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August 2018

The authors thank the reviewers for taking their time to comment on the revised manuscript. The com-
ments of the reviewers are discussed point-by-point. After that, the revised manuscript is presented in a form
where all changes made to the old revised manuscipt to arrive at the current version of the manuscript have
been highlighted.

1 Response to Reviewer #1

We thank the reviewer for the suggested technical corrections.

Figure 8 highlights the diurnal cycles influence on grid refinement. The
timing of local midnight or local noon should be noted somewhere.
p.2 Line 17: would be clearer as ’..., enabling better resolution of the most
demanding processes.’
p.3: CM and CH are undefined.
p.8 Line 10: should be ’empiricism’
p.8 Line 15: should be ’Even though’
p.11 Line 2: shouldn’t this be Figure 8 not Figure 5?
Figure 1 caption last line: ’several’
Figure 6 caption last line: ’measurement’

We have revised the manuscript accordingly. Noting that we have not changed figure 8 as it already noted
the timings of midnight. Furthermore, Eqs. 1a - d introduce CH and CM , they are calculated using the
definitions of Eqs. 2,3, 5 and 6. (i.e. 2,3,4,5 in the original revised manuscript).

2 Response to Reviewer #2

In the absence of any further comments, this section does not contain a reponse.

3 Response to Reviewer #3

We thank the reviewer for his/hers usefull comments on the revised manuscript. I certainly helped the authors
to improve the quality of the work.

Comments from Reviewer 3: The revised manuscript has taken most of
my previous comments and questions into consideration. However, the new
manuscript has now raised many new questions and concerns, as there are
several sign, math and physics errors in the new equations, inadequate de-
scriptions of the test cases and forcing mechanisms, and missing parameter
values and undefined symbols. The authors need to provide enough expla-
nations to enable others to repeat the test setups. In case the sign and math
errors were present in the computations, all results need to be repeated and
reevaluated. This might require major revisions.
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The authors agree with most points brought forward by the reviewer and we have therefore revised the
manuscript accordingly. We regret that the used closures for the turbulent transport that were added to the
first revision were often not written down properly and we again thank the reviewer for his/her review and
noticing these errors. It appears we have not been thorough enough when we casted the used formulations
in their symbolic mathematical form. For all the issues brought forward regarding the equations were of
typographical nature. The correct formulations were in fact already coded in our numerical solver and hence
the results do not require an update and we have double checked this. We also hope to adress the other issues
raised by the reviewer, both in the new revised manuscript and the point by point response presented below.

1) Eqs. 1a-1d: Using references like Holtslag and Boville (1993), Liu et
al. (Mon. Wea. Rev., Feb. 2013) or Andreas and Murphy (J. Physical
Oceanography, Nov. 1986), all four surface flux equations 1a-1d have the
wrong signs. Explain the sign discrepancy to the aforementioned papers
and the sign convention used in this manuscript.

The reviewer is right; we should follow the convection of upward fluxes and we have updated the corre-
sponding equations.

In addition, the definition of q 0 needs to be ‘saturation specific humidity
at the surface’. There is a possibility that the surface fluxes have been
incorrectly applied in this manuscript, which would necessitate a repetition
of all simulations.

In General, the value of the specific humidity at the surface is not necessarily the saturation specific hu-
midity. For some physical scenario’s it would not be an accurate description (e.g. when the soil is drying). For
this work we consider its prescription to be a case specific detail, for which we refer to the work of Cuxart et
al. (2006) (were q0 = 0) and Svensson et al. (2011). Indeed, for the GABLS2 case it is taken as the saturation
specific humidity.

It is also noted that the cited reference Louis (1982) for the sur-
face fluxes does not exist. It is likely that the authors mean the
paper Louis et al. (1982): Louis, J.-F., Tiedtke, M, and Ge-
leyn, J.-F.: A short history of the operational PBL parameteriza-
tion at ECMWF. Proceedings of the Workshop on Planetary Bound-
ary Layer Parameterization, 25-27 November 1981, ECMWF, Reading,
U.K., 59-79, 1982 https://www.ecmwf.int/en/elibrary/10845-short-history-
pbl-parameterization- ecmwf However, this paper does contain any discus-
sion of the surface fluxes (only some exchange coefficients) and is therefore
an inadequate reference for the surface fluxes on page 3 line 14. The other
provided reference Beljaars et al. (1989) is gray literature (is this an internal
technical report, there is insufficient information), it is not available online,
and has limited value here. Provide a better reference.

We have updated our references regarding the surface fluxes following the reviewer’s suggestions.

2) Eq. 3: There is again a sign error in this equation. The current for-
mulation wrongly leads to a negative surface-layer bulk Richardson number
for stable conditions with θv,1 > θv,1 . Such a stable stratification needs to
have a positive Ri b number (see also Holtslag and Boville (1993), their Eq.
(2.8), for the correct definition). Since Ri b is used in Eq. (5), there is the
potential that most of the simulations in this manuscript are wrong. This
needs to be clarified.

The reviewer is right. we have updated the formulation of the equation in the manuscript. This now also
corresponds to how it was already implemented in our model code.
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3) Page 4, lines 4 & 5, and Eq, (3): The definition of θv,ref is vague. What
do you mean by ‘reference value’? Provide the exact definition. Obviously,
this reference value of θv,ref inthe surface layer must be different than the
θv,ref values used later in the equation for the planetary boundary layer (Eq.
(11). However, the same symbol is used, and no further explanations are
offered. Correct this.

θv,ref relates the virtual potential temperature (θv) to the buoyancy (b), according to the Boussinesq
approximation,

b =
g

θv,ref
(θv − θv,ref ) .

Meaning that for a dry boundary layer, θ−1

v,ref is supposed to be a sufficiently accurate approximation for the
thermal expansion coefficient of the air (Bousinesq). As the equations suggest, it is indeed taken as a constant
in our model for the ABL, and for the two GABLS cases they are part of the case set-up definition. We have
updated the manuscript to be more clear and added an extra reference that provided some inspiration for our
implementations. As the reviewer suggests, the approximations are indeed not generally valid and would be
one (of many) improvements that would need to made to have arrive at a more realistic model. We consider
this topic to be adressed sufficiently in the manuscript and the previous discussions.

4) Page 4, line 8-9: the capital Z0,M symbol is undefined, needs to be z0,M .
Provide the value of the roughness length to make the results reproducible.

The reviewer is right, it should not have been capitalized. The concept of the roughness length is impor-
tant for the used closure but it’s value is typically associated with specific details of the roughness elements
at the surface. Therefore, we cannot provide a single value and is also part of the exact case description of
the GABLS1 and GABLS2 cases. If one wishes to reproduce the GABLS cases, it would be required to follow
the provided references to the original publications of the GABLS intercomparisons. Also, an unambigious
description of our methods and implementation are documented and freely available online and may be found
by following the links in Table 1 or the section labeled ’code and data availability’ which also includes a tutorial
on how to install Basilisk and run the code. As such, we are confident that all our results are reproduceable
down the binary-representation precision of a computer.

5) Eq. (9): Incorrect definition of the vertical wind shear magnitude. It
needs to read,

Snew =

√

(

∂u

∂z

)2

+

(

∂v

∂z

)2

instead of the currently used definition

Sold = ‖
∂U

∂z
‖

If the incorrect formulation has been used in the computations, they will
need to be repeated.

The reviewer is right and we have updated the manuscript accordingly. Note that we had already imple-
mented the suggested formulation in our computations, also taking into account so-called ‘directional shear’.

6) Eqs. 14, 15, 16: You converted the former vector equation to a scalar
equation (as requested) but left the scalar product operator in the formu-
lation. This is mathematically incorrect for the scalar formulation. The
dot product needs to be removed. At which time level is the forcing ‘r’
evaluated? Explain (page 6, line 24) that ‘n’ denotes the time level.

The reviewer is right we have updated the manuscript. Which now states that r is integrated in the for-
ward direction, which is indeed an important numerical detail and this warrants a slight textual update as well.
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7) section 3.1: The description of the Ekman spiral test is insufficient and
needs thorough revisions. It is furthermore unclear how it is correctly im-
plemented. I disagree with the author’s reply to my first review that it
is not necessary to know the values of the parameters. Without the given
values of U geo , f (and thereby the latitude angle ϕ), Ω, ν, ρ the test case is
irreproducible. These values need to be provided.

As mentioned in the text this case bears no resemblance to the planetary ABL, therefore we no not see
why the lattitude angle on a rotating sphere would need to be introduced. Furthermore, choosing units and
corresponding numerical values for f, ν, ρ and Ugeo becomes highly arbitrary. Remarkably (and fortunately)
it appears directly from the (steady) analytical Ekman solution (when written as ui(γz)/Ugeo = fi(γz), with
index i a dummy for each direction x, y) is independent from the value of a single dimensionless group defined

as e.g. Π =
Ugeo

γν
=

2Ugeoγ

f
. This makes the results particularly reproducable as they are then universal.

