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Abstract.  This paper presents DECIPHeR (Dynamic fluxEs and ConnectIvity for 

Predictions of HydRology); a new model framework that simulates and predicts hydrologic 15 

flows from spatial scales of small headwater catchments to entire continents. DECIPHeR can 

be adapted to specific hydrologic settings and to different levels of data availability.  It is a 

flexible model framework which includes the capability to (1) change its representation of 

spatial variability and hydrologic connectivity by implementing hydrological response units 

in any configuration, and (2) test different hypotheses of catchment behaviour by altering the 20 

model equations and parameters in different parts of the landscape. It has an automated build 

function that allows rapid set-up across large model domains and is open source to help 

researchers and/or practitioners use the model. DECIPHeR is applied across Great Britain to 

demonstrate the model framework.  It is evaluated against daily flow time series from 1,366 

gauges for four evaluation metrics to provide a benchmark of model performance.  Results 25 

show the model performs well across a range of catchment characteristics but particularly in 

wetter catchments in the West and North of Great Britain.  Future model developments will 

focus on adding modules to DECIPHeR to improve the representation of groundwater 

dynamics and human influences.    

 30 
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1 Introduction 

Water resources require careful management to ensure adequate potable and industrial 

supply, to support the economic and recreational value of water, and to minimise the impacts 

of hydrological extremes such as droughts and floods on the economy, river ecosystems and 

human life.  Robust simulations and predictions of river flows are increasingly needed across 5 

multiple temporal and spatial scales to support such management strategies (Wagener et al., 

2010) that may range from the assessment of local field-scale flood mitigation measures to 

emerging water challenges at regional to continental scales (Archfield et al., 2015). Such 

approaches are particularly important, indeed mandated, given national and international 

policies on water management, such as the European Union’s Water Framework Directive 10 

(EC, 2000) and Floods Directive (EC, 2007).  Specifically (inter)national information on 

water resources, low and high flows is needed to underpin robust environmental management 

and policy decisions. This requires the effective integration of field observations and 

numerical modelling tools to provide tailored outputs at gauged and ungauged locations 

across a wide range of scales relevant to policy makers and societal needs.  15 

To address this need, a fundamental challenge for hydrologic sciences is to develop 

hydrological models that represent the complex drivers of catchment behaviour, such as 

space- and time- varying climate, land cover, human influence etc. (Blöschl and Sivapalan, 

1995).  The hydrologic community has made substantial investments to develop and apply 

hydrological models over the past 50 years to produce simulations and predictions of surface 20 

and groundwater flows, evaporation and soil moisture storage across multiple scales.  These 

include gridded approaches (e.g. PCR-GLOBWB, (Wada et al., 2014); VIC, (Hamman et al., 

2018; Liang et al., 1994); Grid-to-Grid, (Bell et al., 2007); Multiscale Hydrologic Model 

(Samaniego et al., 2010); DK-model, (Henriksen et al., 2003)), semi-distributed approaches 

that aggregate the landscape into hydrologic response units or sub-catchments (e.g. HYPE,  25 

(Lindström et al., 2010); SWAT, (Arnold et al., 1998); Topnet, (Clark et al., 2008a)) and 

many conceptual models applied at the catchment scale (Beven and Kirkby, 1979; Burnash, 

1995; Coron et al., 2017; Leavesley et al., 1996; Lindström et al., 1997; Zhao, 1984).  The 

current generation of hydrological models can represent a range of natural and anthropogenic 

processes and various levels of spatial complexity.  Furthermore, there are significant 30 

ongoing efforts to represent spatial heterogeneity at finer scales over national-global scales 

(Bierkens et al., 2015; Wood et al., 2011) and build multi-model frameworks, to test 

competing hypotheses of catchment behaviour, such as FUSE (Clark et al., 2008a) and 

SUPERFLEX (Fenicia et al., 2011; Kavetski and Fenicia, 2011).   

However, whilst these models have provided a wealth of useful insights and relevant outputs,  35 

they either tend to: have a fixed representation of spatial variability (i.e. a single spatial 

resolution or a single spatial structure such as raster based); lack spatial connectivity between 

hillslope-to-hillslope and hillslope and riverine components; be computationally expensive; 

and/or employ a single model structure across the model domain or nested catchment scale.  

This impacts our ability to apply models to a wide range of scales, places and water 40 

challenges, as different model representations of hydrological processes (i.e. model structure, 

parameterisations, hydrologic connectivity or spatial variability) are needed to capture 

heterogeneous hydrological responses and changing landscape connectivity, particularly for 

local conditions.  Consequently, there is a pressing need to develop new spatially flexible 

modelling tools that can be applied to a range of space- and time- scales, and that are based 45 

on general hydrological principles applicable to a broad spectrum of different catchment 

types.  The need for such approaches is well documented in the literature (Clark et al., 2011, 
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2015; Mendoza et al., 2015) with calls for flexible hydrological modelling systems that can: 

(1) incorporate different model structures and parameterisations in different parts of the 

landscape to represent a variety of processes; (2) change their spatial complexity, variability 

and/or hydrologic connectivity for hillslope elements and river network reaches (Beven and 

Freer, 2001; Mendoza et al., 2015); and, (3) be applied across a wide range of spatial and 5 

temporal scales, and across places (Blӧschl et al, 2013).  However, few such models exist. 

In line with these requirements, we have created a new model framework, DECIPHeR 

(Dynamic fluxEs and ConnectIvity for Predictions of HydRology), to simulate and predict 

hydrologic flows and connectivity from spatial scales of small headwater catchments to entire 

continents. The flexible modelling framework allows users to test different spatial 10 

resolutions, spatial configurations (i.e. gridded, semi-distributed or lumped), levels of 

hydrologic connectivity (i.e. representations of the lateral fluxes of water across model 

elements) and process representation (i.e. model structure and parameters).  DECIPHeR has 

an automated build function that allows rapid set-up across required model domains with 

limited user input. The underlying code has been optimised to run large ensembles and enable 15 

model uncertainty to be fully explored. This is particularly important given inherent 

uncertainties in hydro-climatic datasets (Coxon et al., 2015; McMillan et al., 2012) and their 

impact on model calibration, regionalisation and evaluation (Freer et al., 2004; Kavetski et 

al., 2006; Kuczera et al., 2010; McMillan et al., 2010, 2011; Westerberg et al., 2016). We 

have specifically made the model code readable, reusable and open source to allow the 20 

broader community to learn from, verify and advance the work described here (Buytaert et 

al., 2008; Hutton et al., 2016). 

In this paper, we (1) describe the key capabilities and concepts that underpin DECIPHeR; (2) 

provide a detailed discussion of the model code and components; (3) demonstrate its 

application at the national scale to 1,366 catchments in Great Britain (GB); and, (4) discuss 25 

potential future model developments. 

2 The DECIPHeR Modelling Framework 

2.1 Key Concepts 

The DECIPHeR modelling framework is based on the key concepts enshrined in Dynamic 

TOPMODEL originally introduced by Beven and Freer, (2001).  Since its original 30 

development, Dynamic TOPMODEL has been applied in a wide range of studies (Freer et al., 

2004; Liu et al., 2009, p.200; Metcalfe et al., 2017; Page et al., 2007; Younger et al., 2008) 

and integrated into other modelling frameworks (e.g. HydroBlocks, Chaney et al., 2016).  

The core ideas of Dynamic TOPMODEL were three-fold (Beven and Freer, 2001); 1) to 

allow more flexibility in the definition of similarity in function for different points in the 35 

landscape, 2) to implement a non-linear routing of subsurface flow that simulates 

dynamically variable upslope subsurface contributing area and 3) to remain computationally 

efficient so that uncertainty in hydrological simulations can be estimated.   

To realise this, Dynamic TOPMODEL uses hydrological response units (HRUs) to group 

raster-based information into non-contiguous spatial elements in the landscape that share 40 

similar characteristics (see Figure 1).  Each HRU maintains hydrological connectivity in the 

landscape via weightings that determine the proportions of lateral subsurface flux from each 

HRU to all connected HRUs and flows to river cells.  This solution offers key advantages in 

capability to traditional grid-based or lumped approaches employed by many hydrological 

models.  Firstly, the user can split up the catchment using, for example, different landscape 45 

attributes (e.g. geology, land use) and/or spatially varying inputs (e.g. rainfall, evaporation, 
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etc.) to define spatial similarity.  This capability allows the user to modify the spatial 

complexity, resolution and/or hydrologic connectivity of hillslope elements and river network 

reaches in any configuration.  Secondly, each HRU is treated as a separate functional unit in 

the model which can have different process conceptualisations and parameterisations.  This 

means that more process complexity can be incorporated where needed to better suit local 5 

conditions (e.g. to account for ‘point-source’ human influences or more complex 

hydrological processes such as surface-groundwater exchanges).  Finally, by grouping 

together similar parts of the landscape, HRUs minimise run times of the model compared to 

grid-based or fully distributed formulations, while still allowing model simulations to be 

mapped back into space. 10 

While these key concepts that underpin Dynamic TOPMODEL address many of the 

challenges outlined in the introduction section, for the most part the model has only ever been 

applied to a single catchment or very simple nested catchments in headwater basins (Peters et 

al., 2003).  Consequently, we have completely restructured and rewritten the model code and 

added several new features to improve the flexibility and automation of the original Dynamic 15 

TOPMODEL code so the model can be applied from single small headwater catchments to 

regional, national and continental scales.  These changes include:  

1. Both legacy and new model code has been updated to a FORTRAN 2003 compliant 

version with new array and memory handling to allow significantly larger and more 

complex gauging networks to be processed  20 

2. The model build process is now fully automated to allow national/continental scale 

data to be easily and quickly processed, and to build and apply models in complex 

multi-catchment regions. 

