Final author response for the manuscript gmd-2018-211: “Reconstructing
climatic modes of variability from proxy records: sensitivity to the

methodological approach” by Michel et al.

This final author response is organised for each comment as follows:

(1) Comment from referee/public
(2) Author’s response
(3) Author’s change in the manuscript

- Response to Anonymous Referee #1:

(1) This paper presents new reconstructions methods and applies them to reconstruct the
NAO using data primarily from the PAGES2k database. I think this is a good study that
introduces some potentially useful new paleoclimate reconstruction methodologies.

(2) (3) We thank the reviewer for this overall positive evaluation of our work.

I have a number of comments, corrections, and requests for clarification below:

(1) p.1 L7-9, p.4 1.18, p.20 1.10 These statements are too strongly worded. Not every mode of
variability is reconstructable, some occur on too short of time scales to be captured in the
paleoclimate record (e.g., monthly time scales) and some modes are in locations where there
are poor covariances with available proxy records (e.g., the Southern Ocean).

(2) We agree with the reviewer that this claim was too strong.

(3) This statement is modified in the corrected manuscript to clarify that our method is not
able to reconstruct every climate index but only the ones for which sufficient covariances
between large-scale modes and proxy records are found and for which proxy records exhibit
fine enough time resolution to resolve the main time scale of the considered variability mode.
Furthermore, we will also highlight that our approach can be used to reconstruct other kind of
climate variable time-series such as temperatures or precipitations for a given location.

(1) p.2 1.9-11 This sentence is unclearly worded, for example, "non-stationary variability"
doesn’t "ask" questions, people ask questions.
(2) We agree with the reviewer on this statement.

(3) We replaced “asks the questions of”” by “highlights”.


https://editor.copernicus.org/index.php/gmd-2018-211-AC3.pdf?_mdl=msover_md&_jrl=365&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=71096&c=158598&salt=49126766356162001

(1) Introduction: In general, the introduction takes a long time to get to the main points of the
study. The authors might consider revising the introduction to cut down the length.

(2) (3) The introduction has been largely cut down by only keeping the most important
informations relative to the topic of the manuscript.

(1) p.5 1.4-5 Linear interpolation of low resolution proxies artificially increases the influence
of these records and introduces spectral artifacts in the proxy time series (e.g., Hanhijarvi,
Tingley, Korhola 2013, doi: 10.1007/s00382-013-1701-4). This process also ignores dating
uncertainty in such low-resolution proxies, which can be a significant source of
reconstruction error. Have you accounted for these factors, particularly the dating
uncertainty? What is the influence of using only annually resolved data?

(2) Indeed, we found that using interpolated low resolution proxy records results in
overestimating their weights in our reconstruction because of the falsely high correlations
they have with the NAO index. This is largely due to their respective high auto-correlations at
the annual time-scale. Hence, as mentioned by the reviewer, using this kind of proxy record
indeed brings a lot of reconstruction errors due to overestimated weights, dating uncertainties,
but also, because they induce erroneous validation scores as the link between these proxy
records and the NAO index is overestimated. Concerning the dating uncertainty, it is also
present in annually-resolved proxy records and this aspect is not accounted for in the present
version of the code.

(3) Following this comment we have updated our code, manuscript and data with the use of
the 2017 version of the Pages 2k database as suggested by Reviewer 2. Then, using this new
proxy database, and in order to address this comment, we decided to remove the proxy
records that are not annually resolved. For dating uncertainties, this is certainly something to
be considered in the next version of the code. We thus add a short discussion on this aspect in
the discussion section, concerning potential outlooks for the next versions.

(1) Section 2.2 Do the methods estimate uncertainty in the reconstruction or just provide a
single reconstruction? Are the ensembles of reconstructions discussed elsewhere a kind of
uncertainty estimate of the mean reconstruction? These, or something like them, would be
essential to use and display because without reliable uncertainty estimates, paleoclimate
reconstructions are not useful.

(2) This was actually a major omission in the former version of the paper and we thank the
reviewer to report it. The uncertainties we now provide are calculated as in Ortega et al.
(2015) using the residuals calculated over the 50 training periods. These uncertainties are
represented by the standard errors (s.e.) of the regression, calculated as the root of the sum of



the squared residuals divided by the degree of freedom over the training periods divided by
the degree of freedom:
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An uncertainty band 2*s.e. is calculated for each of the 50 individual reconstructions and the
envelope of this 2*s.e. uncertainty bands is our estimate of the total uncertainty range of the

final reconstruction.

(3) We added regression uncertainties in a table and on the figures where the reconstructions
are shown. Also, the code we deliver provide standard errors for each member of a given
final reconstruction.

(1) p.7 1.16-19 Using correlation as the only validation metric is problematic, especially when
it comes to comparing reconstruction methodologies. You really must include additional
metrics that account not just for the correlation, but the variance and bias as well. If the
approaches provide uncertainty estimates, then the skill metrics need to also account for those
(using, for example, the continuous ranked probability score).

(2) This comment was also highlighted by the other reviewer as well as in the short comment
of Eduardo Zorita. We totally agree with this comment and we decided to add both the root
mean squared errors and the Nash-Sutcliffe Coefficient of Efficiency (NSCE) as additional
metrics. The NSCE calculates the ratio of the averaged quadratic distance between the
reconstruction and the observations and the quadratic distance between the mean of the
observations and the observations. This metric, defined between — o and 1 indicates that the
reconstruction is robust when NSCE>0. Otherwise, lower values mean that using the mean of
the testing series is more robust than performing a reconstruction using the statistical model.
We thus believe that these two metrics adequately account for the bias and variance in the
reconstruction, which should then improve the conservation of these properties in our
reconstruction.

(3) The whole new manuscript now accounts for these two metrics and use the NSCE as the

main decision metric.

(1) p.16 1.19-20 This statement is incorrect. Previous reconstructions almost never overlook
this issue, but rather proxy network selection is integral to the reconstruction process. It is



very rare to have a reconstruction approach, especially one that is regression-based, that does
not remove proxies because of insufficient correlation with the target climate variable.

(2) For climate index reconstructions we found at least two major studies that have not used
proxy network selection to perform their reconstruction : Cook et al 2002 (NAO
reconstruction) and Wang et al 2017 (AMYV reconstruction).

(3) Nevertheless, we indeed found that these studies are particular cases and we modified this
statement to clarify that we were referring mainly to these two studies.

(1) p.18 1.1-2 Or the "significant" correlation with the NAO could be spurious. Also note that
non-stationarity violates one of the fundamental assumptions of these (and nearly all)
reconstruction approaches.

(2) Indeed, we also ask ourselves if the significant correlations we found could be spurious
but it is relatively difficult to determine whether they are or not. An indirect way to “verify”
this significance of correlation is the location of the proxy records that have high correlations
with the NAO. A way to rule out spurious correlation is the use of pseudo-proxies like in
Ortega et al. (2015), but handling pseudo-proxies from different datasets was an arduous task
for this multimethod paper. Nevertheless, the fact that most proxy records selected for the
highest levels of correlation significance (i.e. Greenland, Arctic Canada, North America and
Europe. See Fig. 6 in the last version of the manuscript) are located in the centers of action of
the NAO (which has not been imposed a priori) (e.g. Casado et al. 2013) is a good indicator
that most proxy records won’t be spurious NAO predictors. The second comment about
non-stationarity indeed highlights a problem that not only questions our study, but also all of
the proxy based reconstructions studies.

(3) In the new version of the manuscript we remove the sentence concerning non-stationarity
since this type of caveat has to be included in the discussion section. We also highlight that
the location of most of the proxy records selected shows that our method seems to adequately
select reliable predictors.

(1) p.19 1.12-15 1 think this statement is too strongly worded given that you’ve only validated
the reconstructions using correlation and haven’t validated reconstruction uncertainties. How
do the reconstructions compare given the uncertainties?

(2) (3) As mentioned above, in the revised version we use the coefficient of efficiency to
validate our reconstructions and we include and discuss regression uncertainties in our main
text and dedicated figures.



- Response to Anonymous Referee #2:

1 Scientific Comments

(1) I’ll start with what I like about the paper: it applies several methods to the same dataset,
and the results are fairly consistent among methods and with another recent reconstruction, in
which one of the authors was involved (Ortegal et al, 2015). That’s about it.

(2) (3) We thank the reviewer for this positive comment. Nevertheless, as a general response
to the main reviewer’s criticisms below, we would like to highlight that our study is
proposing novel regression methods that have, to our knowledge, not yet been applied to
climate signal reconstructions. In addition, we found in previous studies cited in this
manuscript (that concerns the reconstruction of climate modes, but not of climate fields),
several issues in the classical methodological approaches. Our objective here is to assist
paleoclimate experts in making the best out of their proxy databases with valid and robust
statistical assessments. More specifically, using a new metric that we discuss below, we show
how to evaluate different reconstructions of the same climate index but with different
methodological choices (regression method, proxy network, length of the period on which the
regression model is built). The wide range covered by the scores shows that the selection of
these inputs is an important step to obtain a reconstruction as robust as possible.

Furthermore, to make the production of such reconstructions more straightforward
and facilitate its use to potential users, we have developed a code that simply requires a few
parameters as input and that provides a set of different alternative reconstructions of a given
climate index for a given proxy record database. In addition, the code provides an ensemble
of scores that evaluate the different reconstructions, each produced with different
methodological choices. Thus the user of CliMoRec (see “Response to the short comment
from Astrid Kerkweg: ‘Executive Editor comment on gmd-2018-21" ) can finally pick the
one that has the best scores. This is why we do not submit this paper to Climate of The Past,
as we would like to make climate signal reconstructions more transparent and easily
accessible and verified by the community. Furthermore, we believe that CliMoRec could be
improved in the future by including further refinements in follow up versions which
constitute an additional reason for which we prefer to submit this paper to GMD. Last but not
least, we believe that providing sufficient level of details concerning the mathematical
rationale behind our methods is very useful, an information that is hidden in the appendix in
journals like Climate of the Past, which are more focused on the scientific results.

1.1 This is no “big data”

(1) Few things are more irritating than people pretending to do "big data" when they actually
don’t. The authors only end up using a few dozen proxies, and only reconstruct a single
index. Nothing wrong with that, but it’s not "big data" by any stretch of the imagination. In
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fact, except for the random forest method (which is only useful in the presence of hundreds or
thousands of predictors, therefore not very useful here), all of the methods described are
classic forms of linear regression. Anyone is free to call that "machine learning" (since most
ML methods are regression in one form or another), but the larger problem is that this is a
modeling journal, and I see very little in the way of statistical modeling here.