This in turn means that any combination of values for the variables yields the same results when they are
properly scaled. We feared that we would risk conveying a different message when listing numerical values for
the chosen parameters. Unfortunately, despite our efforts towards this goal, we did not present such properly
scaled results as pointed out by the reviewer in the the next points. Based on the reviewers comments we
now also realize that the timestepping parameter and the finite machine precision, which appears to influence
the results (see discussion below and Fig 1. of this response), does indeed warrant the introduction of the
numerical values for reproducability. Therefore we state that in our set-up we have used normalized values
for Ugeo, f and γ, meaning that ν = 1/2. Note however that the present results are (now) presented in their
proper dimensionless form, and that any unit choice for length, time or velocity will yield equivalent results.
Noting that the reproducability of our results is further garanteed by the fact that our exact methods are
documented, shared, mirrored and are freely available (GPL v3 license), see text.

In addition, it needs to be clarified that (a)ν is constant (hidden information
via the words ‘without any closures’, is this correct?) and serves the role of
K(=ν) in Eqs. 14-16

The reviewer is correct, the revised text is now more explicit on K and ν, and that the test case concerns
the laminar Ekman spiral.

(b) Eqs. (1)-(11) are irrelevant for the discussion

Yes, using these closures is not convinient when the goal is to test consistency of the numerical methods.
We would argue that this is sufficiently made clear and motivated in the text that the equations parameterized
turublence in the ABL and that the Ekman spiral case does not concern the ABL.
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(c) the exact definition for the forcing terms r needs to be provided for u
and v. In order to arrive at the analytical solutions (17) and (18) of the
Ekman spiral, it must be assumed that the motion vanishes at z = 0 and
tends to the zonal geostrophic value v = Ugeo in the free atmosphere. In
addition, the Ekman solution (17) and (18) is based on the equation set

0 = K
∂2u

∂z2
+ fv −

1

ρ

∂P

∂x

0 = K
∂2v

∂z2
− fu−

1

ρ

∂P

∂y

When comparing this formulation to Eq. (14) identify exactly how the
forcing term r represents the forcing from the Coriolis and pressure gradient
term in the u and v equations (provide the equations for r u and r v ). Note
that your definition of

dP

dy
= Ugeofρ

seems to have a sign error and might need to read

dP

dy
= −Ugeofρ

if you imply geostrophic balance.

The reviewer is right, and we have revised the manuscript accordingly.

The other problem with section 3.1 is the incorrect definition of γ (line 20)
which needs to be

γ =

√

f

2K
=

√

2Ωsin(φ)

2K
=

√

Ωsin(φ)

K

Only in the very special case of φ = π/2 (North Pole) is this equation identical
to the definition of γ in the manuscript. However, this is not specified, and
γ might be used in an incorrect way

The reviewer is right. We had stated that the equations of motion are evaluated in a rotating frame of
reference with angular velocity Ω. We now realize this is confusing and unclear for two reasons. 1) Ω only
concerned the rotation of our model around it’s axis (i.e. the vertical direction), not around the axis that
connects the earth’s poles. 2) We had not realized that the symbol Ω is typically associated with the earth’s
rotation speed. As such the manuscript is revised. The revised manuscript now only uses the Coriolis param-
eter f , and is explicit on how it enters the equations. (see prev. points)

In addition, the authors call the quantity γ ‘Ekman depth’. Since the physical
units of γ are m -1 this is inadequate (it is an inverse). The γ definition is then
wrongly used in the definitions of z top (line 22), t end and dt. The physical
units do not work out. Divisions by γ are needed instead of multiplications.
The wrong use of γ also affects Figs. (1) and (2). The x-axis label ∆/γ must
have units of m 2 in the current version (not dimensionless). Figs. 1 and 2
furthermore suggest that U geo = 1 m/s was selected in practice. This is
the necessary value to represent the upper error limit of 0.25 m/s along the
scaled ξ/U geo y-axis in Figs. 1 and 2. Is this assumption correct? All these
aspects need to be clarified.

The reviewer is right, we have been inconsistent with the usage of γ and somehow attributed it with the
wrong units, alternating between units of length and inverse length, depending on it’s usage. This is addressed
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Figure 1: Vertical profiles of the error in the numerically obtained solution (ǫu) for the Ekman spiral case at
t = tend = 10/f for the run using 128 grid cells. The left hand side (lhs) plot shows the results for runs with
three different values for Ugeo (see legend). Notice the log scale for ǫu. The rhs figure plots the same data
scaled with the value for Ugeo to reveal the velocity-scale invariance of our results with respect to it’s numerical
value. Note that the errors saturate due to the finite precision of the binary representation of numbers.

in the revised manuscript and is now used as an inverse length scale only.

Figs. 1 and 2 furthermore suggest that U geo = 1 m/s was selected in
practice. This is the necessary value to represent the upper error limit of
0.25 m/s along the scaled ξ/U geo y-axis in Figs. 1 and 2. Is this assumption
correct? All these aspects need to be clarified.

A numerical value of 1 for Ugeo was indeed used (normalized) and we wonder how the reviewer was able
to deduce this from the results? The units for velocity (m/s) are arbitrary as nowhere in the text regarding
the case set-up, units for length and time are given. Based on the reviewers comments we have added the used
values for Ugeo, f and γ in the revised manuscript. However, we remain certain that the value of Ugeo = 1 is
not implied by the results of Fig. 1 and 2. To demonstrate the scale invariance of our results we show the
correspondence between the results that would be obtained if one would choose a numerical value for Ugeo = 5
or Ugeo = 0.001. The attached figure shows the diagnosed error ǫu for three runs; using Ugeo = {1, 5, 0.001}.
The domain is discretized using 128 equidistant cells (note that γ and f do not change between the runs).
Figure 1 of this response shows vertical profiles of the error and reveals that the values of ǫu are higher for
the case with the increased wind. However, when we scale the found errors of both runs with the correspond-
ing value for Ugeo, their values are the same (within machine precision)! This means that our results are
representative for an infinite set of runs where Ugeo is varied. For this non-realistic scenario, we prefer the
non-dimensionalized presentation of our results as these values can be easily compared with any simulation
result where other values may have been used. We hope this sufficiently clarifies the chosen formulation.

9) Page 8, line 26: how do the 1000 time steps compare to the setting of t
end and dt?

We choose tend = 10/f and dT = 0.01/f . The manuscript is now more clear now on this.
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10) Section 3.2: Point out that this is a dry test case. It looks as if the
GABLS1 case only forces the zonal momentum (line 19). Also add the
information about the constant Coriolis parameter f and the density ρ. Does
the density vary with height and if yes, how? As in section 3.1, provide the
exact forcing functions r u , r v and r θ . It seems clear how Eqs. (6)-
(11) connect to Eqs. (14)-(16) (via the computation of K), but it is unclear
how the surface flux equations (1)-(5) enter Eqs. (14)-(16). Provide this
information.

The reviewer is right and we now also discuss how the surface fluxes enter the computations and how r is
formulated in Sect. 2. As for the case descriptions, we have chosen to only provide a brief description of the
case and refer to the literature for the details. The density of air does not explicitly enter the equations that
are solved in our SCM.

Cuxart et al. (2006) presented their results after 9 hours (averaged over
the 9 th hour). You average the results over the 8 th hour and compare
to Cuxart et al. (2006). What is the reason for the discrepancy? Are the
results converged enough to a steady-state solution that the 8 th and 9 th
hour time frames become comparable? Provide an explanation.

The reviewer is right about this flaw, there is no good reason that we presented the 8-th hour average
and compare against the 9-th hour average of the LES results of Beare et al. (2006). The GABLS1 case is
therefore re-run, for both the equidistant and adaptive grid approaches until tend = 9h to calculate the 9-th
hour average. Noting that the resulting profiles for the wind did not change significantly. However, due to
the constant cooling rate, the temperature at the surface did change by another 0.25 Kelvin and the near
surface results do now correspond better to the LES results ... Furthermore, figure 2 now covers the evolution
of the grid structure over 9 hours instead of the previous 8 hours and the numbers in table 1 have also been
updated. The new results do not warrant any changes to the analysis in the text. We also wanted to visually
inspect the steadiness of our solution (and grid), and therefore we have rendered a movie of the evolution of
our solution (and grid). The resulting movie is considered nice enough to share and it is available via the
link; https://vimeo.com/284590243. The soundtrack is composed by Wagner and is added for a dramatic
cinematic effect only ;).

11) Page 10, line 25 and Figs. 6a,b: which time snapshot is shown? Add
this information to the text and the figure caption. The domain is 4000 m
high, but only 1300 m are shown in Fig. 6? Why? How do the solutions
compare in the upper domain?