3. New model code and functions have been written to:  

a. Enable greater flexibility in the complexity and spatial characteristics of river 25 

network and routing properties.  A newly developed river network scheme allows 

flow simulations to be produced for any gauged or ungauged point on a river 

network and segment river reaches into any length for individual hillslope-river 

flux contributions.  

b. Ensure that multiple points on the river network can be initialised via local 30 

storages and fluxes in each HRU successfully. 

c. Seamlessly facilitate DTA classification layers and results into rainfall-runoff 

model configuration that allows each individual HRU to have a different model 

structure, parameters, and climatic inputs. 

4. A new analytical solution of the subsurface flow equations has been implemented, 35 

resulting in increased computational speed and numerical stability  

5. The model can be easily adopted and adapted because it is open source, version 

controlled and includes a detailed user manual  

  

HRUs are defined prior to rainfall-runoff modelling and DECIPHeR consists of two key steps 40 

where (1) digital terrain analyses are performed to define the gauge network, set up the river 

network and routing, discretise the catchment into HRUs and characterise the spatial 

variability and hydrologic connectivity in the landscape, and (2) HRUs are run in the rainfall 

runoff model to provide flow timeseries.  These two steps are described in the following 

sections.  More detailed descriptions of the input and output files, code workflows and codes 45 

can be found in the user manual.   



 

5 

 

2.2 Digital Terrain Analysis (DTA) 

The DTA in DECIPHeR constructs the spatial topology of the model components to define 

hillslope and riverine elements. The DTA defines the spatial extent of every HRU based upon 

multiple attributes, quantifies the connectivity between these HRU’s in the landscape, 

determines the river network and all downstream routing properties, and determines the 5 

extent and where simulated output variables (i.e. discharge) should be produced (including 

gauged or ungauged locations) (see Figure 1). 

2.2.1 Data Prerequisites 

The minimum data requirement to run the DTA is a digital elevation model (DEM) and XY 

locations where flow time series are needed on the river network.  The DEM must contain no 10 

sinks or flat areas to ensure that the river network and catchments can be properly delineated 

as is common in digital terrain analyses.  This means that any real inland sinks (such as lakes) 

will be filled.  Accounting for these features in the modelling framework will be a focus for 

future model development.   

 15 

Additional data can also be incorporated depending on data availability and modelling 

objectives.  A river network can be supplied if the user wishes to specify headwater cells 

from a predefined river network and reference catchment areas and masks can be used to 

identify the best station location on the river network.  Depending on user requirements, 

topographic, land use, geology, soils, anthropogenic and climate attributes can be supplied to 20 

define the spatial topology and thus differences in model inputs, structure and 

parameterisation.   

2.2.2 River Network, Catchment Identification and River Routing 

DECIPHeR generates streamflow estimates at any point on the river network specified by the 

user.  A river network is generated in DECIPHeR which matches the DEM flow direction and 25 

always connects to the boundary of the DEM or the sea.  The river network is created from a 

list of headwater cells, which the functions can use/produce in three different ways depending 

on user requirements and/or data availability: 

1. A list of pre-defined headwater (i.e. starting) river locations read into the DTA 

algorithms from a file 30 

2. Headwater cells are found from a pre-defined river network 

3. Where no pre-defined river network or headwater locations are available, then 

headwater cells are found from a river network which is derived from cells that meet 

thresholds of accumulated area and/or topographic index 

Each headwater location is then routed downstream in a single flow direction via the steepest 35 

slope until reaching a sea outlet, other river or edge of the DEM, to construct a contiguous 

river network for the whole area of interest.  Gauge locations are then generated on the river 

network from the point locations specified by the user.  If a reference catchment mask or area 

is available, catchment masks are produced for candidate river cells found in a given radius 

and the catchment mask with the best fit to the reference mask or area is chosen as the gauge 40 

location.  Otherwise the closest river cell is chosen as the gauge location.   

Catchment masks are created from the final gauge list, with both individual masks for all the 

points specified on the river network and a combined catchment mask with the nested 

catchment masks created for use in the creation of the hydrological response units.  From the 

river network and gauge locations, the river network connectivity is derived with each river 45 

section labelled with a unique river ID.  A suite of routing tables is also produced so that each 
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ID knows its downstream connections and to allow multiple routing schemes to be 

configured (see section 2.3.4 for a description of the current routing scheme implemented in 

the modelling framework).  These codes also provide the option of setting a river reach length 

where output time series can also be specified at different reach lengths between gauges (see 

Figure 1, HRU Setup D).  5 

2.2.3 Topographic Analysis 

Topography, slope, accumulated area and topographic index are important properties of the 

landscape to aid the definition of hydrologic similarity and more dominant flow pathways.    

In DECIPHeR, they provide the basis for river routing and river network configuration and 

they also can be used to help determine the initial separation of landscape elements for 10 

defining hydrological similarity using percentiles of accumulated area, elevation and slope (in 

addition to alternative catchment attributes such as urban extent, geology, landuse, soils etc.).  

 

Topographic index is calculated using the M8 multiple flow directional algorithm of (Quinn 

et al., 1995).  The DTA calculates slope, accumulated area and topographic index for the 15 

whole domain.  It uses the river mask to define the cells where accumulated area cannot 

accumulate downstream and the catchment mask to ensure accumulated area does not 

accumulate across nested catchment boundaries.     

2.2.4 Hydrological Response Units 

The most critical aspect of running DECIPHeR is to define HRU’s according to user 20 

requirements.  The HRU configuration determines the spatial connectivity and complexity of 

model conceptualisation as well as the spatial variability of inputs and conceptual structure 

and parameters to be implemented in each part of the landscape.  Any number of different 

spatial discretisations can be derived and subsequently applied in the DECIPHeR framework 

allowing the user to experiment with different model structures and parameterisations and 25 

modify representations of spatial variability and hydrologic connectivity.  

 

In the DTA, hydrologically similar points in the landscape are grouped together so that each 

HRU is a unique combination of four different classification layers.  These specify: (1) the 

initial separation of landscape elements from topographic information (e.g. slope, 30 

accumulated area and/or elevation); (2) inputs; (3) process conceptualisations; and (4) 

parameters implemented for each HRU store in the model (see Figure 2).  These 

classification layers can be derived from climatic inputs, such as spatially varying rainfall and 

potential evapotranspiration, and landscape attributes such as geology, land use, 

anthropogenic impacts, soils data, slope, accumulated area.  The simplest setup will consist of 35 

one HRU per catchment while the most complex can consist of one HRU for every grid cell 

(i.e. fully distributed).    

 

To maintain hydrological connectivity in the landscape, the proportions of flow between the 

cells comprising each HRU are calculated based on accumulated area and slope.  The flow 40 

fractions are then aggregated into a flow distribution matrix that summarises the proportions 

(weightings) of lateral subsurface flow from each HRU either to (1) itself, (2) another HRU 

or (3) a river reach.  For n hydrological response units, the weights (W) are defined as:   

 

𝑊 =  (

𝑤1,1 ⋯ 𝑤1,𝑛

⋮ ⋱ ⋮
𝑤𝑛,1 ⋯ 𝑤𝑛,𝑛

) 45 

Equation 1 
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Where each row defines how the HRU’s output is distributed to other HRU’s, any river 

reaches or itself and each column represents the total input to each HRU at every time step as 

the weighted sum of all the upstream outputs. Each row and column sum to one to ensure 

mass balance.  The weights are detailed in a HRU flux file (which is fixed for a simulation) 

as a flow distribution matrix along with tabulated HRU attributes to provide information on 5 

which inputs, parameter and model structure type each HRU is using.   

2.3 Rainfall-Runoff Modelling 

2.3.1 Data Pre-requisites 

To run the rainfall-runoff modelling component of DECIPHeR, time series forcing data of 

rainfall and potential evapotranspiration are required.  Discharge data can also be provided 10 

for gauged locations and are used to initialise the model. 

 

Besides forcing data, the model also needs, (1) the HRU flux file and routing files produced 

by the DTA, (2) a parameter file specifying parameter bounds for Monte-Carlo sampling of 

parameters and (3) project/settings files specifying the number of parameter sets to run, 15 

which HRU and input file to use etc. 

2.3.2 Initialisation 

Initialisation is an important step for any rainfall-runoff model.  To ensure that subsurface 

flows, storages and the river discharge have all stabilised can be particularly problematic 

when modelling regionally over a large area as not all HRU’s will initialise at the same rate 20 

(depending on size and slope characteristics). 

