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GMD Submission by Coxon et al

DECIPHeR v1: Dynamic fluxEs and Connectlvity for
Predictions of HydRology

General Response
We thank the reviewers for taking the time to review the revised paper and their comments.

Detailed responses to all comments are provided below. Author responses are in bold and
any modifications to the manuscript are in italic below each of the reviewer’s comments.

Gemma Coxon, April 2019

Reviewer #1

The authors have addressed many of the major concerns raised during the previous review,
but not all to the satisfactory level. I also have a few additional comments for the authors
which need to be fully addressed (listed below).

(1) For many comments, the authors have just provided a response and it appears that they
have not included a clarification in the revised version of the manuscript (I assume this
because they did not include a reference to the manuscript in their response). These include
Reviewer 1, Comments 5, 8, 18 etc. Please ensure that these have been addressed in the
revised manuscript.

We have now included a clarification in the revised version of the manuscript for
Reviewer 1 Comments 5 and 8. We will not be adding additional text in response to
Comment 18 (see response to comment 2 below).

Comment 5

The DEM must contain no sinks or flat areas to ensure that the river network and catchments
can be properly delineated as is common in digital terrain analyses. This means that any
real inland sinks (such as lakes) will be filled. Accounting for these features in the modelling
framework will be a focus for future model development.

Comment 8

If a gauge does not have an initial flow, then the initial flow is either calculated from the
mean of the data or set to a value of Imm/day (as a representative starting flow for most
catchments) if no flow data is available.

(2) Comment 18 in the previous review: what are the models that directly use PET as input
without simulating it? This sounds like a really crude way to do hydrological modeling, i.e.,
using PET as input and estimating ET unless the authors meant otherwise. Please include
examples in the revised version and provide further clarifications.
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We simply do not understand why the reviewer is still requiring clarification on this
matter. Using PET as input is not crude, it is perfectly accepted practice and we should
not need to justify the inputs for many conceptual modelling approaches. Some of the
most used hydrological modelling systems in the world use potential evaporation (PET)
as an input (i.e. TOPMODEL (e.g. Beven, 1997) that has reputedly the largest ever
distribution of applications and published journal papers - some >400 papers).

There are many variants of how you can conceptualise the actual evaporation usage in
the model just as there are many variants of how you might formulate PE in the first
instance depending on the level of data available and assumptions (i.e.
Penman/Penman-Monteith/Hamon/Thornthwaite/Priestly-Taylor/etc. - see Federer et
al., 1996). Models that are also fully distributed use PET, such as some of those involved
in the Distributed Modelling Intercomparison Project (i.e. Smith et al., 2004); as does
the well known PDM model (Calver et al., 2001); and another fully distributed model
Grid-2-Grid (Bell et al., 1998; 2007).

This is simply a choice and is very much in keeping with hydrological modelling
practice, we do not feel the need to deal with this comment further and have made clear
in the manuscript what we use as an input into our model framework and the equation
used to calculate Actual Evapotranspiration (equation 2).

Bell, V.A. and Moore, R.J., 1998. A grid-based distributed flood forecasting model for
use with weather radar data: Part 1: Formulation. Hydrol. Earth Syst. Sci., PD 265-281.

Bell, V.A,, Kay, A.L., Jones, R.G. and Moore, R.J. (2007) Use of a grid-based
hydrological model and regional climate model outputs to assess changing flood risk.
International Journal of Climatology 27(12), 1657-1671.

Beven, K.J. (1997) TOPMODEL: A critique. Hydrological Processes 11(9), 1069-1085.

Calver, A., Lamb, R., Kay, A.L. and Crewett, J., 2001. The continuous simulation
method for river flood frequency estimation. Department for Environment, Food and
Rural Affairs Project FD0404 Final Report, CEH Wallingford, UK. 56pp + appendices.

Federer, C.A., Vorosmarty, C. and Fekete, B., 1996. Intercomparison of methods for
calculating potential evaporation in regional and global water balance models, WRR
32(7): 2315-2321.

Smith, M.B., Georgakakos, K.P. and Liang, X. (2004) The distributed model
intercomparison project (DMIP). Journal of Hydrology 298(1-4), 1-3.

(3) Figure 9: 1 suggest adding a line for mean and then doing the shading for 5-95th
percentile. Also, please include some statistics such as RMSE, R2, and bias to quantify the
uncertainty in the simulations.

Thanks for the suggestion — we have added a line for the median to these plots alongside
the 5-95t™ percentile (please see the revised paper for the new plot).

