:::::::
previous

::::::
setups

:::::::::::
investigated

::
in

:::
this

::::::
study,

:::
the

:::
four

::::::::
methods

:::
are

:::::::
strongly

::::::
a�ected

:::
by

:::
the choice of the reconstruction periodappears as an important source

of reconstruction uncertainty. This parameter strongly a�ects the reconstruction by modifying directly or
indirectly the predictors. .

:
Thus, we recommend to determine this period carefully with numerous simu-

lations on di�erent time windows, following the approach we presented here.
:::::::
Overall,

:::
this

:::::
study

::::::
shows

:::
that

:::
for

::::
each

:::::::::::
optimisation,

::::
PCR

::::
and

:::
PLS

:::
are

::::
less

::::::
reliable

::
to

::::::::::
reconstruct

:::
the

:::::
NAO

::::
than

:::
RF

:::
and

::::
Enet

:::::::
(section

::::
4.1.1,

::::
4.1.2

::::
and

:::::
4.1.3).

4.2 Reconstructions assessment
We now compare

:::
and

::::::
assess the best reconstructions obtained for each of the methods. The four optimi-

zed reconstructions are obtained by maximizing the validation NSCE
:::::
NSCE

:::::
scores

:
on the training/testing

period (see section 4.1.2) and the total reconstruction period (PLS: see section 4.1.3 ; other methods: not
shown), using the proxy records

:::
full

:::
set

::
of

:::::
proxy

:::::::
records

:::
for

:::
RF

:::
and

:::::
only

:::::
using

:::
the

:::::
proxy

:::::::
records signi-

�cantly correlated at the 95%
:::
95%

:
con�dence level with the NAO on the corresponding learning period

(
::::
index

::::
over

::::
each

:::::::
training

:::::::
periods

:::
for

:::
the

:::::
other

:::::::
methods

::::
(see

:
section 4.1.1and 4.1.3).

4.2.1 Comparison with previous work

Fig. 9 shows the di�erent reconstructions of the NAO, including the Ortega et al. (2015) calibration
constrained reconstruction (only proxy-based), and Tab. 1 exhibits the paired correlations between the 5
reconstructions. All the reconstructions are signi�cantly correlated with each other at the 99% con�dence
level on their overlap periods even if they were performed with di�erent proxy groups and learning periods
(Tab. 1) . As they also have been optimised for multiple sources of sensitivity for the reconstruction, these
results strongly supplies that the reconstructions we propose are reliable to translate the variations of
the NAO index over the past millenium.According to the validation scores, the best reconstruction that
we found has been obtained using the PLS method on the reconstruction period 1000-1967, using the 19
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proxy records signi�cantly correlated with the NAO index on this period. The averaged validation scores
attributed to each of the best reconstruction for each method are: r̄PCR = 0.41, r̄RF = 0.41, r̄RF = 0.43, r̄PLS = 0.48.
The correlation coe�cient between the original NAO index and

:::
The

:::::::::
regression

:::::::::::
uncertainties

:::
(see

:::::::::::::
supplementary

:::::::::::
informations)

:::
are

::::
also

:::::
shown

:::
for the PLS reconstruction is about 0.63 (p<0.01)on the time window 1823-1967

while
::::
four

:::::::::::::
reconstructions

::
of

::::
this

:::::
study

:::
on

:::
Fig.

::
9.
::::

The
:::::::::
normality

::
of

:::
the

::::::::
residuals

:::
for

::::
the

::::
fours

::::::::
methods

:::
has

::::
been

:::::::
veri�ed

::
as

::::::::::::
demonstrated

::
in

::::
Fig.

:::
11.

::::
Tab.

:
1
::::
and

:::
Fig.

::
9
::::::
shows

:::
that

::::
the

::::
NAO

:::::::::::::
reconstruction

:::::
based

::
on

:::
RF

::
is

::::::::::::
distinguishable

:::::
from

:::
the

::::
four

:::::
others

:::::::::
including

::::::
Ortega

::
et

::
al.

::::::
(2015).

::::::
Indeed its correlation with the

Ortega et al. (2015) reconstruction is about 0.45 (p<0.01) on the time window 1823-1969. Furthermore, as the
PLS validation NSCE are strongly greater than those from Ortega et al. (2015). This is true in comparison
to the calibration constrained reconstruction (rval ∈ [−0.14; 0.58]; r̄ = 0.24) and the model constrained
reconstruction (r ∈ [0.14; 0.64]; r̄ = 0.42) (see Ortega et al., 2015). To understand this di�erence it is important
to note that the best performing reconstruction in Ortega et al. (2015) has a substantially weaker

::::
other

::::::
indices

::
is

:::::::
between

::::
0.69

::::
and

::::
0.79

::::
(Tab.

:::
1)

:::::
while

:::
the

::::::
paired

::::::::::
correlations

::::::::
obtained

::::::::
between

:::
the

::::::
others

:::
are

::::::
greater

::::
than

:::::
0.95.

:::::::::::
Additionally

:::
Fig.

:::
10

::::::
shows

::::
that

:::
the

:::
RF

:::::::::::::
reconstruction

:::
has

::
a
::::::
higher

:
correlation with

the observed NAO in their overlap period (
::::
Jones

:::
et

::
al.

::::::
(1997)

::::
NAO

:::::
index

:::::
than

:::
the

:::::
other

:::::::
indices: r=0.42,

:::
0.96

::
(p<0.01)that all the NAO reconstructions discussed here for the di�erent methods (r ∈ [0.56, 0.63],

p < 0.01) . The 5 reconstructions, including Ortega et al. (2015) do not show a predominant positive NAO
phase during the MCA, contrary to the hypothesis formulated by Trouet et al. (2009) . The di�erent optimizations
performed on the di�erent methods allowed us to �nd the optimal reconstruction contrary to other NAO
reconstructions. Hence, we ,

::::::
while

::::::
Ortega

::
et

:::
al.

:::::
(2015)

:::::::::::::
reconstruction

:::
has

::
a

:::::::::
correlation

::
of
::::

0.45
::::::::

(p<0.01).
:::
The

:::
RF

::::::::::::
reconstruction

::::
that

::::
uses

:::
108

::::::
proxy

::::::
records

:::
(22

::::::::
common

::::::
proxies

::::
with

::::::
Ortega

::
et
:::
al.

:::::
2015)

::::::::
presented

::
in

:::
Fig

::
12,

::::
has

:::
the

::::
best

:::::
NSCE

::::::
scores

::::::::::::::::::::::::::::::::::::
(med(S NS CE) = 0.18; S NS CE ∈ [−0.33, 0.39])

::::
and

::
its

:::::::::
correlation

::::::
scores

:::::::::::::::::::::::::::::::
(med(S cor) ' 0.47; S cor ∈ [0.09, 0.81])

:::
are

::::::::::
signi�cantly

::::::
higher

::
at

:::
the

:::
99%

:::::::::
con�dence

:::::
level

::::
than

::::::
Ortega

::
et

::
al.

::::
(2015

:
)
:::::::::
calibration

::::::::::
constrained

::::::::::::
reconstruction

:::::::::::::::::::::::::::::::::
(S cor ∈ [−0.14; 0.58]; med(S cor) ' 0.24)

:::
and

:::::
model

::::::::::
constrained

::::::::::::
reconstruction

::::::::::::::::::::::::::::::::
(S cor ∈ [0.14; 0.64]; med(S cor) ' 0.43).