(2) (3) We entirely agree that what is done in this paper is not “big data” and we didn’t intend
to claim we did it. The word “big data” was mentioned twice in the submitted text with the
only aim of providing a context, once in the abstract (line 6) and once in the introduction
(page 4, line 8). We are actually claiming that the emergence of big data that followed the
innovation in technologies and data storage has led to the development of new regression
methods in the 2000’s, in particular elastic net regression and Random Forest (Breiman 2001;
Zou and Hastie 2005). Those methods have indeed been developed in order to address
high-dimensional problems (p>n), that Principal Components Regression and Partial Least
Squares poorly deal with. However, since the word “big data” can be misleading, we have
decided to remove it in the revised version. Random Forests are indeed particularly useful for
high dimensional data with numerous predictors such as boosting gradients or neural
networks. However, in the new version of the code, by using the Nash-Sutcliffe Coefficient
of Efficiency, we have found significantly better results for the Random Forest and the
Elastic-net methods than for the PLS and the PCR methods (this is illustrated in the Fig. R1
that will replace Fig.7 of the previous manuscript), which shows that adding these methods
even in a low-dimension study such as in ours can be more efficient than using classical
forms of linear regression. Additionally the code we provide allows to choose the network of
proxy records that is used for the reconstruction. As the number of available paleoclimate
data is constantly growing (even if it does not reach hundreds of thousands yet), we claim
that regression methods adapted to high-dimensional problems such as Random Forests will
sooner or later, become particularly useful for climate index reconstructions. We have added
a few words on this subject in the discussion of the manuscript.
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Fig. R1: Nash-Sutcliffe Coefficient Efficiency (NSCE) scores obtained for each method for
the reconstruction period 1000-1970 and for different significance for the correlation test
performed on the training periods: 95%, 90%, 80% and 0%. Red boxplots give the NSCE
scores for the Random Forest method. Blue boxplots give the NSCE scores for the Elastic-net
method. Green boxplots give the NSCE scores for the Principal Components Regression
method. Yellow boxplots give the NSCE scores for Partial Least Squares method.

1.2 Suboptimal Methods
(1) Furthermore, the chosen methods are unable to deal with missing data, forcing the authors
to limit the calibration to a set of complete records, thereby jettisoning important information.

Meanwhile, at least three methods have been proposed to estimate past climates using
discontinuous records:

1. The Expectation-Maximization algorithm (Dempster et al., 1977) and its regularized
variants (Schneider, 2001; Guillot et al., 2015), as used by Mann et al. (2008) to reconstruct
the global mean surface temperature, for instance.

2. Bayesian Hierarchical Models, that treat missing observations as extra parameters (Tingley
and Huybers, 2010a,b; Tingley et al., 2012; Tingley and Huybers, 2013; Barboza et al.,
2014).



3. Data assimilation approaches, for instance the Last Millennium Reanalysis framework
(Hakim et al., 2016; Singh et al., 2018).

All of these methods have code that is publicly archived, often in open-source languages like
R. Restricting themselves to antiquated regression methods forces the authors play a dubious
game of optimization on the various training and verification sets, to offset the disadvantage
of restricting the network to a gap-less training set. This is suboptimal on methodological and
computational grounds.

(2) In this study, we focus on climate variability modes, which is only a part of the global
climate. We applied dedicated methods aiming at improving the reconstruction of these
modes. Our techniques can certainly be further improved, but as it stands, we believe that
they add new potentialities to the regression approaches currently at use. This paper is
actually clarifying and adding methodological clue and gives an accessible tool to help
paleoclimatologists to build more robust climate index reconstructions. Although our
approach and the approaches mentioned by the reviewer aim at reconstructing past climate,
the question and focus of the paper is not to show if one is better than the other, but to try to
further develop one of them. Concerning data assimilation methods, we certainly agree that
these are very useful methods, but we do not believe that these methods, difficult to
implement and thus not accessible to all paleoclimatologists, necessarily discard other more
simple statistical models. We believe that science can benefit from a variety of approaches,
all together contributing to identify robust results.

(3) Therefore, we acknowledge the existence of the three methods depicted by the reviewer,
and discuss them shortly in our manuscript, but we do not think there are decisive arguments
showing that our approach is necessarily weaker, although this is not the scope of this paper
to prove it at this stage.

1.3 How uncertain?

(1) An even more serious issue is that the authors do not provide any measure of uncertainty
for their reconstructions. They could do so via any defensible method that has been applied in
paleoclimate investigations, e.g. parametric or non-parametric bootstrap, jackknife, or
maximum-entropy bootstrap (Vinod and de Lacalle, 2009).

(2) We thank the reviewer for pointing out this major omission (also mentioned by
Anonymous Reviewer 1): that is the importance of assessing the reliability of our
reconstruction. The uncertainties we now provide are calculated as in Ortega et al. (2015)
using the residuals calculated over the 50 training periods. These regression uncertainties are
represented by the standard errors (s.e.) of the regression, calculated as the root of the sum of
the squared residuals over the training periods divided by the degree of freedom:
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wain the fitted NAO by the regression model over the training
period.

An uncertainty band 2*s.e. is calculated for each of the 50 individual reconstructions and the
envelope of this 2*s.e. uncertainty bands is our estimate of the total uncertainty range of the

final reconstruction (as a sum of the regression uncertainty plus the parameter uncertainty).

(3) We added regression uncertainties in a table and on the figures where the reconstructions
are shown (Fig. 11 of the last version of the manuscript). Also, the code we deliver provide
standard errors for each member of a given final reconstruction.

1.4 Statistical Models are Models too

(1) I feel compelled to point out that this is a journal about models, so it would be desirable to
discuss the advantages of the methodological choices on modeling grounds: each of them
models the data and uncertainties in various ways, and it would seem natural for such
modeling assumptions and choices to be discussed here (more so than say, Climate of the
Past, where the current manuscript would be a better fit in present form). One implicit
modeling assumption they make is that the NAO is a linear combination of the proxy data,
whereas the correct etiological relationship is the other way around (proxies react to climate,
not climate to proxies). This inevitably leads to important biases (Frost and Thompson,
2000). Again, some of the methods mentioned above can deal with that, and the authors
should consider using them.

(2) We have explained before our motivation for submitting the paper to this journal rather
than to Climate of the Past: the idea is to propose a statistical modelling tool, which will be
available to the community and could be further developed in a transparent way, rather than
to only propose a new NAO reconstruction. We have been encouraged for this by the
editorial guidelines of GMD which include ‘statistical models’. Nevertheless, we leave it to
the editor to decide whether our study is suited for GMD or not. Regarding the modelling
assumption: stating that the NAO is a linear combination of the proxy data is something
about which we have been unclear in the manuscript but this is not what we have meant
literally. “NAO index can be reconstructed from a linear combination” would be a more
suited sentence.

(3) We have revised the manuscript so as to avoid such shortcuts following proposition
described above.



1.5 Perfunctory Validation

(1) Another major problem is that the authors carry out a very perfunctory validation using a
metric (correlation) that is known to only reward phase coherence (Wang et al., 2014). At the
very least, the authors should explore the Reduction of Error and Coefficient of Efficiently
(Nash and Sutcliffe, 1970) statistics, which have been used for more than 25 years in the
dendrochronological literature (Cook et al., 1994). Another useful measure for point forecasts
is the Continuous Ranked Probability Score (Gneiting and Raftery, 2007).

(2) (3) We agree that the results may be sensitive to the choice of the calibration/validation
metric. Thus, we have also calculated Root Mean Squared Errors as a new validation score.
We thank the reviewer to suggest this more sophisticated metrics that have been added and
used as the main metric in the manuscript on top of the correlations and RMSE: The
Nash-Sutcliffe Coefficient of Efficiency (NSCE). The NSCE scores is indeed helping us in
many ways. It shows that all the reconstruction made using the Vinther et al (2003) NAO
index are not reliable since their NSCE scores are not significantly different to 0 (following
student test on the scores obtained from the individual reconstructions). However, using the
Jones et al (1999) index (which is exactly the same as Vinther et al (2003) index on their
common period) we obtain more robust validation scores (i.e. significantly higher than 0 at
95%).

(1) If the authors were making interval forecasts, which they should, the sharpness of their
prediction bands should be evaluated by an Interval Score (Gneiting and Raftery, 2007).

(2) (3) We thank the reviewer for this interesting comment. Nevertheless we should confess
that what the reviewer is requesting here is not very clear to us even after carefully reading
the reference mentioned. As a response, we can say that in the revised version of the
manuscript, we are now properly computing uncertainties (cf. point 1.3) and notably for the
validation scores, which correspond to the “forecast section” from our methodology.

(1) Finally, an obligatory measure of any statistical forecasting is to inspect the quality of
residuals: since regression relies on residuals being Gaussian, independent and identically
distributed, any statistics book (e.g. Wilks, 2011) says that the residuals should be tested for
these features. This should at least be present in an Appendix.

(2) We agree that this is an important assumption to check.
(3) We have then check this assumption for the best reconstruction of each method (presented

Fig. 11 of the previous manuscript) and we have added a figure showing the p-values of
Shapiro-Wilk tests obtained for the 50 individual reconstructions for each of them (which



have the best NSCE scores on average). Also, we have updated the code to provide the
p-values of this test as an additional output.

1.6 Double dipping

(1) The authors pre-screen the proxy network for correlation to the NAO index. What isn’t
clear is whether that is done as part over the model training, or whether this is done over the
entire instrumental era (or the parts of it that overlap with each proxy series). If the latter, this
is an example of “double-dipping”, whereby information from the test set is used as part of
training, leading to overoptimistic results. I could not ascertain this from the paper, so a
clarification is necessary.

(2) This comment is very useful firstly because we have been unclear on this point and
secondly because it helps us to actually find out that we were doing double-dipping. Indeed,
as the proxy records are selected over the entire instrumental era, the model built over the
training period uses proxy records that are, at least partially, coherent with the NAO index
over the testing period, which is supposed to be independent.

(3) To correct this issue, we decided that the subselection of proxy records based on
correlation test with the NAO has to be made always on training period, which means that
there is no a priori information about the coherence between the NAO index and the selected
proxy records made over the overlap period with the NAO. We have modified the code and
all the results following this improvement in our approach. This does not affect much our
results in the end, but is clearly an improvement in the coherence and rigor of our method, for
which we thank the reviewer again.

(1) Why use the PAGES2k version 1, and not PAGES 2k version 2 (PAGES 2k Consortium,
2017)?

(2) Pages 2k version 2 was not available when we started this study.

(3) We thank the reviewer for highlighting the updated version, which is now used in the new
version of the manuscript.

(1) Also, the forcing of Gao et al. (2008) is known to contain many errors, which have been
corrected by the vastly more complete dataset of Sigl et al. (2014). This could explain the
very weak signals observed in the paper’s Superposed Epoch Analysis. I recommend using
the best available data.



(2) We thank the reviewer for pointing us to the potential errors present in the Gao et al.
(2008) reconstruction. Indeed, this reconstruction is now quite old, and we agree that the
more recent reconstructions may have corrected some of the errors from former ones.

(3) Thus, we have removed the use of the Gao et al. (2008) reconstruction and only kept Sigl
et al (2014) and Crowley et al. (2013) in the analysis of the manuscript. The inclusion of Gao
et al. (2008) in the submitted manuscript was aiming to better explore potential uncertainties,
but we agree with the reviewer that since Sigl et al. (2014) built on the reconstruction of Gao
et al (2008) trying to improve it, this latter one has been superseded.

2 Editorial Comments

(1) The manuscript reads like a literal translation of a chapter from a French PhD thesis. That
means it is 1) overloaded with tedium intended to show that the main author knows what
(s)he is talking about; (b) chock full of gallicisms.

