
Response to Reviewer #1

Antoon van Hooft, Stéphane Popinet, and Bas van de Wiel

June 2018

The authors thank the reviewer for taking his/her time to comment on the manuscript.

The article describes tests of an adaptive grid scheme in a single-column model
for two ABL cases. The results are compared with a fixed-resolution version of
the same model, and with various other models. This is an interesting study and
the results are clearly presented. The quality of the adaptive scheme solutions
is encouraging. While the overall scope of the research is limited, it presents a
possible avenue for future adaptive GCM development. There are a few places
where more detail and clarification would be helpful (described below). I rec-
ommend acceptance of this article pending minor revisions.

The authors agree with most points brought forward by the reviewer and we have therefore revised the
manuscript accordingly. We hope that the manuscript is now more clear, and a point-by-point response is pre-
sented below. Also a PDF highlighting all the changes that were made with respect to the original manuscript
is available.

In the model overview, it is stated that the grid refinement criteria are tuned
based on trial and error. How sensitive is the scheme performance to the tuning?
If this type of adaptive scheme is implemented in a full GCM, will different
tunings be necessary at different heights, geographical regions, or seasons?

It is the authors opinion that a complete discussion on the meaning, interpretation and selection of the
refinement criterion warrants a study of its own. This is in fact part of our continued research, and hence is
considered to be outside the scope of the present work. However, we agree that it is an important part of the
grid adaptation algorithm that forms the basis of the present work. Therefore we have revised the manuscript
considerably and have extended the analysis that was formerly in the appendix and moved it to the main text.
Here we share our views on the usage of the criterion and argue that is provides a convenient and consistent
framework for finding a balance between accuracy and performance. The new figures also provide quantitative
results on this topic. How to translate these results obtained for the Ekman-spiral case to an SCM/GCM is
still not obvious.

Furthermore, at this moment we cannot give a conclusive answer to the question regarding a variable
refinement criterion. The authors do not see a good reason to employ a variable refinement criterion in time
and space. Such an approach would mean that similar processes would be resolved with different accuracy
depending on their localization in space and time. Our (current) philosophy is that for consistent meshing a
pre-defined wish for accuracy can and should dictate the mesh’s resolution depending of the resolved physics.
On the otherhand, the physical processes that are dominant for the statistics of interest may change, depending
on the time and location. Then, in practice, the accuracy requirements may vary and this could be refelected
in the refinement criterion.
p.2 Sec. 1, Line 17: Sentence starting ”However, it is important...” is unclear
and needs to be rewritten.
We hope the section on the concept of fractal scaling is more clear in the revised manuscript.

p.2 Sec. 1 Line 23: Sentence starting ”This work departs...” makes it sound
like this work uses different methods than Van Hooft (2018), yet the next page
Line 25 suggests the opposite. This sentence needs to be modified to make the
meaning clearer.
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We hope the sentence in clear in the revised manuscript.

p.3 Sec. 2 Line 12: Could you state at least the nature of the surface fluxes
parameter- ization (e.g. bulk flux). Which type of closures in Holtslag and
Boville are you referring to?

Based on the reviewers comment, we have added a detailed description of the used closures in section 2 of the
revised manuscript.

p.56 Sec. 3.2 : Could you add a little more qualitative description of this GABLS
case? Were there clouds? Is it a surface driven convective BL? Is the wind shear
significant or important?

We have added a short overview of general conditions as they are modelled by the GABLS2 scenario. (lines )

p.5 Sec. 3 Line 12: It would be good to reiterate here that each ’level of refine-
ment’ halves the local grid spacing.

We have re-iterated that in the revised manuscript.

p.5 Sec. 3 Line 21: Are you saying the differences are only minor compared the
the LES spread, or only minor compared to the SCM model spread?

We have revised the sentence to be more clear. We hope to convey the message that our SCM results are
relatively close to the LES-ensemble results compared to the SCM results presented by the participants pf the
original GABLS1 SCM intercomparison. Taking the LES as the ‘truth’: Notice that the fidelity in our results
is due to the good performing description of the mixing closure by England and McNider (1995) (eq. 1 / 5
and 10 , original/revised), for this particular case.

Figure 3a: Unlike most models, thetav in your solution has a negative slope in
the boundary layer, more negative even than the one other plotted model with
a negative slope. Is this slope also consistent with your fixed-grid solution? Is
there something atypical about your SCM physics that would allow this?

Yes, this is a known feature of the to the used eddy-viscosity closure. Using this local description for turbulent
transport, a gradient is always ”needed” for vertical mixing. This is not a realistic feature and better closures
that account for counter-gradient transport are available. We have added a remark on this feature in the
revised manuscript. Next we show that this gradient is indeed a formulation-specific feature. Therefore, we
re-plot our results alongside results from runs with a different value for the maximum mixing length (lbl, see
Eqs. 7 and 8 in the revised manuscript). The results are presented in the figure below. The default value for
lbl was suggested in the reference literature and the used closures for transport are not the topic of our study.
The figure also shows that the slope is not due to the usage of the grid adaptation algorithm (as was suggested
by reviewer #2). In fact, the results for θv are within 0.2K, which is much smaller than the difference with
other models (up to multiple Kelvins). The used scripts to obtained these results or available and presented
online (www.basilisk.fr/sandbox/Antoonvh/GABLS2forrev1and2.c). We choose not to add this analysis
to the main text as it does not really add something new to the results or change the overall analysis of the
manuscript. As all reviewers already agree: the results are encouraging.
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Figure 3c: What is the difference between the various shades of gray in the
figure?

They are associated with different measurement techniques (see Svensson et al. (2011). Based on the reviewers
comment we have stated this in the caption of this figure in the revised manuscript. Note that the forcings of
for the GABLS2 case are idealized, and hence accuracy with respect to the measurements is not necessarily
to be expected.

Figure 5 should have the simulation dates somewhere on the x-axis or at least
the time coordinates referenced to a date in the caption.

We have added the date of the observation that inspired this (idealized) test case in the caption.

p. 6 Sec.3.2 Line 20: Stating that the evolution of the wind speed profile ’is the
same’ suggests that it is identical which is inaccurate. Perhaps ’is nearly the
same’.
The reviewer is right and the sentence is revised accordingly in the new manuscript.

p. 6 Sec.3.2 Line 22: Could you clarify what is meant by ’Stullian image’? It
would be helpful in this discussion if you qualitatively describe which parts of
the diurnal cycle require the most/least refinement.

Since the conceptual evolution of a diurnal cycle of the ABL as presented in Stull (1991) (His fig. 1.7) is such
a well known image, we hope to coin the term ”Stullian image”. This was done with permission of Roland
Stull (private communication). The manuscript aims to describe qualitatively what parts of the ABL required
grid refinement. This was infact the goal of bringing up the similarities with the image of Stull. Therefore,
we have chosen to keep that discussion ‘as is’.
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Technical corrections:
p.1 Sec. 1 Line 3: ’receives’ should be ’receive’
p.2 Sec.2 Line 18: ’have’ should be ’has’
p.4 Sec.2 Line 10: ’trail’ should be ’trial’
p.4 Sec.2 Line 28: is ’that’ referring to equation 6?
p.5 Sec.2 Line 33: Would be clearer as ’Online links are provied in table 1.’
p.5 Sec.3 Line 23: ’Noting’ should be ’Note’
p.6 Sec.3.2 Line 17: ’22-th’ should be ’22nd’
p.6 Sec.3.2 Line 22: ’Fig. 2’ should be ’Fig. 5’
p.7 Sec.4 Line 3: ’efficient’ misspelled
Appendix: Line 13: Sentence starting ’Using a domain...’ is not a complete
sentence.
Appendix: Line 18: ’facilitate’ misspelled
Appendix: Line 18: would be clearer as ’we diagnose the number of used cells...’
Appendix: Line 19: Sentence starting ’Were the adaptive grid results....’ is not
a com- plete sentence.
Appendix: Line 22: Should be ’This plot reveals’ or ’These plots reveal’

We thank the reviewer again for his/her careful reading of the manuscript and hope to have corrected the
manuscript according to the suggested technical changes. Except for the suggestion that ‘online’ refers to the
‘link (to)’ rather than the location of the case set-up files.

4



Response to Reviewer #2

Antoon van Hooft, Stéphane Popinet, and Bas van de Wiel

June 2018

The authors thank the reviewer for taking his/her time to comment on the manuscript.

A Basilisk 18-02-16 based adaptive grid scheme is employed and compared
with an equal-distant high vertical resolution grid scheme in the same single-
column atmospheric model for two land atmospheric boundary layer case
studies. The diurnal variations of fine vertical structure near the bottom and
the top of boundary layer is well captured using the adaptive grid scheme.
Results are encouraging and clearly presented, which shows potential for
future applications in global climate models. However the following major
concerns are suggested to be addressed before acceptance for publication:

We are happy the reviewer find the results encouraging and hope to address the concerns in our point by point
response and in the revised manuscript. A PDF highlighting the changes that were made is also provided as
a supplement.

[1] In current state-of-art SCM/GCMs, more than 20s or more variables
are involved in physical and chemical process simulations. It is necessary to
state clearly the basic rule for selecting the refinement criteria and to show
sensitivity test results. For example in this study, the refinement criteria are
assigned only for winds and temperature. The specific humidity Q is also
a key physical variable in the SCM simulation, but no criteria is assigned,
why? and how a new Q refinement criteria influences the scheme ghost
points and overall cell points searching? And how a Q refinement criteria
influences the boundary layer diurnal cycle (particularly the boundary layer
clouds) simulation?

The reviewer is right, finding a suitable mesh that strikes a balance between computational efficiency and
accuracy of the diagnosed solution statistics is a challenge when performing numerical simulations. The chal-
lenge becomes even more prominent when statistics of over 20 variables need consideration. This is true for
pre-tuned static anisotropic meshes, equidistant grids and we do not claim that the grid-adaptation algorithm
lifts this burden from the model user either. Therefore, In the absence of a procedure for selecting mesh sizes
for the static-grid approach (that typically also rely on trial-and-error, ad hoc testing and experience), the
authors do not agree that the present (novel) approach should come with such guidelines. Especially when in
practice, the grid (in)dependence of specific solution statistics is an arbitrary concept. More concretely: The
SCMs in the original GABLS1 and GABLS2 intercomparison projects all use different meshes and similarly, a
second (theorized) adaptive grid model could use different values for the refinement criteria to strike a different
balance speed performance and numerical accuracy.

That said, the authors agree that the concept of the refinement criteria may raise new questions for
modellers and currently warrants more study. Based on the reviewer’s comments we made a serious effort to
extend the analysis of the case that was formerly presented in the appendix (i.e. the laminar Ekman spiral),
and we have included in it the main text. This new section (3.1), aims to exemplify for this simple case,
what the effect is of tuning the refinement criterion, and argue that it provides a user-friendly, convenient
and consistent framework for finding a balance between computational efficiency and accuracy. Note that
it is not obvious how these results would translate to an SCM and at this moment in time, we feel that the
”trial-and-error approach” is an accurate description of how the current refinement criteria values for the SCM
were found.
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The reviewer is also right that it would be wise to extend the algorithm to also consider the atmospheric
moisture content when pushing the method towards more realistic/applied scenarios. Note that this can be
readily done by changing a line of code in the case set-up. However, for the GABLS1 case there is no moisture
and for the GABLS2 case, moisture only slightly modifies the buoyancy and the location of its inversion
corresponds to that of the inversion in temperature. Therefore, the present cases are too simple/specific to be
suitable for finding a refinement criterion for the moisture content field. It is argued in the manuscript text
that at this early stage within our developments/research, the simplicity of the cases is an advantage.

[2] In this study, the Basilisk 18-02-16 based adaptive grid scheme uses much
shorter time-step (between “2 and 15 s” in page 4 line 29) than that of cur-
rent state of art GCM/SCMs (which is around 10 to 20 minutes and vertical
resolution is in the order of at least 100m). Considering Both radiation and
vertical diffusion calculation is time consuming, using such a small time step
will need much longer computing time. Is it possible to use normal time step
of 10-20 minutes for the scheme? If yes, please add new time-step simula-
tion results in Fig.1 to 5; if not, please discuss the limitations of the current
adaptive scheme and propose a possible solution;

The reviewer is right to bring forward this ‘feature’ of the present model. The text mentions that the time
integration method is (only) first order accurate (page 4) and this limits the maximum time step of the present
model. Also, the fact that the used resolution is much higher than the typical ABL resolution of an operational
GCM, the temporal variations in the numerical solution contain contributions of higher frequencies, which
warrant a reduced time step. The authors feel that the original manuscript is clear and explicit on the fact that
the present model is not an operational GCM. Rather, the the work aims reports on a possible avenue for an
adaptive gridding strategy, that is also compatible with higher-order time-integration methods (see e.g. in the
work of Rajarshi Roy Chowdhury online: http://basilisk.fr/sandbox/rajarshi/AllMach_O4/allmach_

weno_poisson4_rk4.h). Therefore, the authors see no reason to expect that the adaptive grid strategy would
be incompatible with the time integration strategies as they are currently used in GCM’s.

Furthermore, when considering a process such as radiation for which it may be relatively expensive to
calculate the corresponding tendency term but that is relatively slow in its evolution. The code also allows to
only evaluate these tendencies every so often whilst the grid is able to adapt at intermediate time steps. This
is exemplified here: www.basilisk.fr/sandbox/Antoonvh/smoke.c, and the results are published in earlier
work of the present authors (Van Hooft et al. , 2018).

[3] In Fig. 3, the adaptive grid scheme simulated a slightly unstable (nega-
tive) virtual potential temperature profile above 100m while all other mod-
els simulate slightly stable (positive) profiles. Is it due to the adaptive-grid
scheme or the short-tail stability function used in the model or the Q profile
difference,...? It is suggested to also add the fixed- resolution grid scheme
results for comparison;

The unstable profile is the results of the used K-closure. All of the other models from the intercomparison
use a more recent (read: better) closure for their description of vertical mixing under unstable conditions (see
text sect 2.). We have added a notion to this in the results section of the revised manuscript.