A simple homogenous initialisation is currently implemented in DECIPHeR where the 

storage deficits for all HRU’s are determined from an initial discharge.  This is calculated as 

a mean area weighted discharge of the starting flows at timestep 1 for all output points on the 

river network.  If a gauge does not have an initial flow, then the initial flow is either 25 

calculated from the mean of the data or set to a value of 1 mm/day (as a representative 

starting flow for most catchments) if no flow data is available.  The initial discharge is 

assumed to be solely due to the subsurface drainage into the river so is used as the starting 

value for QSAT (subsurface flow) and to determine the associated storage and unsaturated zone 

fluxes.  The model is then run for an initialisation period to allow its model stores and fluxes 30 

to fully stabilise with the catchment climatic information. Initialisation periods depend in part 

on the parameterisation of the model simulation run as well as the size and characteristics of 

the catchment being considered. 

2.3.3 Parameters 

DECIPHeR can be run either using default parameter values or through Monte-Carlo 35 

sampling of parameters between set parameter bounds to produce ensembles of river flows.  

In the DTA, the user can set different parameter bounds for each HRU or sub-catchment thus 

specifying areas of the landscape where different parameter bounds may be needed.  

Alternatively, a single set of parameter bounds can be applied across the model domain. 

For the model structure provided in the standard build and described below, there are seven 40 

parameters that can be sampled or set to default parameters.  These parameters describe the 

transmissivity of the subsurface, the water holding capacity and permeability of soils and the 

channel routing velocity (see Table 1). More parameters can easily be added by the user if 

required for different model structures by changing the model source code. 
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2.3.4 Model Structure  

The description below details the model structure that is provided in the open source code 

(see Figure 3 and Table 1).  While the code is built to be modular and extensible so that a 

user can easily implement multiple model structures if so wished, the aim of this paper and 

the initial focus of the code development was on applying the model across large scales and 5 

beginning with a release that has relatively simple representations of the core processes.  

Thus, we provide a single model structure in the open source code that serves as a model 

benchmark to be built upon in future iterations.   

The model structure consists of three stores defining the soil profile (𝑆𝑅𝑍, 𝑆𝑈𝑍, 𝑆𝐷 in Figure 

3), which are implemented as lumped stores for each HRU.  The first store is the root zone 10 

storage (𝑆𝑅𝑍).  Precipitation (P) is added to this store and then evapotranspiration (ET) is 

calculated and removed directly from the root zone.  The maximum specific storage of SRZ is 

determined by the parameter 𝑆𝑅𝑚𝑎𝑥.  Actual evapotranspiration from each HRU depends on 

the potential evapotranspiration (𝑃𝐸𝑇) rate supplied by the user and the root zone storage 

using a simple common formulation where evapotranspiration is removed at the full potential 15 

rate from saturated areas (i.e. if the root zone storage is full) and at a rate proportional to the 

root zone storage in unsaturated areas: 

𝐸𝑇 = 𝑃𝐸𝑇 ∗ (𝑆𝑅𝑍 𝑆𝑅𝑚𝑎𝑥)⁄  

Equation 2 

Once the root zone reaches maximum capacity (i.e. deficit of zero and conceptually 20 

analogous to field capacity), any excess rainfall input is added to the unsaturated zone (Suz) 

where it is routed to the saturated zone (𝑆𝐷). If the saturated zone is also full (as determined 

by 𝑆𝑚𝑎𝑥), QEXUS is added to the saturation excess storage (SEX) and routed directly overland 

as saturated excess overland flow (QOF).  The unsaturated zone links the SRZ and saturated 

zones according to a linear function that includes a gravity drainage time delay parameter 25 

(𝑇𝑑) for vertical routing through the unsaturated zone.  The drainage flux (Quz) from the 

unsaturated zone to the saturated zone is at a rate proportional to the ratio of unsaturated zone 

storage (Suz) to storage deficit (𝑆𝐷): 

        𝑄𝑈𝑍 =  𝑆𝑈𝑍 (𝑆𝐷 ∗ 𝑇𝑑)⁄   

Equation 3 30 

Changes to storage deficits for each HRU are dependent on recharge from 𝑆𝑈𝑍  (𝑄𝑈𝑍), fluxes 

from upslope HRUs (𝑄𝐼𝑁) and downslope flow out of each HRU (𝑄𝑆𝐴𝑇), with subsurface 

flows for each HRU distributed according to the DTA flow distribution matrix described in 

section 2.2.4.   

𝑑𝑆𝐷

𝑑𝑡
= 𝑄𝑆𝐴𝑇 − 𝑄𝐼𝑁 − 𝑄𝑈𝑍 35 

Equation 4 

Where 𝑆𝐷 is the current deficit in the saturated zone, 𝑄𝑆𝐴𝑇 is outflow from this HRU, 𝑄𝐼𝑁 is 

inflow into the HRU representing subsurface flow from other HRUs and 𝑄𝑈𝑍 is inflow into 

the HRU representing drainage from the unsaturated zone of this HRU. This equation is 

solved sequentially for each HRU and provides values for the deficit 𝑆𝐷 and outflow 𝑄𝑆𝐴𝑇 at 40 

time step t for each HRU.  In DECIPHeR, this equation is solved analytically (see appendix 

for derivation of this solution), assuming a transmissivity profile that declines exponentially 
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with depth and is truncated at depth 𝑆𝑚𝑎𝑥 such that no flow is generated when the deficit is 

greater than 𝑆𝑚𝑎𝑥 (Beven and Freer, 2001). The analytical solution provides better 

computational speed and increased numerical stability compared to the iterative 4-point 

numerical scheme described by Beven and Freer (2001).  

The exponential transmissivity profile takes the shape (Beven and Freer, 2001; eq. 6): 5 

𝑄𝑆𝐴𝑇 = 𝑇0 tan 𝛽 exp (−𝑓𝑧) = 𝑄0𝑒𝑥𝑝(− 𝑆̅ 𝑆𝑍𝑀⁄ ) 

Equation 5 

The truncated exponential transmissivity profile takes the shape (rewritten from Beven and 

Freer, 2001; eq. 9):  

𝑄𝑆𝐴𝑇 = {
𝑄0 𝑐𝑜𝑠 𝛽 [𝑒𝑥𝑝(− 𝑐𝑜𝑠 𝛽 𝑆̅ 𝑆𝑍𝑀⁄ ) − 𝑒𝑥𝑝(− 𝑐𝑜𝑠 𝛽 𝑆𝑚𝑎𝑥 𝑆𝑍𝑀⁄ )] 𝑆̅ ≤ 𝑆𝑚𝑎𝑥

0 𝑆̅ > 𝑆𝑚𝑎𝑥

 10 

Equation 6 

Where 𝛽 is the mean slope of the HRU and 𝑆̅ is the average deficit across the HRU. The 

parameter, SZM, sets the rate of the exponential decline in saturated zone hydraulic 

transmissivity with depth thereby controlling the shape of the recession curve in time. The 

parameter, Smax, sets the saturated zone deficit threshold at which downslope flow between 15 

HRUs no longer occurs.  If the storage deficit is less than zero (i.e. the soil is at or above its 

saturation capacity), then excess storage (QEXS) is added to saturation excess overland flow 

(QOF).  𝑄0 is the maximum rate of 𝑄𝑆𝐴𝑇 from a HRU when the HRU is at saturation and is 

calculated from: 

𝑄0 =  
𝑇0

𝑒𝜆
 20 

Equation 7 

Where the parameter 𝑇0 determines the lateral saturated hydraulic transmissivity at the point 

when the soil is saturated and 𝜆 is the average topographic index across the HRU. 

Channel flow routing in DECIPHeR is modelled using a set of time delay histograms that are 

derived from the digital terrain analyses for the points where output is required.  A fixed 25 

channel wave velocity (CHV) is applied throughout the network to account for delay and 

attenuation in the simulated flows (QSIM).  DECIPHeR is a mass conserving model and 

therefore the model water balance always closes (subject to small rounding errors).   

2.4 Model Implementation 

The DECIPHeR model code is available on github (https://github.com/uob-30 

hydrology/DECIPHeR) and is accompanied by a user manual which provides a detailed 

description of the file formats, how to run the codes and a code workflow.  All the model 

code is written in FORTRAN for its speed, efficiency and ability to process large scale spatial 

datasets.  Two additional bash scripts are provided as an example of calling the digital terrain 

analysis codes.   35 

3 Great Britain National Model Implementation and Evaluation 

While the modelling framework has a wide range of functionality, in this paper we wanted to 

demonstrate the ability of the model to be applied across a large domain to generate 
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ensembles of flows at thousands of gauging stations and evaluate its current capability across 

large scales to guide future model developments.  Consequently, we applied DECIPHeR to 

1,366 gauges in Great Britain (GB) and in this section we describe the model setup, input 

data, evaluation criteria and model results.   