(2) We have worked hard for improving the language in this revised version and a native
english colleague has agreed to review it before submission.

(3) As mentioned by Anonymous reviewer 1, the introduction of this paper was very heavy
and difficult to read, with a lot of technical details that were not always useful. The
introduction of the paper has been largely reduced.

2.1 Tedious writing

(1) The description of methods is incredibly tedious. Sections 3.1.2, 3.2.1, 3.3.2 explain the
obvious step of linear model prediction as a matrix multiplication. None of this is useful in
any way as long as the code is shared. Also, an entire appendix is devoted to a user’s guide,
which should really be a readme file on GitHub. Please do not waste the readers’ disk space
and printer ink with this.

(2) While writing the first version of the manuscript we indeed hesitated to put section 3 in
the main text and not in the appendix. We believe that it may be useful to have all the
necessary details in the main text, which was one of the reasons why we choose GMD. We
have asked the editor about this issue and she supports our choice since it may improve
clarity for people that are non-expert in statistical models. Indeed, we acknowledge that the
reviewer is a great expert in statistical modelling, but our aim here is to gather a larger
audience, and notably the paleoclimate record experts, who may be interested in having
further details to precisely follow our methodology. Thus, we believe that this level of details
is useful and this explain why we chose GMD instead of Climate of the Past.



(3) Following the reviewer’s advice, the user’s guide has been removed from the appendix
and is now available in a readme file on GitHub, where codes and data are also available (see
section 2.3 of this response).

1) One of the most tedious parts is that the PAGES 2k Consortium (2013) paper is
consistently referred to as “the Pages 2K database 2014 version". Since it was published in
2013, why insist on calling it 2014? Also, the consortium’s name is “PAGES 2k”, not Pages
2K.

(2) (3) As we have updated the database in our code, we now call it the “P2k-2017 database”
in the new version of the manuscript.

(1) In section 3.1.3, several approaches are mentioned to choose the truncation parameter
(none, it should be said, with the aid of any statistical theory), but they are not used. Either
leave them unsaid, or mention them and use them (e.g. by comparing what choice is obtained
with those methods vs cross-validation).

(2) We have actually tested them for the Principal Components Regression because they only
are specific to this method. Results show that cross-validation gives better results but we
decided not to show it in the manuscript as it was already quite dense. Nevertheless, we agree
that it should be shown or mentioned.

(3) Thus, we have added a supplementary figure and a supplementary table in order to show
that the use of cross validation provides better results than previous methods (only for PCR).

2.2 Gallicisms

(1) The manuscript is generally well organized, but the writing suffers from many gallicisms.
Since I happen to know a little French, here is an attempt at translating them:

* page 6, line 11: facilitate — simplify

* page 8, line 11: most performant — best-performing

* page 11, line 16: inversed — inverted

* page 12, line 23: to present frequently a — to often result in a * page 15, line 15: require to
be tuned — require tuning

(2) (3) We thank the reviewer for these corrections that have been added in the manuscript.
2.3 Unavailability

(1) I understand the need to protect data and code until the paper is published. However,
acting like they are public, and linking to a non-functional Zenodo link (https:



//zenodo.org/record/1403146#.W4UMUGaB2qgA) is bad form. Either give a complete link or
mention that the data/code will be shared upon publication.

(2) (3) When we submitted the paper we tested the Zenodo link (as advised by GMD), and it
worked well. We figured out, thanks to this comment, that it is now broken, and we do not
know since when neither why. We did not mean to protect our code nor our data and we

actually are glad to share it as we have worked hard to build it. Codes and data can now be
found on the following GitHub link: https://github.com/SimMiche/CliMoRec

- _Response to the short comment from Eduardo Zorita: '"Reconstruction
Variance?"

(1) The study uses one metric to evaluate the quality of the reconstruction methods : the
correlation between observed and reconstructed index over a test period. However, other
properties of the reconstructed indices may also be relevant, for instance, the variance. Many
regression-based reconstruction methods underestimate past variability. This can be
illustrated in a simple one-dimensional set up. Considering one proxy record P that reacts to
variations of the NAO index:

P (t) = aNAO(t) + &(t)

where ¢ is random noise.

A simple, but widely used, reconstruction method is the statistical regression model:

NAO(t) = BP(t) + n(t)

where 1 represents the variability not captured by the regression model. Using Ordinary Least
Squares regression to estimate 3 leads to underestimation of the true value of B and, therefore,
of the true NAO variance (see for instance Isobe et al 1990 Linear regression in astronomy
for a review of different regression flavours and their properties).

This problem may or not be present in the methods used in this study. It would be useful if
the authors could report in Table 4 also the variance of the reconstructed NAO index in the
test period wrt. to the observations and also the variance of the reconstructed index over the
full period.

(2) We thank Eduardo Zorita for this constructive and useful comment.

(3) We decided to add a table showing the variance for the best reconstructions from each
method (i.e. the reconstructions presented in figure 11). The variance of the reconstructions is
presented for the whole instrumental period, the testing period, the training period, the full
reconstruction period and its portion before instrumental observations of the Jones et al.
(1997) NAO index (the years before 1856 being excluded). We also add discussions in the
main text of the manuscript about this well-known problem in paleoclimate reconstructions.


https://github.com/SimMiche/CLIMOREC
https://editor.copernicus.org/index.php/gmd-2018-211-AC1.pdf?_mdl=msover_md&_jrl=365&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=71096&c=158596&salt=20675339972059562746
https://editor.copernicus.org/index.php/gmd-2018-211-AC1.pdf?_mdl=msover_md&_jrl=365&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=71096&c=158596&salt=20675339972059562746

(1) Also, it would be informative if the time series in figure 11 were not normalized to unit
variance (?), but showed the actual reconstructed variability.

(2) Normalizing to unit variance is a useful way to easily quantify NAO variability using
standard deviations as unit. Nonetheless, as Eduardo Zorita is mentioning, it is actually hiding
important informations about the reconstruction we performed.

(3) Thus, we decided to modify figure 11 in order to keep the actual reconstructed variability
by our code. +1 and -1 standard deviation levels for each reconstruction have also been added
in this figure in addition of their regression uncertainties (see response to 1.3 comment of
“Response to Anonymous Referee #2”).

- 'Response to the short comment from Astrid Kerkweg: "Executive Editor
comment on gmd-2018-211""

(1) Dear authors,
in my role as Executive editor of GMD, I would like to bring to your attention our Editorial

version 1.1:
http://www.geosci-model-dev.net/8/3487/2015/gmd-8-3487-2015.html

This highlights some requirements of papers published in GMD, which is also available on
the GMD website in the ‘Manuscript Types’ section:
http://www.geoscientific-model-development.net/submission/manuscript_types.html

In particular, please note that for your paper, the following requirements have not been met in
the Discussions paper:

* "The main paper must give the model name and version number (or other unique identifier)
in the title."

In order to simplify reference to your developments, please add the name of your software
tool (e.g., "statistical toolbox") and its version number in the title of your article in your
revised submission to GMD. The title could be something like "Reconstructing climatic
modes of variability from proxy records using the statistical toolbox version 1.0: sensitivity to
the methodological approach"

(2) We thank the executive Editor Astrid Kerkweg for reminding us the guideline for
submission.

(3) We decided to attribute the name CliMoRec (Climate Mode Reconstruction) to our
statistical toolbox and we have changed the name of the manuscript to: “Reconstructing


https://editor.copernicus.org/index.php/gmd-2018-211-AC2.pdf?_mdl=msover_md&_jrl=365&_lcm=oc108lcm109w&_acm=get_comm_file&_ms=71096&c=158597&salt=5903949331126625199
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http://www.geosci-model-dev.net/8/3487/2015/gmd-8-3487-2015.html

climatic modes of variability from proxy records using CliMoRec version 1.0: sensitivity to
the methodological approach”. Also, we have modified the references “statistical toolbox™ to
“CliMoRec version 1.0” in the main text of the manuscript.
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Abstract

Modes of climate variability strongly impact our climate and thus human society. Nevertheless, their

statistieal-properties-the statistical properties of these modes remain poorly known due to the short time
frame of instrumental measurements. Reconstructing these modes further back in time using statistical

learning methods applied to proxy records is a-useful-way—to-improve-useful for improving our unders-
tanding of their behavioursand-meteorelogical-impaets. For doing so, several statistical reconstruetion-me-

thods ex1st among which the Prln(:lpal Component Regressmn is one of the most w1dely used —Additienal

ef—btg—d&barm aleochmatolo Here we prov1de to the chmate communlty &mulﬁ-st&ﬁsﬁeal—tee%bexthe

computer device CliMoRec, based on four statisticallearning-metheds-andregression methods (PCR, Partial
Least Squares, Elastic Net and Random Forest) and cross validation algorithms, that enables systematic re-

construction of any-elimate-mode-of-variabilityaslong-as-a given climate mode index. A prerequisite
is that there are proxy records in the database that overlap in time with the-ebserved-variations-of-the

W@W efficiency of the methods can vary, depending

on-according to the statistical properties of the mode and the learningsetproxy records used, thereby al-

lowing to assess sensitivity related to the reconstruction techniques—This-toelboxis-medular-in-thesense
that-technique. CliMoRec is modular as it allows different inputs like the proxy database or the ehesen

variability-moderegression method. As an example, the-teelbex-it is here applied to the reconstruction of
the North Atlantic Oscillation by using Pages 2K database. In order to identify the most reliable reconstruc-
tion among those given by the different methods, we alse-use the modularity of CliMoRec to investigate the
sensitivity to the methodological setup to other properties such as the number and the nature of the proxy
records used as predictors or the reconstruction period targeted. The best reconstruction of the NAO that
we thus-ebtain-obtain is using the Random Forest approach. It shows significant correlation with former
reconstructions, but exhibits better validation scores. —



1 Introduction

?he—ehmate—systenﬁs—eempesed—eﬁnteﬁiepeﬂdeﬂesubsystemsThe 1nterde endent components of the
climate system, such as the atmosphere

and the ocean, vary at different timescales.
The interactions between those components [Mitchell et al,, [1966] ;-the-elimatevariability speetra-is-very
largeﬂﬂdrf&ﬁges&oﬁrheuf}ytdlead the climate to vary from the hourl to the multldecadal tlmescales

%&pfefndustﬁakeeﬂtre%simﬂlaﬁen&wrﬂﬂkﬁemdustnal control srmulatlons of lobal coupled cllmate mo-

dels —This—variability-is-have evidenced that such a variability is still present without any modulation of
W@W%frequently referred to as 1nternal varlabrhty [Hawkins and Sutton, [2009].

g External factors such
as volcamc aerosols [|M1gnot et al}|2011}; |_1ngedouw et al | M |Khodr1 et al.| [2017], selar-irradiance—
Seidenglanz-et-al;-anthropogenic aerosols [Evan et al} [2009; [Evan et al} 2011); Booth et al} [2012], solar
irradiance [ISWlngedouw et al1[2011; Seidenglanz et al}2012]], and greenhouse gas concentrations [Sto-|
cker et al}[2013]], which-alter the Earth2also influence the variations and dynamics of the climate system
Ms radiation balance; 5 . By only considering
the impact of external forcings which are not due the-efthe-to the human activity, ene-expleres-we can
characterise the so-called natural climate variability.