We have added a figure below that shows that the slope is controlled by the details of the used closure for
turbulent mixing (i.e. the maximum mixing length l, see Sect. 2 of the revised manuscript). Also results for
the default mixing length obtained with using the adaptive-grid and equidistant-grid approach are presented.
It appears that the difference between both runs is small (max. 0.2K) and that the slope is virtually identical.
We choose not to add there results to the revised manuscript as we feel that it does not add anything new to
the present results or would change the analysis.
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[4] Moist process is important in atmospheric boundary layer variations
(both in diurnal and synoptical scale), to exam the effects of adaptive grid
scheme on overall PBL simulation, vertical profile comparison of scheme sim-
ulated specific humidity Q is suggested to be added in the previous Fig.1;

The reviewer is right that humidity plays an important role in the boundary dynamics. However, the GABLS1
case (corresponding to fig 1) does concern a dry boundary layer, and hence the results for the q profiles are
not presented.

[5] Add diurnal cycle of observed and SCM simulated 2m temperature inter-
comparison (similar like that of Fig.3 c for near surface wind speed) in Fig.
3 in order to better understand the adaptive grid scheme performance

The maximum resolution in this simulation is 8 meters and the temperature at the surface is prescribed by
the case definition. Therefore, the suggested statistic is not expected to be very sensitive to the used grid
structure, but rather be a test of the used interpolation strategy. Alltough it would be interesting to extend
the analysis, in all, the authors are confident that the current set of results supports the message we aim to
convey sufficiently.
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Response to Reviewer #3

Antoon van Hooft, Stéphane Popinet, and Bas van de Wiel

June 2018

The authors thank the reviewer for taking his/her time to comment on the manuscript. We hope to be
able to address all points brought forward by the the reviewer in a point-by-point response in this document
accompanied with relevant changes to the manuscript. A PDF highlighting all changes is also provided as a
supplement.

The manuscript describes a prototype Single-Column Model (SCM) that employs dynamic
grid adaptation in the vertical direction. The adaptations are guided by error estimators
which increase the resolution where needed for accuracy, and remove grid points if addi-
tional accuracy is not needed. The method is tested in the atmospheric boundary layer
based on the two GABLS intercomparison cases. In particular, the GABLS cases test
the fine-scale diurnal variations of the planetary boundary layer (PBL). In general, the
PBL structures in the two test cases are reasonably well captured in the adaptive SCM.
The authors conclude that the adaptive-grid algorithm is able to dynamically coarsen and
refine the numerical grid whilst maintaining an accurate solution.
Overall, the manuscript is interesting and well written, but the application area is rather
narrow and it is difficult to judge the performance of the model based on two test cases.
Therefore, it is difficult to draw more general conclusions concerning 3D General Circu-
lation Models (GCMs). However, this is not the focus of this manuscript, which only
addresses a prototype 1D adaptive model. The main criticism is that the description of
the adaptive method is rather short which makes it difficult to understand the methodol-
ogy even at a fundamental level. The main methodology is described in Van Hooft et al.
(Boundary-Layer Meteorol., 2018) and the reader is referred to this paper. I recommend
expanding the description of the Adaptive Mesh Refinement (AMR) algorithm somewhat
in this paper, especially with respect to the error estimation technique. This will help
make this a stand-alone paper. In addition, this review lists some clarifying questions that
need to be addressed in a revised version.
Leaving out the the details of the error estimation technique was a choice that was made to prevent repetition
of material that is published elsewhere. The referenced work in Bound.-Lay. Meteorol. (BLM) can be easily
found, is freely available for everyone (open access CC 4.0) and in addition to that the work is also hosted
via a mirror website at the HAL repository (https://hal.archives-ouvertes.fr/hal-01689036). This
provides confidence that an interested reader will be able to find the more detailed information if they wish
so. The authors argue that repeating the 3-page story is therefore not necessary and does not really add to
the proof-of-principle we aim to illustrate here. In the original manuscript we have opted to briefly describe
the algorithm on a more conceptual level. In hindsight we agreee that this may not suffice as it is indeed
the key ingredient of the method. Therefore, based on the reviewers suggestion; a serious effort was made to
include a didactical example based on an extension of the analysis of the laminar Ekman-spiral case that was
formerly in the Appendix (in Sect 3.1). Now the manuscript includes a more detailed analysis of the usage of
the error estimation technique. We feel that this is a valuable complementary example of the aforementioned
work in the BLM paper, and not a repetition.

Specific comments:
Page 2, line 23: In which way does your work depart from the work by Van Hooft et al.
(2018)?

Based on the point brought forward by the reviewer, we realize that we have not chosen our words careful
enough here. The new manuscript is revised accordingly.
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Page 3, line 17: Define the Richardson number. There are many variants, so please provide
the equation.

The revised manuscript is now explicit on the used closures for turbulent transport and states all the relevant
definitions.
Page 4, line 12 onwards: Clarifying questions concerning the refinements:
1) Is the grid only refined if both error criteria are fulfilled, or is it enough if one error
indicator is flagged?
2) How often do you adapt (e.g. every time step)?
3) How are newly-created grid points initialized, and how are coarsened grid points
merged?
4) Is the initialization (interpolation, merging) algorithm mass-conserving with respect to
dry air mass & water mass and/or energy conserving?
5) Does the interpolation/merging technique observe the hydrostatic balance? If not, one
might expect a lot of gravity waves in 3D versions of this algorithm.
6) Do you interpolate with respect to a height or pressure coordinate in the vertical di-
rection?
7) What is the order of the interpolation technique? If linear, are oscillation-free high-
orderinterpolation techniques available?
8) How many ghost cells are used?
9) Typical GCMs work with stretched grids and not equidistant grids. Can your algo-
rithm be applied to stretched grids? The algorithm seems to rely on the fact that the grid
spacing differs by exactly a factor of 2 (also refers to Fig. 2).
10) Have other error estimators (variables) and error thresholds been tried? If yes, com-
ment on the pros and cons of these alternative choices.

The following answers in black are added to the main text, the answers in blue are not in the revised manuscript
as they are considered off-topic for the present work:
1) If the estimated error in one (or more) of the three (u, v, θv) fields exceeds the respective criteria, the
corresponding gridcell is refined.
2) The algorithm assesses the fidelity in the representation of the numerical solution at each time step, this
garantees that no big developments in the solution take place in between grid adaptations. Noting that, cour-
tesy of the tree-grid data structure, it is computationally cheap to do the assessment and refinement/coarsening
compared to doing the time integration (i.e. typically less than 10% of the effort, for the presented cases).
3) For refinement a bilinear interpolation technique is used whose second-order accuracy is consistent with the
used solver. For coarsening, two cells can be merged into one by taking their average value which is exact for
our finite-volume formulation.
4) The bilinear interpolation technique (for refinement) that is used in this study is not conserving for the
first order moments of a scalar field, and not for higher order moments. However, the error introduced by this
refinement step is directly controlled by the refinement criteria and can hence be tuned to any desired accuracy.
Noting again that the second-order accuracy is inline with the solver’s accuracy and hence is consistent with
the overall method
5) Yes, see e.g. the 3D studies of van Hooft et al. (2018), or a more clean example online via the link:
http://basilisk.fr/sandbox/Antoonvh/internalwavesAMR.c

6) No, In the model, height above the surface is used for this purpose instead
7) We use second order accurate bilinear formulation (using a 2-point stencil). Note that a conservative,
linear interpolation technique based on a 3-point stencil is available and has an accuracy of the 3-rd order.
Recent work of Radjarshi Roy Chowdhury does enable higher-order (of 3-rd, 4-th and 5-th order) methods
that are non oscillatory. See an example test of his work that is based on so-called WENO schemes online:
http://basilisk.fr/sandbox/rajarshi/WENO_CODES/weno_prolongation_scaling1D.c.
8) Two ghost cells are defined foreach resolution boundary and one at each ”end” of the domain. This means
that that in theory, for a worst-case-scenario, there may be as many ghost-cells as there are ”solution grid
cells”. This is not really a concern since the values of the ghost cells are relatively cheap to calculate and
only depend on the values of the ”solution grid cells” that are solved for when time integrating the equations
(typically O(10%)). Furthermore, figure 3 shows that the solver is well behaved.
9) The underlying (local) grid structure is Cartesian, and therefore any relevant mapping may be applied/implemented.
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(see e.g. http://basilisk.fr/src/README). However, the factor of two in the grid resolution between levels
of refinement levels is an intrinsic property of the tree-grid structure we use. Our results show that in an ABL
the scale separation can differs by two-orders of magnitude within the GABLS2 domain (8m vs 1024m res.),
meaning that the factor of two is not really an issue. Alternatively, adaptive unstructured grids exist that
do not have this limitation (e.g. the code by the name of ”fluidity” http://fluidityproject.github.io/).
However, a complete discussion of the pro’s and con’s of such an approach would entail a new study of its own
and is a considered to be outside the scope of the present work. Finally, the reference work of Dunbar (2008)
uses dynamical grid stretching. But the authors would not call such a dynamic approach to be truly adaptive
(see text).
10) Yes, this was part of the tria l-and-error approach and the pro’s and con’s may be obvious from the analysis
in the new Sect. 3.1. The values of the refinement criteria may be used to tune the balance between accuracy
and the speed performance of the code. Furthermore, for cases that are more driven by e.g. cloud-top radiation
etc. it would be sensible to also refine based on the estimated errors in the moisture fields and cloud fraction
field. Similar to pre-tuning a static grid, the balance between accuracy and speed performance remains at the
discretion of the model user. The authors feel that the adaptation algorithm provides a more user-friendly,
consistent and mathematically-rigorous approach compared to pre-tuning a stretched grid. This is especially
true when the results from a model run are not know beforehand. Yet we cannot provide a universal recipe
for finding suitable refinement-criterion values and this is part of our continued research.

Page 4, Eqs. (4)-(6): Since all operators are 1D, I suggest using partial derivatives with
respect to z instead of the Laplacian operator in Eqs. (4) – (6)

The equations are updated according to the reviewers suggestion

Page 4, line 29: The time steps are extremely short. Can the adaptive method also be
applied to more usual physics time steps on the order of minutes to half an hour?

The time-integration scheme is only first-order accurate and this hampers the time stepping. Not the adaptive
grid scheme as we see a similar deterioration in our results for the fixed-grid solution when the time stepping
parameter is relaxed to larger values. Additionally, time stepping is small because the fine-scale features
that are resolved, courtesy of the O(10m) resolution. We note that there would be no reason to assume
that adaptive-grids and/or the Basilisk code cannot handle the style of time-stepping schemes of operational
GCM’s. We argue that the manuscript is clear on the fact that we do not aim to present a GCM but we
rather focus on a possible avenue for it’s gridding.

Page 5, line 10: the geostrophic flow cannot be described as a ‘forcing’ mechanism. A
forcing term needs units of m/s2 .

The reviewer is right, the text has been improved accordingly in the revised manuscript.

Page 5, line 19: is this the potential temperature or virtual potential temperature? Fig.
1 shows the potential temperature, Fig. 3 show the virtual potential temperature. Is this
difference intentional (provide some reasoning)?

We simply follow the original intercomparison papers regarding GABLS1 and GABLS2 of Cuxart et al. (2006)
and Svensson et al. (2011), respectively. We think their reasoning was that the GABLS1 case is dry and hence
the concept of virtual potential temperature is not relevant over the its non-virtual counterpart. This is not
thecase for GABLS2, where in the original work of Svensson et al. it was chosen to intercompare the virtual
potential temperature.
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Page 5, line 17: should read ‘physical closures for K’
Page 5, line 23: should read ‘turbulent transport coefficient’
Page 5, line 28: should read ‘on the order’
Page 6, Fig. 3: explain the meaning of the gray shading
Page 6, line 22: should read ‘Fig. 5’
Page 6, line 27, should read ‘presented a one-dimensional’
Page 7, line 15: explain acronym RANS
Page 8, Appendix: what is the equation that is solved here?
Page 8, line 10: provide the values for gamma, U geo , the Coriolis parameter f, and the
density rho
Page 8, line 19: Start sentence with ‘The adaptive’ instead of ‘Were’.
Page 10, line 32: Update the Van Hooft et al. reference
Page 14, Table 1: State ‘Number of time steps’ instead of ‘Solver timesteps’
Page 14, caption of Fig. A1: explain that the slope of the dashed line shows the second-
order accuracy

We thank the reviewer again for his/her carefull reading of the manuscript and hope to have adressed all these
points at their corresponding locations in the revised manuscript.
Except that we have not added the numerical values for Ugeo, Ω etc... In stead, based on the reviewers com-
ment, we present the results now in a properly scaled frame work. Making the results universal, as is allowed
by the fact that the (scaled) analytical Ekman solution is not a function of the dimensionless ratio: Π =

Ugeoγ

ν
.
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Abstract. It is well known that the representation of certain atmospheric conditions in climate and weather models can still

suffer from the limited grid resolution that is facilitated by modern-day computer systems. Herein we study a simple one-

dimensional analogy to those models by using a Single-Column Model (SCM) description of the atmosphere. The model

employs an adaptive Cartesian mesh that applies a high-resolution mesh only when and where it is required. The so-called

adaptive-grid model is described and we report on our findings obtained for tests to evaluate the representation of the at-5

mospheric boundary layer, based on the first two GABLS intercomparison cases. The analysis shows that the adaptive-grid

algorithm is
✿✿✿✿✿

indeed
✿

able to dynamically coarsen and refine the numerical grid whilst maintaining an accurate solution. This is

an interesting result as in reality, transitional dynamics (e.g. due to the diurnal cycle or due to changing synoptic conditions)

are rule rather than exception.