:::
We

::::
thus

:
statistically veri�ed that the

:::
best

:
recons-

truction from this study is more robust and reliable than those in
::::
from Ortega et al. (2015). This improve-

ment in performance may arise from the inclusion of new relevant proxy records into the reconstruction,
but also the using

::::
from

::::
the

:::
use

:
of a new statistical regression methods . The PLS reconstructionuses 19

di�erent proxy records, 12 of them have been used in the last NAO reconstruction study
:::
for

::::::
climate

:::::
index

::::::::::::
reconstruction:

:::
the

:::
RF.

:::::::
Finally,

:
it
::::
has

::
to

::
be

:::::::
stressed

::::
that

:::
the

:
5
:::::::::::::
reconstructions

:::::::::
presented

::
in

:::
Fig.

::
9,

::::::::
including

Ortega et al. (2015)(see Fig. ??). Among the 7 proxy records we added, there is an Asian proxy recorded
on tree rings, with a medium negative weight in the reconstruction. This proxy record belongs from ,

:::
do

:::
not

:::::
show

:
a
:::::::::::
predominant

:::::::
positive

:::::
NAO

:::::
phase

::::::
during

:::
the

::::::
MCA,

:::::::
contrary

::
to

:::
the

::::::::::
hypothesis

:::::::::
formulated

:::
by

::::::::::::::::
Trouet et al. (2009).

4.2.2
:::::::::
Response

::
to

::::::::
external

:::::::
forcing

::
No

:::::::::
signi�cant

::::::::::
correlation

::
is

:::::
found

:::::::
between

:::
the

:::::
NAO

::::::::::::
reconstruction

:::::
based

:::
on

::
RF

:::::::
method

:::
and

:::
the

:::::
Total

::::
Solar

:::::::::
Irradiance

::::
(TSI)

:::::::::::::
reconstruction

::::
from

:::::::::::::::::::::::::::::::::
Vieira et al. (2011)(r ' −0.09; p ' 0.23).

:::
The

:::::
same

:
is
::::
true

:::
for

:::
the

:::
best

:::::::::::::
reconstruction

::
of

:
the Pages2K database 2014 version Pages 2K Consortium, 2013, and no reference

are given. To refer to this proxy record, the reader can have a check to the proxy encoded " Asi_221"
in the Pages2K 2014 database version Pages 2K Consortium, 2013. The six other proxy records are located
in the Arctic area: three of them have been recorded from Greenland ice cores Vinther et al., 2010, two
have been recorded in North Canada Vinther et al., 2008, Meeker and Mayewski, 2002, and the last one has
been record in Northern Young et al., 2012(Fig. ??). For the other proxy records, the weight we attributed
to them are consistent with those found in

::::
other

::::::::
methods

::::
(not

::::::
shown)

::::
and

::::::
Ortega

::
et
:::
al.

::::::
(2015).

:::::
None

::
of
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:::
the

:::::::::::::
reconstructions

:::::::::
(including Ortega et al. (2015)

4.2.3 Response to external forcing

We now focus on the response of the NAO to external forcing: volcanic aerosols, Total Solar Irradiance
(TSI) , and

:::::
shows

::::
clear

::::::::
negative

::::::
phases

::::::
during

:::
the

::::::::
Maunder

:::
and

:::
the

::::::
Spörer

:::::::
minima

::
as

:::::::::
suggested

::
by

:::::
some

:::::
model

::::::::::
simulations [

::::::::::::::::
Shindell et al., 2004]

:
.
::
In

:::::::
addition,

:::
no

:::::::::
signi�cant

:::::::::
correlation

::
on

:::
the

::::::::::::
pre-industrial

:::
era

:::
has

::::
been

:::::
found

:::::
with

:::
the

:
CO2 concentration. Indeed,

::::::::::::
reconstruction

:::::
based

::
on

::
a
::::
Law

::::::
Dome

::::
(East

::::::::::
Antarctica)

::
ice

::::
core

:
[
:::::::::::::::::
Etheridge et al., 1996]

:::
(not

:::::::
shown),

:::::::::
indicating

::::
that

:::
the

:::::
NAO

::
is

:::
not

:::::::
linearly

:::::::::
associated

::::
with

::::
CO2

::::::::
variations

::::
over

::::
this

::::
time

::::::
frame.

Ortega et al. (2015) suggested that a positive NAO phase is triggered
:::
two

:::::
years

:
after strong volcanic

eruptions, a response that is not reproduced over the last millennium by model simulations [Swingedouw
et al., 2017]. By applying composite analysis of the NAO response to the

::
We

::::
use

:::
the

:::
10

:::::
large

:::::::
volcanic

::::::::
eruptions

:::::::
selected

::
in

::::::
Ortega

::
et
:::
al.

:::::
(2015)

::::
and

:
a
:::::::
second

:::::::
selection

::::
(see

:::::::::::::
supplementary

::::::::::::
informations)

::
of

:::
the

11 strongest volcanic eruptions which occurred during the last millenium, and using dates from 4 di�erent
reconstructions of the last millenium volcanic activity Gao et al., 2008 ; Crowley and Unterman, 2013 ;
Sigl et al., 2015 ; Ortega et al., 2015, we obtained the consistent results for the four regression methods
developed here: a positive NAO response 2 and 4 years following the eruptiononset

::::::
largest

:::::::
volcanic

::::::::
eruptions

::::
from

:::
the

:::::::::::
well-veri�ed

::::::::::::
reconstruction

::
of

:::::::::::::
Sigl et al. (2015).

:::
By

:::::
using

:
a
::::::::::
superposed

:::::
epoch

:::::::
analysis

:::
and

:::::::::::
Monte-Carlo

::::::::
approach

::
as

::
in

::::::::::::::::
Ortega et al. (2015)

:::
we

::::
�nd

::::
that

:::::
using

:::
the

:::::
same

:::
set

::
of

::::::::
eruptions

:::::
than

::::::
Ortega

::
et

::
al.

::::::
(2015)

::::
leads

::
to

:::
the

:::::
same

:::::
result:

::
a
:::::::::
signi�cant

:::::::
positive

:::::::
response

:::
of

:::
the

::::
NAO

::::
two

:::::
years

::::
after

:::
the

::::::::
eruption.

::::::::
However,

::
for

:::
RF

:::
this

:::::
result

::
is
:::
not

:::::::::
signi�cant

:::::
with

:
a
::::::
p-value

::::
just

:::::
above

:::
0.1 (Fig. 13). By using a Monte-Carlo approach

as in Ortega et al. (2015) , we obtain signi�cance levels greater than 99% for all methods, all volcanic
reconstructions and all composites, except for the composite RF based on the volcanic activity reconstruction
from Gao et al., 2008 and Sigl et al., 2015 (Fig. 13). The table giving the volcanic activity reconstructions is
presented in appendix.

::
On

:::
the

::::::::
opposite,

::
by

:::::
using

:::
the

:::
Sigl

::
et

::
al.

::::::
(2015)

::
11

::::::
largest

:::::::
volcanic

::::::::
eruptions,

:::
we

::::
�nd

:
a

:::::::::
signi�cant

:::::::
response

::
at

:::
the

::::
90%

:::::::::
con�dence

::::
level

:::
for

::::
Enet,

::::
PLS

:::
and

:::::
PCR,

:::
but

:::
one

::::
year

::::
after

:::
the

::::::::
eruption

::::
with

:
a
:::::::
p-value

:::::
under

::::
0.05.

:::
For

:::
RF,

:::
the

:::::::
positive

:::::
NAO

::::::::
response

:
is
:::::::::
signi�cant

::
1
::
to

:
3
:::::
years

:::::
after

:::
the

::::::::
eruption.