An-unequiveoeal-
An unequivocal synchronous rise in both the greenhouse gas eempeosition-concentration in the atmos-

phere and the global mean temperature has been observed in instrumental measurements [Bradley; {2003

?Stocker et all [2013]. However ;-the-nonstatienary-variabilityfor temperatures, fluctuations around this
Swingedouw et al|[2017] ;asks-the

v highlight the modulating role
of natural Varlablhty at decadal to multldecadal ehmate—vaﬂatteﬂsscales Thereby, 1mprov1ng our know-

ledge about past natural climate variability
and its sources is essential to better understand the 0tent1al comin changes in chmatetﬁthe—ﬂearetefm

trend from adecade to another I]Kosaka and X1eL|2013| |Santer et al. L|2014|

Physics driving the climate system induces large-scale variations, organised around recurring climate
patterns with specific regional impacts and temporal properties. These variations are known as climate
modes of variability;and-their- Their evolution is usually quantified by an index that can be calculated from
a specific observed climate variable. These indices provide an evaluation of the corresponding climate va-
riations and their regional impacts [?[Hurrell, [1995]; Neelin et al},[1998]; 4Trenberth and Shea, [2006]. As an
example, the North Atlantic Oscillation (NAO) is the leading mode of atmospheric variability in the North
Atlantic basin [4Hurrell et all[2003]]. Generally defined as the sea level pressure (SLP) gradient between the
Azores high and the Icelandic low, the NAO describes large-scale changes on-of winter atmospheric cir-
culation in the northern hemisphere and controls the strength and direction of westerly winds and storm

of action induces a northward shift of the eddy-driven jet-stream. Such large scale changes in atmosphe-
ric circulation lead to precipitation and temperature variations in various regions (North Africa, Eurasia,

North America and Greenland [4Casado et al.,|2013]]). Moreover, these meteorological impacts have major
influences on many ecological processes, including marine biology [Drinkwater et al.l|2003] as well as ter-
restrial ecosystems [Mysterud et al.,|2001]. This mode also affects the oceanic convection in the Labrador




Sea and the Greenland-Iceland-Norwegian Seas through changes in atmospheric heat, freshwater and mo-
mentum fluxes [Dickson et al., 1996|; Visbeck et al},[2003]]. These changes may lead in turn to modifications
in the Atlantic Meridional Overturning Circulation (AMOC) which in-turn-affeets-then affect the poleward

heat transport and the related SST-Sea Surface Temperatures (SST) pattern over the Atlantic [Trenberth
and Fasullo| [2017].

The dynamics of these modes are still not fully understood due to the small-relatively short duration
of the instrumental records, which is-preventing-prevents robust statistical evaluation of their properties
(e.g. spectrum, stability of teleconnections, underlying mechanisms-). To partly overcome this limitation,
Wémﬁmmmwmmm beyond the perlod

in numerous studies that combine appropriate statlstrcal methods and information from proxy records.
Proxy records provide indirect ebservations-ef-estimates of past local or regional climatein-the-past-using-,

derived from natural archives coming for instance from sedlment cores, speleotherns ice cores or tree rings.

o 3 Accordm to its nature, each proxy record
hasa specrﬁc temporal resolution, from years to mrllenma and then-eeverscan cover a specific period: from

hundreds to millions of years. New proxy records are continuously gathered extending the available data-
sets and allowing paleoclimatologists to build increasingly consistent reconstructions [Pages 2K Consor-|

|t1um|, |2013| |Pages 2K Consortluml |2017|] ?he%&skfmﬂeﬂm&rfﬁs—&peﬂedrexteﬂswe}fﬁwesﬁgated%ﬁ

Based on the assumption that climate modes such as the NAO affect climate conditions in different
LOS\@EW studies have used staﬁs&ea%pfedreh&%eﬁm&mdﬁe{eeoﬂstﬂ}ekd}ffefeﬁtehmaﬁe—medeﬁﬂ

egression- based methods on tem erature and drou ht sens1t1ve rox records
to reconstruct the variability of these modes over the last thousand years.[Cook et al| firstly propo-
Hotelling;

sed a complete methodology of nested Principal Component Regressions (PCRs) |
annually resolved proxy records boundrng the North Atlantic to reconstruct tts@vevljév(;) Varrablllty further
back to 1400. Sev v v o

More recently, Mgn%e%ﬂﬁﬂmbrtega et alj (2015) performed a NAO reconstruction from 1073 to 1969

also based on the PCR, using 48 proxy records that were significantly correlated with the the-historical NAO
index on their common time window. Instead of nesting reconstructions of different sizes, which leads-can



lead to inhomogeneities between time windows using different proxy selections, this study used several
random calibration/validation samplings of the overlap period of the NAO index and the proxy records to

perform individual reconstructlons on the same time frame. Byrepeatingnumerous-times-that-sampling;

At}&ﬂﬁe—SSZPRe ression- based methods have also been used for reconstructm other climate modes indices
than NAO, such as for instance El-Nino Southern Oscﬂlatlon index ﬂqireﬂbertl‘k&ﬁd%heal—l%@%h et al | |2013[]

and the Atlantlc Mult1decadal Varlablht 1ndex W&ﬂg

More recent algorithms than PCR provide alternative regression methods that can also be used to re-

construct climate modes, and may possibly further improve the quality and the robustness of these re-

constructions. In this paper, we provide-a-teolbexusingpresent the computer device CliMoRec (Climate

Mode Reconstruction) version 1.0, which includes multiple statistical approaches, for reconstructing cli-
mate modes indices. It is based on four regression methods: the PCR, the Partial Least Squares regression

(PLS) the Elastlc net regressmn (E net) and the Random Forest (RF). Fhe-aim-is-to-propose-a—systematie

v It communicates with a large proxy
database—?hr&d&tabas& , that contalns various types of proxy records distributed all-over-the Barth-and
assoaatedwrtl%worldwﬂe and which are sensitive to different climate variables. Thereforethis-toelbex
&HW%&%&H@W%&MH}%&&%PMQ%WM&
yMMMMMW(Flg 1). 1Pheeoﬂﬁdeﬁee—wehaveiﬂ—the—reeoﬂstmeﬁoﬂ1s—theﬁﬂfa{uated

%@vmmmﬁ&
proxy records representing their regional climate imprints, and that have the appropriate time resolution
to capture its preferred timescale of variability. Besides the climate modes, CliMoRec can also be used to
reconstruct other kinds of climate time-series such as temperatures or precipitations in a given location.

In section 2, the database and some general statistical tools are first presented. The reconstruction me-
thods, are then described in a mathematical formalism —We-ther-eempare-in section 3. Section 4 compares
these methods by reconstructing the NAO index over the last millenium —Finally~we-investigate-and

investigates the reconstruction sensitivity to methodological choices such as the method used, the lear-

ning period, the proxy predictors selection and the size of the ealibration-samples—training samples. Final



section 5 presents a discussion including some outlooks for next version of CliMoRec and the conclusions
of this study.

2 Data, notations and methodologies

2.1 Data

The assessment of our reconstruction techniques is investigated for the NAO index, as it is probably
the mode of variability that has been observed for the longest time period. Indeed;-this-indexis-This index

is indeed relatively simple to calculate from instrumentalrecords-because-it-only needs-two-instrumental

recordlocationsfor-SEPSLP time series as it only requires two locations with instrumental records: one
within the center of actlon of the Azores antlcyclone typicall Glbraltar and one within the Icelandlc

P2k2017 The rox records Wthh resolutlons are Iower than annual have beeW

MWWWMWWMW

temporal scale and used for the reconstruction, their use is not recommended [Hanhijarvi et al, 2013],

as the interpolated time series will present high auto-correlation coefficients, which could inflate the

correlations with the NAQ and thus their weight in the final reconstruction, potentially leading to spurious

results. We also added te—tht&databaseé&ilﬁgppmglygdproxy records used in %he@;ggg
O S 1 o 1 1 Do g

%hefeeeﬂst&tetreﬂ—peﬂed—%argete&ka database of 554 well verlﬁed and worldw1de dlstrlbuted annuall —resolved
proxy records.



2.2

Methodology

The general reconstruction procedure follows 16-steps;—all-11 steps, among which the first three are
inputs selection and the others are already implemented in the-statistical-toolbexCliMoRec. These are

applied sequentially as follows (Fig. 1):

1.

10.

11.

An observational time series of the mode of variability is chosen to be used as the predictand

. A target time period 7~ for the reconstruction is selected

2
3.
4

The statistical reconstruction method to be applied is selected

. The proxy records that overlap with the selected reconstruction period are extracted to be used as

predictors
The common period between the observed climate index and the selected proxy records is extracted

fer-fithing-identified and extracted for calibrating the reconstruction

This common period is randomly split in two, one for training the model (training period), and one
for testing it (testing period). This is repeated R times to generate an ensemble of reconstructions
Eor-each-member-of the-ensemble—the reconstruetion-The proxy records that have a significant
correlation at a given threshold with the climate index over the training period are selected to train
the statistical model

Each of the R sets of periods and proxies is calibrated over the training peried-window for all the

different statistical parameters for-a-given-methoed-of the given method selected in 3, and the best
one-is-identifiedd-performing set is identified

The corresponding optimal setup is then applied to extend the reconstruction over the target period
T-7 for each ensemble member

A-validation-Avalidation score is computed for each member by comparing the trae-observation-based
testing series and each individual reconstruction over the corresponding testing period

The final reconstruction is calculated as the average of all the individual R reconstructions

Thus the-toelbex-CliMoRec provides the mean reconstruction of the chosen mode with associated un-
certainties and a vector with en-an ensemble of R validation scores following different metrics as final
outputs.

The number of proxy records and the reconstruction period are here fixed for the different training/ -

testing period sections, in contrast with some previous studles which used nested approaches
[2002]; |Wang etal. L|2017|] wreip . W :

aim of this study is mainly focused on optimizin the methodological approach for the reconstruction and
not the reconstruction itself. Nevertheless, CliMoRec can be used to perform reconstructions on different
time windows which can be then aggregated to perform a nested reconstruction, with associated scores.

2.3

Mathematical formalism of empirical data

To faeilitate-simplify the mathematical notation, we make the assumption that the proxy record selec-
tion and truncation to the their common time window with the climate index have already been made (see



section 2.2, steps 4 and 5). It is important that all proxy records are truncated on the same time window to
make them mergeable in the same matrix. Each record has to cover at least the chosen reconstruction time
window 7 (section 2.2, step 2). Following these steps, the proxy record matrix does not contain missing
values.

Fig.illustrates how the proxy data are organised in the input matrix X. We denote X! = (X!),er,..., X? =
(X?)ie7-, where 1 stands for the time (with N annual time steps), and p is the number of proxy records on the

same period 7. X is thus a N X p matrix where-all- theseveetors-are mergedgrouping the individual records:
X =[X',...,XP]. Y = (Y))ier is the target mode-of variabilityclimate index, defined on the historical time

window T ;eentaining-called the learning period, that contains n annual time steps. The period where Y is
not known is denoted 7, containing m annual time steps (Fig. 2). Thus 7 = T U 7 is the entire reconstruc-

tion period, which contains A#-N = n + m annual time steps. With these notations, the dimensions of the
different matrices and vectors are: X € RV*P Xy € R™P; Xy € R™P; Y € R". The periodT-on-whiech

a preaictors—and preaictanaa OWitana a o o-SP arep

learning-setis-thenlearning set is denoted {X(r), Y}, and the reconstruction set is denoted {X(7}.