3.1 Great Britain Hydrology 5 

Catchments in Great Britain (GB) cover a wide hydrologic and climatic diversity.  Hydro-

climatic characteristics were derived from rainfall, potential evapotranspiration and flow data 

described in Section 3.3.1.  Figure 4 shows the mean annual rainfall, mean annual potential 

evapotranspiration, runoff coefficient, and slope of the flow duration curve between the 30 

and 70 flow percentiles for the 1,366 catchments in this study. Rainfall is highest in the West 10 

and North of GB and lowest in the East and South ranging from 540 to 3400 mm/year (Figure 

4a), while potential evapotranspiration is highest in the East and South and lowest in the West 

and North ranging from 370 to 545 mm/year (Figure 4b).  This regional divide of rainfall and 

potential evapotranspiration is reflected in the runoff coefficients (Figure 4c) where generally 

runoff coefficients are lowest in the East and South and highest in the North and West.  Slope 15 

of the flow duration curve (Figure 4d) is a more mixed picture across GB with lower values 

(i.e. a less variable flow regime) found in North-East Scotland, Midlands and patches of the 

South-East and higher values (i.e. a more variable flow regime) in the West, with the highest 

values for ephemeral and/or small streams in the South-East.   

River flows vary seasonally with the highest totals generally occurring during the winter 20 

months when rainfall totals are highest and evapotranspiration totals are lowest, and the 

lowest totals during the summer months (April – September) resulting from lower 

precipitation totals and higher evapotranspiration losses due to seasonal variations in energy 

inputs.  Snowmelt has little impact on river flows in GB except for some catchments in the 

Scottish Highlands where snowmelt contributions can impact the flows.  River flow patterns 25 

are also heavily influenced by groundwater contributions from various regional aquifer 

systems.  In catchments overlying the Chalk outcrop in the South-East of the GB, flow is 

groundwater-dominated with a predominantly seasonal hydrograph that responds less quickly 

to rainfall events. Land use and human influences also significantly impact river flows, with 

flows most heavily modified in the South-East and Midland regions of England due to high 30 

population densities.  

3.2 Digital Terran Analyses for GB 

To implement DECIPHeR across GB, the UK NEXTMAP 50m gridded digital elevation 

model was used as the basis of the Digital Terrain Analysis (Intermap, 2009).  The first step 

was to ensure that the DEM contained no sinks or flat areas before being run through the 35 

DTA codes.  Many freely available packages and codes exist to sink fill DEMs but for use 

with large national data sets, a two-stage process is often necessary to ensure no flat areas in 

the DEM and that important features, such as steep sided valleys, are not filled due to pinch 

points in the DEM.  For this study, we first applied an optimised pit removal routine (Soille, 

(2004), code available on github  https://github.com/crwr/OptimizedPitRemoval).  This tool 40 

uses a combination of cut and fill to remove all undesired pits while minimizing the net 

change in landscape elevation.  We then applied a sink fill routine to ensure no flat areas 

remained in the DEM.   

The inputs and outputs for the GB DTA is summarised in Figure 5.  To build the river 

network, we first extracted headwater cells from the Ordnance Survey MasterMap Water 45 

Network Layer; a dense national river vector dataset for GB.  These headwater cells were 

then routed downstream via the steepest slope to generate the river network used by the 

https://github.com/crwr/OptimizedPitRemoval
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model.  This ensures that the DEM and the calculated stream network are consistent for flow 

accumulations based on surface slope.  Locations of 1,366 National River Flow Archive 

gauges were used to define the gauging network and specify points on the river network 

where output was required.  We used NRFA catchment areas and masks as a reference guide 

to evaluate the best point for the gauge locations from potential river cell candidates within a 5 

local search area. Slope, accumulated area and the topographic index were then calculated for 

every grid cell and routing files produced. 

Finally, we chose three classifiers to demonstrate the modelling framework while ensuring 

the number of HRUs was still computationally feasible for modelling across a large domain, 

these being: 10 

1. The catchment boundaries for each gauge were used to ensure minimal fluxes across 

catchment boundaries.    

2. A 5km grid for the rainfall and potential evapotranspiration inputs was used to 

represent the spatial variability in climatic inputs across GB.   

3. Three equal classes of slope and accumulated area were implemented resulting in 15 

HRU’s that cascade downslope to the valley bottom.   

 

3.3 Rainfall Runoff Modelling 

3.3.1 Input and Evaluation Datasets 

Daily data of precipitation, potential evapotranspiration and discharge for a 55-year period 20 

from 01/01/1961–31/12/2015 were used to run and assess the model.  This period was chosen 

as an appropriate test for the model covering a range of climatic conditions and to 

demonstrate the model’s ability to simulate long time periods within uncertainty analyses 

frameworks. The year 1961 was used as a warm-up period for the model; therefore no model 

evaluation was quantified in this period.  25 

A national gridded rainfall and potential evapo-transpiration product was used as input into 

the model.  Daily rainfall data were obtained from the CEH Gridded Estimates of Areal 

Rainfall dataset (CEH-GEAR) (Keller et al., 2015; Tanguy et al., 2016).  This dataset consists 

of 1km2 gridded estimates of daily rainfall from 1961 - 2015 for Great Britain and Northern 

Ireland derived from the Met Office UK rain gauge network.  The observed precipitations 30 

from the rain gauge network are quality controlled and then natural neighbour interpolation is 

used to generate the daily rainfall grids.  Daily potential evapotranspiration  data were 

obtained from the CEH Climate hydrology and ecology research support system potential 

evapotranspiration dataset for Great Britain (CHESS-PE) (Robinson et al., 2016).  This 

dataset consists of 1km2 gridded estimates of daily potential evapotranspiration for Great 35 

Britain from 1961 - 2015 calculated using the Penman-Monteith equation and data from the 

CHESS meteorology dataset.  Both datasets were aggregated to a 5km grid as forcing for the 

national model run. 

The model was evaluated against daily streamflow data for the 1366 gauges obtained from 

the National River Flow Archive (www.nrfa.ceh.ac.uk).  This data is collected by measuring 40 

authorities including the Environment Agency (EA), Natural Resources Wales (NRW) and 

Scottish Environmental Protection Agency (SEPA) and then quality controlled before being 

uploaded to the NRFA site.   

http://www.nrfa.ceh.ac.uk/
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3.3.2 Model Structure and Parameters 

To initially evaluate the model, DECIPHeR was run within a Monte-Carlo simulation 

framework whereby 10000 parameter sets were randomly sampled from a uniform prior 

distribution.  This number of parameter sets was chosen to provide a reasonable sampling of 

the parameter space for demonstration purposes, however, for a full evaluation of the 5 

parameter space, more parameter sets would be needed.   

These parameters were applied uniformly across the HRUs and used within a single model 

structure (as described in Section 2.3.4).  Given the wide range of hydroclimatic conditions 

across GB, sampling of the feasible parameter space was ensured by using wide sampling 

ranges based on previous studies that have used Dynamic TOPMODEL (Beven and Freer, 10 

2001; Freer et al., 2004; Page et al., 2007) (Table 2). 

3.3.3 Model Evaluation 

Daily time series of discharge for the 10,000 model simulations from each gauge were 

evaluated against daily observed flow for all 1,366 gauges.  This is a challenging test for the 

model as these catchments cover a large range of hydrologic behaviour across GB and are 15 

impacted by a variety of climatic, geological and anthropogenic processes as outlined in 

Section 3.1.  However, evaluating the model over such a large number of gauges acts as a 

benchmark of model performance and a means of identifying future areas for model 

development. 

To benchmark model performance, we wanted to evaluate the model’s ability to capture a 20 

range of hydrologic behaviour including maintaining overall water balance, capturing flow 

variability, reproducing low and high flows and the timing of flows.  Consequently, multiple 

metrics, including hydrological signatures, standard hydrological model performance metrics 

and statistics of the flow time series were used to provide insights into model performance.  

Based on previous studies evaluating national scale models (McMillan et al., 2016) and 25 

considering a diagnostic approach to model evaluation (Coxon et al., 2014; Gupta et al., 

2008; Yilmaz et al., 2008); four metrics were chosen which are summarised in Table 3 

alongside their equations i) NSE (Nash and Sutcliffe, 1970), ii) Slope of the Flow Duration 

Curve (Yadav et al., 2007) iii) Bias in Runoff Ratio (Yilmaz et al., 2008) and iv) Low Flow 

Volume (Yilmaz et al., 2008).   30 

These metrics are also used to determine a behavioural ensemble of parameter sets.  The 

focus of this model application is to demonstrate the model can be run in a Monte Carlo 

framework.  Consequently, while many different approaches could be used to determine a 

behavioural ensemble of parameter sets (see for example (Beven, 2006; Coxon et al., 2014; 

Krueger et al., 2010; Westerberg et al., 2011)), in this study we adopt a simple approach to 35 

produce ensembles of flows.  The four metrics described above are combined and the 

behavioural ensemble was then taken as the top 1% of the model simulations according to 

this combined score.  To calculate the combined score, each metric was ranked in turn, these 

ranks were summed, and all simulations sorted by the total combined rank.  Weaker and 

stricter performance thresholds in NSE and bias metrics were also defined to further explore 40 

the performance of the ensembles against a common set of criteria (see Table 3).  These were 

chosen based on previous studies and although subjective, the hydrological modelling 

community is yet to agree on benchmarks for the comparison of model performance (Seibert 

et al., 2018). 
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3.4 Results 

3.4.1 Digital Terrain Analysis and Model Simulation 

DECIPHeR was set up for GB covering a total catchment area of 154,763km2 for 1366 

gauges and 365 principal basins.  Principal basin area ranged from 7.87km2 to 9935km2 with 

a median of 137km2.  Using the HRU classifiers specified in Section 3.2, the number of 5 

HRUs contained within each principal basin ranged from 17 to 8978 with a median of 123 

HRUs.  HRU area ranged from 0.0025km2 to 14.33km2 with a median HRU area of 0.65km2.   