::::
Here

:::::
again,

:::
the

::::::::::
signi�cance

:::
for

:::
the

::
RF

:::::::::
composite

::
is

::::::
smaller

::::
than

:::
for

:::
the

:::::
other

:::::::
methods

:::::
while

::::
this

::::::::::::
reconstruction

:
is
::::
the

::::
most

::::::
robust.

::::::::::::
Nevertheless,

:::::::::
individual

::::::::
response

:::::::
analysis

::::::
shows

:::
that

:::
for

::::
the

::
RF

:::::::::::::
reconstruction,

::::
this

:::::
result

::
is

::::::::::
particularly

:::::::::
signi�cant

:::
for

:::
the

::
2
:::::
larget

::::::::
eruptions

:::
of

:::
the

::::::::::
millennium

::::::::
(Samalas,

:::::
1257

:::
and

:::::::
Kuwae,

::::
1458)

::::
and

:::
not

:::
so

::::
clear

:::
for

:::
the

::
9
::::::
others

:::
(not

::::::::
shown).

::::
This

:::::
result

:::::::
suggests

::::
that

:::
the

:::::::
positive

:::::
NAO

::::::::
response

:::::
might

::
be

:::::::
mainly

::::::::
associated

:::
to

:::::::
volcanic

::::::::
eruptions

:::::
with

::::
very

:::::
large

:::
and

::::
rare

:::::::::
intensities

::::
such

:::
as

:::::::
Samalas

::
or

::::::
Kuwae

::::::::
eruptions

:::
and

::::::::
concerns

::::
less

::::::::
eruptions

::::
with

:::::::
weaker

:::::::::
intensities

5
::::::::::::::
Discussion

::::::
and

:::::::::::::::
conclusion

5.1
:::::::::::::
Discussion,

::::::::
caveats

:::::
and

::::::::::
outlooks

:::
The

::::::
results

:::::::::
presented

:::::
above

::::::::
regarding

::::
the

::::
NAO

:::::
have

::
all

:::::
been

:::::::
obtained

:::::
using

:::::::::
CliMoRec.

:::::::
Indeed,

::::
they

::::::
require

::::::::
advanced

::::::::::::
programming

:::
and

::::::::
statistical

::::::::::
knowledge

::
to

::::::
ensure

:
a
:::::
good

:::::::::
estimation

::
of

:::
the

:::::::::
robustness

::
of

:::
the

::::::::::::
reconstruction

::::::::::
performed.

::::
This

::
is

:::::::
possible

::
in

:::::::::
CliMoRec

:::
that

::::::::
proposes

:::
an

:::::::::
integrated

:::::::
package

:::::::
through

:::::
which

::::::::::
parameters

:::
and

::::::::
methods

:::
can

::
be

:::::::::
e�ciently

:::::
tested

::::
and

:::::::::
compared,

:::::::
together

::::
with

::::::::
advanced

:::::::::
validation

::::::
metrics

::::
such

::
as

:::
the

::::::
NSCE.

:::::::::::
Nevertheless,

:::
the

:::::::::::
methodology

::::::::
proposed

::
in

:::::::::
CliMoRec

::::
could

:::
be

::::::
further

::::::::
improved

::
in

:::::::
di�erent

:::::
ways.

:
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On the other hand, we did not �nd any signi�cant correlation with any of the TSI reconstructions
available

::::::
Firstly,

::::::::
CliMoRec

::::
does

::::
not

:::
deal

:::::
with

:::::::
missing

::::
data

::
in

:::::
proxy

:::::::
records.

::::
This

:::::::
implies

:::::::
selecting

::::::::::
exclusively

:::
the

:::::
proxy

::::::
records

::::
that

:::::::
entirely

:::::
cover

:::
the

:::::::::::::
reconstruction

::::::
period,

:::::
which

::::
thus

::::::::
excludes

:::::
some

:::::::
existing

:::::
proxy

::::::
records.

:::::
Also,

::::::
proxy

::::::
records

:::::
with

::::
gaps

:::
are

::::
not

::::
used

:::
in

:::
the

:::::::
present

::::::
version

:::
of

::::::::
CliMoRec

:::
as

::::
their

::::
use

::
in

::
an

:::::::::::
interpolated

::::::
version

::::::
would

:::::::::
arti�cially

::::::::
increase

::::
their

::::::
weight

:::
in

:::
the

:::::::::::::
reconstruction

:::
and

:::::
thus

:::::::
possibly

:::::
induce

:::::::
spectral

::::::::
artefacts

::
in

::::
the

::::::::::::
reconstruction

:
[Crowley, 2000 ; Vieira et al., 2011

::::::::::::::::::
Hanhijarvi et al., 2013].

Moreover, none of the reconstructions (including Ortega et al., 2015)shows clear negative phases during
the Maunder and the Spörer minima as some model simulations were suggesting

:
.
::::::::
Secondly,

::::::
except

:::
RF

:::::
which

::
is

::
a
::::::::
bootstrap

:::::::::::
aggregating

::::::::
approach,

::::
the

::::::::
proposed

::::::::
methods

:::
are

:::::::
classical

::::::::::
regression

::::::::::
approaches.

::
In

::::
next

:::::::
versions

:::
of

:::
the

::::::
device,

::
it

:::::
would

:::
be

:::::::::
interesting

:::
to

:::
test

:::::
other

::::::::
methods

::::
such

:::
as

::::::::
Gaussian

::::::::
Processes

::::::::
regression

:
[Shindell et al., 2004. In addition, no signi�cant correlation on the pre-industrial era

:::::::::
Stein, 1999],

::::::::::::::::::::::
Expectation-Maximization

::::::::
algorithm

:
[
:::::::::::::::::
Dempster et al., 1977]

:::
and

:::
its

:::::::::
regularized

:::::::
variants

:
[
::::::::::::
Schneider, 2001

:
;

::::::::::::::
Mann et al., 2008

:
;
:::::::::::::::
Guillot et al., 2015]

:
or

::::::::
Bayesian

::::::::::
Hierarchical

:::::::
models [

::::::::::::::::::::::
Tingley and Huybers, 2010a

:
;
:::::::::::::::::::::::
Tingley and Huybers, 2010b

:
;

:::::::::::
Tingley, 2012

:
;
::::::::::::::::::::::
Tingley and Huybers, 2013

:
;
::::::::::::::
Cahill et al., 2016]

:::
that

::::
can

:::
deal

:::::
with

::::::
missing

::::
data

::::
and

:::::::
compare

:::
the

:::::::::::::
reconstructions

::::::::
obtained

::::
with

:::
the

::::
four

::::::::
methods

::::::
already

:::::::::
included.

:::::::
Another

:::::
point

::::
that

::
is

:::::::
limiting

:::
the

::::::::
capacities

::
of

:::::::::
CliMoRec

::
is
::::
that

::
it
::
is

:::::
based

:::
on

::::
the

::::::::::
assumption

::::
that

:::::::::::::
teleconnections

:::
of

:::
the

::::::::::::
reconstructed

:::::
mode

:::
are

::::::::
stationary

:::
in

::::
time,

:::::
while

::::
they

::::
may

:::::::
depend

::
on

::::
the

::::
state

::
of

:::
the

:::::::
climate

::::::
system.

::::
This

::
is
::
a
:::::::
classical

::::
limit

:::
for

::::::::
statistical

:::::::
climate

:::::::::::::
reconstructions

:::
but

::
it
::::
can

::
be

::::::::
evaluated

:::
by

:::
use

:::
of

:::::::::::
pseudo-proxy

::::::::
methods

::::
(e.g.