2.4 Termsand-, notations eflearningtheeryand validation metrics

To build and validate the reconstruction of Y, the dataset of predictors X is split in two independent
subsets as shown in section 2.2, one for the training (usually called training set), and another on which the
model is tested (called testing dataset or first seen data).

Building a model consists in estimating all the parameters needed to reconstruct Y given the predictors
X!,...,XP. As an example, building a PCR model consists in determining the Principal Component of the
predictor matrix X and finding the best linear combination of them to reconstruct Y over the training
period. Then, the reconstruction consists in projecting the first seen data on the orthogonal basis built, and
applying the estimated regression coefficients to reconstruct ¥ over the whole time window 7"

We denote the chosen reconstruction method by M. Each method is defined by a specific number of
parameters ¢, contained in the vector denoted 6. As an example, the Principal Component Regression has
a single parameter that is the number of Principal Component used as regressor [Cook et al.}2002}; |Gray
et al.}|2004];|Ortega et al.,2015);Wang et al.,|2017]. We can denote the function M as a function of: (i) a set
on which the model is built ({X, Y}), (i) observations of the predictors on the reconstruction period (Xec)),
and (iii) a parameter vector (6):

M (XYY, Xpee), ) = Yo (1)
({R™P, R"} , R™P RI%) — R™ n, p,m,qs € N (not fixed) )

Hence, the M function gives an entire reconstruction of size m € N, depending on 6 for given training/-
testing periods.

We introduce S as the score function, or validation metric. This function is an indicator that estimates
the quality of a predietionreconstruction Y in-eomparisen-with respect to the observed values Y(,p5):

S (Yiobs) f/) -5 3)

R™R™M >R (4)



In this paper, three kind of validation metrics will be considered. The first is a correlation function, the se-
cond is a root mean squared error (RMSE) function and the third is a Nash-Sutcliffe coefficient of efficiency
+[Nash and Sutcliftel [1970]:_

Scor(Y(obs)v Y) = Cor(Y(obs)’ ?) (5)

m
S ks EVioboy ) = 1¥iobsy = P = 4| D" Kicony = $? )
i=1
. S (Yiobsy — ¥i)? s 1 ¢
M,Y) S P ) L withY (opg) = — Z Yitobs) (7)

The-first-S yscr Will be used to validate the reconstruction methods over the testing period, and the
seeond-S pys g Will allow to determine the optimal parameters (@)g) for the reconstruction over the training

period. We use S . because it is used in the last NAQ reconstruction of Ortega et al (2015), with which we
will compare our results. S ysc is a metric defined between —~co and 1, values lower than 0 mean that using
the mean over the training period is better than the proposed statistical model [Nash and Sutclifte} [1970].
Here, we will consider that a final reconstruction is robust and reliable when its R NSCE scores are
significantly positive at the 99% confidence level using a Student test. As the possible values of the NSCE

score is not symmetric around 0, the best reconstruction is identified as the one that has the higher median
Of NSCE scores.

2.5 Parametertuning Final reconstruction and medel-eemparisenparameter
tuning

2.5.1 Parameter-tuningbyleave-one-out-eross-validation

We split the initial learning period 7 in R partitions of two subsets: ,V1 <r <R. For

a given method M, R reconstructions are build on the R training samples. R is arbitrarily chosen, but
larger R tends to produce reliable ensemble reconstruction by decreasing the variance of the R individual

reconstructions made on the training samples. Y1 < r < R, we denote {X" . LY ()| the training set, and
XDy Vihe test set. At each step, the columns of X, X, waim.and X, are normalized to the mean and
the standard deviation of the respective columns of X 4.

To estimate the optimal set of parameters 6,,; on a given training set {X;qin, Yirain}, We use the K-
fold cross validation approach (KFCV; section 2.2, step 7and-8 and 9) [IStoneL |1974|; |Geisserl |1975 . Cross
Validation (CV) methods, are in general, widely used as parametrization and model validation techniques
[|Kohav1l |1995| Browne|, |2000| |Homr1ghausen and McDonaldL |2014| |Zhang and Yangl |2015|] As—pfeseﬁ{ed

same sizes (or approximately same sizes if the len t of the training set is not divisible by K). V1 < k < K,

we denote { X, Y, containing only information for the #!time stepk” drawn sample. Then, {¥=: ¥}
{X(_, Yip! is the set containing all the initial-observations,exeept-thei2K-1 other sets. For all possible
values of 6 contained in ®, we scan the 1K models based on the sets %%W%&J&W



The empirical optimal set of parameters is obtained by minimizing the averaged S gys g functions on the

nsplitsregarding K splits by considering all possible combinations of 6 1974]. Mathematically, the
optimal EOOCV-KFCV set of parameters 6rpo-0f is determined by:

11
OLo0kr = argmin K i:llgleSRMSE(Y(i)(’Ii)aM({X(—i)(—VIi),YM(:/@}7Xm(@»0)) ®)
Using this approach, we retain the empirical estimation of the optimal set of parameters #o5 =600y = Ok

for the given method M and a given learning set {X, Y}.

study, KFCV method will be used on ever tralnln sets in order to perform each individual reconstructions
according to the different training/testing splits.

LOOCV-KFCV is applied to build a unique optimized reconstruction for every training sets and any
given method. Then, for all the corresponding and independent testing periods, the associated testing
series %% are compared to the individual reconstructions using the S==S yscg function. This way,

NSCE scores are obtained for the-feur-methods/V. In section 4, the distributions
of the validation-correlations-NSCE scores will be used as a metric to compare different reconstructions.
Fig.4shows-the-wholeprocedureldshows the the calculation to get the validation-ceorrelationveetorsNSCE
scores for a given method MM,

3 Statistical regressionRegression methods

We present each method in two steps: model ﬁttlng (v()vntralnlng) and reconstruction (for testing).
s—For each method the proxy
pfedietef—seematnx is denoted as X e R the proxy predlctor set and the target-climate index as ¥ € R".
}n%hfs—seeﬁeﬂ—X(,ec) € R™P? is the testlng dataset en-from Wthh aR™ reconstructlon Veeter—ts—ev&}ua{ed

-1s build using

the regression method

3.1 Principal Component Regression (PCR)

3.1.1 Modeling

The Principal Component Regression method consists in finding the best linear com-
bination between Y and the Principal Component of X. The Principal Component Analysis (PCA) consists
in applying an orthogonal transformation of an initial set of variables, potentially correlated between them,
into another set of linearly uncorrelated variables: the Principal Component [Pearson, [1901]; Hotelling]

1933]).

10



The first step consists in building an orthogonal basis where X will be projected. We define S € RP*?,
as the empirical estimator of the covariance matrix of X:

1
S =-X"X e RP? )
n

The-idea-is-te-We calculate the orthogonal basis formed by the vectors vy,..., v, by diagonalizing S:

v = argmax v’ Sy (10)
veR?
[VI=1
vy = arg max v ISy (11)
[vil=1
WTv)=0
(12)
v, =arg max v Sv (13)
veR?
HtII 1
vi)=0
Ty 1)=0
(14)

where ||V]| = lZle(vj )2, ¥v € R?. Thispreeedurelt is equivalent to maximizing step by step the empirical

variance of the projection of X on each orthogonal axis. Indeed, Vv € R? :

1 1
ISy = —lvTXTXv = —l(Xv)T(Xv) = Vare,,(Xv) (15)
o

The vectors (v)1<k<p are called the Empirical Orthogonal Functions (EOFs). Sinee-the-eolumns-of %
represent-the proxy reeords-it-means-thateach-EOF-whieh-It corresponds to the eigenvectors of the co-
variance matrix -eentains-a-certain-and each contains a given part of the spatial variability of the dataset:
Heneewe-attribute-themproxy dataset. We attribute them the eigenvalues (Ax)1<t<p, Which corresponds
to the initial variance of X translated by each orthogonal projection in the new basis:

A = Var(Xvy) = vl Svy Vi<k<p (16)

The Principal Compenent-Components (1, ..., u,) are then the projections of X on the EOFs. We denote
V = (vi,...,vp). We then calculate the Principal Component matrix U = (ujy,...,u,), defined as:

U=XVeR™ (17)

Now, we regress Y on the g < p (see subsection 3.1.3) first Principal Component. These ¢ Principal Com-
ponent are merged in a submatrix of U: U = (uy)1<k<4- The model is given by:

Y=UB+¢€ (18)
Where € is a white noise vector of size n.

The best estimator for 8 = (Bi,...,8,), is given by the Ordinary Least Squares (OLS) estimator which
minimizes ||&]| = ||Y - 7]|:

Bors = U 'UTY (19)
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3.1.2 Reconstruction

Using-the-testing-data-We project the testing matrix X, {seeseetion2-4)-we prejeet-the former-on

the pre-calculated orthogonal basis V:
U(rec) = X(rec)v e R™P (20)

We then obtain the predietionreconstruction by applying the estimated coefficient vector on the sub-matrix
(Ll(rec) (U(rec), e, U(qrec)) € R™x4.

Yq = 7/I(rec)BOLS eR" (21)

3.1.3 Parameters

Here, g is the unique tuning parameter. The choice of that parameter clearly affects the reconstruction
and then the validation NSCE-NSCE scores. Here the parameter vector 6 is unidimensional and takes its
values in the discrete set {i};<i<p.

3.2 The Partial Least Squares Regression
PHﬂc—kpal—@empeﬂeﬂt%ﬂa}ys&PCA keeps most of the 1n1t1a1 variance in X in a lower number

of vectors. v
Vi,...,Vp are constructed Wlthout taking into account any 1nf0rmat10n about the predlctand Y. Another
possible approach is thus to determine the orthogonal basis in which the empirical covariance between
Y and the projection of X on that former is maximized. This is the Partial Lest-Least Squares regression

(PLSr) method [ZeuandHastie;12005Wold et al.l[1984].

The first latent variable (LV), denoted & = Z SRV jX/ Xvi, where X € R™” and v € R? is the linear

combination of the initial variables X!, ..., X” such as:
v; = arg max Cov(Y, Xv), (22)
ucR?

[Ivil=1

In a similar approach to the PCR, the second LV is &, = Zle v2,j X7 = Xv,, orthogonal to &}, such as:

vy = arg max Cov(Y, Xv) (23)
veR?
[VI=1
(€. Xv)=0
And so on, until we have r < p LVs. The LV matrix is denoted Z = [£1,...,¢,]. Here, v,...,v, € RP,
are analogous to the EOFs in PCA, and are here called loadings. The latent variables £, . .., &, respectively

correspond to the projection of X on the r loadings.
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Finding the loadings is not as trivial as for PCR. This-is-due-to-thefact-that-the- Indeed the empirical
covariance matrix is not necessary definite positive and thus cannot be inverseddiagonalized. We solve
this problem by using the algorithm 1 named PLS1. Analogously to the PCR, the method provides various
alternative reconstructions depending on the value of r, which corresponds to the number of LVs kept as
regressors.