The metrics that the reviewer suggests do not quantify the uncertainty in the
simulations — they evaluate the performance of the model. We have already included
performance metrics (including the bias and NSE scores) for the mean of the ensemble
and the best simulation in Table 5 which accompanies Figure 9.

(4) Comment #20 in the previous review: “outside the scope of this paper”. Why is model
validation exercise outside of scope of a model development paper? | believe, that is the
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purpose of the paper because the paper is not driven by science questions. It is purely a model
description and validation. Right? | agree that some validation is provided, but given that the
bias is large for most locations (Figures 7 and 9), further investigation is warranted.

As stated in our previous response, we have already undertaken an extensive model
evaluation by evaluating the model at 1,366 gauges for four different metrics. We have
produced a plot (as suggested by Reviewer #1) that shows the observed and simulated
flow for different flow percentiles (Q5, Q50 and Q95). We will include this plot and the
following text in the supplementary material for the paper.

In this supplementary document we provide additional analysis of the national-scale model
simulations described in ‘DECIPHeR v1: Dynamic fluxgs and Connectlvity for Predictions
of HydRology’, Coxon et al.

Figure S1 shows the ability of the model to simulate observed flow percentiles (Q95, Q50
and Q5). The results show that for many of the catchments the model can capture these flow
percentiles. However, the model tends to overpredict the flow percentiles (particularly for
Q5) in drier catchments where runoff is low. These results are consistent with the model
results presented in the main paper.
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Figure S1. Observed and simulated flow percentiles for each gauge. The red scatter point
signifies the median value of the simulated flow percentiles from the behavioural simulations,
while the black line shows the 51-95t percentile of the simulated flow percentiles from the
behavioural simulations
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(5) Minor editorial issue; Abstract, L18: | think something like the following reads better:
“which includes the capability to (1) change the representation of ...” because the model
doesn’t do things, it represents certain parameterizations and capabilities.

We agree and have changed this sentence in the manuscript.

Reviewer #2

I have read through the revised manuscript. I am convinced that the two issues | raised for the
earlier version have been fully addressed. Now the characteristics and strengths of the model
are clearly depicted in Introduction Section. The model description part has been very much
streamlined highlighting the advances in modeling. The discussion part concisely highlights
the novelty and significance in the simulation (Section 4.1). | recommend this manuscript be
published after revisiting the following points. Hope this model will be widely accepted by
the hydrology community.

We thank the reviewer for their kind comments.

Page 8 Line 17 “subsurface store... if it is also full”. Does subsurface store have a certain
capacity? How was it set in this study (I cannot find this in Table 1)?

The capacity of the subsurface store is determined by Smax. We have re-written this
sentence to clarify this point.

Once the root zone reaches maximum capacity (i.e. deficit of zero and conceptually
analogous to field capacity), any excess rainfall input that is remaining is added to the
unsaturated zone (Syz) where it is routed to the saturated zone (Sp). If the saturated zone is
also full (as determined by S,,,..), Qexus is added to the saturation excess storage (Sex) and
routed directly overland as saturated excess overland flow (Qor).

Page 8 Line 26 “The dryness of the saturated zone is represented by the storage deficit™: It
sounds a bit odd to me because saturated zone cannot be dry. Although I speculate this
expression is linked to the fundamental concept of the TOPMODEL, possibly the authors will
be able to find some better ones

We agree that this sentence is a little confusing and we have removed it from the
manuscript.
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DECIPHeR v1: Dynamic fluxEs and Connectlvity for Predictions
of HydRology

Gemma Coxon'?, Jim Freer:?, Rosanna Lane!, Toby Dunne?, Wouter J. M. Knoben3,
Nicholas J. K. Howden?3, Niall Quinn?# Thorsten Wagener?3, Ross Woods?3

1Geographical Sciences, University of Bristol, Bristol, United Kingdom, BS8 1SS

2Cabot Institute, University of Bristol, Bristol, United Kingdom, BS8 1UJ

3Department of Civil Engineering, University of Bristol, Bristol, United Kingdom, BS8 1TR
“Fathom Global, The Engine Shed, Station Approach, Bristol, United Kingdom, BS1 6QH

Correspondence to: Gemma Coxon (gemma.coxon@bristol.ac.uk)