Copyright statement. All relevant rights reserved10

1 Introduction

Single-Column Models (SCMs) are often used as the building blocks for Global (or General) Circulation Models (GCMs).

As such, many of the lessons learned from SCM development can be inherited by GCMs and hence the evaluations of

SCMs receives
✿✿✿✿✿✿

receive considerable attention by the geoscientific model development community (see e.g. Neggers et al.,

2012; Bosveld et al., 2014; Baas et al., 2017). In this work, we present a SCM that employs an adaptive Cartesian mesh15

that can drastically reduce the computational costs of such models, especially when pushing the model’s resolution. The

philosophy is inspired by recently obtained results on the evolution of atmospheric turbulence in a daytime boundary layer

using three dimensional
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

three-dimensional
✿

(3D) adaptive grids. As promising results were obtained for turbulence resolving

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

turbulence-resolving techniques such as Direct Numerical Simulations and Large-eddy Simulation (LES), herein we explore

whether similar advancements can be made with more practically oriented techniques for the numerical modelling of the at-20

mosphere. As such, the present model uses Reynolds-averaged Navier-Stokes techniques (Reynolds, 1895) to parameterize

1



✿✿✿✿✿✿✿

(RANS)
✿✿✿✿✿✿✿✿✿

techniques
✿✿

to
✿✿✿✿✿✿✿✿✿✿

parametrize
✿

the vertical mixing processes due to turbulence
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Reynolds, 1895), as is typical in weather

and climate models.

The discussion of limited grid resolution is present in many studies of SCMs and GCMs. A prominent example is the

nocturnal cumulus-cloud case (Wyant et al., 2007): whereas a high resolution mesh is required for capturing the processes at

the cloud interface, a coarser resolution may be used for the time when the sun has risen and the cloud has been dissolved.5

More generally speaking, virtually all of the atmospheric dynamics that require a relatively high-resolution grid for their

representation in numerical models are localized in both space and in time. The issue is made more difficult to tackle by the

fact that their spatio-temporal localization is typically not known a priori (e.g. the height and strength of a future inversion

layer). Therefore, the pre-tuned and static-type grids that most operational GCMs use (virtually all) are not flexible enough to

capture all dynamical regimes accurately or efficiently. This also puts a large strain on the used closures for the sub-grid scale10

processes. In order to mitigate this challenge, GCMs that employ a so-called adaptive grid have been explored in the literature.

Here the grid resolution adaptively varies in both space and time, focussing the computational resources to where and when

they are most necessary. Most notably, the innovative works of Jablonowski (2004), Jablonowski et al. (2009) and St-Cyr et al.

(2008) report on the usage of both Cartesian and non-conforming three-dimensional adaptive grids and clearly demonstrate

the potential of grid adaptivity for GCMs. Inspired by their works, we follow a 1D SCM approach and aim to add to their15

findings, using different grid-adaptative formulations and solver strategies. Since SCMs do not resolve large-scale atmospheric

circulations, the analysis herein focusses on the representation of the Atmospheric Boundary Layer (ABL).

Over the years, the computational resources that are available to run computer models have increased considerably (Schaller,

1997). This has facilitated GCMs to increase their models’ spatial resolution
✿

,
✿✿✿✿✿✿✿

enabling
✿✿

to
✿✿✿✿✿

better
✿✿✿✿✿✿✿

resolve
✿✿✿

the
✿✿✿✿

most
✿✿✿✿✿✿✿✿✿✿

demanding

✿✿✿✿✿✿✿✿

processes. However, it is important to realize that for virtually all physical processes, the (spatial and temporal) fraction of20

the domain that actually calls for the
✿✿✿✿✿✿

benefits
✿✿✿✿✿

most
✿✿✿✿

from
✿✿✿

an increasing maximum resolution decreases
✿✿✿✿✿✿✿✿

necessarily
✿✿✿✿✿✿✿✿✿

decreases

✿✿

as
✿✿✿✿✿✿✿✿✿

separation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

modelled
✿✿✿✿✿✿

spatial
✿✿✿✿✿

scales
✿✿✿✿✿✿✿✿

increases
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Popinet, 2011).
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿

because
✿✿✿

the
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿✿

processes
✿✿✿

that
✿✿✿✿✿✿✿

warrant
✿✿

a

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

higher-resolution
✿✿✿✿

mesh
✿✿✿

are
✿✿✿✿✿✿✿✿

virtually
✿✿✿✿

never
✿✿✿✿✿

space
✿✿✿✿✿✿

filling.
✿✿✿✿

E.g.
✿✿✿

the
✿✿✿✿✿✿✿✿

formation
✿✿✿✿✿

phase
✿✿

of
✿✿✿✿✿✿✿

tropical
✿✿✿✿✿✿✿

cyclones
✿✿

is
✿✿✿✿✿✿✿✿

localized
✿✿

in
✿✿✿✿

both
✿✿✿✿✿

space

✿✿✿

and
✿✿✿✿

time
✿✿✿

and
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿✿

dynamics
✿✿✿

that
✿✿✿✿✿✿

evolve
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿✿✿

formation
✿✿✿✿✿✿✿

process. By definition, with an increasing

resolved scale separation, only an adaptive-grid approach is able to reflect the effective (or
✿✿✿✿✿✿✿

so-called
✿

fractal) dimension of the25

physical system in the scaling of the computational costs (Popinet, 2011; Van Hooft et al., 2018). This is an important aspect

where the present adaptive-grid approach differs from for example, a dynamic-grid approach (see e.g. Dunbar et al., 2008),

that employs a fixed number of grid cells that needs to be predefined by the user. This work departs from the
✿✿✿✿✿✿

employs
✿✿

a
✿✿✿✿✿✿

similar

method for grid adaptation as presented in the work of Van Hooft et al. (2018) on 3D-turbulence-resolving simulations of

the ABL. As such, this work is also based on the adaptive-grid toolbox and build-in solvers provided by the ‘Basilisk’ code30

(http://basilisk.fr).

We test our model with the well established cases defined for the first two GABLS intercomparison projects for SCMs. As

part of the Global Energy and Water cycle EXchanges (GEWEX) modelling and prediction panel, the GEWEX ABL Study

(GABLS) was initiated in 2001 to improve understanding of the atmospheric boundary layer processes and their representation

in models. Based on observations during field campaigns, a variety of model cases has been designed and studied using35
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both LES and SCMs with a large set of models using traditional static-grid structures. An overview of the results and their

interpretation for the first three intercomparison cases are presented in the work of Holtslag et al. (2013). Here we will test the

present adaptive-grid SCM based on the first two intercomparison cases, referred to as GABLS1 and GABLS2. These cases

were designed to study the model representation of the stable boundary layer and the diurnal cycle, respectively. Their scenarios

prescribe idealized atmospheric conditions and lack the complete set of physical processes and interactions encountered in5

reality. At this stage within our research, the authors consider this aspect to be an advantage, as the present SCM model does

not have a complete set of parametrizations for all processes that are typically found in the operational models (see e.g. Slingo,

1987; Grell et al., 2005)).

This paper is organized as follows, the present SCM is discussed in more detail in Sect. 2. The results
✿✿✿✿

Based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

results

✿✿✿✿

from
✿

a
✿✿✿✿✿✿✿✿✿

simplified
✿✿✿✿

flow
✿✿✿✿✿✿✿

problem,
✿✿✿✿✿

Sect.
✿

3
✿✿✿✿✿

starts
✿✿✿✿

with
✿✿✿

an
✿✿✿✿✿✿✿

analysis
✿✿

of
✿✿✿

the
✿✿✿✿

used
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿

methods
✿✿✿

and
✿✿✿

the
✿✿✿✿

grid
✿✿✿✿✿✿✿✿✿

adaptation
✿✿✿✿✿✿✿

strategy.10

✿✿✿✿✿

Model
✿✿✿✿✿✿

results
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

ABL-focussed
✿✿✿✿✿

cases
✿✿✿

that
✿✿✿

are
✿

based on the first two GABLS intercomparison scenarios are
✿✿✿

also
✿

presented in

Sect. 3. Finally, a discussion and conclusions are presented in Sect. 4. Furthermore, in the Appendix ??, a validation of the

used solver formulation is given for a simplified flow problem (i.e. the laminar Ekman spiral).

2 Model Overview

As we focus on the merits of grid adaptivity in this study on SCMs and not on the state-of-the-art closures for the vertical15

transport phenomena, we have opted to employ simple and well-known descriptions for the turbulent transport processes. More

specifically, the present model uses a stability-dependent, first-order, local, K-diffusivity closure as presented in the seminal

works of Louis (1982) and Beljaars et al. (1989). For the surface-flux parametrizations we again follow the work of Louis

(1982). The used closures are not repeated here but are summarized in section 2 of Holtslag and Boville (1993). However, to

improve the representation of mixing under stable conditions, an alteration is made to the formulation of the so-called stability-20

correction function (F (Ri)) under stably-stratified conditions. Based on the work of England and McNider (1995), we use a

so-called short-tail mixing function, .
✿✿✿✿

The
✿✿✿✿

used
✿✿✿✿✿✿✿✿

closures
✿✿

for
✿✿✿✿

the
✿✿✿✿✿✿✿

turbulent
✿✿✿✿✿✿✿✿

transport
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

summarized
✿✿✿✿

next.
✿✿✿✿

The
✿✿✿✿✿✿

surface
✿✿✿✿✿

fluxes

✿✿✿

(F )
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿✿

(u,v),
✿✿✿

the
✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

(θ)
✿✿✿✿

and
✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿✿

humidity
✿✿

q
✿✿

are
✿✿✿✿✿✿✿✿✿

evaluated
✿✿

as:
✿

F (Ri)u
✿

= CMU1u1,
✿✿✿✿✿✿✿✿

(1a)

where Ri is the local and25

Fv = CMU1v1,
✿✿✿✿✿✿✿✿✿✿✿✿

(1b)

Fθ = CHU1 (θ1 − θ0) ,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(1c)

Fq = CHU1 (q1 − q0) ,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(1d)30
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✿✿✿✿✿

Where
✿✿

U
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

wind-speed
✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿✿

and
✿✿✿✿✿✿

indices
✿

0
✿✿✿

and
✿✿

1
✿✿✿✿

refer
✿✿✿

the
✿✿

to
✿✿✿✿✿

values
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿✿

and
✿✿✿

the
✿✿✿

first
✿✿✿✿✿✿

model
✿✿✿✿

level,
✿✿✿✿✿✿✿✿✿✿✿

respectively.

✿✿✿

The
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿✿✿✿✿

coefficients
✿✿✿

are,
✿

CM = CNfs,M (Rib),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(2a)

CH = CNfs,H(Rib),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(2b)5

✿✿✿✿

with
✿✿✿

Rib
✿✿✿

the
✿✿✿✿✿✿

surface
✿

bulk Richardson numberfor the evaluation of turbulent diffusivities and
✿

,
✿✿✿

that
✿✿

is
✿✿✿✿✿✿

defined
✿✿✿

as,
✿

Rib =
g

θv,ref

z1 (θv,0 − θv,1)

U2
1

,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(3)

✿✿✿✿✿

where
✿

g
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

acceleration
✿✿✿

due
✿✿✿

to
✿✿✿✿✿✿

gravity,
✿✿

θv
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

virtual
✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿

θv,ref
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿

value.
✿✿✿✿

The

✿✿✿✿✿✿✿

so-called
✿✿✿✿✿✿

neutral
✿✿✿✿✿✿✿✿

exchange
✿✿✿✿✿✿✿✿✿

coefficient
✿✿✿✿✿

(CN )
✿✿

is
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿✿

using,

CN =
k2

ln((z1 + z0,M )/z0,M )
2 ,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(4)10

✿✿✿✿

with
✿✿✿✿✿✿

k = 0.4
✿✿✿

the
✿✿✿✿

Von
✿✿✿✿✿✿✿

Karman
✿✿✿✿✿✿✿✿

constant,
✿✿

z1
✿✿✿

the
✿✿✿✿✿✿

height
✿✿

of
✿✿✿✿✿✿

lowest
✿✿✿✿✿

model
✿✿✿✿✿

level
✿✿✿

and
✿✿✿✿✿

z0,M
✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

roughness
✿✿✿✿✿✿

length
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

momentum.