Algorithm 1

1: procedure PLS1

2: XO — X
3 forh=1,...,r
Xy
£ VT X v
5 §n < Xp-tvn
6: X, =X — %%Xh_] (deflation phase)

7: end procedure

Now we regress Y on the r < p first LVs. These r LVs are merged in a submatrix of E: ¥ = (&) 1<k</-
The model is given by:

Y=YB+e€ (24)
Where € is a white noise vector of size n.

The best estimator for § = (Bi,...,8,), is given by the Ordinary Least Squares (OLS) estimator which

minimizes féff= Aqwo el=Y = Y.l
Bows = (¥T) WY (25)

3.2.1 Reconstruction

The predietionreconstruction is done in the same way as for PCR. Using the first seen data matrix X
(section 2.4), we project the latter on the pre-calculated orthogonal basis V:

Ew(re(‘) = Xw(rec)v e R™P (26)

We-then-obtain-the predietion-The reconstruction is obtained by applying the estimated coefficient vector
on the sub-matrix W(,.¢) = (f('rec), s &) € R™

Y, = WieoPors €R” (27)

3.2.2 Parameters

For the PLSr method, r is the unique tuning parameter. Analogously to the Principal Component Ana-
lysis, the tuning of that latter is obtained by KFCV.
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3.3 The Elastic Net regression

3.3.1 Modeling

Without using orthogonal transformation of the initial variables as in PCR and PLSr, the most simple
predictive model is the multiple linear regression model:

Y=X'Bi+-+XB,+€ (28)
Where € ~ N(0,02) and Cov(e;, €)=0ifi# j.
The predietionreconstruction of Y, given p proxy records X', ..., X” is obtained by the equation:
Y=X'Bi+ - +XB, (29)

,3 = (,81, e, ,3,)) are the regression coefficients, which are obtained by the OLS predictor. However, this
usual regression model is known to presentfrequently-apeorpredietion-often result in a poor reconstruction
accuracy due to the several assumptions made on the original data [Poole and O’Farrelll |1971]], which are
often not verified:, such as homoscedasticity and errors normality. Several studies developed regularized
(or penalized) regression methods to overcome the OLS defaults. Here we focus on the Elastic Net regres-
sion [Zou and Hastie} 2005[], which is a combination of the Ridge regression [Hoerl and Kennard,|1970] and
the Lasso regression [Tibshirani,[1996]. All these methods have been developed to avoid the high variabi-
lity of the OLS predictor when the number of predictors is relatively high. The Ridge regression shrinks
towards zero the estimated coeflicients associated to predictors unlinked to the predictand. No predictor
selection is made by this method, but the shrunken estimated coefficients modulate the importance of these
in the model. By contrast, the fasso-Lasso also reduces the variability of the estimates, but in this case by
shrinking to zero the estimated coefficients associated to unreliable variables. Hence, a selection is made
by rejecting variables associated to coefficients shrunk to zero.

The idea of a regularized (or penalized) regression is to add a threshold constraint using the /; norm

of B ||,8||’,§ = lef:l |ﬁj|k. With k = 1 in Lasso regression, and k = 2 in Ridge regression. The penalized loss
functions are given by:

)4 P
Lridge(ﬁ) — ||Y _ Zﬁij||2 + /12 ZB3 (30)
j=1 J=1
14 ) I
Llas.m(ﬁ) — ||Y _ Zﬁjxj“Z + /l] Zlﬁll (31)
j=1 J=1
P A P '
LBy =11Y = Y BXNP + a1 Y Bl + 2 ) B (32)
j=1 Jj=1 j=1

A penalizes the sum of the absolute values of the regression coefficients while A, penalizes their summed
squares. Here, 41, 4, > 0.

Let w = (Wj)i<jcp = (58n(B}))i<j<p, Where sgn is the sign function. The loss functions can then be
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denoted as:

L = ||y - XBI* + LB B (33)
L = )Y = XpIP + aw' B (34)
L = Y — XBIP + 4w B+ LBTB (35)

The estimated regression coefficients obtained by minimizing the Lasso and the Ridge loss functions
are:

Iglasm — (XTx)*l (XTY _ %W) (36)

B¢ = (XX + D' XY (37)
The Elastic Net regression coefficients are then estimated by minimizing L*"*":

1

. Pl
Bt = (XTX + 1,07 '(XTy - ?w) (38)

An alternative way to write this equation as a linear combination of 3/ and /78 is:

nenet T -1,vT ad

=X X+ -a)A) (XY - Tw) (39)
where « € [0, 1]. If @ = 1, a Rigde regression is applied, and if @ = 0, we apply a Lasso regression.

3.3.2 Reconstruction

The predietion reconstruction is obtained by applying the estimated regression coefficients 3"’ on the

validation variables X! ... X" .
val val

)4
Pro= D X B (40)
=1

3.3.3 Parameters

For Enet method, the tuning parameters are A and «@. The latter controls the relative balance between
the lasso-and-ridge-Lasso and Ridge regularization, while the former controls the overall intensity of re-
gularization as A; (resp. A») in lasse-Lasso (resp. ridge-Ridge regularization). A high @ suggests a dense
model with many but small non-zero coefficients. A low a suggests a sparse model with many zero coeffi-
cients. In our case, since we want a general methodology performant for each random split, we apply two
simultaneous KFCV to find the best estimated pair (4, &).

Since A and « take respectively their values in the continuous sets R” and [0, 1], we have to discre-
tize their respective intervals for the parameter estimation. The finer these discretizations are, the more

reliable the parameters will be, but-the longerthe required-eomputational- timewill-beat the expanse of the
computational time.
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3.4 Random Forest regression

The random forest has been introduced by Breiman| (2001) as a learning method for regression. The
method relies on using randomization to minimize the predietion-reconstruction uncertainty given by
regression trees. Random forests encompass a large variety of regression methods [Breiman,2001]]. Here,
we present the most classical kind of random forests known as random-input random forests [Breiman,
2001).

3.4.1 Modeling

First we have to define regression trees. We denote each set of predictand/predictors by {Y;, X;)1<i<n}
where X; = (Xl.l, ... ,X{’ ), is the ensemble of proxy records for the i time step, and Y; the corresponding
values of the climate index at the same time step, Y1 < i < p. All the observations, {Y;, X;)1<i<n}, V1 < i < p,
are put on the root of the tree. The first step consists in cutting that root in two child nodes. A cut is defined
as:

{x/ <dju{x/>d) (41)

where j ={1,..., p} and d € R. Cutting a node with {X-’ < d} U {Xj > d} means that all observations with

a j™ variable lower than d are placed in the left child node. Hence, all observations with a j” variable
greater than d are placed in the right child node. The method selects the best pair (j, d) which minimize a
loss function. Here, we aim at minimizing the variance of the child nodes. The variance of a given node ¢
is defined as:

Di-1)y (42)

i Xt
where ¥, is the averaged Y; in the node ¢.

The same procedure is then applied recursively to the next child nodes using the same variables until
a certain stop criterion is reached. The procedure automatically stops if each node contains a unique ob-
servation. Hence, the maximal depth of a regression tree is n — 1. An illustration of such tree is presented

in Fig.

A random-input regression tree is used here. This is a particular case of regression trees, in which a
set of m < p variables is randomly preselected before applying the regression tree. A large number K of
random-input trees is computed. For each tree, we randomly select m < p variables with probability i and
we apply the method until it reaches its maximal depth.

3.4.2 Reconstruction

The predietionreconstruction is obtained by splitting each testing series in the different treesprevieusly
eenstrueted. In each tree, the estimation attributed to an observation is the empirical average of Y inside the
node where the corresponding observation ends up, given the cut made on the corresponding predictors.
For each testing series, the K reconstructions are averaged to give the final predietion—reconstruction.
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3.4.3 Parameters

A priori, this method requires the optimization of two parameters: the number of trees K and the
number of variables selected for each tree m. In practice K does not require to-be-tunedtuning, as long as
the number of trees is sufficiently high given p, which guarantees convergent results for any value of m
2001]). m is then the only parameter to optimize. The KFCV is then applied on m with a high K
(here set to 1000), to select empirically the most efficient model.

4 Results

4.1 Methodological sources of uncertainty in the reconstruction

We apply thefermermethodsCliMoRec with the four methods presented above to the reconstruction of
the NAO. In the following, each reconstruction is obtained by averaging R = 50 individual reconstructions

performed for R training/testing random draws. Validatienseores{based-on-—correlations-over-thetesting

periods)NSCE scores are also produced, and stored in a vector of R elements. This vector will thus be used
as a quality metric to characterize the methodological uncertainty in the reconstruction. The following
actions were undertaken to minimize the reconstruction uncertainty, and estimate its sensitivity:

1. Pre-selecting the most relevant proxy records

2. Choosing the most appropriate training/testing window length

3. Selecting the best learning period
These three steps are described below, before assessing the reconstruction itself,

4.1.1 Proxy pre-selection over the training periods

Among the previous climate reconstruction studies, Ortega et al. (2015) have performed a proxy selection
over the training periods at the 90% confidence level using the correlation test from McCarthy et al.
(2015) while Cook et al. (2002) and Wang et al. (2017) have selected their proxies by focusing on the
regions affected by the modes they respectively reconstructed, Here we run 4 different reconstructions
*Wm for each methodfael%b&seéreiwdtﬁefeﬂt—pfexygreup

greuf%eeﬂtaiﬂs—a}k%heavaﬂab}eﬁfeae}#feeefds—eﬁ%he These reconstructions are res ectlvel erformed
with different significance levels for the proxy selection by correlation over the training periods. These

levels are 0% (which means that all the records are used at each training/testing split), 80%, 90% and

95%. The reconstructlons are erformed for the reconstructlon eriod J’”—él%%pfexyfeeefdsé—?he%}&ee




%haﬂ%]é—wheﬂﬂ&e@theﬂ*kmlﬂbleﬁreﬁweeefdﬁrﬁﬁed—as—predwter&n =1 15 In th1s section the trainin

feﬁmedlan functron) even if using prox records uncorrelated w1th the NAO or not located in regions
affected by NAO varlatlons On the other hand, the Pléﬁethed—whermﬂ}y—the—pfmeykreeerds—sagfﬂﬁeemﬂy

0581 % PCR. Fig.
Wmm
statistically-based proxy selection over the training periods in further studies. Indeed the reconstructions
performed with these methods are only significantly robust at the 99% confidence level (see section 2.4)
by using the most constraining pre-selection of proxies. In addition, even their best NSCE scores (for 95%

are relatively weak, with their first quartile slightly under 0. On the opposite, for RF and Enet methods,
the proxy selection is not affecting the statistical robustness of the reconstruction, with reconstructions
significantly robust at the 99% confidence level (€104 0:64}:F=0-42){see{Ortega-et-al{2615)see section

Overall, RF gives the best NSCE scores and also provides the best reconstruction. Nevertheless, it should
be neted-stressed that these results have been obtained for a particular length in the training/testing win-

dows of (11192/3723). The sensitivity to this will-be-is assessed in the next section.