Abstract. This paper presents DECIPHeR (Dynamic fluxEs and Connectlvity for
Predictions of HydRology); a new model framework that simulates and predicts hydrologic
flows from spatial scales of small headwater catchments to entire continents. DECIPHeR can
be adapted to specific hydrologic settings and to different levels of data availability. Itisa
flexible model framework which fincludeshas the capability to (1) change its representation of
spatial variability and hydrologic connectivity by implementing hydrological response units
in any configuration, and (2) test different hypotheses of catchment behaviour by altering the
model equations and parameters in different parts of the landscape. It has an automated build
function that allows rapid set-up across large model domains and is open source to help
researchers and/or practitioners use the model. DECIPHeR is applied across Great Britain to
demonstrate the model framework. It is evaluated against daily flow time series from 1,366
gauges for four evaluation metrics to provide a benchmark of model performance. Results
show the model performs well across a range of catchment characteristics but particularly in
wetter catchments in the West and North of Great Britain. Future model developments will
focus on adding modules to DECIPHeR to improve the representation of groundwater
dynamics and human influences.

Commented [GC1]: Reviewer #1

(5) Minor editorial issue; Abstract, L18: | think something
like the following reads better: “which includes the capability
to (1) change the representation of ...” because the model
doesn’t do things, it represents certain parameterizations and
capabilities.
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1 Introduction

Water resources require careful management to ensure adequate potable and industrial
supply, to support the economic and recreational value of water, and to minimise the impacts
of hydrological extremes such as droughts and floods on the economy, river ecosystems and
human life. Robust simulations and predictions of river flows are increasingly needed across
multiple temporal and spatial scales to support such management strategies (\Wagener et al.,
2010) that may range from the assessment of local field-scale flood mitigation measures to
emerging water challenges at regional to continental scales (Archfield et al., 2015). Such
approaches are particularly important, indeed mandated, given national and international
policies on water management, such as the European Union’s Water Framework Directive
(EC, 2000) and Floods Directive (EC, 2007). Specifically (inter)national information on
water resources, low and high flows is needed to underpin robust environmental management
and policy decisions. This requires the effective integration of field observations and
numerical modelling tools to provide tailored outputs at gauged and ungauged locations
across a wide range of scales relevant to policy makers and societal needs.

To address this need, a fundamental challenge for hydrologic sciences is to develop
hydrological models that represent the complex drivers of catchment behaviour, such as
space- and time- varying climate, land cover, human influence etc. (Bléschl and Sivapalan,
1995). The hydrologic community has made substantial investments to develop and apply
hydrological models over the past 50 years to produce simulations and predictions of surface
and groundwater flows, evaporation and soil moisture storage across multiple scales. These
include gridded approaches (e.g. PCR-GLOBWAB, (Wada et al., 2014); VIC, Hamman et al.,
2018; Liang et al., 1994; Grid-to-Grid, (Bell et al., 2007); Multiscale Hydrologic Model
(Samaniego et al., 2010); DK-model, (Henriksen et al., 2003)), semi-distributed approaches
that aggregate the landscape into hydrologic response units or sub-catchments (e.g. HYPE,
(Lindstrém et al., 2010); SWAT, (Arnold et al., 1998); Topnet, (Clark et al., 2008a)) and
many conceptual models applied at the catchment scale (Beven and Kirkby, 1979; Burnash,
1995; Coron et al., 2017; Leavesley et al., 1996; Lindstrom et al., 1997; Zhao, 1984). The
current generation of hydrological models can represent a range of natural and anthropogenic
processes and various levels of spatial complexity. Furthermore, there are significant
ongoing efforts to represent spatial heterogeneity at finer scales over national-global scales
(Bierkens et al., 2015; Wood et al., 2011) and build multi-model frameworks, to test
competing hypotheses of catchment behaviour, such as FUSE (Clark et al., 2008a) and
SUPERFLEX (Fenicia et al., 2011; Kavetski and Fenicia, 2011).

However, whilst these models have provided a wealth of useful insights and relevant outputs,
they either tend to: have a fixed representation of spatial variability (i.e. a single spatial
resolution or a single spatial structure such as raster based); lack spatial connectivity between
hillslope-to-hillslope and hillslope and riverine components; be computationally expensive;
and/or employ a single model structure applied homogenously across the model domain or
nested catchment scale. This impacts our ability to apply models to a wide range of scales,
places and water challenges, as different model representations of hydrological processes (i.e.
model structure, parameterisations, hydrologic connectivity or spatial variability) are needed
to capture heterogeneous hydrological responses and changing landscape connectivity,
particularly for local conditions. Consequently, there is a pressing need to develop new
spatially flexible modelling tools that can be applied to a range of space- and time- scales,
and that are based on general hydrological principles applicable to a broad spectrum of
different catchment types. The need for such approaches is well documented in the literature
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(Clark et al., 2011, 2015; Mendoza et al., 2015) with calls for flexible hydrological modelling
systems that can: (1) incorporate different model structures and parameterisations in different
parts of the landscape to represent a variety of processes; (2) change their spatial complexity,
variability and/or hydrologic connectivity for hillslope elements and river network reaches
(Beven and Freer, 2001; Mendoza et al., 2015); and, (3) be applied across a wide range of
spatial and temporal scales, and across places (Bloschl et al, 2013). However, few such
models exist.