✿✿✿

For
✿✿✿

the
✿✿✿✿✿

cases
✿✿✿✿✿✿

studied
✿✿

in
✿✿✿✿

this
✿✿✿✿✿

work,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

roughness
✿✿✿✿✿

length
✿✿✿

for
✿✿✿✿

heat
✿✿

is
✿✿✿✿✿✿✿

assumed
✿✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿

identical
✿✿

to
✿✿✿✿✿

Z0,M .
✿✿✿✿

The
✿✿✿✿✿✿✿

stability
✿✿✿✿✿✿✿✿✿

correction

✿✿✿✿✿✿✿

functions
✿✿✿

for
✿

the surface transport , respectively. The
✿

of
✿✿✿✿✿✿✿✿✿✿

momentum
✿✿✿

and
✿✿✿✿

heat
✿✿✿✿✿✿✿✿✿✿

(fs,M ,fs,H )
✿✿✿✿

are,

fs,M (Rib) =























0, Rib ≥ 0.2,
(

1− Rib
0.2

)2
, 0≤ Rib < 0.2,

1− 10Rib
1+75CN

√
((z1+z0,M )/z0,M )‖Rib‖

, Rib < 0,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(5a)
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fs,H(Rib) =











fs,M (Rib), Rib ≥ 0,

1− 15Rib
1+75CN

√
((z1+z0,M )/z0,M )‖Rib‖

, Rib < 0,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(5b)

✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

conclude
✿✿✿

the
✿✿✿✿✿✿✿✿✿

discription
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿✿✿✿✿

fluxes.
✿✿✿✿

The
✿✿✿✿✿✿

vertical
✿✿✿✿

flux
✿✿✿✿✿✿

(w′a′)
✿✿

of
✿

a
✿✿✿✿✿✿✿

dummy
✿✿✿✿✿✿✿

variable
✿✿

a
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿

turbulence
✿✿✿✿✿✿

within

✿✿

the
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿

layer
✿✿

is
✿✿✿✿✿

based
✿✿

on
✿✿

a
✿✿✿✿

local
✿✿✿✿✿✿✿✿

diffusion
✿✿✿✿✿✿

scheme
✿✿✿✿

and
✿✿

is
✿✿✿✿✿✿✿✿

expressed
✿✿✿

as,

w′a′ =−K
da

dz
,

✿✿✿✿✿✿✿✿✿✿✿✿

(6)

✿✿✿✿✿

where
✿✿

K
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

so-called
✿✿✿✿

eddy
✿✿✿✿✿✿✿✿✿

diffusivity,
✿

20

K = l2Sf(Ri).
✿✿✿✿✿✿✿✿✿✿✿✿

(7)
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✿

l
✿✿✿✿✿✿✿✿

represents
✿✿✿

an
✿✿✿✿✿✿✿

effective
✿✿✿✿✿✿

mixing
✿✿✿✿✿✿

length,
✿

l =min

(

kz
✿✿

,lbl
✿

)

,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(8)

✿✿✿✿

with
✿✿

lbl
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

Blackadar
✿✿✿✿✿✿

length
✿✿✿✿✿

scale,
✿✿✿

we
✿✿✿

use,
✿✿✿✿✿✿✿✿✿

lbl = 70m
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Holtslag and Boville, 1993).
✿✿

S
✿

is
✿✿✿

the
✿✿✿✿✿

local
✿✿✿✿✿✿✿✿✿

wind-shear
✿✿✿✿✿✿✿✿✿✿

magnitude,

S = ‖dU

dz
‖,

✿✿✿✿✿✿✿✿✿

(9)

✿✿✿

and
✿✿✿✿✿

f(Ri)
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

stability
✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿✿✿✿

function
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

vertical
✿✿✿✿

flux,5

f(Ri) =























0, Ri≥ 0.2,
(

1− Ri
0.2

)2
, 0≤ Ri< 0.2,

√
1− 18Ri, Ri< 0,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(10)

✿✿

i.e.
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

gradient
✿✿✿✿✿✿✿✿✿✿

Richardson
✿✿✿✿✿✿✿

number,

Ri =
g

θv,ref

dθv/dz

S2
.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(11)

✿✿✿

The
✿

authors of this work realize that there has
✿✿✿✿

have
✿

been considerable advancements on the representation of mixing under

unstable conditions in the past decades, e.g non-local mixing (Holtslag and Boville, 1993) and turbulent-kinetic-energy-based10

closures (see e.g., Mellor and Yamada, 1982; Lenderink and Holtslag, 2004). Therefore, we would like to note that such

schemes are compatible with the adaptive-grid approach and they could be readily employed to improve the physical descrip-

tions in the present model. From an implementations’ perspective,
✿

those schemes would not require any grid-adaptation specific

considerations when using the Basilisk code.

The most prominent feature of the SCM presented in this work is its ability to dynamically coarsen and refine the grid reso-15

lution based on the evolution of the solution itself. As mentioned in the introduction, the associated grid-adaptation algorithm is

the same as was used by Van Hooft et al. (2018). We only briefly discuss the general concept here. For an in-depth quantitative

discussion with an example
✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿✿✿

examples, the reader is referred to the aforementioned paper.

Apart from the imperfect representation of the physical aspects of a system in numerical models, additional errors naturally

arise due to the spatial and temporal discretization. In general, a higher
✿✿✿

finer
✿

resolution corresponds to a more accurate solution20

and a simulation result is considered to be ‘converged’ when the numerically obtained solution and its statistics of interest do

not crucially depend on the chosen resolution. The aim of the grid-adaptation algorithm is to dynamically coarsen and refine

the mesh so that the errors due to the spatial discretization remain within limited bounds and to be uniformly distributed in both

space and time. For our adaptive approach this requires, (1) an algorithm that evaluates a local estimate of the discretization

error in the representation of selected solution fields
✿✿✿

(χa
✿✿✿

for
✿✿

a
✿✿✿✿

field
✿✿✿✿

‘a’) and (2), a corresponding error threshold (ζ
✿

ζa) that25

determines if a grid cell’s resolution is either too fine, too coarse
✿✿✿✿✿

coarse
✿✿✿

(i.e.
✿✿✿✿✿✿✿✿

χa > ζa),
✿✿✿✿

too
✿✿✿

fine
✿✿✿✿

(i.e.
✿✿✿✿✿✿✿✿✿✿✿

χa < 2ζa/3),
✿

or just fine.
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Grid adaptation can then be carried out accordingly
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿✿✿✿

values
✿✿

of
✿✿✿✿

new
✿✿✿✿

grid
✿✿✿✿

cells
✿✿✿✿

can
✿✿

be
✿✿✿✿✿

found
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿✿

interpolation

✿✿✿✿✿✿✿✿✿

techniques.
✿✿

A
✿✿✿✿

cell
✿

is
✿✿✿✿✿✿✿

refined
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿

error
✿✿✿

for
✿✿

at
✿✿✿✿✿

least
✿✿✿

one
✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿

solution
✿✿✿✿

field
✿✿✿✿✿✿✿

exceeds
✿✿✿

it’s
✿✿✿✿✿✿✿✿✿

refinement
✿✿✿✿✿✿✿✿

criterion

✿✿✿

and
✿

a
✿✿✿✿

cell
✿✿

is
✿✿✿✿✿✿✿✿

coarsened
✿✿✿✿✿

when
✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿✿

considered
✿✿

to
✿✿

be
✿✿✿✿

‘too
✿✿✿✿

fine’
✿✿✿

for
✿✿✿

all
✿✿✿✿✿✿✿

selected
✿✿✿✿✿✿✿

solution
✿✿✿✿✿

fields. The ‘error estimator’
✿✿✿

(χ) is based

on a so-called multi-resolution analysis that is formally linked to wavelet thresholding. The
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿

aims
✿✿

to
✿✿✿✿✿✿✿✿

estimate
✿✿✿

the

✿✿✿✿✿✿✿✿

magnitude
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

higher-order
✿✿✿✿✿✿✿✿✿✿✿

contributions
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

variability
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿✿✿

that
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿

captured
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿

solver’s
✿✿✿✿✿✿✿✿✿

numerical5

✿✿✿✿✿✿✿

schemes.
✿✿✿✿✿✿✿✿✿

Consistent
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

second-order
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿

accuracy
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

solver’s
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

schemes
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Popinet, 2017b),
✿✿✿

the
✿✿✿✿✿✿✿✿✿

algorithm

✿✿✿✿✿✿✿

employs
✿

a
✿✿✿✿✿✿✿✿✿✿✿

second-order
✿✿✿✿✿✿✿

accurate
✿✿✿✿✿✿✿✿✿✿✿✿

wavelet-based
✿✿✿✿

error
✿✿✿✿✿✿✿✿

estimate.
✿✿

In
✿✿✿✿✿✿✿

practice,
✿✿✿✿

grid
✿✿✿✿✿✿✿✿✿

refinement
✿✿✿✿

will
✿✿✿✿✿✿✿

typically
✿✿✿✿✿

occur
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

locations

✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿

is
✿✿✿✿✿✿

highly
✿✿✿✿✿✿✿

‘curved’,
✿✿✿✿✿✿✿✿

wheareas
✿✿✿✿✿

those
✿✿✿✿✿

areas
✿✿✿✿✿

where
✿✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿✿✿✿

fields
✿✿✿✿

vary
✿✿✿✿

more
✿✿✿✿✿✿✿✿

‘linearly’
✿✿

in
✿✿✿✿✿✿

space
✿✿✿

are
✿✿✿✿✿

prone

✿✿

to
✿✿✿✿✿✿✿✿✿

coarsening.
✿✿✿✿

The
✿

error threshold, or so-called refinement criterion ζ, is defined by the user. Noting that similar to the pre-

tuning of the fixed-in-time grids as is common in most SCMs, the grid resolution
✿✿✿✿✿✿

balance
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

accuracy
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

required10

✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿

effort
✿

remains at the discretion of the model’s user.

In this work
✿✿✿

For
✿✿✿

the
✿✿✿✿✿

cases
✿✿

in
✿✿✿✿

this
✿✿✿✿

work
✿✿✿✿

that
✿✿✿✿✿

focus
✿✿

on
✿✿✿

the
✿✿✿✿✿

ABL
✿✿✿✿

(i.e.
✿✿

in
✿✿✿✿

Sect
✿✿✿

3.2
✿✿✿✿

and
✿✿✿✿

3.3),
✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿✿✿

are
✿✿✿✿✿✿✿✿

governed
✿✿✿

by
✿✿✿

the

✿✿✿✿

wind
✿✿✿✿✿✿✿✿✿✿✿

(U = (u,v))
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

virtual
✿✿✿✿✿✿✿✿

potential
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

(θv),
✿✿✿✿✿

hence
✿

we base the refinement and coarsening of the grid on a

second-order-accurate estimated discretization error in the solution fieldsfor the horizontal wind components (u= (u,v)) and

the virtual potential temperature (θv)
✿✿✿

error
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

represenation
✿✿

of
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

discretized
✿✿✿✿

fields. Based on trail
✿✿✿

trial
✿

and15

error, we set the corresponding refinement criteria
✿✿✿✿✿✿✿✿

thresholds,

ζu,v = 0.25 m/s, (12)

ζθv = 0.5 K, (13)

for both of the horizontal wind components and virtual potential temperature, respectively. In practice, the grid-adaptation

algorithm strongly relates the resolved local ‘curvature’
✿✿✿✿

These
✿✿✿✿✿✿

values
✿✿✿

are
✿✿✿✿

the
✿✿✿✿✿

result
✿✿

of
✿✿✿

an
✿✿✿✿✿✿

choice
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿

authors
✿✿✿✿

that
✿✿✿✿✿

aims20

✿✿

to
✿✿✿✿✿

strike
✿✿

an
✿✿✿✿✿✿✿✿

arbitrary
✿✿✿✿✿✿✿

balance
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

accuracy
✿

of the solution fields to the local grid resolution, where high curvature

corresponds to a high resolution
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿

effort
✿✿✿✿✿✿✿✿

required
✿✿

to
✿✿✿

run
✿✿✿

the
✿✿✿✿✿✿

model.
✿✿✿✿

Note
✿✿✿✿

that
✿

a
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿✿

(arbitrary)
✿✿✿✿✿✿✿

balance

✿✿✿✿✿

needs
✿✿✿

also
✿✿✿

to
✿✿

be
✿✿✿✿✿

found
✿✿✿✿✿

when
✿✿✿✿✿

static
✿✿✿✿✿

grids
✿✿✿

are
✿✿✿✿✿✿✿✿✿

employed.
✿✿✿

For
✿

a
✿✿✿✿✿✿

simple
✿✿✿✿✿

flow
✿✿✿✿✿✿

set-up,
✿✿✿✿

Sect.
✿✿✿

3.1
✿✿✿✿✿✿✿

presents
✿✿✿

an
✿✿✿✿✿✿✿

example
✿✿✿✿✿✿✿✿✿✿✿

convergence

✿✿✿✿

study
✿✿

to
✿✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿

effects
✿✿

of
✿✿✿✿✿

using
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

refinement
✿✿✿✿✿✿

criteria
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿✿✿✿

solutions.
✿

✿✿✿✿

Grid
✿✿✿✿✿✿✿✿✿

adaptation
✿✿

is
✿✿✿✿✿✿

carried
✿✿✿

out
✿✿✿✿

each
✿✿✿✿

time
✿✿✿✿

step. The tree-based anisotropic-grid structure in Basilisk facilitates a convenient25

basis for the multi-resolution analysis and the subsequent refinement and coarsening of cells at integer levels of refinement.

This entails that the spatial resolution can vary by factors of two (Popinet, 2011).
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

adaptive-grid
✿✿✿✿

runs
✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿✿

this

✿✿✿✿✿

paper,
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿

spend
✿✿

in
✿✿✿

the
✿✿✿✿✿

actual
✿✿✿✿

grid
✿✿✿✿✿✿✿✿✿

assessment
✿✿✿

and
✿✿✿✿✿✿✿✿✿

adaptation
✿✿✿✿✿✿✿

routines
✿✿

is
✿✿✿

less
✿✿✿✿

than
✿✿✿✿

than
✿✿✿

5%
✿✿

of
✿✿✿

the
✿✿✿✿

total
✿✿✿✿✿✿✿✿✿

wall-clock
✿✿✿✿

time
✿✿✿✿

(see

✿✿✿✿

table
✿✿✿

1).