We have added the information regarding the time. For the comparison we follow the analysis of the
GABLS2-intercomparison participants as in Svensonn et al. (2011). We can only guess their motivations;
Maybe they were (like us) most interested in the representation of the atmospheric boundary layer and not
the free troposphere aloft. Or the variations between the models were small as the SCM has not much dynam-
ics there. Anyhow, as mentioned in the text, we obtained their data from their plots that only covers the ABL,
so we cannot compare at higher altitudes. This latter argument does not apply to figure 7, so based on the re-
viewers comments, we updated that caption to state that the profile of U is constant with height for z > 1200m.
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Correction of typos and style:
Page 1, line 15: ‘... an SCM ...’
Page 2, line 27: ‘ ... built-in ...’
Page 4, line 14: ‘.. description ...’
Page 5, line 24 and page 7, line 25: ‘... its ....’
Page 6, line 17: ‘... spent ...’
Page 7, line 10: should read ‘ ... clean setup quantifies numerical errors
explicitly and tests the ...’
Page 8, line 2: Bring footnote into the main text
Page 8, line 3: ‘...shows the results of the errors at all levels and ...’
Page 8, line 15: ‘... though...’
Page 8, line 28: ‘... arise in the solution ...’
Page 9, line 1: ‘...and the computational performance ...’
Page 10, line 1: ‘... parameterize ...’
Page 10, line 6: ... on the order of ...’
Page 11, line 2: ‘Fig. 5’ needs to read Fig. 8
Page 11, line 8: ‘... presented a one-dimensional ...’
Caption Fig. 1 and 2: Add the information that the errors are shown at t
end (the end of the simulation). Also add: the inset shows the errors for all
time steps.
Fig. 3: symbol ‘L’ is undefined
Caption, Fig. 4: ‘... eighth hour ...’. Do u and v stay constant above 275
m?

The revised manuscript has taken all the suggestions into account. Except for the suggestion to add that
the inserts of Fig. 1 and 2 show the errors for all time steps. The insert show the same data as is plotted in
the main plot, but then for a single run. This was done to prevent that data being obscured by subsequently
plotted dots of the other runs, and thereby reveal the full spread of this typical result for a single run.

At the risk of repeating ourselves, we again like to thank the reviewer for bringing forward the discussed
issues. We feel He or She has greatly helped to improve the quality of the manuscript.
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Abstract. It is well known that the representation of certain atmospheric conditions in climate and weather models can still

suffer from the limited grid resolution that is facilitated by modern-day computer systems. Herein we study a simple one-

dimensional analogy to those models by using a Single-Column Model (SCM) description of the atmosphere. The model

employs an adaptive Cartesian mesh that applies a high-resolution mesh only when and where it is required. The so-called

adaptive-grid model is described and we report on our findings obtained for tests to evaluate the representation of the at-5

mospheric boundary layer, based on the first two GABLS intercomparison cases. The analysis shows that the adaptive-grid

algorithm is indeed able to dynamically coarsen and refine the numerical grid whilst maintaining an accurate solution. This is

an interesting result as in reality, transitional dynamics (e.g. due to the diurnal cycle or due to changing synoptic conditions)

are rule rather than exception.

Copyright statement. All relevant rights reserved10

1 Introduction

Single-Column Models (SCMs) are often used as the building blocks for Global (or General) Circulation Models (GCMs).

As such, many of the lessons learned from SCM development can be inherited by GCMs and hence the evaluations of SCMs

receive considerable attention by the geoscientific model development community (see e.g. Neggers et al., 2012; Bosveld

et al., 2014; Baas et al., 2017). In this work, we present a SCM that employs an adaptive Cartesian mesh that can drastically15

reduce the computational costs of such models, especially when pushing the model’s resolution. The philosophy is inspired by

recently obtained results on the evolution of atmospheric turbulence in a daytime boundary layer using three-dimensional (3D)

adaptive grids. As promising results were obtained for turbulence-resolving techniques such as Direct Numerical Simulations

and Large-eddy Simulation (LES), herein we explore whether similar advancements can be made with more practically oriented

techniques for the numerical modelling of the atmosphere. As such, the present model uses Reynolds-averaged Navier-Stokes20

(RANS) techniques to parametrize
✿✿✿✿✿✿✿✿✿✿

parameterize
✿

the vertical mixing processes due to turbulence (Reynolds, 1895), as is typical

in weather and climate models.
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The discussion of limited grid resolution is present in many studies of SCMs and GCMs. A prominent example is the

nocturnal cumulus-cloud case (Wyant et al., 2007): whereas a high resolution mesh is required for capturing the processes at

the cloud interface, a coarser resolution may be used for the time when the sun has risen and the cloud has been dissolved.

More generally speaking, virtually all of the atmospheric dynamics that require a relatively high-resolution grid for their5

representation in numerical models are localized in both space and in time. The issue is made more difficult to tackle by the

fact that their spatio-temporal localization is typically not known a priori (e.g. the height and strength of a future inversion

layer). Therefore, the pre-tuned and static-type grids that most operational GCMs use (virtually all) are not flexible enough to

capture all dynamical regimes accurately or efficiently. This also puts a large strain on the used closures for the sub-grid scale

processes. In order to mitigate this challenge, GCMs that employ a so-called adaptive grid have been explored in the literature.10

Here the grid resolution adaptively varies in both space and time, focussing the computational resources to where and when

they are most necessary. Most notably, the innovative works of Jablonowski (2004), Jablonowski et al. (2009) and St-Cyr et al.

(2008) report on the usage of both Cartesian and non-conforming three-dimensional adaptive grids and clearly demonstrate

the potential of grid adaptivity for GCMs. Inspired by their works, we follow a 1D SCM approach and aim to add to their

findings, using different grid-adaptative formulations and solver strategies. Since SCMs do not resolve large-scale atmospheric15

circulations, the analysis herein focusses on the representation of the Atmospheric Boundary Layer (ABL).

Over the years, the computational resources that are available to run computer models have increased considerably (Schaller,

1997). This has facilitated GCMs to increase their models’ spatial resolution, enabling to better resolve the most demanding

processes
✿✿✿✿

with
✿✿✿✿✿✿✿✿

increased
✿✿✿✿

grid
✿✿✿✿✿✿✿✿✿✿

resolutions. However, it is important to realize that the (spatial and temporal) fraction of the

domain that benefits most from an increasing maximum resolution necessarily decreases as separation of the modelled spatial20

scales increases (Popinet, 2011). This is because the physical processes that warrant a higher-resolution mesh are virtually

never space filling. E.g. the formation phase of tropical cyclones is localized in both space and time and is characterized

by internal dynamics that evolve during the formation process. By definition, with an increasing scale separation, only an

adaptive-grid approach is able to reflect the effective (or so-called fractal) dimension of the physical system in the scaling of

the computational costs (Popinet, 2011; Van Hooft et al., 2018). This is an aspect where the present adaptive-grid approach25

differs from for example, a dynamic-grid approach (see e.g. Dunbar et al., 2008)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Dunbar et al., 2008), that employs a fixed

number of grid cells that needs to be predefined by the user. This work employs a similar method for grid adaptation as

presented in the work of Van Hooft et al. (2018) on 3D-turbulence-resolving simulations of the ABL. As such, this work is also

based on the adaptive-grid toolbox and build-in
✿✿✿✿✿✿

built-in
✿

solvers provided by the ‘Basilisk’ code (http://basilisk.fr).

We test our model with the well established cases defined for the first two GABLS intercomparison projects for SCMs. As30

part of the Global Energy and Water cycle EXchanges (GEWEX) modelling and prediction panel, the GEWEX ABL Study

(GABLS) was initiated in 2001 to improve understanding of the atmospheric boundary layer processes and their representation

in models. Based on observations during field campaigns, a variety of model cases has been designed and studied using

both LES and SCMs with a large set of models using traditional static-grid structures. An overview of the results and their

interpretation for the first three intercomparison cases are presented in the work of Holtslag et al. (2013). Here we will test the35

present adaptive-grid SCM based on the first two intercomparison cases, referred to as GABLS1 and GABLS2. These cases

2
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were designed to study the model representation of the stable boundary layer and the diurnal cycle, respectively. Their scenarios

prescribe idealized atmospheric conditions and lack the complete set of physical processes and interactions encountered in

reality. At this stage within our research, the authors consider this aspect to be an advantage, as the present SCM model does

not have a complete set of parametrizations
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameterizations
✿

for all processes that are typically found in the operational5

models (see e.g. Slingo, 1987; Grell et al., 2005)).

This paper is organized as follows, the present SCM is discussed in more detail in Sect. 2. Based on the results from a

simplified flow problem, Sect. 3 starts with an analysis of the used numerical methods and the grid adaptation strategy. Model

results for ABL-focussed cases that are based on the first two GABLS intercomparison scenarios are also presented in Sect. 3.