4.1.2 Sensitivity to the length of training and testing periods

To estimate the sensitivity of the reconstruction performance to the length of the training and the
testing windewperiods, we set again the reconstruction period to 7~ = {1000, ..., 1970}, and the learning

period to F=823,—1970}-withn=148T = {1856,...,1970}, with n = 115. Based on the findings of

the previous seetionsubsection, we only keep the proxy records which are significantly correlated with

the NAO index at the 95% confidence level (18-proxy-reeords;seeseetion4-1-1-and-Fig—2?2over the training
eriods for PCR, PLS and Enet and we use the whole set of proxy records at each split for RF (110 records).

We run RR = 50 reconstructions with different window sampling for each method by gradually increasing
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the length of the tralnlng wmdew—&omé%—te@é% erlods from 30% to 90% of the 1n1t1a1 size of the

feeenstfuetteﬂ— %. Trainin, erlods len ths out of this 1nterval ives extreme negative scores and have
thus not been considered.

Between these two extremes

According to the NSCE metric we find a large windew-whererange of splitting periods for which va-
lidation scores are relatlvely s1m11ar and significantly positive for RF and Enet (from around 39%456—79%9

size of the learnin er1od for the training (ﬁWMﬁW@for—%—aﬂd«f%{—RF—th&ep&mﬁl

splitis45%n = 92: nyp = 23). The only optimal Wlndow S ht is 70% of the total for the trainin
for PCR ( T i =06:

we have shown again that classical regression methods such as PLS and PCR are not producin the bes
reconstructions of the NAO. For this set of reconstructions, the method which gives the highest NSCE

4.1.3 Sensitivity to the reconstruction period

In this section, we foeus-on-the-mest-efficient-method{PES)-with-keep for each method the optimal

selection of proxy records over the training periods (see section 4.1.1) and the optimal training/testing
windows length (ﬂfmn—k94ﬁny—,—44ﬁsee section 4.1. Z)and—vv& We explore the nnpact of the recons-

truction period; od-and-the pro - AEHA period-. This affects the

final reconstruction in two dlﬂerent ways both related to the ﬁnal proxy selectlon thst—byLmedtfying
Firstly it modifies the initial set of proxy records considered (as they need to cover the whole reconstruc-
tlon perlod) Secondly, by—ehangmggvg@rgg/ggthe perlod of overlap Wlth the observatlons —Whieh—leaekte

training/testing splits.

We run the reconstruction en-36-for 31 periods 7: from $660-1965-1000-1970 to 1000-2000, with an
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increment of one year By domg so, the number of available proxy records is not the same for each of the
perlods - : : 0

eﬁtheﬁmxykpredieter—setﬂnd—the—xfahd&&eﬁNS@E a shows the NSCE scores obtalned for the dlfferent
reeonstruetions-and-reconstruction/learning periods. Using the v&hdaﬁeﬂ—NSGE—as—&quahtyLNSCE metric,

we ﬁnd that the best reconstruction time window is e -

M@M

Following the optimal setup for each method from section 4.1.1 and 4.1.2, RE uses 110 records, PCR
uses a total 65 records with 16.28 records selected per training/testing split on average. Enet and PLS use
a total of 60 records with 17.26 records selected per training/testing split on average. Among these four
optimized reconstructions which are the final ones of this study, the RF gives the highest NSCE scores with

In contrast with the length-of-the-training-periods—the-previous setups investigated in this study, the
four methods are strongl aﬁected by the choice of the reconstructlon perlodappe&rs—as—&ﬂ—rmpertaﬂt—seuree

mdrreet}y—theepredreter# Thus we recommend to determlne this perlod carefully w1th numerous simu-
lations on different time windows, following the approach we presented here. Overall, this study shows
that for each optimisation, PCR and PLS are less reliable to reconstruct the NAQ than RF and Enet (section

4.2 Reconstructions assessment

We now compare and assess the best reconstructions obtained for each of the methods. The four optimi-
zed reconstructions are obtained by maximizing the validationNSCE-NSCE scores on the training/testing
period (see section 4.1.2) and the total reconstruction period (PES:=see section 4.1.3+ethermethods:net
show), using the proxyrecords full set of proxy records for RF and only using the proxy records signi-
ficantly correlated at the 95%-95% confidence level with the NAO en-the-eorrespondinglearningperiod
(index over each training periods for the other methods (see section 4.1.1and 4.1.3).

4.2.1 Comparison with previous work

Fig. [9] shows the different reconstructions of the NAO, including the [Ortega et al] (2015) calibration
constralned reconstruction (only proxy- based) and Tab. [1] exhibits the paired correlations between the 5




1nformat10ns are also shown for the

whilefour reconstructions of this study on Fig. [0 The normaht of the residuals for the fours method
has been verified as demonstrated in Fig. Tab and Fig. [0 shows that the NAO reconstruction based

on RF is distinguishable from the four others including Ortega et al. 2015 Indeed its correlation with the

reater than 0.95. Addltlonall Fig, shows that the RF reconstruction has a higher correlation with
the ones et al. (1997) NAO 1ndex than the other indices: r=6-42;

semmn e e e Whlle Orte a et al (2015) reconstruction has a correlation of 0.45 (p<0.01).

The RF reconstruction that uses 108 prox records 22 common proxies with Ortega et al. 2015) presented
in Fi has the best NSCE scores (med(S =0.18;S € [-0.33,0.39]) and its correlation scores
med(S ;o) = 0.47:S .. €[0.09,0.81]) are significantly higher at the 99% confidence level than Ortega et al.

2015 ) calibration constrained reconstruction (S ., € [—0.14; 0.58]; med(S ;) =~ 0.24) and model constrained

reconstruction (S ., € [0.14;0.64]; med(S co,) = 0.43). We thus statistically verified that the best recons-

truction from this study is more robust and reliable than those in-from Ortega et al. (2015). This improve-

ment in performance may arise from the inclusion of new relevant proxy records into the reconstruction,
but also theﬂsmgmm of a new statlstlcal regressmn methods —'PheLPL—S—reeeﬁstfuetteﬂuses—%';

not show a redommant osmve NAO hase during the MCA. contrar to the hypothesis formulated b
(Trouet ef all (2009).
4.2.2 Response to external forcin

No significant correlation is found between the NAO reconstruction based on RF method and the Total
Solar Irradiance (TSI) reconstruction from 1! r = —0.09; p ~ 0.23). The same is true for the

to-them-are-consistent-with-these feund-in-other methods (not shown) and Ortega et al. (2015). None of
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the reconstructions (including Ortega et al. (2015)

M&W@W@MWMM
model simulations [Shindell et al|2004]. In addition, no significant correlation on the pre-industrial era has
been found with the CO, eoncentration—Indeed; reconstruction based on a Law Dome (East Antarctica)
ice core [Etheridge et al}[1996] (not shown), indicating that the NAO is not linearly associated with CO,

variations over this time frame.

(Ortega et al. (2015) suggested that a positive NAO phase is triggered two years after strong volcanic
eruptions, a response that is not reproduced over the last millennium by model simulations [[S

E m We use the 10 large Volcam

eruptions selected in Orte a et al. (2015) and a second selectron see supplementary informations) of the

leads to the same result asi nlﬁcant ositive response of the NAO two years after the eruption. However
for RF thls result is not significant Wlth a p-value just above 0.1 (Flg ). By-using-a-Monte-Carlo-approach
; ' Sre 0007, coleani

WWW%QWMMM%MWW
significant response at the 90% confidence level for Enet, PLS and PCR, but one year after the eruption with
ap-value under 0.05. For RF, the positive NAQ response is significant 1 to 3 years after the eruption. Here
again, the significance for the RF composite is smaller than for the other methods while this reconstruction
is the most robust. Nevertheless, individual response analysis shows that for the RF reconstruction, this
result is particularly significant for the 2 larget eruptions of the millennium (Samalas, 1257 and Kuwae,
1458) and not so clear for the 9 others (not shown). This result suggests that the positive NAO response
might be mainly associated to volcanic eruptions with very large and rare intensities such as Samalas or
Kuwae eruptions and concerns less eruptions with weaker intensities

5 Discussion and conclusion

5.1 Discussion, caveats and outlooks

The results presented above regarding the NAO have all been obtained using CliMoRec. Indeed, they
require advanced programming and statistical knowledge to ensure a good estimation of the robustness of
the reconstruction performed. This is possible in CliMoRec that proposes an integrated package through
which parameters and methods can be efficiently tested and compared, together with advanced validation
metrics such as the NSCE. Nevertheless, the methodology proposed in CliMoRec could be further improved
in different ways.
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Firstly, CliMoRec does not deal with missing data in proxy records. This implies selecting exclusively
the proxy records that entirely cover the reconstruction period, which thus excludes some existing proxy
records. Also, proxy records with gaps are not used in the present version of CliMoRec as their use in
an interpolated version would artificially increase their weight in the reconstruction and thus possibly
Wmmwﬁmgmww&wwhmﬁ%ﬂﬁanhww et alLL2013I]

i imlations—w ggest M
MWW
WM@M&W@WWFWWMMMQ&
regression | : '
MW&J&QM&DMPM of aLU””I]&Q‘iEﬁIEBEl%M%&

[Mann et al.,|2008];|Guillot et al| 2015]] or Bayesian Hierarchical models [Tingley and HlybersHZOquUmAg\ley and Huybers} [2010b

Tingley, 2012}; Tingley and Huybers| 2013|;/Cahill et al.,|2016]] that can deal with missing data and compare
the reconstructions obtained with the four methods already included. Another point that is limiting the
capacities of CliMoRec is that it is based on the assumption that teleconnections of the reconstructed
mode are stationary in time, while they may depend on the state of the climate system. This is a classical
limit for statistical climate reconstructions but it can be evaluated by use of pseudo-proxy methods (e.g.
lLehner et al. 2012} Ortega et al. 2015). On this aspect, more complex methods like data assimilation can
clearly overcome this weakness by combining model and data. The use of such approaches for last millennium
remains nevertheless very complex primarily because of their computational cost and the lack of data.
They are however emerging (e.g. Hakim et al., |2016); Singh et al, 2018). Data assimilation techniques can
be very model dependent as highlighted for the ocean over the recent period (Karspeck et al}2015) so that
their reconstruction of a given regional climatic modes can suffer from interferences with reconstructions
of other aspect of the climate. Thus, dedicated approaches like the ones developed here can be seen as
very complementary approach and may increase our confidence in the reconstructions. Indeed, if different
approaches provide very similar results, this can be interpreted as a source of robustness for a given result

or reconstruction.

Another caveat concerns the fact that the present version of CliMoRec does not account for dating
uncertainties in proxy records. Future developments of CliMoRec may allow to take into account these
uncertainties and to provide their estimation along time. For doing so, deeper investigations for each proxy
record are needed as these sources of uncertainty are not exhaustively provided in P2k2017. Also, we found
that the reconstructions performed by CliMoRec provide a clear loss of variance over the learning period
and the reconstructed period (before 1856) (see supplementary table 4). The RF method is the only one that
reproduces adequately the NAO amplitude only over the learning period but also provide a significant loss
of variance over the reconstructed period. This indicates that the loss of variance over the reconstruction
period could partly be due to the proxy records themselves and not only to the statistical approach.