For time integration; we recognize a reaction-diffusion-type equation describing the evolution of the horizontal wind com-30

ponents and scalar fields such as the virtual potential temperature and specific humidity (qt). For a variable field s(z, t), we

write,

∂s

∂t
=∇ ∂

∂z
✿✿

· (K∇ ∂

∂z
✿✿

s)+ r. (14)
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Where r is a source term and K is the diffusion coefficient. Using a time-implicit first-order-accurate time discretization with

timestep
✿✿✿✿

time
✿✿✿✿

step ∆t separating the solution sn and sn+1, this can be written,

sn+1 − sn

∆t
=∇ ∂

∂z
✿✿

· (K∇ ∂

∂z
✿✿

sn+1)+ r. (15)

Rearranging the terms we get,

∇ ∂

∂z
✿✿

· (K∇ ∂

∂z
✿✿

sn+1)− sn+1

∆t
=− sn

∆t
− r. (16)5

To obtain a Poisson-Helmholtz equation, that is solved for
✿

.
✿✿✿

Eq.
✿✿✿

16
✿✿

is
✿✿✿✿✿✿

solved using a multigrid strategy, employing a finite-

volume-type second-order-accurate spatial discretization (Popinet, 2017a, b). The physical timestep
✿✿✿✿✿

Apart
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

Ekman-spiral

✿✿✿

case
✿✿

in
✿✿✿✿✿

Sect.
✿✿✿

3.1,
✿✿✿

the
✿✿✿✿✿✿✿

physical
✿✿✿✿

time
✿✿✿✿

step
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

ABL-focussed
✿✿✿✿✿

cases is adaptively varied between 2 sec. and 15 sec. based on the

convergence properties of the aforementioned iterative solver. Noting that these values are rather small compared to existing

SCMs that often employ higher-order-accurate time-integration schemes.
✿✿✿✿✿✿✿✿✿

Aditionally,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿

of
✿✿✿✿✿✿

spatial
✿✿✿

and
✿✿✿✿✿✿✿✿

temporal10

✿✿✿✿✿

scales
✿✿✿✿✿✿✿

warrants
✿✿

a
✿✿✿✿✿✿

smaller
✿✿✿✿

time
✿✿✿✿✿

step,
✿✿✿✿

since
✿✿✿

the
✿✿✿✿✿✿✿

present
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿

employs
✿

a
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿

that

✿✿

of
✿✿

an
✿✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿

GCM.
✿

The solver’s second-order spatial accuracy is validated and its performance scaling is accessed for a

simple flow set-up in Appendix ??
✿✿✿✿

Sect.
✿✿✿

3.1. For the exact details of the model set-ups for the cases presented in this paper, the

reader is referred to the case-definition files (in legible formatting). Links are provided to their online locations in table 1.

3 Results15

3.1
✿✿✿

The
✿✿✿✿✿✿✿

Ekman
✿✿✿✿✿

spiral
✿✿✿✿

and
✿✿✿✿

grid
✿✿✿✿✿✿✿✿✿

adaptation

✿✿✿✿✿

Before
✿✿✿

we
✿✿✿✿✿

focus
✿✿✿

our
✿✿✿✿✿✿✿✿

attention
✿✿

on
✿✿✿✿✿

cases
✿✿✿

that
✿✿✿✿✿✿✿

concern
✿✿✿

the
✿✿✿✿✿

ABL,
✿✿✿✿

this
✿✿✿✿✿✿

section
✿✿✿✿✿✿✿✿

discusses
✿✿✿

the
✿✿✿✿✿✿✿✿✿

philosophy
✿✿

of
✿✿✿

the
✿✿✿✿

used
✿✿✿✿

grid
✿✿✿✿✿✿✿✿✿

adaptation

✿✿✿✿✿✿

strategy
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

one-dimensional
✿✿✿✿

(1D)
✿✿✿✿✿✿✿✿✿✿✿

Ekman-flow
✿✿✿✿✿✿

set-up.
✿✿✿✿

This
✿✿✿✿✿✿

simple
✿✿✿

and
✿✿✿✿✿

clean
✿✿✿✿✿

set-up
✿✿✿✿✿✿✿

enables
✿✿

to
✿✿✿✿✿✿✿

quantify

✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

errors
✿✿✿✿✿✿✿✿

explicitly
✿✿✿✿

and
✿✿✿

test
✿✿✿

the
✿✿✿✿✿✿✿

solver’s
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿

schemes.
✿✿✿✿

The
✿✿✿

aim
✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿

section
✿✿

is
✿✿

to
✿✿✿✿

show
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

grid-adaptation

✿✿✿✿✿✿

strategy
✿✿✿✿

and
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

accompanying
✿✿✿✿✿✿✿✿✿

refinement
✿✿✿✿✿✿

criteria
✿✿✿✿✿✿✿

provide
✿

a
✿✿✿✿✿✿✿✿✿

consistent
✿✿✿

and
✿✿✿✿✿✿✿

powerful
✿✿✿✿✿✿✿✿✿✿

framework
✿✿

for
✿✿✿✿✿✿✿

adaptive
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

mesh-element-size20

✿✿✿✿✿✿✿✿

selection.
✿✿✿✿✿✿

Results
✿✿✿

are
✿✿✿✿✿✿✿✿

presented
✿✿

for
✿✿✿✿

both
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿

equidistant-grid
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

adaptive-grid
✿✿✿✿✿✿✿✿

approach.
✿✿✿

The
✿✿✿✿

case
✿✿✿✿✿✿✿✿

describes
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

neutrally-stratified

✿✿✿✿

fluid
✿✿✿✿

with
✿✿✿✿✿✿✿✿

kinematic
✿✿✿✿✿✿✿✿

viscosity
✿✿

ν
✿✿✿

and
✿✿✿✿✿✿✿

density
✿

ρ
✿✿✿

in
✿

a
✿✿✿✿✿✿✿

rotating
✿✿✿✿✿

frame
✿✿✿

of
✿✿✿✿✿✿✿✿

reference
✿✿✿✿

with
✿✿✿✿✿✿✿

angular
✿✿✿✿✿✿✿

velocity
✿✿

Ω.
✿✿

A
✿✿✿✿

flow
✿✿

is
✿✿✿✿✿✿

forced
✿✿✿

by

✿

a
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

pressure
✿✿✿✿✿✿✿

gradient
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

dP/dy = Ugeofρ,
✿✿✿✿

over
✿

a
✿✿✿✿✿✿✿

no-slip
✿✿✿✿✿✿

bottom
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿✿✿

(located
✿✿

at
✿✿✿✿✿✿✿✿✿✿✿✿

zbottom = 0).
✿✿✿✿✿✿

Where
✿✿✿✿

Ugeo
✿✿

is
✿✿

a

✿✿✿✿✿✿

velocity
✿✿✿✿✿

scale
✿✿✿✿

that
✿✿

is
✿✿✿✿

also
✿✿✿✿✿✿

known
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

geostrophic
✿✿✿✿✿

wind.
✿✿✿✿✿✿

There
✿✿✿✿✿

exists
✿✿

an
✿✿✿✿✿✿✿✿✿

analytical,
✿✿✿✿

1D,
✿✿✿✿✿✿

steady
✿✿✿✿✿✿✿

solution
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

horizontal

✿✿✿✿

wind
✿✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿✿✿✿✿

(uE ,vE),
✿✿✿✿

that
✿

is
✿✿✿✿✿✿

known
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

Ekman
✿✿✿✿✿

spiral;
✿

25

uE
✿✿

= Ugeo

(

1− e−γzcos(γz)
)

,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(17)

vE
✿✿

= Ugeoe
−γzsin(γz),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(18)

✿✿✿✿

with
✿

γ
✿✿✿✿

the
✿✿✿✿✿✿✿

so-called
✿✿✿✿✿✿✿

Ekman
✿✿✿✿✿

depth,
✿✿✿✿✿✿✿✿✿✿✿

γ =
√

Ω/ν.
✿✿✿

We
✿✿✿✿✿✿✿✿

initialize
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿

the
✿✿✿✿✿

exact
✿✿✿✿✿✿✿

solution
✿✿✿✿

and
✿✿

set
✿✿✿✿✿✿✿✿✿

boundary

✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿

Eqs.
✿✿✿

17
✿✿✿

and
✿✿✿

18.
✿✿✿✿✿✿✿✿

Equation
✿✿

14
✿✿

is
✿✿✿✿✿✿

solved
✿✿✿✿✿✿✿✿✿✿

numerically
✿✿✿

for
✿✿✿✿

both
✿✿

u
✿✿✿

and
✿✿

v
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿✿✿✿

without
✿✿✿✿

any
✿✿✿✿✿✿✿

closures
✿✿✿

for
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✿✿✿✿✿✿✿

turbulent
✿✿✿✿✿✿✿✿

transport,
✿✿✿

on
✿

a
✿✿✿✿✿✿✿

domain
✿✿✿✿

with
✿✿✿✿✿✿

height
✿✿✿✿✿✿✿✿✿✿

ztop = 100γ.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

simulation
✿✿

is
✿✿✿

run
✿✿✿✿

until
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

tend = 10× γ/Ugeo,
✿✿✿✿✿

using
✿✿

a
✿✿✿✿✿

small
✿✿✿✿

time

✿✿✿

step
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

dt= 0.01× γ/Ugeo.
✿✿✿✿

The
✿✿✿✿

time
✿✿✿✿

step
✿✿

is
✿✿✿✿✿✿

chosen
✿✿✿✿✿

such
✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

errors
✿✿✿✿

are
✿✿✿✿✿✿✿✿✿

dominated
✿✿

by
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿✿✿

discretization

✿✿✿✿✿

rather
✿✿✿✿

than
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

time-integration
✿✿✿✿✿✿✿

scheme.
✿✿✿✿✿✿

During
✿✿✿

the
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿

run,
✿✿✿✿✿✿✿✿✿✿✿

discretization
✿✿✿✿✿

errors
✿✿✿✿✿

alter
✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

solution
✿✿✿✿✿

from

✿✿

it’s
✿✿✿✿✿✿

exact,
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

analytically
✿✿✿✿✿✿

steady,
✿✿✿✿✿✿✿✿✿✿✿

initialization.
✿✿✿

For
✿✿✿

all
✿✿✿✿

runs,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

diagnosed
✿✿✿✿✿✿✿

statistics
✿✿✿✿✿✿✿✿

regarding
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

solutions
✿✿✿✿

that
✿✿✿

are

✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿

this
✿✿✿✿✿✿

section
✿✿✿✿

have
✿✿✿✿✿✿✿

become
✿✿✿✿✿✿

steady
✿✿

at
✿✿✿✿✿✿✿

t= tend.
✿

5

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

spatial-convergence
✿✿✿✿✿✿✿✿✿

properties
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

equidistant-grid
✿✿✿✿✿

solver
✿✿✿

are
✿✿✿✿✿✿

studied
✿✿✿

by
✿✿✿✿✿✿✿✿

iteratively
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿

the
✿✿✿✿

used
✿✿✿✿✿✿✿✿✿✿✿

(equidistant)

✿✿✿✿✿✿✿✿✿✿✿

mesh-element
✿✿✿✿✿

sizes
✿✿✿

(∆)
✿✿✿

by
✿✿✿✿✿✿

factors
✿✿

of
✿✿✿

two
✿✿✿✿

and
✿✿✿

we
✿✿✿✿✿✿✿

monitor
✿✿✿

the
✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿✿✿

fidelity
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿

at
✿✿✿✿✿✿✿

t= tend
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿

runs.

✿✿✿✿✿✿✿✿

Therefore,
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿✿

solution,
✿

a
✿✿✿✿✿

local
✿✿✿✿

error
✿✿✿✿✿

(ǫu,v)
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

numerically
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿✿✿

solution
✿✿✿✿✿✿✿

(un,vn)
✿✿✿✿✿✿

within
✿✿✿✿

each
✿✿✿✿

grid

✿✿✿

cell
✿✿

is
✿✿✿✿✿✿✿✿

diagnosed
✿✿✿✿

and
✿✿

is
✿✿✿✿✿✿

defined
✿✿✿✿

here
✿✿✿

as:

ǫa = ‖an −〈aE〉‖,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(19)10

✿✿✿✿✿

where
✿

a
✿✿

is
✿✿

a
✿✿✿✿✿✿

dummy
✿✿✿✿✿✿✿

variable
✿✿✿

for
✿✿

u
✿✿✿

and
✿✿

v,
✿✿✿✿✿

〈aE〉
✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

grid-cell-averaged
✿✿✿✿

value
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿✿

solution
✿✿✿✿

(aE)
✿✿✿

and
✿✿✿

an
✿✿✿

the
✿✿✿✿✿

value

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿

solution
✿✿✿✿✿

within
✿✿✿✿

the
✿✿✿

cell1.
✿✿✿✿✿✿

Figure
✿✿✿

1a
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿

and
✿✿✿✿✿✿✿✿✿

compares
✿✿✿

the
✿✿✿✿

used
✿✿✿✿

grid
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿

(∆)
✿✿✿✿✿

with
✿✿✿

the

✿✿✿✿

error
✿✿✿✿

ǫu,v .
✿✿

It
✿✿✿✿✿✿✿

appears
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿

range
✿✿

of
✿✿✿✿✿✿✿

ǫ-values
✿✿

is
✿✿✿✿✿

large
✿✿✿✿

and
✿✿✿✿✿✿✿

typically
✿✿✿✿✿

spans
✿✿✿

10
✿✿✿✿✿✿

orders
✿✿

of
✿✿✿✿✿✿✿✿✿✿

magnitude,
✿✿✿✿

with
✿✿

a
✿✿✿✿✿

lower

✿✿✿✿✿

bound
✿✿✿✿✿✿

defined
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

‘machine
✿✿✿✿✿✿✿✿

precision’
✿✿✿✿

(i.e.
✿✿✿✿✿✿✿✿

≈ 10−15
✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

double-precision
✿✿✿✿✿✿✿✿✿✿✿✿

floating-point
✿✿✿✿✿✿✿✿

numbers).
✿✿✿✿✿

This
✿✿✿✿

wide
✿✿✿✿✿

range
✿✿✿

can
✿✿✿

be

✿✿✿✿✿✿✿✿

explained
✿✿

by
✿✿✿

the
✿✿✿✿

fact
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

Ekman
✿✿✿✿✿

spiral
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

exponentially
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿✿✿✿✿

variation
✿✿✿✿

with
✿✿✿✿✿✿

height
✿✿✿✿

(see
✿✿✿✿

Eqs.
✿✿✿

17,
✿✿✿

18)15

✿✿✿

and
✿✿✿✿✿

hence
✿✿✿

the
✿✿✿✿✿✿✿✿✿

equidistant
✿✿✿✿

grid
✿✿✿✿

may
✿✿

be
✿✿✿✿✿✿✿✿✿

considered
✿✿✿✿✿✿

overly
✿✿✿✿✿✿

refined
✿✿

at
✿✿✿✿

large
✿✿✿

z.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

illustrates
✿✿✿✿

that,
✿✿✿

for
✿

a
✿✿✿✿✿

given
✿✿✿✿✿

solver
✿✿✿✿✿✿✿✿✿✿✿

formulation,

✿✿

the
✿✿✿✿✿

error
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿

is
✿✿✿

not
✿✿✿✿✿✿

directly
✿✿✿✿✿✿✿

dictated
✿✿✿

by
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

mesh-element
✿✿✿✿

size,
✿✿✿

but
✿✿✿✿

also
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿

the
✿✿✿✿✿

local
✿✿✿✿✿

shape
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical

✿✿✿✿✿✿

solution
✿✿✿✿✿

itself.
✿✿✿✿

This
✿✿✿✿✿

poses
✿

a
✿✿✿✿✿✿✿✿✿

challenge
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

pre-tuning
✿✿

of
✿✿✿✿✿✿

meshes
✿✿✿✿✿✿✿

applied
✿✿

to
✿✿✿✿✿✿

GCMs,
✿✿✿✿✿

where
✿✿

a
✿✿✿✿✿✿

balance
✿✿✿✿

need
✿✿

to
✿✿✿

be
✿✿✿✿✿

found
✿✿✿✿✿✿✿

between

✿✿✿✿✿✿✿

accuracy
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿✿✿✿

efficiency.
✿✿✿✿

The
✿✿✿✿✿✿

solution
✿✿✿

of
✿

a
✿✿✿✿✿

future
✿✿✿✿✿✿

model
✿✿✿

run
✿

is
✿✿✿

not
✿✿✿✿✿✿

known
✿✿✿✿✿✿✿✿✿✿

beforehand
✿✿✿

and
✿✿✿✿✿

hence
✿✿✿

the
✿✿✿✿✿✿

tuning
✿✿

of
✿✿✿

the

✿✿✿

grid
✿✿✿✿✿✿✿✿

typically
✿✿✿✿✿

relies
✿✿✿✿✿✿

heavily
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿

experience,
✿✿✿✿✿✿✿✿✿✿

empericism
✿✿✿

and
✿✿✿✿✿✿✿

a-priori
✿✿✿✿✿✿✿✿✿✿

knowledge.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

motivates
✿✿

to
✿✿✿✿✿

apply
✿✿✿

the
✿✿✿✿✿✿✿

method
✿✿

of
✿✿✿✿✿

error20

✿✿✿✿✿✿✿✿

estimation
✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

representation
✿✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿

discretized
✿✿✿✿✿✿✿

solution
✿✿✿✿

field
✿✿✿

as
✿✿✿✿✿✿✿✿

described
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Popinet (2011) and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Van Hooft et al. (2018).
✿✿✿✿

For

✿✿✿✿

both
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿✿✿✿✿

components,
✿✿✿✿

this
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

error
✿✿✿✿✿

(χu,v)
✿✿

is
✿✿✿✿✿✿✿✿

evaluated
✿✿

at
✿✿✿

the
✿✿✿✿

end
✿✿

of
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿

run
✿✿✿

for
✿✿✿✿

each
✿✿✿✿

grid
✿✿✿

cell
✿✿✿✿

and
✿✿

is

✿✿✿✿✿✿

plotted
✿✿✿✿✿✿

against
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿

error
✿✿✿✿✿

(ǫu,v)
✿✿

in
✿✿✿✿

Fig.
✿✿✿

1b.
✿✿

It
✿✿✿✿✿

seems
✿✿✿✿

that
✿✿

for
✿✿✿✿

this
✿✿✿✿✿✿✿

virtually
✿✿✿✿✿✿

steady
✿✿✿✿

case,
✿✿✿✿✿

there
✿✿

is
✿

a
✿✿✿✿✿

clear
✿✿✿✿✿✿✿✿✿

correlation

✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿

diagnosed
✿✿✿✿✿✿✿✿✿✿✿✿

(instantaneous)
✿✿✿✿✿✿✿✿

χ-values
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

ǫ-values
✿✿✿✿

that
✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿✿

accumulated
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿

run
✿✿✿✿✿

time.
✿✿✿✿✿

Even

✿✿✿✿✿

tough
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿

perfect,
✿✿

it
✿✿✿✿✿✿✿✿

provides
✿

a
✿✿✿✿✿✿✿✿✿

convenient
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

consistent
✿✿✿✿✿✿✿✿✿

framework
✿✿✿

for
✿✿

a
✿✿✿✿

grid
✿✿✿✿✿✿✿✿✿

adaptation
✿✿✿✿✿✿✿✿✿

algorithm.
✿✿✿

As25

✿✿✿✿

such,
✿✿

a
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿

test
✿✿✿

for
✿✿✿✿

this
✿✿✿✿

case
✿✿

is
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿

using
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

variable-resolution
✿✿✿✿

grid
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿

domain.
✿✿✿✿

The
✿✿✿✿✿

mesh
✿✿

is

✿✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

aforementioned
✿✿✿✿✿✿✿✿✿✿✿

adaptive-grid
✿✿✿✿✿✿✿✿✿

approach.
✿✿✿

For
✿✿✿✿

these
✿✿✿✿✿

runs,
✿✿✿

we
✿✿✿✿✿✿✿✿

iteratively
✿✿✿✿✿✿✿✿

decrease
✿✿✿

the
✿✿✿✿✿✿✿

so-called
✿✿✿✿✿✿✿✿✿

refinement
✿✿✿✿✿✿✿✿

criterion

✿✿✿✿✿

(ζu,v)
✿✿

by
✿✿✿✿✿✿

factors
✿✿

of
✿✿✿✿

two
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

runs
✿✿✿

and
✿✿✿✿✿✿✿

monitor
✿✿✿

the
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿✿

fidelity
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

numerically
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿✿✿✿

solution
✿✿✿

for
✿✿

all
✿✿✿✿✿

runs.

✿✿✿

The
✿✿✿✿✿✿✿✿✿

refinement
✿✿✿✿✿✿✿✿

criterion
✿✿✿✿✿✿

presets
✿✿

a
✿✿✿✿✿✿✿✿

threshold
✿✿✿✿✿

value
✿✿✿

(ζ)
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

estimated
✿✿✿✿

error
✿✿

χ
✿✿✿✿

that
✿✿✿✿✿✿

defines
✿✿✿✿✿✿

when
✿

a
✿✿✿✿

cell
✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿✿✿

refined

✿✿✿✿✿✿

(χ > ζ)
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿

alternatively,
✿✿✿✿✿

when
✿✿

it
✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿✿✿✿✿

coarsened
✿✿✿✿✿✿✿✿✿✿

(χ < 2ζ/3).
✿✿✿✿✿✿

Figure
✿✿

2a
✿✿✿✿✿✿✿✿

presents
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿

and
✿✿✿✿✿✿✿✿✿

compares
✿✿✿

the
✿✿✿✿

used
✿✿✿✿✿

local30

✿✿✿

grid
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿✿✿

against
✿✿✿✿

ǫu,v
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

various
✿✿✿✿✿✿✿✿✿✿✿✿✿

(colour-coded)
✿✿✿✿

runs.
✿✿

It
✿✿✿✿✿✿✿

appears
✿✿✿✿

that
✿✿

for
✿✿✿

all
✿✿✿✿✿✿✿

separate
✿✿✿✿✿

runs,
✿✿✿

the
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿✿

employed

✿

a
✿✿✿✿✿✿✿

variable
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿

mesh
✿✿✿✿

and
✿✿✿✿

that
✿✿✿

this
✿✿✿

has
✿✿✿✿✿✿✿

resulted
✿✿✿

in
✿

a
✿✿✿✿✿✿✿

smaller
✿✿✿✿✿

range
✿✿

of
✿✿✿

the
✿✿✿✿✿

local
✿✿✿✿

error
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿✿

(ǫ).
✿✿✿✿

The
✿✿✿✿

local
✿✿✿✿✿

error

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿✿

compared
✿✿✿✿✿✿

against
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

wavelet-based
✿✿✿✿✿✿✿✿✿

estimated
✿✿✿✿

error
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

representation
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿✿✿✿

fields
✿✿

in
✿✿✿✿

Fig.

1
✿✿

a
n

✿✿✿✿

(also)
✿✿✿✿✿✿✿

represents
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

grid-cell-averaged
✿✿✿✿

value
✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿

finite-volume
✿✿✿✿✿✿

approach.
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✿✿

2b.
✿✿✿✿✿✿✿✿✿

Compared
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿

results
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

equidistant-grid
✿✿✿✿✿✿✿✿

approach
✿✿✿

as
✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿✿

Fig.
✿✿✿✿

1b),
✿✿✿

the
✿✿✿✿✿✿

spread
✿✿

of
✿✿✿

the
✿✿

χ
✿✿✿✿

and
✿

ǫ
✿✿✿✿✿✿

values
✿✿

is

✿✿✿✿✿✿✿

relatively
✿✿✿✿✿

small
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

separate
✿✿✿✿

runs
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

adaptive-grid
✿✿✿✿✿✿✿✿

approach
✿✿

is
✿✿✿✿

used.
✿✿✿✿

The
✿✿✿✿

most
✿✿✿✿✿✿✿✿✿

prominent
✿✿✿✿✿✿

reason
✿✿

for
✿✿✿

the
✿✿✿✿✿

finite
✿✿✿✿✿✿

spread

✿

is
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

error
✿✿✿

(ǫ)
✿✿✿✿

was
✿✿✿✿✿✿✿✿

diagnosed
✿✿✿✿✿

after
✿✿✿✿

1000
✿✿✿✿

time
✿✿✿✿✿

steps.
✿✿✿✿✿

This
✿✿✿✿✿✿✿✿

facilitated
✿✿✿✿✿

errors
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿✿

that
✿✿✿✿✿

arise
✿✿

at
✿

a
✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿

location

✿✿✿✿

(with
✿✿

a
✿✿✿✿

large
✿✿✿✿✿✿✿

χ-value)
✿✿

to
✿✿✿✿✿✿✿✿

‘diffuse’
✿✿✿✿

over
✿✿✿✿

time
✿✿✿✿✿✿

towards
✿✿✿✿✿✿✿

regions
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿✿✿✿✿✿

remains
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by
✿

a
✿✿✿✿✿

small
✿✿✿✿✿✿✿

χ-value

✿✿✿

(not
✿✿✿✿✿✿✿

shown).
✿✿✿✿✿

Also,
✿✿✿✿

since
✿✿

u
✿✿✿

and
✿✿

v
✿✿✿

are
✿✿✿✿✿✿✿

coupled
✿✿✿✿

(due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿✿

rotation),
✿✿✿✿

local
✿✿✿✿✿

errors
✿✿✿✿

that
✿✿✿✿

arise
✿✿

in
✿✿✿✿✿✿✿

solution
✿✿✿

for
✿

u
✿✿✿✿✿✿✿✿

‘pollute’5

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

v-component
✿✿✿✿✿✿✿

solution,
✿✿✿✿

and
✿✿✿✿

vice
✿✿✿✿✿

versa.
✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿

a
✿✿✿✿✿✿

spread
✿✿

is
✿✿✿✿✿✿✿

expected
✿✿✿✿✿✿✿

because
✿✿✿

the
✿✿✿✿✿✿✿✿

tree-grid
✿✿✿✿✿✿✿✿

structure
✿✿✿✿

only
✿✿✿✿✿✿

allows
✿✿✿

the

✿✿✿✿✿✿✿✿

resolution
✿✿

to
✿✿✿✿

vary
✿✿✿

by
✿✿✿✿✿

factors
✿✿✿

of
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Popinet, 2011).