Finally, a discussion and conclusions are presented in Sect. 4.10

2 Model Overview

As we focus on the merits of grid adaptivity in this study on SCMs and not on the state-of-the-art closures for the vertical

transport phenomena, we have opted to employ simple and well-known descriptions for the turbulent transport processes. More

specifically, the present model uses a stability-dependent, first-order, local, K-diffusivity closure as presented in the seminal

works
✿✿✿✿

work
✿

of Louis et al. (1982) and ?
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Holtslag and Boville (1993). For the surface-flux parametrizations
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

parameterizations we15

again follow the work of Louis et al. (1982)
✿✿✿✿✿✿✿✿✿✿

formulations
✿✿

in
✿✿✿

the
✿✿✿✿✿

work
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Holtslag and Boville (1993). However, to improve the

representation of mixing under stable conditions, an alteration is made to the formulation of the so-called stability-correction

function under stably-stratified conditions. Based on the work of England and McNider (1995), we use a so-called short-tail

mixing function. The used closures for the turbulent transport are summarized next. The upward surface fluxes (F ) of the

horizontal velocity components (u,v), the potential temperature (θ) and specific humidity q are evaluated as:20

Fu = C−C
✿✿✿

MU1u1, (1a)

Fv = C−C
✿✿✿

MU1v1, (1b)

Fθ = C−C
✿✿✿

HU1 (θ1 − θ0) , (1c)25

Fq = C−C
✿✿✿

HU1 (q1 − q0) , (1d)

Where U is the wind-speed magnitude and indices 0 and 1 refer the to values at the surface and the first model level, respectively.

The surface transport coefficients are,

CM = CNfs,M (Rib), (2a)

3



CH = CNfs,H(Rib), (2b)

with Rib the surface bulk Richardson number, that is defined as,

Rib =
g

θv,ref

z1 (θv,0 − θv,1)

U2
1

z1 (θv,1 − θv,0)

U2
1

✿✿✿✿✿✿✿✿✿✿✿✿

, (3)5

where g is the acceleration due to gravity, θv is the virtual potential temperature and θv,ref a corresponding reference value
✿✿✿

that

✿✿✿✿✿

needs
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿✿

prescribed.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿

absence
✿✿

of
✿✿✿✿✿

liquid
✿✿✿✿✿✿

water,
✿✿✿

the
✿✿✿✿✿

virtual
✿✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

is
✿✿✿✿✿✿

related
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿✿✿✿✿

temperature

✿✿

(θ)
✿✿✿✿

and
✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿✿

humidity
✿✿✿

(q)
✿✿✿✿✿✿✿✿

according
✿✿✿

to,

θv = θ

(

1−
(

1− Rv

Rd

)

q

)

,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(4)

✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

Rv/Rd = 1.61
✿✿✿

the
✿✿✿✿

ratio
✿✿

of
✿✿✿

the
✿✿✿

gas
✿✿✿✿✿✿✿✿

constants
✿✿✿

for
✿✿✿✿✿

water
✿✿✿✿✿✿

vapour
✿✿✿

and
✿✿✿

dry
✿✿✿

air
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Emauel, 1994; Heus et al., 2010). The so-called10

neutral exchange coefficient (CN ) is calculated using,

CN =
k2

ln((z1 + z0,M )/z0,M )
2 , (5)

with k = 0.4 the Von Karman constant, z1 the height of lowest model level and z0,M is the roughness length for momentum.

For the cases studied in this work, the roughness length for heat is assumed to be identical to Z0,M
✿✿✿✿

z0,M . The stability correction

functions for the surface transport of momentum and heat (fs,M ,fs,H ) are,15

fs,M (Rib) =























0, Rib ≥ 0.2,
(

1− Rib
0.2

)2
, 0≤ Rib < 0.2,

1− 10Rib
1+75CN

√
((z1+z0,M )/z0,M )‖Rib‖

, Rib < 0,

(6a)

fs,H(Rib) =











fs,M (Rib), Rib ≥ 0,

1− 15Rib
1+75CN

√
((z1+z0,M )/z0,M )‖Rib‖

, Rib < 0,
(6b)

which conclude the discription
✿✿✿✿✿✿✿✿✿

description
✿

of the surface fluxes. The vertical flux (w′a′) of a dummy variable a due to turbu-

lence within the boundary layer is based on a local diffusion scheme and is expressed as,20

w′a′ =−K
da

dz

∂a

∂z
✿✿

, (7)

where K is the so-called eddy diffusivity,

K = l2Sf(Ri). (8)
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l represents an effective mixing length,

l =min(kz, lbl) , (9)

with lbl is the Blackadar length scale, we use, lbl = 70m (Holtslag and Boville, 1993). S is the local wind-shear magnitude,

S = ‖dU
dz

‖

√

(

∂u

∂z

)2

+

(

∂v

∂z

)2

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(10)5

and f(Ri) is the stability correction function for the vertical flux,

f(Ri) =























0, Ri≥ 0.2,
(

1− Ri
0.2

)2
, 0≤ Ri< 0.2,

√
1− 18Ri, Ri< 0,

(11)

i.e. based on the gradient Richardson number,

Ri =
g

θv,ref

dθv/dz

S2

∂θv/∂z

S2
✿✿✿✿✿✿

. (12)

The authors of this work realize that there have been considerable advancements on the representation of mixing under10

unstable conditions in the past decades, e.g non-local mixing (Holtslag and Boville, 1993) and turbulent-kinetic-energy-based

closures (see e.g., Mellor and Yamada, 1982; Lenderink and Holtslag, 2004). Therefore, we would like to note that such

schemes are compatible with the adaptive-grid approach and they could be readily employed to improve the physical descrip-

tions in the present model. From an implementations’ perspective, those schemes would not require any grid-adaptation specific

considerations when using the Basilisk code.15

✿✿✿

For
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿

integration;
✿✿✿

we
✿✿✿✿✿✿✿✿

recognize
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

reaction-diffusion-type
✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿✿✿

describing
✿✿✿

the
✿✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿

wind
✿✿✿✿✿✿✿✿✿✿

components

✿✿✿

and
✿✿✿✿✿

scalar
✿✿✿✿✿

fields
✿✿✿✿

such
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

virtual
✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

and
✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿✿

humidity
✿✿✿

(q).
✿✿✿✿

For
✿

a
✿✿✿✿✿✿✿

variable
✿✿✿✿

field
✿✿✿✿✿✿

s(z, t),
✿✿✿

we
✿✿✿✿✿

write,

∂s

∂t
=

∂

∂z
(K

∂

∂z
s)+ r.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(13)

✿✿✿✿✿

Where
✿✿

r
✿✿

is
✿

a
✿✿✿✿✿✿

source
✿✿✿✿

term
✿✿✿✿

and
✿✿

K
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

diffusion
✿✿✿✿✿✿✿✿✿✿

coefficient.
✿✿✿✿✿

Using
✿

a
✿✿✿✿✿✿✿✿✿✿✿

time-implicit
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

first-order-accurate
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿

for

✿✿

the
✿✿✿✿✿✿✿✿

diffusive
✿✿✿✿

term
✿✿✿

and
✿✿

a
✿✿✿✿✿✿

explicit
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿

integration
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

source
✿✿✿✿

term
✿✿✿

(r),
✿✿✿✿

with
✿✿✿✿

time
✿✿✿✿

step
✿✿

∆t
✿✿✿✿✿✿✿✿✿

separating
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿

sn
✿✿✿✿

and
✿✿✿✿✿

sn+1,20

✿✿✿

this
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿

written,
✿

sn+1 − sn

∆t
=

∂

∂z
(K

∂

∂z
sn+1)+ rn.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(14)

✿✿✿✿✿✿✿✿✿✿

Rearranging
✿✿✿

the
✿✿✿✿✿

terms
✿✿✿

we
✿✿✿

get,
✿

∂

∂z
(K

∂

∂z
sn+1)− sn+1

∆t
=− sn

∆t
− rn.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(15)
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✿✿