:::::::::::::::
Lehner et al., 2012,

::::::
Ortega

:::
et

::
al.

:::::
2015).

::::
On

:::
this

::::::
aspect,

:::::
more

::::::::
complex

:::::::
methods

::::
like

::::
data

:::::::::::
assimilation

:::
can

:::::
clearly

:::::::::
overcome

:::
this

::::::::
weakness

:::
by

:::::::::
combining

:::::
model

:::
and

:::::
data.

:::
The

:::
use

::
of

::::
such

::::::::::
approaches

:::
for

:::
last

:::::::::
millennium

:::::::
remains

::::::::::
nevertheless

:::::
very

:::::::
complex

:::::::::
primarily

:::::::
because

::
of

:::::
their

::::::::::::
computational

::::
cost

::::
and

:::
the

::::
lack

::
of

:::::
data.

::::
They

:::
are

::::::::
however

::::::::
emerging

::::
(e.g.

:::::::::::::::
Hakim et al., 2016

:
;
:::::::::::::::
Singh et al., 2018).

:::::
Data

::::::::::
assimilation

::::::::::
techniques

:::
can

::
be

::::
very

:::::
model

:::::::::
dependent

:::
as

:::::::::
highlighted

:::
for

:::
the

::::::
ocean

::::
over

:::
the

:::::
recent

::::::
period

::::::::::::::::::
(Karspeck et al., 2015)

::
so

::::
that

::::
their

::::::::::::
reconstruction

::
of

::
a
:::::
given

:::::::
regional

:::::::
climatic

::::::
modes

:::
can

:::::
su�er

::::
from

::::::::::::
interferences

::::
with

:::::::::::::
reconstructions

::
of

:::::
other

:::::
aspect

:::
of

:::
the

:::::::
climate.

:::::
Thus,

:::::::::
dedicated

::::::::::
approaches

:::
like

::::
the

::::
ones

:::::::::
developed

::::
here

::::
can

::
be

:::::
seen

::
as

::::
very

:::::::::::::
complementary

::::::::
approach

:::
and

::::
may

:::::::
increase

::::
our

:::::::::
con�dence

::
in

:::
the

::::::::::::::
reconstructions.

::::::
Indeed,

::
if

:::::::
di�erent

:::::::::
approaches

:::::::
provide

::::
very

::::::
similar

::::::
results,

::::
this

:::
can

:::
be

:::::::::
interpreted

::
as

::
a

:::::
source

:::
of

:::::::::
robustness

:::
for

:
a
:::::
given

:::::
result

::
or

:::::::::::::
reconstruction.

:::::::
Another

::::::
caveat

::::::::
concerns

:::
the

::::
fact

::::
that

:::
the

:::::::
present

::::::
version

:::
of

::::::::
CliMoRec

:::::
does

:::
not

:::::::
account

:::
for

::::::
dating

:::::::::::
uncertainties

::
in

:::::
proxy

:::::::
records.

::::::
Future

::::::::::::
developments

:::
of

::::::::
CliMoRec

:::::
may

:::::
allow

::
to

::::
take

::::
into

:::::::
account

:::::
these

:::::::::::
uncertainties

:::
and

::
to

:::::::
provide

::::
their

:::::::::
estimation

:::::
along

::::
time.

::::
For

:::::
doing

::
so,

::::::
deeper

::::::::::::
investigations

:::
for

::::
each

:::::
proxy

:::::
record

:::
are

::::::
needed

::
as

:::::
these

:::::::
sources

::
of

::::::::::
uncertainty

::
are

::::
not

::::::::::
exhaustively

::::::::
provided

::
in

::::::::
P2k2017.

::::
Also,

:::
we

:::::
found

:::
that

:::
the

::::::::::::::
reconstructions

:::::::::
performed

::
by

:::::::::
CliMoRec

::::::
provide

::
a
::::
clear

::::
loss

::
of

::::::::
variance

::::
over

:::
the

:::::::
learning

::::::
period

:::
and

:::
the

::::::::::::
reconstructed

:::::
period

:::::::
(before

::::
1856)

::::
(see

:::::::::::::
supplementary

::::
table

::
4).

::::
The

::
RF

:::::::
method

::
is

:::
the

::::
only

:::
one

::::
that

:::::::::
reproduces

:::::::::
adequately

:::
the

:::::
NAO

:::::::::
amplitude

::::
only

::::
over

:::
the

:::::::
learning

::::::
period

:::
but

:::
also

:::::::
provide

:
a
:::::::::
signi�cant

::::
loss

::
of

:::::::
variance

::::
over

:::
the

::::::::::::
reconstructed

::::::
period.

::::
This

::::::::
indicates

::::
that

:::
the

::::
loss

::
of

:::::::
variance

::::
over

::::
the

::::::::::::
reconstruction

:::::
period

:::::
could

::::::
partly

::
be

:::
due

:::
to

:::
the

:::::
proxy

:::::::
records

:::::::::
themselves

::::
and

:::
not

::::
only

::
to

:::
the

::::::::
statistical

:::::::::
approach.

:
A
::::
key

::::::
aspect

:::
that

:
has been found with a CO2 reconstruction based on a Law Dome (East Antarctica)

ice core
:::::
within

::::
this

:::::
study

::
is
::::
the

:::::::::
sensitivity

::
of

:::
the

::::::
results

:::
to

:::
the

:::::::::
validation

::::::
metric

::::
used.

:::::::
Indeed,

:::
we

::::
also

::::
used

:::::::::
correlation

:::
as

:::
the

:::::
main

:::::
score

:::
for

:::
the

::::
test

::::::
period.

::
It

:::::::
appears

::::
that

:::
this

::::::
metric

::::
was

::::::
mainly

:::::::::
capturing

:::
the

:::::::
phasing

::
of

::::
the

::::::
modes

::
in

:::::
their

:::::::::::::
reconstruction

::::
(not

:::::::
shown) [Etheridge et al., 1996

::::::::::::::
Wang et al., 2014],

indicating that the NAO is not linearly associated with CO2 variations. .
:::
By

:::::
using

::::::
NSCE,

:::
we

::::::::
improved

:::
the

:::::::
strength

::
of

:::
our

::::::::::::
reconstruction

:::::
since

:::::
other

::::::
aspects

::::
than

:::
the

::::::::::::::
synchronisation

::::
were

:::::::::
accounted

:::
for.

::::
This

:::::
latter
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::::::
metric,

:::::
which

::
is

:::::
more

:::::::
classical

::
in

:::::::::
prediction

:::::::::
evaluation

::::::
further

::::::::
highlights

::::
that

:::
the

:::
RF

::::::
method

:::::::::::
outperforms

::::
most

::
of

::::
the

:::::
others

::::::::
methods,

::::
and

:::::::
notably

:::
the

::::
PCR

::::::
which

::
is

:
a
::::::::

classical
:::::::
method

::::
used

::
in

:::::::::::::::
paleoclimatology

[
:::::::::::::
Cook et al., 2002

:
;
:::::::::::::
Gray et al., 2004

:
;
:::::::::::::::
Ortega et al., 2015

:
;
::::::::::::::
Wang et al., 2017].

:::::
Other

:::::::
metrics

:
of
:::::::::
prediction

:::::::::
validation

::::
exist

:::
(e.g.