✿✿✿✿✿✿

Finally,
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

speed
✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿

of
✿✿✿

the
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿

approaches
✿✿✿

are
✿✿✿✿✿✿✿

studied.
✿✿✿✿

The
✿✿✿✿✿✿

global

✿✿✿✿

error
✿✿✿

(η)
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

numerically
✿✿✿✿✿✿✿

obtained
✿✿✿✿✿✿✿

solution
✿✿

is
✿✿✿✿✿✿✿✿

evaluated
✿✿✿

as,

η
✿

=

ztop
∫

zbottom

(ǫu + ǫv)dz,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(20)10

✿✿

In
✿✿✿✿

order
✿✿✿

to
✿✿✿✿✿✿✿

facilitate
✿✿

a
✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿

methods,
✿✿✿

we
✿✿✿✿✿✿✿✿

diagnose
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

used
✿✿✿✿

grid
✿✿✿✿

cells
✿✿✿✿

(N )
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

adaptive-grid

✿✿✿

run.
✿✿✿✿✿✿

Figure
✿✿✿

3a
✿✿✿✿✿

shows
✿✿✿✿

that
✿✿✿

for
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

approaches
✿✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿

scales
✿✿✿✿✿✿✿✿

inversely
✿✿✿✿✿✿✿✿✿✿✿

proportional
✿✿

to
✿✿✿

the
✿✿✿✿

used
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

grid
✿✿✿✿

cells
✿✿✿

to
✿✿✿

the

✿✿✿✿✿✿

second
✿✿✿✿✿

power
✿✿✿✿

(i.e.
✿✿✿✿✿✿✿✿✿✿✿

second-order
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

accuracy
✿✿

in
✿✿✿✿

1D).
✿✿✿✿

The
✿✿✿✿✿✿✿

adaptive
✿✿✿✿

grid
✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿

more
✿✿✿✿✿✿✿✿

accurate
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿

results
✿✿✿✿✿

from
✿✿✿

the

✿✿✿✿✿✿✿✿

fixed-grid
✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

employing
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

grid
✿✿✿✿✿

cells.
✿✿✿✿✿✿

Figure
✿✿

3b
✿✿✿✿✿✿

shows
✿✿✿

that
✿✿✿

for
✿✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

approaches
✿✿✿

the
✿✿✿✿✿✿✿✿

required

✿✿✿✿

effort
✿✿✿✿

(i.e.
✿✿✿✿✿✿✿✿

measured
✿✿✿✿

here
✿✿

in
✿✿✿✿✿✿✿✿✿

wall-clock
✿✿✿✿✿

time)
✿✿✿✿✿

scales
✿✿✿✿✿✿✿

linearly
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

number
✿✿✿

of
✿✿✿

grid
✿✿✿✿✿

cells,
✿✿✿✿✿✿

except
✿✿✿

for
✿✿✿

the
✿✿✿✿

runs
✿✿✿

that
✿✿✿✿✿✿

require
✿✿✿✿

less15

✿✿✿

than
✿✿✿✿✿✿✿✿

one-tenth
✿✿✿

of
✿

a
✿✿✿✿✿✿

second
✿✿

to
✿✿✿✿✿✿✿

perform.
✿✿✿✿

The
✿✿✿✿

plots
✿✿✿✿✿✿

reveals
✿✿✿✿

that
✿✿✿

per
✿✿✿✿

grid
✿✿✿

cell
✿✿✿✿

there
✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿✿✿

overhead
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

adaptive-grid

✿✿✿✿✿✿✿✿

approach.
✿✿✿✿✿

These
✿✿✿✿✿✿

results
✿✿✿✿

show
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

used
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

solver
✿✿

is
✿✿✿✿

well
✿✿✿✿✿✿✿

behaved.
✿

✿✿✿

The
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿

sections
✿✿✿

are
✿✿✿✿✿✿✿

devoted
✿✿

to
✿✿✿✿✿

testing
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

adaptive-grid
✿✿✿✿✿✿✿✿

approach
✿✿

in
✿

a
✿✿✿✿✿

more
✿✿✿✿✿✿

applied
✿✿✿✿

SCM
✿✿✿✿✿✿✿✿

scenario,
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿

turbulent

✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿✿

closures
✿✿✿

are
✿✿✿✿✿✿✿

applied
✿✿✿

(see
✿✿✿✿✿

Sect.
✿✿

2)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

set-up
✿✿

is
✿✿✿✿✿✿✿✿

unsteady.
✿✿✿✿✿

Here,
✿✿✿

the
✿✿✿✿✿✿

quality
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

adaptive-grid
✿✿✿✿✿✿✿

solution
✿✿✿

has
✿✿

to
✿✿✿

be

✿✿✿✿✿✿✿

assessed
✿✿

by
✿✿✿✿✿✿✿✿✿✿

comparing
✿✿✿✿✿✿

against
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿✿

results
✿✿✿✿

from
✿✿✿✿✿

other
✿✿✿✿✿✿

SCMs,
✿✿✿✿✿✿✿✿✿

large-eddy
✿✿✿✿✿✿✿✿✿✿

simulations
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

present
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

running
✿✿

in20

✿✿✿✿✿✿✿✿✿✿✿✿✿

equidistant-grid
✿✿✿✿✿

mode.
✿

3.2 GABLS1

The first GABLS intercomparison case focusses on the representation of a stable boundary layer. Its scenario was inspired

by the LES study of an ABL over the Arctic sea by Kosović and Curry (2000). The results from the participating SCMs are

summarized and discussed in Cuxart et al. (2006), for the LES intercomparison study, the reader is referred to the work of25

Beare et al. (2006). The case prescribes the initial profiles for wind and temperature, a constant geostrophic forcing
✿✿✿✿✿✿

forcing
✿✿✿

for

✿✿✿✿✿✿✿✿✿

momentum
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿

to
✿✿

a
✿✿✿✿✿✿✿✿✿✿

geostrophic
✿✿✿✿

wind
✿

of Ugeo = 8 m/s and a fixed surface-cooling rate of 0.25 K/hour. The model

is set-up accordingly, with a maximum resolution of 6.25 meter , corresponding to 6 levels of refinement and a domain height

of 400 meters.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿✿

resolution
✿✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to
✿✿

6
✿✿✿✿✿

levels
✿✿

of
✿✿✿✿✿✿✿✿

tree-grid
✿✿✿✿✿✿✿✿✿✿

refinement,
✿✿✿✿✿

where
✿✿✿✿

each
✿✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿

coarser
✿✿✿✿✿

level

✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿

to
✿

a
✿✿✿✿✿

factor
✿✿

of
✿✿✿✿

two
✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿

grid
✿✿✿✿

size.30

Due to the idealizations in the case set-up with respect to the reality of the field observations, the model results were not

compared against the experimental data (Cuxart et al., 2006). However, for the SCMs, a reference was found in the high-
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fidelity LES results that tended to agree well between the various models. The LES results therefore serve as a benchmark for

the results obtained with the present model. This facilitates a straight forward testing of the formulations and implementations

of the used physical closures, before we continue our analysis towards the full diurnal cycle. Inspired by the analysis of Cuxart

et al. (2006) and their figure 3, we compare our SCM results with the 6.25 meter-resolution LES ensemble results. We focus

on the profiles for the wind components and potential temperature averaged over the eighth hour of the simulation in Fig. 4.5

We observe that the present SCM is in good agreement with the LES results and is able to capture the vertical structure of

the ABL, including the low-level jet. The differences are only minor compared to the variations in the results presented in the

aforementioned GABLS1 SCM reference paper.

Noting
✿✿✿✿

Note
✿

that in general, results are of course sensitive to the closure chosen to parametrize the turbulent transport,

in our case given by Eq.5
✿✿✿✿

Eqs.5
✿✿✿✿

and
✿✿

10. In order to separate between the numerical effects of using grid adaptivity and the10

chosen physical closures, we define an additional reference case in which we run an equidistant-grid SCM. This model run

employs a fixed 6.25 meter resolution (i.e with 64 cells), but otherwise identical closures and numerical formulations. I.e.

we have switched-off the grid adaptivity and maintain the maximum resolution throughout the domain. We can observe that

results between both SCMs are in good agreement but, that minor deviations are present. These discrepancies are in the order

of magnitude of the refinement criteria and can be reduced by choosing more stringent values(see Appendix ??), that would15

result in using more grid cells. The evolution of the adaptive-grid structure is shown in Fig. 5 a. We see that a relatively high

resolution is employed near the surface, i.e. in the logarithmic layer. Remarkably, without any a priori knowledge, the grid is

refined at a height of 150 m< z < 200 m as the so-called low-level jet develops, whereas the grid has remained coarse above

the boundary layer where the grid resolution was reduced to be as coarse as 100 meters. From Fig.5 b we learn that the number

of grid cells varied between 11 and 22 over the course of the simulation run.20

3.3 GABLS2

The second GABLS model intercomparison case was designed to study the model representation of the ABL over the course

of two consecutive diurnal cycles. The case is set-up after the observations that were collected on the 22th and 23rd
✿✿✿

and
✿✿✿✿

24th

of October, 1999 during the CASES-99 field experiment in Leon, Kansas, USA (Poulos et al., 2002). The details are described

(and not repeated here)
✿✿✿

case
✿✿✿✿✿✿✿✿✿

prescribes
✿✿✿✿✿✿✿✿

idealized
✿✿✿✿✿✿✿

forcings
✿✿✿

for
✿✿✿

two
✿✿✿✿✿✿✿✿✿✿

consecutive
✿✿✿✿

days
✿✿✿✿

that
✿✿✿✿

were
✿✿✿✿✿✿✿✿✿✿✿

characterized
✿✿✿

by
✿

a
✿✿✿✿✿✿

strong
✿✿✿✿✿✿

diurnal25

✿✿✿✿

cycle
✿✿✿✿✿✿✿

pattern.
✿✿✿✿✿✿

During
✿✿✿✿

these
✿✿✿✿✿

days,
✿✿✿

the
✿✿✿✿

ABL
✿✿✿✿

was
✿✿✿✿✿✿✿✿

relatively
✿✿✿

dry
✿✿✿

and
✿✿✿✿✿

there
✿✿✿✿

were
✿✿✿

few
✿✿✿✿✿✿✿

clouds.
✿✿✿

The
✿✿✿✿✿✿

details
✿✿

of
✿✿✿

the
✿✿✿✿

case
✿✿✿

are
✿✿✿✿✿✿✿✿

described in

the work of Svensson et al. (2011) that was dedicated to the evaluation of the SCM results for the GABLS2 intercomparison.

Compared to the original case prescriptions, we choose a slightly higher domain size of ztop = 4096 meters (compared to 4000

m), so that a maximum resolution of 8 meters corresponds to 9 levels of refinement.

In this section we place our model output in the context of the results presented in the work of Svensson et al. (2011), that,30

apart from the SCM results, also includes the results from the LES by Kumar et al. (2010). To obtain their data we have used

the so-called ‘data digitizer’ of Rohatgi (2018). Inspired by the analysis of Svensson et al. (2011) and their figures 10 and

11, we intercompare our results for the wind-speed magnitude (U = ‖u‖) and virtual potential temperature profiles in Fig. 6

a and b, respectively. Here we see that the results obtained with the present SCM fall within the range of the results as were

10



found with the selected models that participated in the original intercomparison. These models also employed a first-order-

style turbulence closure and have a lowest model-level height of less than 5 meters. Fig.
✿✿✿

The
✿✿✿✿✿✿✿

present
✿✿✿✿✿✿✿✿

modelled
✿✿✿✿✿

virtual
✿✿✿✿✿✿✿✿

potential

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

(θv)
✿✿✿✿✿✿

shows
✿

a
✿✿✿✿✿

slight
✿✿✿✿✿✿✿

negative
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿

gradient
✿✿

in
✿✿✿

the
✿✿✿✿

well
✿✿✿✿✿✿

mixed
✿✿✿✿✿

layer.
✿✿✿✿

This
✿✿

is
✿

a
✿✿✿✿✿✿

feature
✿✿✿✿✿✿

related
✿✿

to
✿✿✿

the
✿✿✿✿✿

usage
✿✿✿

of
✿✿✿

the

✿✿✿✿

local
✿✿✿✿✿✿✿✿✿✿

K-diffusion
✿✿✿✿✿✿✿✿✿✿

description
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

turbulent
✿✿✿✿✿✿✿✿

transport
✿✿✿✿

(see
✿✿✿✿

Sect.
✿✿

2
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

work
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Holtslag and Boville (1993)).
✿✿✿✿✿✿

Figure 6 c

presents a timeseries of the 10-meter wind speed (U10m) during the 22-th
✿✿✿✿✿

23-rd of October. Again the present model results5

compare well with the others. Next, in order to validate the grid-adaptivity independently from the used closures, we present

the hourly evolution of the wind speed on the 23-rd
✿✿✿✿

24-th of October against the results obtained with adaptivity switched off,

using 512 equally-spaced grid points in Fig. 7. We clearly see that the
✿✿

A
✿✿✿✿✿

nearly
✿✿✿✿✿✿✿✿

identical evolution of the wind speed profile

is the same
✿✿✿✿✿✿

profiles
✿✿

is
✿✿✿✿✿✿✿✿

observed
✿

and even the small-scale features in the inversion layer (i.e. z ≈ 800 m) are present in the

adaptive-grid model
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

adaptive-grid-model calculations. The corresponding evolution of the adaptive-grid structure is presented10

in Fig. 5, where the colours in the resolution plot appear to sketch a ‘Stullian’ image
✿

,
✿✿✿✿✿✿✿

showing
✿

a
✿✿✿✿✿✿✿✿✿✿✿

prototypical
✿✿✿✿✿✿

diurnal
✿✿✿✿✿✿✿✿

evolution

✿✿

of
✿✿✿

the
✿✿✿✿

ABL
✿

(see figure 1.7 in the book of Stull, 1988). Apparently, the grid-adaptation algorithm has identified (!) the ‘surface

layer’ within the convective boundary layer, the stable boundary layer, the entrainment zone and the inversion layer as the

dynamic regions that require a high-resolution mesh.
✿✿✿✿✿✿✿✿✿

Conversely,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

well-mixed
✿✿✿✿

layer
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿

CBL,
✿✿✿

the
✿✿✿✿✿✿✿

residual
✿✿✿✿

layer
✿✿✿✿

and

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

free-troposphere
✿✿✿

are
✿✿✿✿✿✿✿✿

evaluated
✿✿✿

on
✿

a
✿✿✿✿✿✿

coarser
✿✿✿✿✿✿

mesh. The total number of grid cells varied between 24 and 44.15

4 Discussion & Conclusions

In this work we have presented an one-dimensional (1D) single-column model (SCM) that employs a mesh whose resolution

is varied adaptively based on the evolution of the numerically obtained solution. This is an attractive feature because it is a

prerequisite to enable the computational effort required for the evaluation of numerical solution to scale with the complexity of

the studied physical system. The adaptation algorithm based on limiting discretization errors appears to function very well for20

a wide variety of geophysical applications: e.g. 3D atmospheric turbulence-resolving models (Van Hooft et al., 2018), tsunami

and ocean-wave modelling (Popinet, 2011; Beetham et al., 2016; Marivela-Colmenarejo, 2017), hydrology (Kirstetter et al.,

2016), two-phase micro physics (Howland et al., 2016), flow of granular media (Zhou et al., 2017) and shock-wave formation

(Eggers et al., 2017). For these studies on highly dynamical systems, the adaptive-grid approach is chosen because it offers a

more computationally effcient
✿✿✿✿✿✿

efficient
✿

approach as compared to the usage of static grids.25

The present work does not include an
✿✿✿✿✿✿✿

in-depth assessment and discussion on the performance of the presented methods

in relation to the computational speed. Even though this is an important motivation for the application of the adaptive-grid

strategy to GCMs, the authors argue that an SCM is not suitable for speed-performance testing: the speed of single-column

calculations is virtually never a critical issue. Only in 3D mode, when SCMs are ‘stitched together’ to enable the resolving

of global circulations, the model’s computational efficiency becomes an issue. Furthermore, the performance of a SCM that30

employs a few tens of cells is not a good indicator for the performance of a GCM that can employ billions of grid cells. For

the latter, parallel computation overhead and the so-called memory bottle neck are important aspects. Whereas
✿✿

In
✿✿✿✿✿✿✿

contrast, for

the SCM case, the complete instruction set and solution data can typically be loaded onto the cache memory of a single CPU’s

11



core. Nevertheless, for the readers’ reference, the required run times for the different SCM set-ups presented herein are listed

in table 1, and figure 3b in Appendix ?? also presents quantitative results on this topic and shows that the adaptive-grid solver

is well behaved.