To
✿✿✿✿✿

obtain
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Poisson-Helmholtz
✿✿✿✿✿✿✿✿

equation.
✿✿✿

Eq.
✿✿✿

15
✿

is
✿✿✿✿✿✿

solved
✿✿✿✿✿

using
✿

a
✿✿✿✿✿✿✿✿

multigrid
✿✿✿✿✿✿✿

strategy,
✿✿✿✿✿✿✿✿✿

employing
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

finite-volume-type
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

second-order-accurate

✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Popinet, 2017a, b).
✿✿✿✿

The
✿✿✿✿✿✿

source
✿✿✿✿

term
✿

r
✿✿✿

in
✿✿✿

Eq.
✿✿✿

13
✿✿

is
✿✿✿✿✿✿

defined
✿✿✿✿✿

using
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿✿

formulations
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

various

✿✿✿✿✿

scalar
✿✿✿✿

fields
✿✿

in
✿✿✿✿

our
✿✿✿✿✿✿

model.
✿✿✿

For
✿

θ
✿✿✿✿

and
✿

q,
✿✿✿

the
✿✿✿✿✿✿

source
✿✿✿✿

term
✿✿

r
✿✿✿✿✿✿✿

concerns
✿✿✿

the
✿✿✿✿✿✿✿✿

tendency
✿✿

in
✿✿✿

the
✿✿✿✿✿

lowest
✿✿✿✿

grid
✿✿✿✿

level
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

surface
✿✿✿✿✿

fluxes

✿✿✿

(F ,
✿✿✿

see
✿✿✿✿

Eqs.
✿✿

1,
✿✿✿✿

rFs
)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

effect
✿✿✿

of
✿✿✿✿

large
✿✿✿✿✿

scale
✿✿✿✿✿✿✿

synoptic
✿✿✿✿✿✿✿✿✿

divergence
✿✿✿✿

(rw)
✿✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿

velocity
✿✿

w
✿✿✿✿

(i.e.
✿✿✿✿✿✿✿✿✿

prescribed5

✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

GABLS2
✿✿✿✿✿

case).
✿✿✿✿

We
✿✿✿✿

write
✿✿✿

for
✿

a
✿✿✿✿✿✿✿

dummy
✿✿✿✿✿✿✿

variable
✿✿

s,

rw,s =−w
∂s

∂z
✿✿✿✿✿✿✿✿✿✿✿

(16)

✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿✿

(u,v)
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿

source
✿✿✿✿✿

terms
✿✿✿

(i.e.
✿✿✿✿

rFs ✿✿✿

and
✿✿✿

rw)
✿✿✿

are
✿✿✿✿

also
✿✿✿✿✿

taken
✿✿✿✿

into
✿✿✿✿✿✿

account
✿✿✿✿

and

✿✿✿✿✿✿✿✿✿✿✿

supplemented
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿

source
✿✿✿✿✿

term
✿✿✿✿✿✿✿

r∇hP,f ,
✿✿✿

that
✿✿✿✿✿✿✿✿

concerns
✿✿✿

the
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

pressure-gradient-forcing
✿✿✿✿✿✿

vector
✿✿✿✿✿✿✿✿

(−∇hP )

✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Coriolis-force
✿✿✿✿

term
✿✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿

the
✿✿✿✿✿

local
✿✿✿✿✿✿✿

Coriolis
✿✿✿✿✿✿✿✿

parameter
✿✿✿

f .
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿

vector
✿✿✿✿✿✿✿✿✿✿✿

u= {u,v,0}
✿✿✿

we10

✿✿✿✿✿

write,

r∇hP,f =
−∇hP

ρ
+ f

(

k̂×u

)

,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(17)

✿✿✿✿✿

where
✿✿✿

‘×’
✿✿✿✿✿✿✿✿✿

represents
✿✿✿

the
✿✿✿✿✿✿

vector
✿✿✿✿

outer
✿✿✿✿✿✿✿

product
✿✿✿✿✿✿✿✿

operator,
✿

ρ
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

density
✿✿

of
✿✿

air
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

k̂ = {0,0,1}
✿✿✿

the
✿✿✿

unit
✿✿✿✿✿✿

vector
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

vertical

✿✿✿✿✿✿✿✿

direction.
✿✿

In
✿✿✿

this
✿✿✿✿✿

work
✿✿

we
✿✿✿✿✿

adopt
✿✿✿

the
✿✿✿✿✿✿✿✿✿

commonly
✿✿✿✿✿

used
✿✿✿✿✿✿

strategy
✿✿

to
✿✿✿✿✿✿✿✿

introduce
✿✿

a
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿

vector
✿✿✿✿

that
✿✿✿✿✿

known
✿✿✿

as
✿✿

the
✿✿✿✿✿✿✿✿✿✿

geostrophic
✿✿✿✿✿

wind

✿✿✿✿✿✿

(Ugeo)
✿✿

to
✿✿✿✿✿✿

express
✿✿✿✿✿✿✿

−∇hP ,
✿✿✿✿✿✿✿✿✿

according
✿✿

to,
✿

15

Ugeo =
k̂

ρf
×−∇hP.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(18)

The most prominent feature of the SCM presented in this work is its ability to dynamically coarsen and refine
✿✿✿

that
✿✿

it

✿✿✿✿✿✿✿✿

adaptively
✿✿✿✿✿✿✿✿

coarsens
✿✿✿✿

and
✿✿✿✿✿✿

refines
✿

the grid resolution based on the evolution of the solution itself. As mentioned in the in-

troduction, the associated grid-adaptation algorithm is the same as was used by Van Hooft et al. (2018). We
✿✿✿✿✿✿✿

described
✿✿✿

in

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Van Hooft et al. (2018).
✿✿✿✿✿

Here
✿✿✿

we only briefly discuss the general concepthere. For an in-depth quantitative discussion with20

simplified examples, the reader is referred to the aforementioned paper.

Apart from the imperfect representation of the physical aspects of a system in numerical models, additional errors naturally

arise due to the spatial and temporal discretization. In general, a finer resolution corresponds to a more accurate solution and a

simulation result is considered to be ‘converged’ when the numerically obtained solution and its
✿✿

the
✿

statistics of interest do not

crucially depend on the chosen resolution. The aim of the grid-adaptation algorithm is to dynamically coarsen and refine the25

mesh so that the errors due to the spatial discretization remain within limited bounds and to be uniformly distributed in both

space and time. For our adaptive approach this requires, (1) an algorithm that evaluates a local estimate of the discretization

error in the representation of selected solution fields (χa for a field ‘a’) and (2), a corresponding error threshold (ζa) that

determines if a grid cell’s resolution is either too coarse (i.e. χa > ζa), too fine (i.e. χa < 2ζa/3), or just fine. Grid adaptation

can then be carried out accordingly and the solution values of new grid cells can be found using interpolation techniques. A30

cell is refined when the estimated error for at least one selected solution field exceeds it’s refinement criterion and a cell is
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coarsened when it is considered to be ‘too fine’ for all selected solution fields. The ‘error estimator’ (χ) is based on a so-called

multi-resolution analysis that is formally linked to wavelet thresholding. The algorithm aims to estimate the magnitude of

higher-order contributions in the spatial variability of the solution that are not captured by the solver’s numerical schemes.

Consistent with the second-order spatial accuracy of the solver’s numerical schemes (Popinet, 2017b), the algorithm employs a5

second-order accurate wavelet-based error estimate. In practice, grid refinement will typically occur at the locations where the

solution is highly ‘curved’, wheareas
✿✿✿✿✿✿✿

whereas those areas where the solution fields vary more ‘linearly’ in space are prone to

coarsening. The error threshold, or so-called refinement criterion ζ, is defined by the user. Noting that similar to the pre-tuning

of the fixed-in-time grids as is common in most SCMs, the balance between accuracy and the required computational effort

remains at the discretion of the model’s user.10

For the cases in this work that focus on the ABL (i.e. in Sect 3.2 and 3.3), the dynamics are governed by the wind (U = (u,v))

and the virtual potential temperature (θv), hence we base the refinement and coarsening of the grid on a second-order-accurate

estimated error associated with the represenation
✿✿✿✿✿✿✿✿✿✿✿

representation of these discretized fields. Based on trial and error, we set the

corresponding refinement thresholds,

ζu,v = 0.25 m/s, (19)15

ζθv = 0.5 K, (20)

for both of the horizontal wind components and virtual potential temperature, respectively. These values are the result of an

choice by the authors that aims to strike an arbitrary balance between the accuracy of the solution and the computational effort

required to run the model. Note that a similar (arbitrary) balance needs also to be found when static grids are employed. For a

simple flow set-up, Sect. 3.1 presents an example convergence study to show the effects of using different refinement criteria20

on the
✿✿✿✿✿✿✿✿

accuracy
✿✿

of
✿✿✿

the obtained solutions.

Grid adaptation is carried out each time step. The tree-based anisotropic-grid structure in Basilisk facilitates a convenient

basis for the multi-resolution analysis and the subsequent refinement and coarsening of cells at integer levels of refinement.

This entails that the spatial resolution can vary by factors of two (Popinet, 2011). For the adaptive-grid runs presented in this

paper, the time spend
✿✿✿✿

spent
✿

in the actual grid assessment and adaptation routines is less than than 5% of the total wall-clock25

time (see table 1).

For time integration; we recognize a reaction-diffusion-type equation describing the evolution of the horizontal wind components

and scalar fields such as the virtual potential temperature and specific humidity (qt). For a variable field s(z, t), we write,

∂s

∂t
=

∂

∂z
· (K ∂

∂z
s)+ r.

Where r is a source term and K is the diffusion coefficient. Using a time-implicit first-order-accurate time discretization with30

time step ∆t separating the solution sn and sn+1, this can be written,

sn+1 − sn

∆t
=

∂

∂z
· (K ∂

∂z
sn+1)+ r.
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Rearranging the terms we get,

∂

∂z
· (K ∂

∂z
sn+1)− sn+1

∆t
=− sn

∆t
− r.