In total 13,660,000 55 year time series, flow simulations were produced.  One simulation 

over the 55 year time period for the largest river basin (9935km2) with 8978 HRUs takes 

approximately 15 minutes to run on a standard CPU, outputting simulated discharge for all 10 

the 98 gauges that lie within the Thames at Kingston river basin.  For the smallest river basin 

that has 17 HRUs and one river gauge, a single simulation over the 56 year time period on a 

standard CPU takes less than a second. 

3.4.2 Overall Model Performance  

Our first assessment of model performance is the overall model performance for the four 15 

performance metrics calculated from the 10000 simulated daily flow time series produced for 

each gauge.  Figure 6 shows the percentage of catchments that met the stricter and weaker 

performance thresholds defined in Table 3 from the entire ensemble of 10000 model 

simulations and from the top 1% behavioural ensemble generated from the combined ranking 

of the four metrics.  Our results show that most catchments are able to meet both the 20 

performance thresholds.  The vast majority of catchments (92%) gain a NSE score greater 

than zero (i.e. better than mean climatology) and 80% of the catchments gain a NSE score 

greater than 0.5.  The model does well in reproducing Low Flow Volumes and Slope of the 

Flow Duration Curve with most gauges (98 and 96% respectively) meeting the stricter 

performance threshold.   25 

RRBIAS evaluates the model’s ability to reproduce water balance in the catchment; the 

current implementation of the model has to maintain mass balance while many of the 

observed flow data for many of these catchments does not maintain mass balance either due 

to inter-catchment groundwater flows, anthropogenic influences such as surface and ground 

water abstractions, or data errors (this is further discussed in section 4.4.4).  Consequently, 30 

RRBIAS is a more difficult metric for the model to capture and this is reflected by the fact 

that 75% of the catchments meet the weaker threshold and just over 62% meet the stricter 

threshold.   

These numbers decrease slightly for the behavioural ensemble as expected due to trade-offs 

between the four metrics but the overall trends remain the same.   35 

3.4.3 Spatial Model Performance 

To analyse model performance spatially across GB, the four evaluation metrics for the best 

simulation (as defined by the combined rank across all four metrics) for each catchment is 

summarised in Figure 7.   

For NSE, model performance is variable across the country but generally, better model 40 

performance is found in the wetter catchments in the North and West of GB, with poorer 

model performance in drier catchments in the South and East.  Model performance is poor in 

groundwater dominated areas, particularly in the underlying chalk regions in the South East.  

This region has particularly low runoff coefficients (see Figure 4d) and does not maintain 

mass balance with large water losses.  Consequently, results for RRBIAS shows that the 45 
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model tends to over-estimate flows in the South-East.   While bias in the runoff ratio shows 

the model is generally over-estimating flows, biases in the low flow volume is a more mixed 

picture with the model under-estimating low flows in some locations, particularly in the 

Midlands and North East Scotland.  From Figure 4d, these areas are characterised by 

particularly low flow duration curve slopes suggesting strongly damped flow responses with 5 

high baseflow.  Flow in the Midlands region is heavily regulated by reservoirs which sustain 

low flows and could be a potential reason for over-estimating low flows in this area.  The bias 

in slope of the flow duration curve shows DECIPHeR does well at reproducing the flow 

variability but tends to under-estimate the slope in Scotland and North Wales suggesting that 

the hydrographs in these catchments are too smooth and not sufficiently flashy. 10 

3.4.4 Relationship Between Model Performance and Catchment Characteristics 

To further analyse and understand the reasons for good/poor model performance, 

relationships between key catchment characteristics and model performance were further 

explored.  Firstly, the catchments were grouped according to key catchment characteristics 

based on discharge; runoff coefficient and base flow index.  The 5th, 50th and 95th percentiles 15 

of NSE and RRBIAS were calculated from the ensemble of runs for all catchments within 

each group to explore relationships between model performance and catchment 

characteristics (see Table 4).  The relationship between runoff coefficient, wetness index and 

RRBIAS was also analysed to further explore the importance of water gains/losses on model 

performance.    20 

There is a clear link between model performance and catchments with a low runoff 

coefficient.  Table 4 highlights poor model performance in catchments where observed runoff 

coefficients are less than 0.2.  In this group, the model always over-predicts (as shown by the 

RRBIAS result) and consequently leads to poor NSE scores.  Figure 8 shows that for many 

catchments where the model over-predicts flows (and particularly for catchments with a 25 

runoff coefficient less than 0.2) observed potential evapotranspiration estimates are not high 

enough to account for water losses culminating in an over-estimation of flows.  This is 

unsurprising given that currently the model maintains water balance and can’t lose or gain 

water beyond the ‘natural’ conceptualisations of precipitation, discharge and evaporation 

dynamics.   Consequently, we are either missing a process (such as water loss due to inter-30 

catchment groundwater flows or anthropogenic impacts) or the data is wrong.   

Poorer model performance is also found in high BFI catchments (Table 4), however, the 

results also show we can also gain very good simulations in these types of catchments (5th 

percentile has a NSE score of 0.83), hence the challenge is to better understand water 

losses/gains in groundwater catchments to improve the representation of groundwater 35 

dynamics in the model.  

3.4.5 Simulated Flow Time Series 

Finally, we examined the simulated flow time series for six example catchments with 

different characteristics.  Figure 9 shows the observed discharge, observed precipitation and 

the 5th-95th percentile uncertainty bounds of the behavioural simulations for six catchments 40 

with different characteristics (see Table 5) for a representative two-year period of the 55-year 

time series simulated.  The 5th-95th percentile uncertainty bounds are generated from the 

likelihood-weighted distribution of the top 1% of the model simulations using the GLUE 

framework (Beven, 2006).   

Our results show the model can capture a range of different hydrological dynamics from 45 

wetter catchments in the North-West (Figure 9a) to drier catchments in the South-East 
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(Figure 9b).  While model performance for groundwater catchments can be very good (Figure 

9c and Table 5), it also shows that we need to incorporate additional model capability to 

simulate the dynamics of groundwater dominated catchments.  Where we have a very low 

(for Great Britain) runoff coefficient, this is assumed to involve water losses into a more 

regional groundwater storage not expressed at the outlet and not yet represented in this 5 

version of the model (Figure 9d).  While the catchments shown in Figure 9a-d are relatively 

un-impacted by human influences, the catchments shown in Figure 9e and 9f are heavily 

impacted by human influences and highlight the challenge of simulating flows nationally 

across catchments with diverse hydrological behaviour.   

4 Outlook and Ongoing Developments 10 

4.1 National Scale Model Evaluation 

This is the first study to comprehensively benchmark hydrological model performance across 

GB. We calculated four evaluation metrics for 10,000 model simulations for 1,366 GB 

gauges to provide an initial benchmark of model performance. DECIPHeR generally 

performs well for the flow time series evaluated in this study, with better results in the West 15 

and North in wet catchments as compared to drier catchments in the South and East. This is a 

common finding for hydrological models, with many studies finding poor model performance 

and greatest water balance errors in drier catchments (Gosling and Arnell, 2011; McMillan et 

al., 2016; Newman et al., 2015; Pechlivanidis and Arheimer, 2015).  These results are also 

reflected in other GB model evaluation studies.  For example, Coxon et al., (2014) applied 20 

FUSE to 24 GB catchments and found the best model performances in wet catchments 

compared to dry, chalk catchments, (Rudd et al., 2017) evaluated G2G for low flows across 

61 GB catchments and found positive bias in low flow volumes in small catchments in the 

South-East of England and (Crooks et al., 2010) evaluated PDM across 120 GB catchments 

and found poorer model performance in groundwater dominated, drier catchments.     25 

Poor model performance in these catchments is partially due to some of the metrics chosen in 

this study, for example percent bias is most sensitive to small absolute biases in the driest 

catchments when compared to other metrics such as absolute bias. However, positive bias in 

the runoff ratio could be caused by a number of factors such as under-estimation of potential 

evapotranspiration (there are other UK gridded potential evapotranspiration products which 30 

estimate much higher potential evapotranspiration), inter-catchment groundwater flows, 

and/or human influences such as water abstraction. Population density is much higher in the 

South and East compared to the North and West so this regional disparity in model 

performance could also be explained by a greater rate of abstractions and managed 

watercourses which alter the flow time series.  For example, 55% of the effective rainfall in 35 

the Thames catchment is licensed for abstraction (Thames Water, 2017).   