::::::::::
Continuous

:::::::
Ranked

:::::::::
Probability

:::::
Score,

:::::::::::::::::::::::
Gneiting and Raftery, 2007)

::
so

::::
that

:
a
:::::
more

::::::::
extensive

:::::::
analysis

::
of

:::
the

::::::::
sensitivity

::
of
:::
the

:::::::::::::
reconstruction

::
to

::::
other

:::::::
metrics

:::
for

:::
the

::::::::
validation

::::::
period

:::::
might

::
be

::::
very

::::::
useful.

:::::
Thus,

:::
the

:::::::::::
development

::
of

::::
other

:::::::::
validation

::::::
metrics

::
in
::::
next

::::::::
versions

::
of

::::::::
CliMoRec

:::::::
appears

::
as

:::
an

:::::::::
interesting

::::::
avenue

::
to

:::::::
explore.

6 Conclusions

5.1
::::::::::::::
Conclusions

We have proposed and described here four statistical methods for reconstructing some modes of cli-
mate variability and have compared them for a particular example: the reconstruction of the NAO. By
investigating

:::::::::
identifying

:
and minimizing the sources of reconstruction uncertainty , due to the method

used (sections 3, 4.1
::
.1,

::
4.1.2 and 4.2.1

::::
4.1.3), the time frame considered (section 4.1.3) and the proxy selection

(sections 4.1.1 and 4.1.3), we found the optimal NAO reconstructions, all providing better validation and
calibration results than previous studies .

::
It

:::
was

::::::::
obtained

:::
for

:::
the

::
RF

:::::::
method

::::
over

:::
the

::::
time

:::::
frame

:::::::::
1000-1973

::::
using

::::
the

:::
108

:::::
proxy

:::::::
records

::::::::
available

:::
on

:::
this

:::::
time

:::::
frame

:
(section 4.2.1) . All the reconstructions show a

positive NAO response the year 2 and 4 following volcanic eruptions, in agreement with Ortega et al. (2015).
Moreover they also presents low-frequency negative phases at the multi-decadal scale (section 4.2.1) , which
may induce cold winter conditions in Europe during these periods (e.g. 11th, 12th and 15th centuries).

::::
with

:
a

:::::::
training

::::::
sample

:::::
length

::
of

::::
80%

::
of

:::
the

:::::
length

::
of

:::
the

::::::::
learning

::::::
period.

::::
This

::::::
method

:::
has

:::
not

:::::
been

::::
used

:::
yet

::
to

:::
our

:::::::::
knowledge

:::
for

::::::
climate

:::::
index

::::::::::::::
reconstructions

:::
and

::::::
seems

::::
thus

:::::::::
promising.

::::
The

::::::::::::
reconstruction

:::
we

::::::::
obtained

:
is
:::::::::::::
distinguishable

:::::
from

:::
the

::::::
Ortega

::
et

::
al.

::::::
(2015)

::::::::::::
reconstruction

::::
but

:::::::
remains

::::::::::
signi�cantly

:::::::::
correlated

::::
with

::
it

::::::
(r=0.47 ;

::::::
p<0.01

::::
over

:::
the

::::::
period

::::::::::
1073-1855).

We have showed that using
:::
We

::::
have

::::::
shown

::::
that

:::
for

:::::
Enet,

:::
PLS

::::
and

::::::::::
particularly

::::
PCR

::::::
which

::
is

:::::::::
frequently

::::
used

::
in

::::::::::::::
paleclimatology,

:::::::
selecting

:
proxy records with a strong correlation with the index to be reconstructed over the overlapping

period
::::::
training

:::::::
periods

:
is a good means for improving the validation

::::
way

::
to

:::::::
improve

:::
the

::::::
NSCE

:
scores,

and hence allow
:
it

::::::
allows more reliable reconstructions . Among the 540 available proxy records collected,

containing the PAGES 2K database 2014 version
:::::::
(section

:::::
4.1.1).

:::::::::
Contrarily,

::
RF

:::::
gives

:::::
more

::::::
reliable

:::::::::::::
reconstructions

::::
using

::::
the

:::::
whole

:::
set

::
of

::::::
records

:::::::
(section

:::::
4.1.1).

::::
This

::::
may

::
be

::::
due

::
to

:::
the

:::
fact

::::
that

::
it

:::
has

::::
been

::::::
mainly

:::::::::
developed

::
for

:::::
large

:::::::
datasets [Pages 2K Consortium, 2013

:::::::
Breiman,

::::
2001], which is a well-veri�ed high resolution proxy

collection, only 19 covers the reconstruction period 1000-1967 and are signi�cantly correlated with the
NAO index (at the 95% con�dence level) on the period 1823-1967. Gathering new proxy records , signi�cantly
correlated with the NAO, .

::::
For

::::
both

:::::
cases,

::::::::
gathering

::::
new

::::::
proxy

::::::
records

::
to

:::
the

::::
554

:::::::
available

:::::
proxy

:::::::
records

::::::::
collected, may be a reliable source of reconstruction improvement. The inclusion of new NAO-sensitive
proxy records in the future may thus lead to better reconstructions. The toolbox we developed in this paper
::::::::
CliMoRec

:
should allow to

:::::
easily perform such new reconstructions, thanks to a devis made available to

the community.
:
.

In order to extract the most robust reconstruction, numerous simulations are needed. To facilitate it, the
statistical tool we developed

:::::::
simplify

::
it,

::::::::
CliMoRec performs a reconstruction by considering several entries:

an index of the climate mode, the reconstruction period, the length of the training window (in proportion
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of the total length of the learning window), the number of training/testing period samplings
::::
splits, and a

threshold con�dence level for the correlation between the proxy records and the target index(appendix
1). This modular statistical tool

:
.
:::::::::
CliMorRec is an opportunity to reconstruct quickly and with quanti�ed

reliability several climate modes. This may allows
:::::
allow us to improve our understanding of the last mil-

lennium large scale
:::::::::
large-scale climate variations, such as the MCA and the LIA, as well as the interactions

between the modes, which will be analysed in future studies.
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Figure 1 – Scheme summarising the main features of the proposed statistical toolbox
::::::
CliMoRec.
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Figure 2 – Scheme of the initial data. X and Y are respectively the proxy records matrix and the index of the considered
mode of variability. N is the size of the common period of all proxy records. n is the size of the common period of all proxy
records and the index of the mode of variability. m is the size of the common period of all proxy records, where the mode
of variability is not known. p is the number of proxy records. X(T ) is the sub-matrix of X where the mode of variability is
known. X(τ) is the sub-matrix of X where the mode of variability is not known.
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Figure 3 – Scheme of a leave-one-out
:::::
K-Fold cross validation procedure to select the optimal parameter of a speci�c learning

methodM. X is the input set of predictors and Y the corresponding variability mode index. ∀1 ≤ i ≤ n, {X(i),Y(i)}:::::::
{X(k),Y(k)}

is the ith
::
kth

:::::::
randomly

:::::
drawn

:::::
group

::
of

:
observation and {X(−i),Y(−i)} ::::::::

{X(−k),Y(−k)}:contains all observations except the ith.
Θ = (θ1, . . . , θK )

:::::::::::
Θ = (θ1, . . . , θQ) is the ensemble of possibles values of θ ∈ Rq

:::::
θ ∈ Rs.