To obtain a Poisson-Helmholtz equation. Eq. 15 is solved using a multigrid strategy, employing a finite-volume-type second-order-accurate

spatial discretization (Popinet, 2017a, b). Apart from the Ekman-spiral case in Sect. 3.1, the physical time step in the ABL-5

focussed cases is adaptively varied between 2 sec. and 15 sec. based on the convergence properties of the aforementioned

iterative solver. Noting that these values are rather small compared to existing SCMs
✿✿✿✿✿✿

GCMs that often employ higher-order-

accurate time-integration schemes. Aditionally
✿✿✿✿✿✿✿✿✿✿

Additionally, the correlation of spatial and temporal scales warrants a smaller

time step, since the present model employs a higher maximum vertical resolution compared to that of an operational GCM.

The solver’s second-order spatial accuracy is validated and its performance scaling
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

performance is accessed for a simple10

flow set-up in Sect. 3.1. For the exact details of the model set-ups for the cases presented in this paper, the reader is referred to

the case-definition files (in legible formatting). Links are provided to their online locations in table 1.

3 Results

3.1 The
✿✿✿✿✿✿✿✿

Laminar Ekman spiral and grid adaptation

Before we focus our attention on cases that concern the ABL, this section discusses the philosophy of the used grid adaptation15

strategy based on the analysis of a one-dimensional (1D)
✿✿✿✿✿✿

laminar Ekman-flow set-up. This simple and clean set-up enables to

quantify numerical errors explicitly and test the solver’s numerical schemes. The aim of this section is to show that the grid-

adaptation strategy and the accompanying refinement criteria provide a consistent and powerful framework for adaptive mesh-

element-size selection. Results are presented for both an equidistant-grid and the adaptive-grid approach. The case describes a

neutrally-stratified fluid with
✿

a
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿✿✿✿

diffusivity
✿✿✿

for
✿✿✿✿✿✿✿✿✿

momentum
✿✿✿✿

(K)
✿✿✿✿✿

given
✿✿✿

by
✿✿✿

the kinematic viscosity ν and density ρ in a20

rotating frame of reference with angular velocity Ω
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

Coriolis
✿✿✿✿✿✿✿✿

parameter
✿✿

f . A flow is forced by a horizontal pressure

gradient dP/dy = Ugeofρ
✿✿✿✿✿✿✿✿

(−∇hP )
✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿✿

Eq.
✿✿

18
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ugeo = {Ugeo,0}, over a no-slip bottom boundary (located at

zbottom = 0). Where Ugeo is a velocity scale that is also known as
✿✿✿✿✿✿✿✿

Assuming
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

velocity
✿✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿✿✿✿

converge
✿✿✿✿✿✿✿

towards the

geostrophic wind . There
✿✿✿✿✿

vector
✿✿✿

for
✿✿✿✿✿✿

z →∞
✿✿✿

and
✿✿✿✿✿✿

vanish
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

bottom
✿✿✿✿✿✿✿✿✿

boundary,
✿✿✿✿

there
✿

exists an analytical, 1D, steady solution

for the horizontal wind components (uE ,vE
✿✿✿✿✿✿✿✿✿

component
✿✿✿✿✿✿✿

profiles
✿✿✿✿✿✿✿✿✿✿✿✿

(uE(z),vE(z)), that is known as the Ekman spiral;25

uE = Ugeo

(

1− e−γzcos(γz)
)

, (21)

vE = Ugeoe
−γzsin(γz), (22)

with γ the so-called
✿✿✿✿✿✿

inverse
✿

Ekman depth, γ =
√

Ω/ν. We initialize the solution
✿✿✿✿✿✿✿✿✿✿✿✿

γ =
√

f/(2ν).
✿✿✿✿

We
✿✿✿✿✿✿

choose
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

values

✿✿

for
✿✿✿✿✿✿✿

Ugeo,γ
✿✿✿

and
✿✿

f
✿✿

of
✿✿✿✿

unity
✿✿

in
✿✿✿

our
✿✿✿✿✿✿

set-up
✿✿✿

and
✿✿✿✿✿✿

present
✿✿✿

the
✿✿✿✿✿✿

results
✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

dimensionless
✿✿✿✿✿✿✿✿✿✿

framework.
✿✿✿

The
✿✿✿✿✿✿✿

solution
✿✿

is
✿✿✿✿✿✿✿✿

initialized
✿

accord-

ing to the exact solution and
✿✿

we
✿

set boundary conditions based on Eqs. 21 and 22. Equation 13 is solved numerically for both u30

and v componentswithout any closures for turbulent transport, on a domain with height ztop = 100γ
✿✿✿✿✿✿✿✿✿✿✿✿

ztop = 100γ−1. The simu-

lation is run until tend = 10× γ/Ugeo
✿✿✿✿✿✿✿✿✿✿✿

tend = 10f−1, using a small time step dt= 0.01× γ/Ugeo
✿✿✿

fixed
✿✿✿✿

time
✿✿✿✿

step
✿✿✿✿✿✿✿✿✿✿✿✿

∆t= 0.01f−1.
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The time step is chosen
✿✿✿✿✿✿✿✿✿

sufficiently
✿✿✿✿✿

small
✿

such that the numerical errors are dominated by the spatial discretization rather than

by the time-integration scheme. During the simulation run, discretization errors alter the numerical solution from it’s exact,

and analytically steady, initialization. For all runs, the diagnosed statistics regarding the numerical solutions that are presented

in this section have become steady at t= tend.5

The spatial-convergence properties for the equidistant-grid solver are studied by iteratively decreasing the used (equidistant)

mesh-element sizes (∆) by factors of two and we monitor the increasing fidelity of the solution at t= tend between the runs.

Therefore, based on the analytical solution, a local error (ǫu,v) of the numerically obtained solution (un,vn) within each grid

cell is diagnosed and is defined here as:

ǫa = ‖an −〈aE〉‖, (23)10

where a is a dummy variable for u and v, 〈aE〉 is the grid-cell-averaged value of the analytical solution (aE) and an the value

of the numerical solution within the cell1
✿

.
✿✿✿✿✿✿

Noting
✿✿✿✿

that
✿✿

an
✿✿✿✿

also
✿✿✿✿✿✿✿✿✿

represents
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

grid-cell-averaged
✿✿✿✿✿

value
✿✿

in
✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿✿

finite-volume

✿✿✿✿✿✿✿

approach. Figure 1a shows the results
✿✿✿

for
✿✿

all
✿✿✿✿

runs
✿

and compares the used grid resolution (∆) with the error ǫu,v . It appears that

the observed range of ǫ-values is large and typically spans 10 orders of magnitude, with a lower bound defined by the ‘machine

precision’ (i.e. ≈ 10−15 for double-precision floating-point numbers). This wide range can be explained by the fact that the15

Ekman spiral is characterized by exponentially decreasing variation with height (see Eqs. 21, 22) and hence the equidistant

grid may be considered overly refined at large z. This illustrates that, for a given solver formulation, the error in the solution

is not directly dictated by the mesh-element size, but also depends on the local shape of the numerical solution itself. This

poses a challenge for the pre-tuning of meshes applied to GCMs, where a balance need to be found between accuracy and

computational efficiency
✿✿✿✿

speed
✿✿✿✿✿✿✿✿✿✿✿

performance. The solution of a future model run is not known beforehand and hence the tuning20

of the grid typically relies heavily on experience, empericism
✿✿✿✿✿✿✿✿✿

empiricism and a-priori knowledge. This motivates to apply the

method of error estimation in the representation of a discretized solution field as described in Popinet (2011) and Van Hooft

et al. (2018). For both velocity components, this estimated error (χu,v) is evaluated at the end of each simulation run for each

grid cell and is plotted against the corresponding
✿✿✿✿✿

actual
✿

error (ǫu,v) in Fig. 1b. It seems that for this virtually steady case,

there is a clear correlation between the diagnosed (instantaneous) χ-values and the ǫ-values that have accumulated over the25

simulation run time. Even tough
✿✿✿✿✿✿

though
✿

the correlation is not perfect, it provides a convenient and consistent framework for a

grid adaptation algorithm. As such, a second convergence test for this case is performed using a variable-resolution grid within

the domain. The mesh is based on the aforementioned adaptive-grid approach. For these runs, we iteratively decrease the so-

called refinement criterion (ζu,v) by factors of two between the runs and monitor the increasing fidelity of the numerically

obtained solution for all runs. The refinement criterion presets a threshold value (ζ) for the estimated error χ that defines30

when a cell should be refined (χ > ζ) or alternatively, when it may be coarsened (χ < 2ζ/3). Figure 2a presents the results

and compares the used local grid resolution against ǫu,v for the various (colour-coded) runs. It appears that for all separate

runs, the algorithm employed a variable resolution mesh and that this has resulted in a smaller range of the local error in the

solution (ǫ)
✿

,
✿✿

as
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

equidistant-grid
✿✿✿✿✿

cases. The local error in the solution is also compared against the wavelet-

1
a
n (also) represents the grid-cell-averaged value in a finite-volume approach.
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based estimated error in the representation of the solution fields in Fig. 2b. Compared to the results from the equidistant-grid

approach as presented in Fig. 1b), the spread of the χ and ǫ values is relatively small for the separate runs when the adaptive-

grid approach is used. The most prominent reason for the finite spread is that the error (ǫ) was diagnosed after 1000 time steps.