These results provide an initial test of DECIPHeR capabilities against a large sample of 

catchments, but this is only a first-order evaluation of model performance.  A more rigorous 

evaluation would assess the model: over different seasons (Freer et al., 2004); under changing 

climatic conditions (Fowler et al., 2016); for different hydrological extremes (Coron et al., 40 

2012; Veldkamp et al., 2018; Zaherpour et al., 2018); for multiple objectives simultaneously 

(Kollat et al., 2012); and, incorporate input and flow data uncertainty (Coxon et al., 2014; 

Kavetski et al., 2006; McMillan et al., 2010; Westerberg et al., 2016).   

4.2 Characterising Spatial Heterogeneity and Connectivity 

The intended use of DECIPHeR is to determine how much spatial variability and complexity 45 

is required for a given set of modelling objectives. It can be run as a lumped model (1 HRU), 
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semi-distributed (multiple HRUs) or fully gridded (HRU for every single grid cell). In this 

paper DECIPHeR was applied across 1,366 GB gauges, with catchment masks, 5 km input 

grids and three classes of accumulated area and slope as classifiers for the hydrological 

response units, resulting in a total of 133,286 HRUs. Future work needs to consider the 

appropriate spatial complexity and hydrologic connectivity needed to represent relevant 5 

processes (Andréassian et al., 2004; Blöschl and Sivapalan, 1995; Boyle et al., 2001; Chaney 

et al., 2016; Clark et al., 2015; Metcalfe et al., 2015; Wood et al., 1988). While this work 

highlights the clear potential of a computationally-efficient large-scale modelling framework 

that can run large ensembles, a balance is required to ensure computational efficiency when 

running large ensembles that also maintains sufficient spatial complexity to represent 10 

different hydrological processes. 

4.3 Hypothesis Testing and Model Parameterisation 

To demonstrate the modelling framework we implemented a single model structure, provided 

in the open source model code, in all HRUs across GB and did not experiment with different 

model structures in different parts of the landscape. This provides a good benchmark of 15 

DECIPHeR’s ability at the national scale across GB, but the results suggest different model 

structures are needed to represent a greater heterogeneity of hydrological responses beyond 

the conceptual dynamics currently implemented in this simple model (as shown in Figure 9). 

We can gain new process understanding of regional differences in catchment behaviour by 

testing different model representations (Atkinson et al., 2002; Bai et al., 2009; Perrin et al., 20 

2001). Future work will concentrate on adding modules to DECIPHeR to enhance 

performance across national and continental scales with a focus on improved representation 

of groundwater dynamic and human influences to address poor model performance in 

catchments with a low runoff coefficient.  Furthermore, we have ensured the code is open-

source and well-documented so that the hydrological community can contribute new/different 25 

conceptualisations of the processes shown in this paper.   

It is challenging to parameterise a hydrological model across large scales. Here we simply 

applied the same parameter set across each catchment. Using this basin-by-basin approach 

has the disadvantage of producing a “patchwork quilt” of parameter fields, with 

discontinuities in parameter values across catchment boundaries. This is only effective for 30 

gauged catchments (Archfield et al., 2015).  Ongoing work aims to address these issues by 

implementing the multiscale parameter regionalisation (MPR) technique for DECIPHeR 

across GB. This technique links model parameters to geophysical catchment attributes 

through transfer functions applied at the finest possible resolution (Samaniego et al., 2010).  

The coefficients of the transfer functions are then calibrated, and parameters are upscaled to 35 

produce spatially consistent fields of model parameters at any resolution across the entire 

model domain. The MPR technique has been applied elsewhere, proving that it can produce 

seamless parameter fields across large domains and produce scale-invariant parameters 

(Kumar et al., 2013; Mizukami et al., 2017; Samaniego et al., 2017), which is ideal for a 

flexible framework such as DECIPHeR.      40 

5 Conclusions 

DECIPHeR is a new flexible modelling framework which can be applied from small 

catchment to continental scale for complex river basins resolving small-scale spatial 

heterogeneity and connectivity.  The model is underpinned by a flexible, computationally 

efficient framework with a number of novel features: 45 
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1. Spatial variability and connectivity - ability to modify spatial variability and 

connectivity in the model via the specification of hydrological response units with 

different topographic, landscape, input layers 

2. Model structures and parameterisations - ability to experiment with different 

model structures and parameterisations in different parts of the landscape 5 

3. Computationally efficient - grouping of hydrologically similar points in the 

landscape into hydrological response units enables faster run times 

4. Automated build – to allow easy application over large scales 

5. Open source - the open source model code is implemented in Fortran, with a user 

manual to help researchers and/or practitioners to use the model. 10 

This paper describes the modelling framework and its key components and demonstrates the 

model’s ability to be applied a large model domain.  DECIPHeR is shown to be 

computationally efficient and perform well over large samples of gauges.  This work 

highlights the potential for catchment to continental scale predictions, by making use of 

available big datasets, advances in flexible modelling frameworks and computing power.   15 
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Appendix A - Analytical Solution for Kinematic Subsurface Flow  

1. Introduction 

This appendix provides an analytical solution to the equations which were solved numerically 

by Beven and Freer (2001) in Dynamic TOPMODEL to route subsurface flows. Here, we use 

calculus to integrate the relevant equations through time, as opposed to the finite volume 5 

scheme described by Beven and Freer (2001), for better computational speed and increased 

numerical stability.   

This development starts from the kinematic wave description of flow (a partial differential 

equation) and integrates that partial differential equation along the flow direction to obtain an 

ordinary differential equation in time.  We then integrate that ordinary differential equation in 10 

time to get an analytical solution which gives the flow and storage at the end of each 

timestep, in relation to the conditions at the start of the timestep, and the inflow from both 

upslope and from drainage.  Each Hydrological Response Unit (HRU) in the model may be 

comprised of one or more sets of spatially contiguous cells.  We use the term “spatial 

element” (SE) to refer to one of these contiguous sets of cells within a HRU.  This is the same 15 

scale as referred to by Beven and Freer (2001) as a “group of elements”.   

By first integrating the kinematic wave equation in space, we have effectively chosen to 

model the flow at this scale using a nonlinear reservoir, so there is no wave travelling in 

space within a spatial element.  A wave-like behaviour at larger scales is mimicked by having 

the groups of elements in a type of cascade (linked by the weighting matrix).  This approach 20 

of integrating in space is the same as selected by Beven and Freer (2001), using their finite 

volume approach.  

2. Flow in a Spatial Element 

Assume the spatial element (SE) has area A, and that x is distance measured along the flow 

direction of the SE. Define 𝑄 as the downslope flow rate [L3/T] at some point x. Assume that 25 

the flow is kinematic, i.e. that 𝑄 depends only on 𝑆 [L], the local storage deficit per unit area, 

and the SE geometry. The drainage input from above is assumed to be 𝑟 [L/T]. Assume the 

width of the SE is 𝑤(𝑥), at distance 𝑥 [L]. At any point 𝑥 in the SE we can write a partial 

differential equation for 𝑄: 

 
𝝏𝑺𝒘

𝝏𝒕
=

𝝏𝑸

𝝏𝒙
− 𝒓𝒘 Equation A1 30 

This is a kinematic wave equation describing the subsurface flow at point x within a SE. Note 

that both 𝑆 and 𝑟 have been multiplied by 𝑤, the width of the SE, so that they can be 

compared with 𝑄, which is the total flow through the SE, at distance 𝑥. 

To simplify the problem, we will now average over the entire SE, along the flow direction, 𝑥, 

from the upslope end (𝑥=0) to the downslope end (𝑥=L). This will produce an equation 35 

describing how 𝑆̅, the SE-average of 𝑆, changes with time.  
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𝑳
− 𝒓

𝟏

𝑳
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𝑳

𝟎
 Equation A3 

The variables 𝑄(0, 𝑡) and 𝑄(𝐿, 𝑡) refer to flows at the upslope and downslope ends of the SE 

[L3/T] 40 

If we assume 𝑆 and 𝑤 are uncorrelated as 𝑥 varies, and let 𝑊 =
1

L
∫ wdx

L

0
 then 
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 𝑾
𝝏

𝟏

𝑳
∫ 𝑺d𝒙

𝑳

𝟎

𝝏𝒕
=

𝑸(𝑳,𝒕)−𝑸(𝟎,𝒕)

𝑳
− 𝒓𝑾 Equation A4 

Dividing by W,  

 
𝝏𝑺̅

𝝏𝒕
=

𝑸(𝑳,𝒕)−𝑸(𝟎,𝒕)

𝑳𝑾
− 𝒓 Equation A5 

Note that 𝐴 = LW is the area of the SE, so we can now define q=Q/A as flow per unit plan 

area [L/T] which is the same dimension as used by Beven and Freer (2001).  5 

 
𝝏𝑺̅

𝝏𝒕
= 𝒒(𝑳, 𝒕) − (𝒒(𝟎, 𝒕) + 𝒓) Equation A6 

In equation 6, 𝑞(0, 𝑡) and 𝑟 are assumed to be known, and 𝑞(𝐿, 𝑡), the outflow from the SE, is 

assumed to be a function of the mean deficit 𝑆̅. Thus the SE is being modelled as a nonlinear 

reservoir, where 𝑆̅ is the state variable, the input is 𝑞(0, 𝑡) + 𝑟, and the outflow 𝑞(𝐿, 𝑡) =
𝑓(𝑆̅(𝑡)). Note that the inflow is now assumed to be applied as a spatially uniform flux within 10 

the SE, rather than being applied at x=0. There is no representation of motion within the SE.  