29



Figure 4 – Scheme of the whole procedure for scores calculation for a given methodM. Y is the index of the chosen mode of
variability. X(T ) is the proxy dataset restricted to the period where Y known. {X(r)

(train),Y
(r)
(train)} is the rth training sample and

{X(r)
(test),Y

(r)
(test)} is the rth testing sample. θLOO:::

θKF is the empirically optimal set of parameters obtained by applying the KFCV
(Fig. 3 ; section 2.5.1)

30



Figure 5 – Dyadic partition of the unit square (le�) and its corresponding regression tree (right). Y is the predictand and
X1, X2, X3 are the predictors. d1, d2 and d3 are the optimal thresholds of the three steps respectively.
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Figure 6 – Geolocation, types and correlation con�dence level between the 122 available proxy records for the
period 1000-1970, and the NAO index on the period 1823-1970Boxplot of validation NSCE

::::
scores

:
obtained for the

four methods and di�erent groups of proxy records by reconstructing the NAO index on the period 1000-1970
with R = 50 validation

::::::
training/calibration

:::::
testing

::::::::
randomly

:::::
drawn

:
samples. Calibration

::::::
Training

:
samples size is

ntrain = 111
::::::

ntrain = 92, and validation
:::::
testing samples size is ntest = 37

::::::
ntest = 23. Green boxplots are the validationNSCE

::::
scores

obtained for the PCRmethod. Yellow boxplots are the validation NSCE
:::::
scores obtained for the PLS method. Red boxplots are

the validation NSCE
::::
scores obtained for the RF method. Blue boxplots are the validation NSCE

::::
scores obtained for the Enet

method. The �rst cluster of boxplots is the validation NSCE
::::
scores obtained by using all the available proxy records over the

period (122
:::
110 proxy records). The second cluster of boxplots is the validation NSCE

::::
scores obtained by using only proxy

records signi�cantly correlated with the NAO index at the 80% con�dence level (61 proxy records)
:::
over

:::
the

::::::
training

::::::
periods.

The third cluster of boxplots is the validation NSCE
::::
scores obtained by using only proxy records signi�cantly correlated

with the NAO index at the 90% con�dence level (35 proxy records)
:::
over

:::
the

::::::
training

::::::
periods. The fourth cluster of boxplots

is the validation NSCE
:::::
scores obtained by using only proxy records signi�cantly correlated with the NAO index at the 95%

con�dence level (18 proxy records)
:::
over

:::
the

::::::
training

::::::
periods.

::::::
Boxplots

::::
with

::::
blue

::::
edges

:::
are

::
the

:::::
scores

:::::::::
signi�cantly

:::::::
positives

:
at
:::
the

:::
99%

::::::::
con�dence

::::
level.

::::::
Boxplots

::::
with

::
red

::::
edges

::::::::
correspond

::
to
:::
the

::::
scores

::::::::
associated

::::
with

::
the

:::
best

:::::::::::
reconstruction

::
for

::::
each

::::::
method.
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Figure 7 – validation NSCE
::::
scores obtained for di�erent sizes of the calibration

::::::
training

:
samples: from 5%

:::
30% to 95%

:::
90%

:
of the length of the learning period (n = 148) with a 5% step.

::
All

::
of
:::
the

::::::::::::
reconstructions

::
are

::::::::
performed

:::
for

:::::
period

::::::::
1000-1970. Red boxplots are validation NSCE

:::::
scores obtained by 100

::
50 training/testing sampling using the RFmethod. Blue

boxplots are validationNSCE
::::
scores obtained by 100

::
50 training/testing sampling using the Enetmethod. Yellow boxplots are

validation NSCE
::::
scores

:
obtained by 100

::
50 training/testing sampling using the PLS method. Green boxplots are validation

NSCE
::::
scores

:
obtained by 100

:
50

:
training/testing sampling using the PCR method. All of the

::
RF reconstructions are made

:::::::
performed

:
using the reconstruction period 1000-1970

::::
whole

::
set

::
of

:::::::
available

::::
proxy

::::::
records

::::::::
(110,section

:::::
4.1.1).

::::
Enet,

:::
PLS and

:::
PCR

:::::::::::
reconstructions

:::
are

::::::::
performed

::
by

::::::
selecting the 18 proxy records signi�cantly correlated with the NAO index at the 95%

:::
95% con�dence level over the learning period 1823-1970.Correlations between the best reconstruction of each method given
the calibration samples size and those obtained from all of the investigated calibration samples size: from 5% to 95% of the
size of the learning period (n = 148) with a 5% step. The best PCR and PLS proportion for the training samples length is 70%
of the learning period

::::::
periods (ntrain = 104; ntest = 44

:::::
section

:::
4.1.1)while the RF best calibration samples size is 55% of the size

of the learning period (ntrain = 81; ntest = 67). Red line gives
::::::
Boxplots

:::
with

::::
blue

::::
edges

:::
are the corresponding correlations for

::::
scores

::::::::::
signi�cantly

::::::
positives

::
at
:
the RF method

:::
99%

::::::::
con�dence

::::
level. Blue line gives

::::::
Boxplots

::::
with

:::
red

::::
edges

::::::::
correspond

::
to

the corresponding correlations for
::::
scores

::::::::
associated

::::
with the Enet method. Yellow lines gives the corresponding correlations

:::
best

::::::::::
reconstruction

:
for the PLS

:::
each

:
method.Green line gives the corresponding correlations for the PCR method.
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Figure 8 – All of the reconstructions are made by
:::::::
performed

:::
for

:
R = 50 sampling calibration

:::::::
randomly

:::::
drawn

::::::
training/validation, using the PLS method

::::
testig

::::::
samples. The proportion of the length of the training samples is �xed to

70%
::
for

::::
PCR and

:::
and only the proxy signi�cantly correlated with the NAO index at the 95% con�dence level on the learning

period are used for reconstruction. The yellow boxplots
::::::::::::
Reconstructions are the validation NSCE obtained for each of the 36

:::::::
performed

:::::
using

::
31 reconstruction period: from 1000-1965

::::::::
1000-1970 to 1000-2000 by moving the superior born by 1. Filled

areas: Evolution of
::
RF

:::::::::::
reconstructions

:::
are

:::::::
performed

:::::
using the proxy predictor

::::
whole set . For each reconstruction period

:
of

:::::::
available

::::
proxy

:::::
records

::::
(110,

:::::
section

::::
4.1.1)

::::
with

::::::
training

:::::::
samples

::::
length

::
of
:::
80%

::
of the selected

::::
length

::
of

:::
the

::::::
learning

:::::
period

:::::
(section

:::::
4.1.2).

:::
PCR

::::::::::::
reconstructions

:::
are

:::::::
performed

:::::
using

::
by

::::::
selecting

:::
the proxy records are those which cover

:::::::::
signi�cantly

:::::::
correlated

::
at the reconstruction

:::
95%

::::::::
con�dence

:::
level

::::
with

:::
the

:::
NAO

::::
over

:::
the

::::::
training

::::::
periods

::::::
(section

::::
4.1.1)

::::
with

::::::
training

::::::
samples

:::::
length

:
of
:::
70%

::
of

:::
the

:::::
length

:
of
:::
the

::::::
learning

:
period

:::::
(section

::::
4.1.2).

:::
PLS

:
and

:::
Enet

:::::::::::
reconstructions

:
are

::::::::
performed

::::
using

::
by

::::::
selecting

:::
the

:::::
proxy

:::::
records

:
signi�cantly correlated

::
at

::
the

::::
95%

::::::::
con�dence

:::
level

:
with the NAO index

:::
over

::
the

:::::::
training

:::::
periods

::::::
(section

::::
4.1.1)

::::
with

::::::
training

::::::
samples

:::::
length

::
of

:::
80%

::
of

::
the

::::
lengt

::
of

:::
the

::::::
learning

:::::
period

::::::
(section

::::
4.1.2).