This facilitated errors in the solution that arise
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

solution at a specific location (with a large χ-value) to ‘diffuse’ over time5

towards regions where the solution remains to be characterized by a small χ-value (not shown). Also, since u and v are coupled

(due to the background rotation), local errors that arise in
✿✿

the
✿

solution for u ‘pollute’ the v-component solution, and vice versa.

Furthermore, a spread is expected because the tree-grid structure only allows the resolution to vary by factors of two (Popinet,

2011).

Finally, the global convergence characteristics and the speed performance of the two approaches are studied. The global10

error (η) in the numerically obtained solution is evaluated as,

η =

ztop
∫

zbottom

(ǫu + ǫv)dz, (24)

In order to facilitate a comparison between the methods, we diagnose the number of used grid cells (N ) for the adaptive-grid

run. Figure 3a shows that for both approaches the error scales inversely proportional to the used number of grid cells to the

second power (i.e. second-order spatial accuracy in 1D). The adaptive grid results are more accurate than the results from the15

fixed-grid approach when employing the same number of grid cells. Figure 3b shows that for both approaches the required

effort (i.e. measured here in wall-clock time) scales linearly with the number of grid cells, except for the runs that require less

than one-tenth of a second to perform. The plots reveals that per grid cell there is computational overhead for the adaptive-grid

approach. These results show that the used numerical solver is well behaved.

The following sections are devoted to testing the adaptive-grid approach in a more applied SCM scenario, where the turbulent20

transport closures are applied (see Sect. 2) and the set-up is unsteady. Here, the quality of the adaptive-grid solution has to be

assessed by comparing against reference results from other SCMs, large-eddy simulations and the present model running in

equidistant-grid mode.

3.2 GABLS1

The first GABLS intercomparison case focusses on the representation of a stable boundary layer. Its scenario was inspired25

by the LES study of an ABL over the Arctic sea by Kosović and Curry (2000). The results from the participating SCMs are

summarized and discussed in Cuxart et al. (2006), for the LES intercomparison study, the reader is referred to the work of Beare

et al. (2006). The case prescribes the initial profiles for wind and temperature, a constant forcing for momentum corresponding

to a geostrophic wind of Ugeo = 8 m/s and
✿✿✿✿✿

vector,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ugeo = {8,0}m/s
✿✿✿

and
✿✿✿✿✿✿✿

Coriolis
✿✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

f =1.39×10−4s−1.
✿✿✿✿✿✿✿✿✿✿✿

Furthermore,

a fixed surface-cooling rate of 0.25 K/hour
✿✿

is
✿✿✿✿✿✿

applied. The model is set-up accordingly,
✿✿

run
✿

with a maximum resolution of 6.2530

meter and a domain height of 400 meters. The maximum resolution corresponds to 6 levels of tree-grid refinement, where each

possible coarser level corresponds to a factor of two increase in grid size.
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Due to the idealizations in the case set-up with respect to the reality of the field observations, the model results were not

compared against the experimental data (Cuxart et al., 2006). However, for the SCMs, a reference was found in the high-

fidelity LES results that tended to agree well between the various models. The LES results therefore serve as a benchmark for

the results obtained with the present model. This facilitates a straight forward
✿✿✿✿✿✿✿✿✿✿✿✿

straightforward
✿

testing of the formulations and

implementations of the used physical closures, before we continue our analysis towards the full diurnal cycle. Inspired by the5

analysis of Cuxart et al. (2006) and their figure 3, we compare our SCM results with the 6.25 meter-resolution LES ensemble

results. We focus on the profiles for the wind components and potential temperature averaged over the eighth
✿✿✿✿

ninth
✿

hour of

the simulation in Fig. 4. We observe that the present SCM is in good agreement with the LES results and is able to capture

the vertical structure of the ABL, including the low-level jet. The differences are only minor compared to the variations in the

results presented in the aforementioned GABLS1 SCM reference paper.10

Note that in general, results are of course sensitive to the closure chosen to parametrize
✿✿✿✿✿✿✿✿✿✿

parameterize
✿

the turbulent transport,

in our case given by Eqs.6 and 11. In order to separate between the numerical effects of using grid adaptivity and the chosen

physical closures, we define an additional reference case in which we run an equidistant-grid SCM. This model run employs

a fixed 6.25 meter resolution (i.e with 64 cells), but otherwise identical closures and numerical formulations. I.e. we have

switched-off the grid adaptivity and maintain the maximum resolution throughout the domain. We can observe that results15

between both SCMs are in good agreement but , that minor deviations are present. These discrepancies are in
✿✿

on the order of

magnitude of the refinement criteria and can be reduced by choosing more stringent values, that would result in using more

grid cells. The evolution of the adaptive-grid structure is shown in Fig. 5 a. We see that a relatively high resolution is employed

near the surface, i.e. in the logarithmic layer. Remarkably, without any a priori knowledge, the grid is refined at a height of

150 m< z < 200 m as the so-called low-level jet develops, whereas the grid has remained coarse above the boundary layer20

where the grid resolution was reduced to be as coarse as 100 meters. From Fig.5 b we learn that the number of grid cells varied

between 11 and 22
✿✿

24 over the course of the simulation run.

3.3 GABLS2

The second GABLS model intercomparison case was designed to study the model representation of the ABL over the course

of two consecutive diurnal cycles. The case is set-up after the observations that were collected on the 23rd and 24th of October,25

1999 during the CASES-99 field experiment in Leon, Kansas, USA (Poulos et al., 2002). The case prescribes idealized forcings

for two consecutive days that were characterized by a strong diurnal cycle pattern. During these days, the ABL was relatively

dry and there were few clouds. The details of the case are described in the work of Svensson et al. (2011) that was dedicated to

the evaluation of the SCM results for the GABLS2 intercomparison. Compared to the original case prescriptions, we choose a

slightly higher domain size of ztop = 4096 meters (compared to 4000 m), so that a maximum resolution of 8 meters corresponds30

to 9 levels of refinement.

In this section we place our model output in the context of the results presented in the work of Svensson et al. (2011), that,

apart from the SCM results, also includes the results from the LES by Kumar et al. (2010). To obtain their data we have used the

so-called ‘data digitizer’ of Rohatgi (2018). Inspired by the analysis of Svensson et al. (2011) and their figures 10 and 11, we
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intercompare
✿✿✿✿✿✿✿

compare our results for the wind-speed magnitude (U = ‖u‖) and virtual potential temperature profiles
✿✿

at
✿✿✿✿✿

14:00

✿✿✿✿

local
✿✿✿✿

time
✿✿

on
✿✿✿

the
✿✿✿✿

23rd
✿✿

of
✿✿✿✿✿✿✿

October
✿

in Fig. 6 a and b, respectively. Here we see that the results obtained with the present SCM fall

within the range of the results as were found with the selected models that participated in the original intercomparison. These

models also employed a first-order-style turbulence closure and have a lowest model-level height of less than 5 meters. The

present modelled virtual potential temperature (θv) shows a slight negative vertical gradient in the well mixed layer. This is a5

feature related to the usage of the local K-diffusion description for the turbulent transport (see Sect. 2 and the work of Holtslag

and Boville (1993)). Figure 6 c presents a timeseries of the 10-meter wind speed (U10m) during the 23-rd of October. Again the

present model results compare well with the others. Next, in order to validate the grid-adaptivity independently from the used

closures, we present the hourly evolution of the wind speed on the 24-th of October against the results obtained with adaptivity

switched off, using 512 equally-spaced grid points in Fig. 7. A nearly identical evolution of the wind speed profiles is observed10

and even the small-scale features in the inversion layer (i.e. z ≈ 800 m) are present in the adaptive-grid-model calculations.

The corresponding evolution of the adaptive-grid structure is presented in Fig. 5
✿

8, where the colours in the resolution plot

appear to sketch a ‘Stullian’ image, showing a prototypical diurnal evolution of the ABL (see figure 1.7 in the book of Stull,

1988). Apparently, the grid-adaptation algorithm has identified (!) the ‘surface layer’ within the convective boundary layer, the

stable boundary layer, the entrainment zone and the inversion layer as the dynamic regions that require a high-resolution mesh.15

Conversely, the well-mixed layer within the CBL, the residual layer and the free-troposphere are evaluated on a coarser mesh.