A key aspect that has been found with-a-CO--reconstruction-based-on-aLaw Dome{(East-Antaretica)
iee-ecore-within this study is the sensitivity of the results to the validation metric used. Indeed, we also
used correlation as the main score for the test period. It appears that this metric was mainly capturing
the phasing of the modes in their reconstruction (not shown) [Etheridgeetal;1996Wang et al}2014];
indieating-thatthe NAO-is-notlinearly-associated-with-CO,variations—, By using NSCE, we improved the
strength of our reconstruction since other aspects than the synchronisation were accounted for. This latter
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metric, which is more classical in prediction evaluation further highlights that the RF method outperforms

most of the others methods, and notably the PCR which is a classical method used in paleoclimatology

[Cook et al.}|2002; 12004} ,[2015];Wang et al12017]. Other metrics of prediction validation
exist (e.¢. Continuous Ranked Probabilty Score, Gneiting and Raftery, 2007) so that a more extensive analysis.
of the sensitivity of the reconstruction to other metrics for the validation period might be very useful. Thus,

the development of other validation metrics in next versions of CliMoRec appears as an interesting avenue

to explore.

6 Coneclusions

5.1 Conclusions

We have proposed and described here four statistical methods for reconstructing seme-modes of cli-
mate variability and have compared them for a particular example: the reconstruction of the NAO. By
investigating-identifying and minimizing the sources of reconstruction uncertainty -due to the method
used (sections 3, 4.1.1, 4.1.2 and 4:2-14.1.3), the time frame considered (section 4.1.3) and the proxy selection
(sections 4.1.1 and 4.1. 3) we found the optimal NAO reconstructions;-al-previding-better-validation-and
ealibrationresults thanprevious studies-, It was obtained for the RE method over the time frame 1000-1973
mm%mmmm@emn 4.2. 1) —#i-the reconstruetions showa

wm&wwmmwwm
knowledge for climate index reconstructions and seems thus promising. The reconstruction we obtained
is distinguishable from the Ortega et al. (2015) reconstruction but remains significantly correlated with it
(r=0:47; p<0.01 over the period 1073-1855).

We-have-shewed-that-using-
We have shown that for Enet, PLS and particularly PCR which is frequently used in paleclimatolo
selecting proxy records with a strong correlation with the index to be reconstructed over the eveflappmg

period-training periods is a good means-for improving the validation-way to improve the NSCE scores,

and hence alloew-it allows more reliable reconstructions —Among-the-540-available-proxyrecordscollected;
mﬂw%@%%%mw%ww@&m
using the whole set of records (section 4.1.1). This may be due to the fact that it has been mainly developed
WW@%@&MW whieh-isawell-verified-highresolutionproxy

eefrel&ted—w&h—theNA& For both cases, atherm NEW Prox records to the 554 avallable ToX record

collected, may be a reliable source of reconstruction improvement. The inclusion of new NAO-sensitive

proxy records in the future may thus lead to better reconstructions. The-teolboxswe developedinthispaper
CliMoRec should allow to easily perform such new reconstructions;-thanks-to-a-devis-made-available-to

the-community—,

In order to extract the most robust reconstruction, numerous simulations are needed. To facilitateitthe

statistical-toelwe-developed-simplify it, CliMoRec performs a reconstruction by considering several entries:
an index of the climate mode, the reconstruction period, the length of the training window (in proportion
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of the total length of the learning window), the number of training/testing period samplingssplits, and a
threshold confidence level for the correlation between the proxy records and the target index{appendix

1-This-moedular-statistical-teel-, CliMorRec is an opportunity to reconstruct quickly and with quantified

reliability several climate modes. This may allews-allow us to improve our understanding of the last mil-
lennium large-sealelarge-scale climate variations, such as the MCA and the LIA, as well as the interactions
between the modes, which will be analysed in future studies.
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FIGURE 1 - Scheme summarising the main features of the propesed-statistical-toolboxCliMoRec.
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FIGURE 2 - Scheme of the initial data. X and Y are respectively the proxy records matrix and the index of the considered
mode of variability. N is the size of the common period of all proxy records. n is the size of the common period of all proxy
records and the index of the mode of variability. m is the size of the common period of all proxy records, where the mode
of variability is not known. p is the number of proxy records. X(r) is the sub-matrix of X where the mode of variability is
known. X(7) is the sub-matrix of X where the mode of variability is not known.
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performed using 31 reconstruction period: from +666-1965-1000-1970 to 1000-2000 by moving the superior born by 1. Filled
areas:Evolution-of RF reconstructions are performed using the proxypredictor-whole set —For-eachreconstruction-periodof
available proxy records (110, section 4.1.1) with training samples length of 80% of the seleeted-length of the learning period
(section 4.1.2). PCR reconstructions are performed using by selecting the proxy records are-those-which-coversignificantly
gorrelated at the veconstruetion95% confidence level with the NAQ over the training periods (section 4.1.1) with training
samples length of 70% of the length of the learning period (section 4.1.2). FLS and Enet reconstructions are performed using
by selecting the proxy records significantly correlated at the 95% confidence level with the NAO index-over the fraining
eriods (section 4.1.1) with training samples length of 80% of the lengt of the learnin i
are the NSCE scores obtained wsing RE method. Blue bosplots are the NSCE scores obtained using Enet method. Red green
are the NSCE scores obtained using PCR methodh. Yellow boxplots are the NSCE scores obtained using PLS method. Boxplots
with blue edges are the scores significantly positives at the 95%-99% confidence levelon-eorresponding-. Boxplots with red
gdges correspond to the learning-periodscores associated with the best reconstruction for each method €yan-areasproxy
b) Proxy records finishing-before-1976-includedavailable/used by reconstruction period. Red area +gives the number of
available proxy records finishing-after1970-excluded-and-before1980-ineludedwhich is typically the number of records
used for the RF reconstructions. Green area: proxy-total of records finishing-after1986-exeluded-used for Enet, PCR and
before1999-includedPLS for each reconstruction period. Blue area: number of proxy records finishing-after-1999-exeluded
used per training/testing splits on average for Enet, PCR and before-2600-includedPLS methodsPurple-area: proxyrecords
finishing-after-2000-exeluded:
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FIGURE 9 - Red line: RF reconstruction on the period 1000-1973 (section 4.1.3), using +8-the whole set of available proxy
records signifieantly-correlated-at-the 95%-eonfideneelevel(110, section 4.1.1) with a-prepertien-training samples length of
80% of the length of the trainingsamples-of 45%learning period (section 4.1.2). Darlred-lineten-years-low-pass filter-of the
RFreconstruction-Blue line: Enet reconstruction on the period 1906-1973;using18.1000-1970 (section 4.1.3) by selecting the
proxy records significantly correlated with the NAQ index at the95%-95% confidence level ;-over the training periods (section
4.1.1) with a-proportion training samples length of 80% of the length of the training samplesof 65%learning period (section
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filter-of the RF-PLS reconstruction —Green-line-PCRreconstruetion-on the period 1000-1970 s-using—19-(section 4.1.3) b

selecting the proxy oxy records significantly correlated with the NAO index at the 95%-95% confidence level -over the training
periods (section 4.1.1) with a-proportion training samples lerk?h of 805 of the length of the training samples of 70% learning
period (section 4.1.2). DarlegreernBlack line (tiny): ten-years-low-pass filter-of the RF reeonstruetionOrtega et al. Grey-line:
Ga%tbrafwwm constrained NAO-reconstruction @%@M]ﬂﬁ%ﬂwﬁw

Red area: Regression uncertainties (see supplementary) for RF reconstruction. Blue area: Regression uncertainties for Enet

reconstruction. Blue area: Regression uncertainties for PCR reconstruction. Orange area: Regression uncertainties for PLS

reconstruction. Heavy black line:ten—years-low-passfilter-of lines are the calibration-eonstrained corresponding 11-year
ltered reconstructions for each method. Purple lines: superposed 11-years filtered Jones et al. (1997) NAO reeonstruetion
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FIGURE 13 - €omposite-Superposed epoch analysis of the NAO response from two years (N-2N-1) before to five years after
(N+54) fa&ﬁreﬂgm volcanlc eruptwns wnstdermg—%mlea%uew&wty«reeenﬂmteﬁe&sused b Orte a et al.

ran Z mmz Heﬂvydﬂfhe*hﬂef
’ @W@mﬁtﬂn{y—m All of the composites

are eentered-centred to thelr values at the year of the volcanic eruption occurrences. For each method a 99%-90% confidence
level hmwllg&been calculated by Monte-Carlo simulations using 1000 composites of eleven sampled -6 years long sub-
series. The confidence born is calculated as the 99" percentile of the 1000 dl)fferences between the 5—4”’ and the 3&2’ d
values of the sample composite series (i.e between N+2 and N). Bla he z eae e-0-leve

and-the-99%—eonfidencelevel-All of the composite series have been eentereekg/e\m to the values at the time N. ,\tQAI/Z\eN

line: Composite for RF reconstruction response to Sigl et al. (2015) volcanic eruptions. Dashed red line: Composite for RF
reconstruction response to Ortega et al. (2015) volcanic eruptions. Dashed purple line: Monte-Carlo 90% confidence level. b)
Blue line: Composite for Enet reconstruction response Sigl et al. (2015) volcanic eruptions. Dashed blue line: Composite for
Enet reconstruction response to Ortega et al. (2015) volcanic eruptions. Dashed purple line: Monte-Carlo 90% confidence level.
¢) Green line: Composite for PCR reconstruction response Sigl et al. (2015) volcanic eruptions. Dashed green line: Composite
or PCR reconstruction response to Ortega et al. (2015) volcanic eruptions. Dashed purple line: Monte-Carlo 90% confidence
posite for PLS reconstruction response ptions. Dashed orange line:

Composite for PLS reconstruction response to Ortega et al. (2015) volcanic eruptions. Dashed purple line: Monte-Carlo 90%
confidence level.
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RF Enet PLESPCR PLS Ortega

RF 1.00  0:880.79 0:830.73  6:610.69 0.52_
Enet | 6:880.79 1.00 082096  6:96-0.96_ 0.68
PLSPCR | 679073  0:82:0.96_ 1.00 088098 052073
PCRPLS | 0:830.69 090096  0:880,98 1.00  6:660.73
Ortega | 6:610.52  0:680.65 052073  0:660.73 1.00

TaBLE 1 - Table of correlations between five reconstructions:|Ortega et al. (2015)) reconstruction; RF reconstruction on the
period 1000-1973 with a proportion of the length of the training samples of 55%80% ; Enet reconstruction on the period
1660-1973-1000-1970 with a proportion of the length of the training samples of 76%80% ; PLS reconstruction on the period
1660-1967-1000-1970 with a proportion of the length of the training samples of 76%80% ; PCR reconstruction on the period
1000-1970 with a proportion of the length of the training samples of 70%.
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Code and data availability: CliMoRec’s code and the proxy records database are available at the link:
https://github.com/SimMiche/CLIMOREC
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