::
a)

:::
Red

::::::
boxplots

::
are

:::
the

::::
NSCE

:::::
scores

::::::
obtained

:::::
using

::
RF

:::::::
method.

:::
Blue

::::::
boxplots

:::
are

:::
the

::::
NSCE

:::::
scores

::::::
obtained

:::::
using

::::
Enet

::::::
method.

:::
Red

::::
green

::
are

:::
the

::::
NSCE

:::::
scores

::::::
obtained

::::
using

::::
PCR

:::::::
methodh.

:::::
Yellow

::::::
boxplots

::
are

:::
the

::::
NSCE

:::::
scores

::::::
obtained

:::::
using

:::
PLS

::::::
method.

::::::
Boxplots

:::
with

::::
blue

::::
edges

:::
are

::
the

:::::
scores

::::::::::
signi�cantly

::::::
positives

:
at the 95%

::
99%

:
con�dence levelon corresponding .

:::::::
Boxplots

:::
with

:::
red

::::
edges

::::::::
correspond

::
to the learning period

::::
scores

::::::::
associated

::::
with

:::
the

:::
best

:::::::::::
reconstruction

::
for

::::
each

::::::
method. Cyan area: proxy

:
b)
:::::
Proxy

:
records �nishing before 1970 included

:::::::::::
available/used

::
by

:::::::::::
reconstruction

:::::
period. Red area :

:::
gives

:::
the

::::::
number

::
of

:::::::
available proxy records �nishing a�er 1970 excluded and before 1980 included

::::
which

::
is

:::::::
typically

::
the

:::::::
number

:
of
::::::
records

:::
used

:::
for

:::
the

::
RF

::::::::::::
reconstructions. Green area: proxy

::::
total

::
of records �nishing a�er 1980 excluded

:::
used

:::
for

::::
Enet,

::::
PCR and

before 1990 included
::
PLS

:::
for

:::
each

:::::::::::
reconstruction

:::::
period. Blue area:

::::::
number

::
of proxy records �nishing a�er 1990 excluded

:::
used

:::
per

::::::::::::
training/testing

::::
splits

::
on

::::::
average

::
for

::::
Enet,

::::
PCR and before 2000 included

:::
PLS

::::::
methods.Purple area: proxy records

�nishing a�er 2000 excluded.
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Figure 9 – Red line: RF reconstruction on the period 1000-1973
:::::
(section

:::::
4.1.3), using 18

::
the

:::::
whole

:::
set

:
of
::::::::
available proxy

records signi�cantly correlated at the 95% con�dence level
:::
(110,

:::::
section

::::
4.1.1) with a proportion

::::::
training

::::::
samples

:::::
length

:
of

:::
80%

:
of
:
the length of the training samples of 45%

::::::
learning

:::::
period

:::::
(section

::::
4.1.2). Dark red line: ten years low-pass �lter of the

RF reconstruction. Blue line: Enet reconstruction on the period 1000-1973, using 18
:::::::
1000-1970

::::::
(section

::::
4.1.3)

::
by

::::::
selecting

:::
the

proxy records signi�cantly correlated
::::
with

::
the

::::
NAO

::::
index

:
at the 95%

:::
95% con�dence level ,

:::
over

:::
the

::::::
training

:::::
periods

::::::
(section

::::
4.1.1) with a proportion

::::::
training

::::::
samples

:::::
length of

::
80%

::
of
:
the length of the training samples of 65%

::::::
learning

:::::
period

::::::
(section

::::
4.1.2). Dark blue

::::
Green line: ten years low-pass �lter of the Enet

:::
PCR reconstruction . Yellow line: PLS reconstruction on the

period 1000-1967, using 19
:::::::
1000-1970

::::::
(section

::::
4.1.3)

::
by

:::::::
selecting

::
the

:
proxy records signi�cantly correlated

:::
with

:::
the

::::
NAO

::::
index at the 95%

:::
95% con�dence level ,

:::
over

::
the

:::::::
training

:::::
periods

::::::
(section

::::
4.1.1)

:
with a proportion

::::::
training

::::::
samples

:::::
length

:
of

:::
70%

:
of
:
the length of the training samples of 70%

::::::
learning

:::::
period

::::::
(section

::::
4.1.2). Dark yellow

:::::
Orange

:
line: ten years low-pass

�lter of the RF
:::
PLS reconstruction . Green line: PCR reconstruction on the period 1000-1970 , using 19

::::::
(section

::::
4.1.3)

::
by

::::::
selecting

:::
the proxy records signi�cantly correlated

:::
with

:::
the

::::
NAO

::::
index

:
at the 95%

::
95%

:
con�dence level ,

:::
over

:::
the

::::::
training

:::::
periods

::::::
(section

::::
4.1.1) with a proportion

::::::
training

::::::
samples

:::::
length of

::
80%

::
of the length of the training samples of 70%

::::::
learning

::::
period

::::::
(section

::::
4.1.2). Dark green

::::
Black

:
line

::::
(tiny): ten years low-pass �lter of the RF reconstruction

:::::
Ortega

::
et

:
al. Grey line:

Calibration
::::::::
calibration constrained NAO reconstruction [Ortega et al., 2015

:::::
Ortega

::
et

:::
al.,

::::
2015]on the period 1073-1969.

:::
Red

::::
area:

:::::::
Regression

::::::::::
uncertainties

:::
(see

::::::::::::
supplementary)

::
for

:::
RF

:::::::::::
reconstruction.

:::
Blue

::::
area:

::::::::
Regression

::::::::::
uncertainties

::
for

::::
Enet

:::::::::::
reconstruction.

:::
Blue

::::
area:

::::::::
Regression

::::::::::
uncertainties

:::
for

:::
PCR

:::::::::::
reconstruction.

::::::
Orange

::::
area:

::::::::
Regression

:::::::::
uncertainties

:::
for

:::
PLS

:::::::::::
reconstruction. Heavy black line: ten years low-pass �lter of

:::
lines

:::
are the calibration constrained

::::::::::
corresponding

::::::
11-year

:::::
�ltered

::::::::::::
reconstructions

::
for

::::
each

::::::
method.

:::::
Purple

::::
lines:

:::::::::
superposed

::::::
11-years

::::::
�ltered

::::
Jones

:
et
:::
al.

::::
(1997)

:
NAO reconstruction

Ortega et al., 2015
::::
index.
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Figure 10 – Map and weights
:::::::::
Comparison of the 19 proxy records signi�cantly correlated

:::::::::::
reconstructions

:::
from

::::
this

::::
study

with the original
:::
Jones

::
et

::
al.

:::::
(1997) NAO index on the time window 1000-1967

:::
over

:::
their

:::::::
common

:::::
period. These weights are

:
a)
:::
RF

:::::::::::
reconstruction.

::
b)

:::
Enet

:::::::::::
reconstruction.

::
c)

:::
PCR

:::::::::::
reconstruction.

::
d)

:::
PLS

:::::::::::
reconstruction.

:::::
Purple
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Figure 11 –
::::::
P-values obtained from

::::::::::
Shapiro-Wilk

:::::::
normality

::::
tests

::
on

:
the PLS method

:::::::
residuals

::::
from

:::
each

:::::::::::
reconstruction

:
of
::::
Fig.

:
9.
:::
For

:::
a),

::
b)

:
c)
:
and

::
d),

:::
the

::::::::
repartition

::
of
:::
the

::
50
:::::::
p-values

:::::::
obtained

:::
for

:::
each

::::::::::::
training/testing

::::
split

:
are calculated

by projecting regression coe�cients on
:::::::
presented.