The total number of grid cells varied between 24 and 44.

4 Discussion & Conclusions

In this work we have presented an a
✿

one-dimensional (1D) single-column model (SCM) that employs a mesh whose resolution

is varied adaptively based on the evolution of the numerically obtained solution. This is an attractive feature because it is a20

prerequisite to enable the computational effort required for the evaluation of numerical solution to scale with the complexity of

the studied physical system. The adaptation algorithm based on limiting discretization errors appears to function very well for

a wide variety of geophysical applications: e.g. 3D atmospheric turbulence-resolving models (Van Hooft et al., 2018), tsunami

and ocean-wave modelling (Popinet, 2011; Beetham et al., 2016; Marivela-Colmenarejo, 2017), hydrology (Kirstetter et al.,

2016), two-phase micro physics (Howland et al., 2016), flow of granular media (Zhou et al., 2017) and shock-wave formation25

(Eggers et al., 2017). For these studies on highly dynamical systems, the adaptive-grid approach is chosen because it offers a

more computationally efficient approach as compared to the usage of static grids.

The present work does not include an in-depth assessment and discussion on the performance of the presented methods

in relation to the computational speed. Even though this is an important motivation for the application of the adaptive-grid

strategy to GCMs, the authors argue that an
✿

a SCM is not suitable for speed-performance testing: the speed of single-column30

calculations is virtually never a critical issue. Only in 3D mode, when SCMs are ‘stitched together’ to enable the resolving

of global circulations, the model’s computational efficiency becomes an issue. Furthermore, the performance of a SCM that

employs a few tens of cells is not a good indicator for the performance of a GCM that can employ billions of grid cells. For

12



the latter, parallel computation overhead and the so-called memory bottle neck are important aspects. In contrast, for the SCM

case, the complete instruction set and solution data can typically be loaded onto the cache memory of a single CPU’s core.

Nevertheless, for the readers’ reference, the required run times for the different SCM set-ups presented herein are listed in table

1, and figure 3b also presents quantitative results on this topic and shows that the adaptive-grid solver is well behaved.

Following the turbulence resolving study of Van Hooft et al. (2018), the results presented herein are a proof-of-concept for5

future 3D modelling, using RANS techniques. The authors of this work realize that the present SCM is a far cry from a complete

global model and that more research and development is required before the method can be compared on a global-circulation

scale. As shown by e.g. Jablonowski (2004), a 3D adaptive grid also allows a variable grid resolution in the horizontal direc-

tions. This further enables the computational resources to focus on the most challenging atmospheric processes where there is a

temporal and spatial variation in the horizontal-resolution requirement of the grid. Examples include the contrasting dynamics10

between relatively calm centres of high-pressure circulations and those characterizing stormy low-pressure cells. Also, in the

case of a sea breeze event (Arrillaga et al., 2016), it would be beneficial to temporarily increase the horizontal resolution near

the land–sea interface. As such, we encourage the usage of this technique for those meteorologically challenging scenarios.
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Figure 1. The locally evaluated error in the numerical solutions for u and v
✿

at
✿✿✿✿✿✿✿

t= tend,
✿

based on the analytical solution (ǫu,v , see Eq. 23)

for 10 runs with equidistant grids with
✿✿✿✿

using
✿

different
✿✿✿✿✿✿✿✿

equidistant
✿

mesh-element sizes. The left-hand side plot (a) Shows that the diagnosed

errors for each run plotted against the used mesh-element size (∆)
✿✿✿✿

times
✿✿✿

the
✿✿✿✿✿✿

inverse
✿✿✿✿✿

Ekman
✿✿✿✿✿

depth
✿✿

(γ,
✿✿✿

see
✿✿✿✿

text). The right-hand side plot (b)

shows, with the same colour coding as in the left-hand side plot (a), the correlation between the wavelet-based estimated error (χ) and the

corresponding diagnosed error in the numerically obtained solution (ǫ). The inset (using the same axis scales) shows the results for a single

run, and reveal a spread of serval
✿✿✿✿✿

several
✿

orders of magnitude in both ǫ and χ values.

Table 1. The exact formulation of the methods are described at the online locations of the definition files for the different cases presented in

this manuscript.

Section Case Grid URL: http://www.basilisk.fr... Number of time steps Wall-clock time

3.1 Ekman spiral Adaptive /sandbox/Antoonvh/ekman.c 1000 (×20 runs) ≈ 19 sec.

" " Fixed & Equidistant /sandbox/Antoonvh/ekmanfg.c 1000 (×10 runs) ≈ 18 sec.

3.2 GABLS1 Adaptive /sandbox/Antoonvh/GABLS1.c 14404
✿✿✿✿✿

16204 ≈ 1.3
✿✿

1.4 sec.

" " Fixed & Equidistant /sandbox/Antoonvh/GABLS1fg.c 14404
✿✿✿✿✿

16324 ≈ 0.8
✿✿

0.9 sec.

3.3 GABLS2 Adaptive /sandbox/Antoonvh/GABLS2.c 24262 ≈ 9 sec.

" " Fixed & Equidistant /sandbox/Antoonvh/GABLS2fg.c 33993 ≈ 22 sec.

The wall-clock times are evaluated using a single core (processor model: Intel i7-6700 HQ).
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Figure 2. The locally evaluated error in the numerical solutions for u and v
✿

at
✿✿✿✿✿✿✿

t= tend,
✿

based on the analytical solution (ǫu,v , see Eq. 23) for

20 runs using the adaptive-grid approach with different refinement criteria (see colourbar
✿✿✿✿✿

colour
✿✿✿

bar). The left-hand side plot (a) Shows that

the diagnosed errors for each run plotted against the used mesh-element size (∆). The inset (using the same axis scales) shows the results

for a single run. The right-hand side plot (b) shows the correlation between the wavelet-based estimated error (χ) and the corresponding

diagnosed error in the numerically obtained solution (ǫ)). The inset (using the same axis scales) shows the results for a single run, and reveals

a relatively small spread in both ǫ and χ values compared to the equidistant-grid results presented in figure 1b.
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hour of the run according to the GABLS1 intercomparison scenario. For (a) the

horizontal wind components and (b) the potential temperature. Results are obtained with the present adaptive-grid SCM (coloured lines), the

LES models ensemble (i.e mean±σ) from Beare et al. (2006) (grey-shaded areas) and the present SCM, employing an equidistant and static

grid with a 6.25 meter resolution (dashed lines).
✿✿✿

For
✿✿✿✿✿✿✿✿

z > 250m,
✿✿✿

the
✿✿✿✿✿

profiles
✿✿✿✿

have
✿✿✿✿✿✿✿

remained
✿✿

as
✿✿✿✿

they
✿✿✿✿

were
✿✿✿✿✿✿✿✿

initialized.
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Figure 5. Evolution of (a) the vertical spatial-resolution distribution and (b) the total number of grid cells, for the GABLS1 intercomparison

case.
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Figure 6. Intercomparison
✿✿✿✿✿✿✿✿✿

Comparison
✿

of the results obtained with the adaptive-grid SCM and the participating models in the work of

(Svensson et al., 2011) for the vertical profiles of (a) the virtual potential temperature and (b) the wind-speed magnitude,
✿✿✿

for
✿✿✿✿✿

14:00
✿✿✿✿

local

✿✿✿

time
✿✿✿

on
✿✿

the
✿✿✿✿

23rd
✿✿

of
✿✿✿✿✿✿

October. Lower panel: (c) the evolution of the 10-meter wind speed (U10m) on the 23-th
✿✿✿✿

23rd of October. For the used

model abbreviations in the legend, see Svensson et al. (2011). The different shades of grey in plot c) indicate observations from different

meassurement
✿✿✿✿✿✿✿✿✿

measurement
✿

devices, see Svensson et al. (2011) for the details.
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Figure 7. Vertical profiles of the wind-speed magnitude U obtained with the adaptive-grid (in colour) and the fixed equidistant-grid (dashed)

SCMs. The twelve plotted profiles are obtained for the 24-th
✿✿✿✿

24th of October with an hourly interval, starting from 1:00 AM local time.

Noting that the profiles are shifted in order to distinguish between the different times (with vanishing wind at the surface).
✿✿✿

The
✿✿✿✿✿✿

profiles
✿✿

of
✿✿

U

✿✿

are
✿✿✿✿✿✿✿

constant
✿✿✿

with
✿✿✿✿✿

height
✿✿✿

for
✿✿✿✿✿✿✿✿✿

z > 1200m.

Figure 8. Evolution of (a) the vertical spatial resolution and (b) the total number of grid cells, for the GABLS2 intercomparison case. Two

full diurnal cycles, corresponding to the 23-rd
✿✿✿

23rd
✿

and 24-th
✿✿✿

24th
✿

day of October, 1999 (ranging from the labels 1:00:00 to 3:00:00 on the

x-axis).
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