Motion at larger scales is represented by the cascading of flow from one reservoir to another. 

Note that in the following equations, Q is equivalent to QSAT (eq. 4). Because no motion 

within the SE is represented, QIN and QUZ (eq. 4) can be lumped together into a single term, 

here called r.  15 

Analytical solutions for an exponential conductivity profile 

There are several parsimonious descriptions of the vertical profile of saturated hydraulic 

conductivity which are hydrologically plausible. Here we consider the standard exponential 

profile and a profile truncated at finite depth. In each case we find the analytical solution for 

both 𝑆̅ and 𝑞(𝐿, 𝑡) as functions of time. Analytical solutions are also possible for the 20 

parabolic and linear profiles given in Ambroise et al (1996). 

Define 𝑢 = (𝑞(0, 𝑡) + 𝑟) and 𝑞 = 𝑞(𝐿, 𝑡) 

 𝒒 = 𝒒𝟎𝒆𝒙𝒑(− 𝑺̅ 𝒎⁄ )  Equation A7 

 
𝝏𝑺̅

𝝏𝒕
= 𝒒 − 𝒖 Equation A8 

If we substitute 7 into 8, and integrate 8 from 𝑆̅ (0) at t=0 up to 𝑆̅ (t), we obtain the 25 

intermediate result 

 𝒆𝒙𝒑(𝑺̅/𝒎) =
𝒒𝟎

𝒖
+ 𝒆𝒙𝒑(𝑺̅(𝟎)/𝒎) (𝟏 −

𝒒𝟎 𝒆𝒙𝒑(−𝑺̅(𝟎)/𝒎)

𝒖
) 𝒆𝒙𝒑 (−

𝒖𝒕

𝒎
) Equation A9 

From this we can get expressions for both 𝑆̅ (t) and q(t) 

 𝑺̅(𝒕) = 𝒎 𝒍𝒐𝒈 [
𝒒𝟎

𝒖
+ (

𝟏

𝒆𝒙𝒑(−𝑺̅(𝟎)/𝒎)
−

𝒒𝟎

𝒖
) 𝒆𝒙𝒑 (−

𝒖𝒕

𝒎
)] Equation A10 

 𝒒(𝒕) = [
𝟏

𝒖
+ (

𝟏

𝒒(𝟎)
−

𝟏

𝒖
) 𝒆𝒙𝒑 (−

𝒖𝒕

𝒎
)]

−𝟏
 Equation A11 30 

In the special case where u=0, we instead obtain 

 𝑺̅(𝒕) = 𝒎 𝐥𝐨𝐠 (𝐞𝐱𝐩(𝑺̅(𝟎)/𝒎) +
𝒒𝟎𝒕

𝒎
) Equation A12 

 𝒒(𝒕) = [
𝟏

𝒒(𝟎)
+

𝒕

𝒎
]

−𝟏
 Equation A13 

Note that parameters 𝑚 and 𝑞0 in these equations are equivalent to SZM and 𝑄0 as defined in 

the paper.  35 
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Exponential truncated smoothly at Smax (Beven and Freer, 2001 equation 9) 

 𝒒 = {
𝒒𝟎 𝒄𝒐𝒔 𝜷 [𝒆𝒙𝒑(− 𝒄𝒐𝒔 𝜷 𝑺̅ 𝒎⁄ ) − 𝒆𝒙𝒑(− 𝒄𝒐𝒔 𝜷 𝑺𝒎𝒂𝒙 𝒎⁄ )] 𝑺̅ ≤ 𝑺𝒎𝒂𝒙

𝟎 𝑺̅ > 𝑺𝒎𝒂𝒙

 Equation A14 

 𝒒 = {
𝒒𝟏𝒆𝒙𝒑(− 𝒄𝒐𝒔 𝜷 𝑺̅ 𝒎⁄ ) − 𝒒𝟐 𝑺̅ ≤ 𝑺𝒎𝒂𝒙

𝟎 𝑺̅ > 𝑺𝒎𝒂𝒙

 Equation A15 

Where q1 = q0 cos β and  q2 = q0 cos β exp(− cos β Smax m⁄ ) 

Let’s look first at the case where S̅ ≤ Smax 5 

 
𝝏𝑺̅

𝝏𝒕
= 𝒒𝟏𝒆𝒙𝒑(− 𝑺̅ (𝒎 𝒄𝒐𝒔 𝜷⁄ )⁄ ) − (𝒒𝟐 + 𝒖) Equation A16 

If we let m2 = m cos β⁄  and u2 = q2 + u, then we can rewrite this as 

 
𝝏𝑺̅

𝝏𝒕
= 𝒒𝟏𝒆𝒙𝒑(− 𝑺̅ 𝒎𝟐⁄ ) − 𝒖𝟐 Equation A17 

This is now exactly the same form as the exponential profile above, so the solution is 

formally identical: we just put  𝑞1 instead of 𝑞0, 𝑚2 instead of 𝑚, and 𝑢2 instead of 𝑢. The 10 

resulting equations are:  

    𝑆̅(t) = 𝑚2𝑙𝑜𝑔 [
q1

u2

+ (
1

𝑒𝑥𝑝(−
𝑆̅(0)

𝑚2
)

−
q1

u2

) 𝑒𝑥𝑝 (−
u2t

𝑚2

)]                                        Equation A18 

                             q(t) = [
1

u2
+ (

1

q(0)
−

1

u2
) 𝑒𝑥𝑝 (−

u2t

𝑚2
)]

−1
                                      Equation A19 

This solution collapses to the standard exponential result if cos β = 1 and  𝑆𝑚𝑎𝑥 = ∞. 

Note that provided 𝑆𝑚𝑎𝑥 < ∞, then  𝑞2 > 0 so u2>0, and there is no need to consider the case 15 

of zero forcing.   

The deficit cannot go beyond 𝑆𝑚𝑎𝑥 as a result of outflow; however deficits larger than 𝑆𝑚𝑎𝑥 

can arise through evaporation (this prepares for future developments, evaporation is not 

currently included in the conceptualisation of the saturated zone). Here we consider the case 

where S̅ > 𝑆𝑚𝑎𝑥, so q=0, but u>0, so the deficit is decreasing. 20 

 
𝝏𝑺̅

𝝏𝒕
= −𝒖 Equation A20 

This can be integrated to give 

 𝑺̅(𝒕) = 𝑺̅(𝟎) − 𝒖𝒕 Equation A21 

If 𝑆̅(t)< 𝑆𝑚𝑎𝑥 then we switch to the 𝑆̅ ≤ 𝑆𝑚𝑎𝑥 solution partway through the computational 

interval. We use the equation for 𝑆̅ (t) when 𝑆̅ ≤ 𝑆𝑚𝑎𝑥, because in that case the q(t) equation 25 

will lead to division by zero if it is started at q(0)=0. 

Extra note on computational issues: 

If u2 is very small but not zero, numerical problems can arise in the calculation of 𝑆̅(t), 

because of loss of significance when subtracting two numbers of very different magnitudes. 

This can lead to calculating the logarithm of zero during calculation of 𝑆̅(t).   30 

This can be avoided by making a Taylor series expansion of 𝑆̅ (t) for small non-zero values of 

u2.  We obtain 
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    𝑆̅(t) ≅  𝑚2𝑙𝑜𝑔 [
q1

u2
+ (

1

𝑒𝑥𝑝(−
𝑆̅(0)

𝑚2
)

−
q1

u2
) (1 −

u2t

𝑚2
+

1

2!
(

u2t

𝑚2
)

2
)]                            Equation A22 

If we expand and then neglect terms in u2
2 we obtain 

    𝑆̅(t) ≅  𝑚2𝑙𝑜𝑔 [(
1

𝑒𝑥𝑝(−
𝑆̅(0)

𝑚2
)

+
q1t

𝑚2
) −

u2t

𝑚2
(

1

𝑒𝑥𝑝(−
𝑆̅(0)

𝑚2
)

−
1

2

q1t

𝑚2
)]                             Equation A23 

We use this solution in cases where 
u2t

𝑚2
≪ 1, currently implemented as 

u2t

𝑚2
< 10−10 
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Code Availability 

The DECIPHeR model code is open source and freely available under the terms of the GNU 

General Public License version 3.0.  The model code is written in fortran and is provided 

through a Github repository: https://github.com/uob-hydrology/DECIPHeR. 

Persistent identifier: https://doi.org/10.5281/zenodo.2604120 5 

Data Availability 

The model forcing and model evaluation datasets used in this paper are publicly available. 