:::
Red

::::::
dashed

::::
lines

:::::::
indicates

:
the loadings

:::
90%

::::::::
con�dence

::::
level

:::
for

:::::::::::
non-normality.

::
For

::::::::
0 ≤ α ≤ 1,

:
if
:::::::::
p-value<=α,

::
it

:::::
means

:::
that

:::
the

:::::::
residuals

::::::::::
distributions

:
is
::::::::::
signi�cantly

:::
not

::::::
gaussian

::
at
:::
the

:::
1 − α

::::::::
con�dence

::::
level (see Cook et al., 2002 and section 3.2

:::::::::
shapiro.test

:
R
:::::::::::
documentation)
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Figure 12 –
:::
Map

::
of

::
the

:::
108

::::
proxy

::::::
records

:::
used

:::
for

::
the

:::::::::::
reconstruction

::
of

::
the

::::
NAO

::::
index

::::
form

::::
Jones

::
et

::
al. The shapes marked

by
::::
(1997)

:::
on

::
the

::::
time

::::::
window

::::::::
1000-1973

::::
using

:::
the

::
RF

::::::
method.

:::::
Points

::::
with

:
a black circle

:::
point

:
are the proxy records

:::
also

used in Ortega et al. (2015
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Figure 13 – Composite
::::::::
Superposed

::::
epoch

:::::::
analysis of the NAO response from two years (N-2

:::
N-1) before to �ve years a�er

(N+5
:
4) ten strong

:
to
:::
the

::::::
largest volcanic eruptions considering 4 volcanic activity reconstructions

:::
used

::
by
::::::
Ortega

::
et

::
al.

Red lines: Composites from the RF NAO reconstruction. Blue lines: Composites from the Enet NAO reconstruction. Yellow
lines: Composites from the PLS NAO reconstruction. Green lines: Composites from the PCR NAO reconstructions. Light
lines: composites determined using theGao et al. (2008

:::
2015) volcanic activity reconstruction. Light dashed lines: composites

determined using the Sigl et al. (2015
:
10

::::::::
eruptions) volcanic activity reconstruction. Heavy lines: composites determined

using
:::
and

:
the same volcanic activity reconstruction than Ortega et al. (2015)

::
11

:::::
largest

::::
from

:::
Sigl

::
et

:
al. Heavy dashed lines:

composites determined using the Crowley and Unterman (2013
::::
2015)volcanic activity reconstruction. All of the composites

are centered
:::::
centred to their values at the year of the volcanic eruption occurrences. For each method a 99%

:::
90%

:
con�dence

level have
:::
has

:
been calculated by Monte-Carlo simulations using 1000 composites of eleven sampled 8

:
6 years long sub-

series. The con�dence born is calculated as the 99th percentile of the 1000 di�erences between the 5th
::
4th and the 3rd

::
2rd

values of the sample composite series (i.e between N+2 and N). Black dashed lines indicate for each method the 0 level
and the 99% con�dence level. All of the composite series have been centered

:::::
centred

:
to the values at the time N.

::
a)

:::
Red

:::
line:

::::::::
Composite

:::
for

::
RF

:::::::::::
reconstruction

::::::
response

::
to

:::
Sigl

::
et

::
al.

:::::
(2015)

::::::
volcanic

::::::::
eruptions.

::::::
Dashed

:::
red

:::
line:

::::::::
Composite

:::
for

::
RF

::::::::::
reconstruction

:::::::
response

:
to
::::::
Ortega

:
et
::
al.

:::::
(2015)

::::::
volcanic

::::::::
eruptions.

::::::
Dashed

:::::
purple

:::
line:

:::::::::
Monte-Carlo

::::
90%

:::::::
con�dence

::::
level.

::
b)

:::
Blue

::::
line:

::::::::
Composite

::
for

::::
Enet

::::::::::
reconstruction

:::::::
response

:::
Sigl

:
et
:::
al.

::::
(2015)

:::::::
volcanic

:::::::
eruptions.

::::::
Dashed

:::
blue

::::
line:

::::::::
Composite

::
for

:::
Enet

:::::::::::
reconstruction

::::::
response

::
to

:::::
Ortega

:
et
::
al.

:::::
(2015)

::::::
volcanic

:::::::
eruptions.

::::::
Dashed

:::::
purple

:::
line:

::::::::::
Monte-Carlo

::
90%

::::::::
con�dence

::::
level.

:
c)
:::::
Green

:::
line:

::::::::
Composite

::
for

::::
PCR

:::::::::::
reconstruction

::::::
response

:::
Sigl

:
et
:::
al.

::::
(2015)

:::::::
volcanic

:::::::
eruptions.

::::::
Dashed

::::
green

:::
line:

::::::::
Composite

::
for

::::
PCR

::::::::::
reconstruction

:::::::
response

:
to
:::::
Ortega

::
et
::
al.

:::::
(2015)

::::::
volcanic

::::::::
eruptions.

:::::
Dashed

:::::
purple

::::
line:

:::::::::
Monte-Carlo

:::
90%

::::::::
con�dence

:::
level.

::
d)
::::::
Orange

::::
line:

::::::::
Composite

::
for

:::
PLS

:::::::::::
reconstruction

:::::::
response

:::::::::::
Sigl et al. (2015)

:::::::
volcanic

:::::::
eruptions.

::::::
Dashed

:::::
orange

::::
line:

:::::::
Composite

:::
for

:::
PLS

:::::::::::
reconstruction

::::::
response

::
to

:::::
Ortega

::
et

::
al.

::::
(2015)

:::::::
volcanic

:::::::
eruptions.

::::::
Dashed

:::::
purple

::::
line:

:::::::::
Monte-Carlo

:::
90%

:::::::
con�dence

::::
level.
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RF Enet PLS PCR
:::
PLS

:
Ortega

RF 1.00 0.88 0.79 0.83
:::
0.73

:
0.61

:::
0.69

: :::
0.52

:

Enet 0.88
:::
0.79

:
1.00 0.82

:::
0.96

:
0.90

:::
0.96

:
0.68

PLS
:::
PCR

:
0.79

:::
0.73

:
0.82

:::
0.96

:
1.00 0.88

:::
0.98

:
0.52

:::
0.73

:

PCR
:::
PLS

:
0.83

:::
0.69

:
0.90

:::
0.96

:
0.88

:::
0.98

:
1.00 0.66

:::
0.73

:

Ortega 0.61
:::
0.52

:
0.68

:::
0.65

:
0.52

:::
0.73

:
0.66

:::
0.73

:
1.00

Table 1 – Table of correlations between �ve reconstructions: Ortega et al. (2015) reconstruction ; RF reconstruction on the
period 1000-1973 with a proportion of the length of the training samples of 55%

:::
80% ; Enet reconstruction on the period

1000-1973
:::::::
1000-1970 with a proportion of the length of the training samples of 70%

:::
80% ; PLS reconstruction on the period

1000-1967
:::::::
1000-1970 with a proportion of the length of the training samples of 70%

:::
80% ; PCR reconstruction on the period

1000-1970 with a proportion of the length of the training samples of 70%.
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::::
Code

:::
and

:::::
data

::::::::::
availability:

::::::::::
CliMoRec’s

::::
code

::::
and

:::
the

:::::
proxy

:::::::
records

:::::::
database

::::
are

:::::::
available

:::
at

:::
the

::::
link:

::::::::::::::::::::::::::::::::::
https://github.com/SimMiche/CLIMOREC

:
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