Following the turbulence resolving study of Van Hooft et al. (2018), the results presented herein are a proof-of-concept for

future 3D modelling, using RANS techniques. The authors of this work realize that the present SCM is a far cry from a complete5

global model and that more research and development is required before the method can be compared on a global-circulation

scale. As shown by e.g. Jablonowski (2004), a 3D adaptive grid also allows a variable grid resolution in the horizontal direc-

tions. This further enables the computational resources to focus on the most challenging atmospheric processes where there is

a time
✿✿✿✿✿✿✿

temporal
✿

and spatial variation in the horizontal-resolution requirement of the grid. Examples include the contrasting dy-

namics between relatively calm centres of high-pressure circulations and those characterizing stormy low-pressure cells. Also,10

in the case of a sea breeze event (?)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Arrillaga et al., 2016), it would be beneficial to temporarily increase the horizontal reso-

lution near the land–sea interface. As such, we encourage the usage of this technique for those meteorologically challenging

scenarios.
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own website: http://www.basilisk.fr. The code contains solvers for Saint-Venant problems, the Navier-Stokes equations, electrohydrodynam-

ics and more, see http://basilisk.fr/src/README. A selection of examples can be viewed online: http://www.basilisk.fr/src/examples. The

website also provides general information including; installation instructions and a tutorial. Furthermore, for the work herein, interested20

readers can visit the model set-up pages and links to their online locations are presented in table 1. The data can easily be generated by

running the scripts. Finally, a snapshot of the used code, as it was used in this the work, is made available via ZENODO, with doi link:

https://doi.org/10.5281/zenodo.1203631.

5 The Ekman Spiral

In this Appendix we validate the numerical solver by evaluating its convergence characteristics for a one dimensional (1D)25

Ekman-flow set-up. We test both the equidistant-grid and the adaptive-grid approaches. The case describes a neutrally-stratified

fluid with kinematic viscosity ν and density ρ in a rotating frame of reference with angular velocity Ω. A flow is forced by

a horizontal pressure gradient dP/dy = Ugeofρ, over a no-slip bottom boundary (located at zbottom = 0). Where Ugeo is a
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velocity scale that is also known as the geostrophic wind. There exists an analytical, 1D, steady solution for the horizontal

wind components (uE ,vE), that is known as the Ekman spiral;

uE = Ugeo (1− e−γzcos(γz)) ,

vE = Ugeoe
−γzsin(γz),

with γ the so-called Ekman depth, γ =
√

Ω/ν. We initialize our model and set boundary conditions consistent with Eqs 175

and 18. Using a domain height of L= 100γ. The error (η) in the numerically obtained solution (un,vn) is evaluated as,

η=

ztop
∫

zbottom

‖un −uE‖+ ‖vn − vE‖dz,

at the end of the run that is performed until tend = 10× γ/Ugeo, with a timestep ∆t= 0.01× γ/Ugeo. We study the spatial-convergence

properties of the fixed-grid solver and the adaptive-grid approach by iteratively decreasing the (maximum) grid size. For the

adaptive-grid solver we decrease the refinement criteria ζ for the velocity components accordingly2. In order to facilate a10

comparison between the methods, we diagnose the used cells for the adaptive grid run. Figure 3 a shows that both approaches

are second-order accurate. Were the adaptive grid results are more accurate than the results from the fixed-grid approach,

employing the same number of grid cells. Figure 3 b shows that for both approaches the required effort (i.e. in wall-clock time)

scales linearly with the number of grid cells, except for the runs that require less than one-tenth of a second to perform. This

plots reveals that per grid cell there is computational overhead for the adaptive-grid approach. The results in this appendix15

show that the used numerical methods are well behaved.

2The details of the exact case set-up can be found online:
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Table 1. The exact formulation of the methods are described at the online locations of the definition files for the different cases presented in

this manuscript.

Section Case Grid URL: http://www.basilisk.fr... Solver timesteps
✿✿✿✿✿

Number
✿✿

of
✿✿✿✿

time
✿✿✿✿

steps
✿

Wall-clock

3.1
✿✿

3.1 GABLS1
✿✿✿✿✿✿

Ekman
✿✿✿✿

spiral Adaptive /sandbox/Antoonvh/ekman.c 14404
✿✿✿✿

1000
✿✿✿✿

(×20
✿✿✿✿

runs) ≈ 1.3

" " Fixed & Equidistant /sandbox/Antoonvh/ekmanfg.c 14404
✿✿✿✿

1000
✿✿✿✿

(×10
✿✿✿✿

runs) ≈ 0.8

3.2
✿✿✿

3.2 GABLS2
✿✿✿✿✿✿✿

GABLS1
✿

Adaptive /sandbox/Antoonvh/GABLS1.c 24262
✿✿✿✿✿

14404 ≈ 9
✿✿✿

1.3

" " Fixed & Equidistant /sandbox/Antoonvh/GABLS1fg.c 33993
✿✿✿✿✿

14404 ≈ 22

Appendix
✿✿✿

3.3 Ekman spiral
✿✿✿✿✿✿✿

GABLS2 Adaptive /sandbox/Antoonvh/GABLS2.c 1000 (×20 runs)
✿✿✿✿✿

24262 ≈ 19

" " Fixed & Equidistant /sandbox/Antoonvh/GABLS2fg.c 1000 (×10 runs)
✿✿✿✿✿

33993 ≈ 18

The wall-clock times are evaluated using a single core (processor model: Intel i7-6700 HQ).
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✿✿✿

and
✿

v
✿✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

analytical
✿✿✿✿✿✿

solution
✿✿✿✿

(ǫu,v ,
✿✿✿

see
✿✿✿

Eq.
✿✿✿

19)
✿✿✿

for
✿✿

20
✿✿✿✿

runs

✿✿✿✿

using
✿✿

the
✿✿✿✿✿✿✿✿✿✿

adaptive-grid
✿✿✿✿✿✿✿

approach
✿✿✿✿

with
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

refinement
✿✿✿✿✿

criteria
✿✿✿

(see
✿✿✿✿✿✿✿✿✿

colourbar).
✿✿✿

The
✿✿✿✿✿✿✿

left-hand
✿✿✿

side
✿✿✿

plot
✿✿✿

(a)
✿✿✿✿✿

Shows
✿✿✿

that
✿✿

the
✿✿✿✿✿✿✿✿

diagnosed
✿✿✿✿✿

errors

✿✿

for
✿✿✿✿

each
✿✿✿

run
✿✿✿✿✿

plotted
✿✿✿✿✿✿

against
✿✿✿

the
✿✿✿✿

used
✿✿✿✿✿✿✿✿✿✿

mesh-element
✿✿✿✿

size
✿✿✿

(∆).
✿✿✿✿

The
✿✿✿

inset
✿✿✿✿✿

(using
✿✿✿

the
✿✿✿✿

same
✿✿✿✿

axis
✿✿✿✿✿

scales)
✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿

results
✿✿✿

for
✿

a
✿✿✿✿✿

single
✿✿✿

run.
✿✿✿✿

The

✿✿✿✿✿✿✿

right-hand
✿✿✿✿

side
✿✿✿

plot
✿✿✿

(b)
✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿

between
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

wavelet-based
✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

error
✿✿

(χ)
✿✿✿✿

and
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿✿

diagnosed
✿✿✿✿

error
✿✿

in
✿✿✿

the

✿✿✿✿✿✿✿✿✿

numerically
✿✿✿✿✿✿

obtained
✿✿✿✿✿✿✿

solution
✿✿✿

(ǫ)).
✿✿✿✿

The
✿✿✿✿

inset
✿✿✿✿✿

(using
✿✿

the
✿✿✿✿✿

same
✿✿✿

axis
✿✿✿✿✿✿

scales)
✿✿✿✿✿

shows
✿✿

the
✿✿✿✿✿✿

results
✿✿

for
✿✿

a
✿✿✿✿✿

single
✿✿✿

run,
✿✿✿

and
✿✿✿✿✿✿

reveals
✿

a
✿✿✿✿✿✿✿

relatively
✿✿✿✿✿

small

✿✿✿✿✿

spread
✿✿

in
✿✿✿

both
✿

ǫ
✿✿✿

and
✿✿

χ
✿✿✿✿✿

values
✿✿✿✿✿✿✿✿

compared
✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

equidistant-grid
✿✿✿✿✿

results
✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿✿✿

figure
✿✿✿

1b.

The scaling characteristics for the laminar-Ekman-spiral case. (a) Presents the error convergence for the equidistant-grid and

adaptive-grid approach, showing that the solver is second-order accurate. The wall-clock time for the different runs is presented

in (b), showing that for both of the aforementioned approaches, the required effort scales linearly with the number of grid cells.
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Figure 3.
✿✿✿

The
✿✿✿✿✿

scaling
✿✿✿✿✿✿✿✿✿✿✿

characteristics
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

laminar-Ekman-spiral
✿✿✿✿✿

case.
✿✿

(a)
✿✿✿✿✿✿✿

Presents
✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

convergence
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

equidistant-grid
✿✿✿✿

and

✿✿✿✿✿✿✿✿✿✿

adaptive-grid
✿✿✿✿✿✿✿

approach.
✿✿✿

The
✿✿✿✿✿

errors
✿✿✿

(η)
✿✿✿✿✿

follow
✿✿

the
✿✿✿✿✿

slope
✿✿

of
✿✿

the
✿✿✿✿

blue
✿✿✿✿✿

dashed
✿✿✿

line
✿✿✿✿

that
✿✿✿✿✿✿

indicates
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

second-order
✿✿✿✿✿✿✿

accuracy
✿✿

of
✿✿

the
✿✿✿✿✿✿✿

methods.
✿✿✿✿

The

✿✿✿✿✿✿✿✿

wall-clock
✿✿✿

time
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

different
✿✿✿✿

runs
✿

is
✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿

(b),
✿✿✿✿✿✿

showing
✿✿✿✿

that
✿✿

for
✿✿✿✿

both
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

aforementioned
✿✿✿✿✿✿✿✿✿

approaches,
✿✿✿

the
✿✿✿✿✿✿

required
✿✿✿✿✿

effort
✿✿✿✿✿

scales

✿✿✿✿✿

linearly
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

number
✿✿

of
✿✿✿

grid
✿✿✿✿

cells.
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Figure 4. Time averaged profiles over the eight hour of the run according to the GABLS1 intercomparison scenario. For (a) the horizontal

wind components and (b) the potential temperature. Results are obtained with the present adaptive-grid SCM (coloured lines), the LES

models ensemble (i.e mean±σ) from Beare et al. (2006) (grey-shaded areas) and the present SCM, employing an equidistant and static grid

with a 6.25 meter resolution (dashed lines).
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Figure 5. Evolution of (a) the vertical spatial-resolution distribution and (b) the total number of grid cells, for the GABLS1 intercomparison

case.
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Figure 6. Intercomparison of the results obtained with the adaptive-grid SCM and the participating models in the work of (Svensson et al.,

2011) for the vertical profiles of (a) the virtual potential temperature and (b) the wind-speed magnitude. Lower panel: (c) the evolution of the

10-meter wind speed (U10m) on the 22-th
✿✿✿

23-th
✿

of October. For the used model abbreviations in the legend, see Svensson et al. (2011).
✿✿✿

The

✿✿✿✿✿✿

different
✿✿✿✿✿

shades
✿✿

of
✿✿✿✿

grey
✿✿

in
✿✿✿

plot
✿✿

c)
✿✿✿✿✿✿

indicate
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

from
✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿✿

meassurement
✿✿✿✿✿✿

devices,
✿✿✿

see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Svensson et al. (2011) for
✿✿

the
✿✿✿✿✿✿

details.
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Figure 7. Vertical profiles of the wind-speed magnitude U obtained with the adaptive-grid (in colour) and the fixed equidistant-grid (dashed)

SCMs. The twelve plotted profiles are obtained for the 23-th
✿✿✿✿

24-th of October with an hourly interval, starting from 1:00 AM local time.

Noting that the profiles are shifted in order to distinguish between the different times (with vanishing wind at the surface).

Figure 8. Evolution of (a) the vertical spatial resolution and (b) the total number of grid cells, for the GABLS2 intercomparison case.
✿✿✿

Two

✿✿✿

full
✿✿✿✿✿

diurnal
✿✿✿✿✿

cycles,
✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿

to
✿✿✿

the
✿✿✿✿

23-rd
✿✿✿

and
✿✿✿✿

24-th
✿✿✿

day
✿✿

of
✿✿✿✿✿✿✿

October,
✿✿✿✿

1999
✿✿✿✿✿✿✿

(ranging
✿✿✿

from
✿✿✿

the
✿✿✿✿✿

labels
✿✿✿✿✿✿

1:00:00
✿✿

to
✿✿✿✿✿✿

3:00:00
✿✿

on
✿✿

the
✿✿✿✿✿✿

x-axis).
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