The CEH-GEAR and CHESS-PE datasets are freely available from CEH’s Environmental 

Information Data Centre and can be accessed through https://doi.org/10.5285/33604ea0-

c238-4488-813d-0ad9ab7c51ca and https://doi.org/10.5285/8baf805d-39ce-4dac-b224-10 

c926ada353b7 respectively. Observed discharge data from the National River Flow Archive 

is available from the NRFA website.  Model output will be made available via CEH’s 

Environmental Information Data Centre. 
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Table 1. Overview of DECIPHeR’s stores, fluxes and parameters 

Stores 

SRZ Root Zone Storage  m 

SUZ Unsaturated Storage  m 

SEX Saturation Excess Storage  m 

SD Saturated Storage Deficit  m 

Internal Fluxes 

QUZ Drainage Flux  m ts-1 

QIN Upslope Input Flow  m ts-1 

QEXS Saturated Excess Flow  m ts-1 

QEXUS Precipitation Excess Flow  m ts-1 

QOF Overland Flow (sum of QEXS and QEXUS)  m ts-1 

QSAT Saturated Flow  m ts-1 

External Fluxes: Input 

P Precipitation  m ts-1 

E Potential Evapotranspiration  m ts-1 

Qobs Observed Discharge (for starting value of QSAT)  m ts-1 

External Fluxes: Output 

Qsim Simulated Discharge  m ts-1 

Model Parameters 

SZM Form of exponential decline in conductivity  m 

SRmax Maximum root zone storage  m 

SRinit Initial root zone storage  m 

Td Unsaturated zone time delay  ts m-1 

CHV Channel routing velocity  m ts-1 

ln(T0) Lateral saturated transmissivity  ln(m2 ts-1) 

Smax Maximum effective deficit of saturated zone  m 
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Table 2. Parameter Ranges  

Parameter Units Lower Bound Upper Bound 

SZM m 0.001 0.15 

SRmax m 0.005 0.3 

SRinit m 0 0.01 

Td m hr-1 0.1 40 

CHV m hr-1 100 4000 

ln(T0) ln(m2 hr-1) -7 7 

Smax m 0.3 3 
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Table 3. Evaluation metrics used in the study 

Evaluation 

Metric 
Equation 

Focus Performance Threshold 

 Weaker Stricter 

Nash Sutcliffe 

Efficiency 
𝑁𝑆𝐸 =  1 −  

∑ (𝑄𝑂 −  𝑄𝑆)2𝑛
𝑖=1

∑ (𝑄𝑂 −  𝑄𝑂̅̅ ̅̅ )2𝑛
𝑖=1

 

High 

Flows, 

Timing 

0 0.5 

Bias in Runoff 

Ratio 
𝑅𝑅𝐵𝑖𝑎𝑠 =  

∑(𝑄𝑆 − 𝑄𝑂) 

∑ 𝑄𝑂
∗ 100 

 

Water 

Balance 
20 10 

Bias in Low Flow 

Volume 
𝐿𝐹𝑉𝐵𝑖𝑎𝑠 =  −100 ∗

∑ (𝑙𝑜𝑔95
𝑝=70 (𝑄𝑆𝑝) − log (𝑄𝑂𝑝))

∑ (95
𝑝=70 log (𝑄𝑂𝑝))

 

 

Low 

Flows 
20 10 

Bias in Slope of 

the Flow 

Duration Curve 

between the 30th 

and 70th 

percentile 

𝑆𝐹𝐷𝐶𝐵𝑖𝑎𝑠 =   
[log(𝑄𝑆30) − log(𝑄𝑆70)] − [log(𝑄𝑂30) − log(𝑄𝑂70)]

[log(𝑄𝑂30) −  log(𝑄𝑂70)]
∗ 100 

Flow 

variability 
20 10 
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Table 4. Summary statistics of DECIPHeR performance metrics for GB with catchments grouped by 

runoff coefficient and base flow index.  Percentiles are taken from the behavioural ensemble from all 

catchments within each group.  The column ‘N’ indicates the number of catchments in each group.  

Cells are coloured according to the thresholds outlined in section 4.3.3, green for the stricter 

threshold, yellow for the weaker threshold and red where it doesn’t meet either of the thresholds. 5 

 Runoff Coefficient Base Flow Index 

 N NSE (-) RRBias (%) N NSE RRBias 

 95th Med 5th 95th Med 5th  95th Med 5th 95th Med 5th 

0-0.2 85 -73 -4.4 0.35 41 177 894 20 0.11 0.44 0.76 -31 0.54 134 

0.2-0.4 362 -1.4 0.36 0.73 -0.5 22 123 320 -0.1 0.57 0.79 -12 1.4 100 

0.4-0.6 348 0.12 0.54 0.81 -3.4 5.8 39 629 -0.1 0.54 0.80 -8.9 3.9 81 

0.6-0.8 352 0.31 0.65 0.83 -10 0.14 14 257 -1.5 0.51 0.82 -10 8 113 

>0.8 219 0.02 0.64 0.81 -41 -6 3.5 140 -37 0.04 0.83 -32 31 540 
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Table 5. Catchment characteristics and model performance for the six catchments shown in Figure 9.  Baseflow index is a measure of the proportion of the 

river runoff that can be classified as baseflow and is derived from Marsh and Hannaford (2008).  Water balance is calculated as mean annual rainfall minus 

mean annual discharge and potential evapotranspiration (as actual evapotranspiration is not available).  NSE and BiasRR for the best ranked simulation 

according to the combined score described in Section 3.3.3 are shown for each catchment alongside the NSE and BiasRR derived from the mean of the 

behavioural ensemble.  5 

Gauge 

Number 
River 

Gauging 

Station 

Catchment 

Area 

(km2) 

Mean 

Annual 

Rainfall 

(mm/year) 

Mean Annual 

Potential 

Evapotranspiration 

(mm/year) 

Mean 

Annual 

Discharge 

(mm/year) 

Runoff 

Coefficient 

(-) 

Water 

Balance 

(mm/year) 

Baseflow 

Index (-) 

Best Ranked 

Simulation 
Ensemble Mean 

NSE (-) RRBias 

(%) 

NSE (-) RRBias 

(%) 

76014 Eden 
Kirkby 

Stephen 
69 1531 453 1230 0.8 -152 0.26 

0.77 -2.6 0.79 -4.9 

37005 Colne Lexden 238 582 529 143 0.25 -91 0.52 0.63 18.8 0.43 21.3 

43005 Avon Amesbury 324 781 513 352 0.45 -84 0.91 0.91 -0.1 0.93 0.3 

43004 Bourne Laverstock 164 800 514 153 0.19 133 0.91 <0 147.4 <0 148 

25023 Tees 

Cow 

Green 

Reservoir 

58 1696 446 1598 0.94 -348 0.57 

0.10 -8.5 0.10 -12.9 

39001 Thames Kingston 9948 724 513 200 0.28 11 0.65 0.56 49 0.40 48.9 
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Figure Captions 

 

Figure 1. Digital Terrain Analysis and simplified examples of using classification layers to discretise 

a hypothetical catchment into Hydrological Response Units, from a) the gauge network, b) landscape 

layer with a chalk outcrop for HRU 2, c) the gauge network, ungauged flow point and landscape layer 5 
and d) same as c with individual river reach lengths specified 
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Figure 2. DECIPHeR represents spatial heterogeneity in the landscape through hydrological response 

units (HRUs).  Each HRU can have a different model structure, parameters or inputs. 
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Figure 3. Simplified conceptual diagram of the model structure currently implemented in 

DECIPHeR.  All scientific notations are described in Table 1. 

 5 
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Figure 4. Hydro-climatic characteristics of 1366 GB catchments (a) Annual Rainfall (mm/year), (b) 

Annual potential evapotranspiration (mm/year) (c) Runoff Coefficient (-), d) Slope of the Flow 

Duration Curve between the 30th and 70th percentiles (-).  Min/max values on colorbars have been 5 
chosen to show clear differences between catchments. 
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Figure 5. Inputs and Outputs of Digital Terrain Analyses for GB a) 50m Hydrologically Consistent 

Digital Elevation Model, b) DECIPHeR River Network, c) Nested Catchment Mask, d) Topographic 

Index, e) 5km input grid  
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Figure 6. Percentage of catchments for each metric that meet the weaker and stricter performance 

thresholds for the entire ensemble of 10000 model simulations and from the top 1% behavioural 

ensemble of 100 model simulations generated from the combined ranking of the four metrics. 5 
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Figure 7. Model performance for the best simulation (as defined by the combined rank across all four 

metrics) for each evaluation metric a) NSE (-), b) Bias in Runoff Ratio (%), c) Bias in Low Flow 

Volume (%), and d) Bias in Slope of the Flow Duration Curve between the 30th and 70th percentil

a) 

d) 

b) 

c) 
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Figure 8. Scatter plot of wetness index (mean annual precipitation divided by mean annual potential 5 
evapotranspiration), runoff coefficient (mean annual discharge divided by mean annual precipitation)  

and bias in runoff ratio for each GB catchment evaluated in this study.  Any points above the 

horizontal dotted line are where runoff exceeds total rainfall inputs in a catchment and any points 

below the curved line are where runoff deficits exceed total potential evapotranspiration in a 

catchment.10 
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Figure 9. Observed discharge and uncertainty bounds for the behavioural simulations (5th and 95th percentile of the likelihood-weighted 

simulated discharge) for six catchments with different characteristics (shown in Table 5).  The plots show a two year period (2010-2012) from 

the 55 year time series simulated. 