In line with these requirements, we have created a new model framework, DECIPHeR
(Dynamic fluxEs and Connectlvity for Predictions of HydRology), to simulate and predict
hydrologic flows and connectivity from spatial scales of small headwater catchments to entire
continents. The flexible modelling framework allows users to test different spatial
resolutions, spatial configurations (i.e. gridded, semi-distributed or lumped), levels of
hydrologic connectivity (i.e. representations of the lateral fluxes of water across model
elements) and process representation (i.e. model structure and parameters). DECIPHeR has
an automated build function that allows rapid set-up across required model domains with
limited user input. The underlying code has been optimised to run large ensembles and enable
model uncertainty to be fully explored. This is particularly important given inherent
uncertainties in hydro-climatic datasets (Coxon et al., 2015; McMillan et al., 2012) and their
impact on model calibration, regionalisation and evaluation (Freer et al., 2004; Kavetski et
al., 2006; Kuczera et al., 2010; McMillan et al., 2010, 2011; Westerberg et al., 2016). We
have specifically made the model code readable, reusable and open source to allow the
broader community to learn from, verify and advance the work described here (Buytaert et
al., 2008; Hutton et al., 2016).

In this paper, we (1) describe the key capabilities and concepts that underpin DECIPHeR; (2)
provide a detailed discussion of the model code and components; (3) demonstrate its
application at the national scale to 1,366 catchments in Great Britain (GB); and, (4) discuss
potential future model developments.

2 The DECIPHeR Modelling Framework

2.1 Key Concepts

The DECIPHeR modelling framework is based on the key concepts enshrined in Dynamic
TOPMODEL originally introduced by Beven and Freer, (2001). Since its original
development, Dynamic TOPMODEL has been applied in a wide range of studies (Freer et al.,
2004; Liu et al., 2009, p.200; Metcalfe et al., 2017; Page et al., 2007; Younger et al., 2008)
and integrated into other modelling frameworks (e.g. HydroBlocks, Chaney et al., 2016).

The core ideas of Dynamic TOPMODEL were three-fold (Beven and Freer, 2001); 1) to
allow more flexibility in the definition of similarity in function for different points in the
landscape, 2) to implement a non-linear routing of subsurface flow that simulates
dynamically variable upslope subsurface contributing area and 3) to remain computationally
efficient so that uncertainty in hydrological simulations can be estimated.

To realise this, Dynamic TOPMODEL uses hydrological response units (HRUS) to group
raster-based information into non-contiguous spatial elements in the landscape that share
similar characteristics (see Figure 1). Each HRU maintains hydrological connectivity in the
landscape via weightings that determine the proportions of lateral subsurface flux from each
HRU to all connected HRUs and flows to river cells. This solution offers key advantages in
capability to traditional grid-based or lumped approaches employed by many hydrological
models. Firstly, the user can split up the catchment using, for example, different landscape
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attributes (e.g. geology, land use) and/or spatially varying inputs (e.g. rainfall, evaporation,
etc.) to define spatial similarity. This capability allows the user to modify the spatial
complexity, resolution and/or hydrologic connectivity of hillslope elements and river network
reaches in any configuration. Secondly, each HRU is treated as a separate functional unit in
the model which can have different process conceptualisations and parameterisations. This
means that more process complexity can be incorporated where needed to better suit local
conditions (e.g. to account for ‘point-source’ human influences or more complex
hydrological processes such as surface-groundwater exchanges). Finally, by grouping
together similar parts of the landscape, HRUs minimise run times of the model compared to
grid-based or fully distributed formulations, while still allowing model simulations to be
mapped back into space.

While these key concepts that underpin Dynamic TOPMODEL address many of the
challenges outlined in the introduction section, for the most part the model has only ever been
applied to a single catchment or very simple nested catchments in headwater basins (Peters et
al., 2003). Consequently, we have completely restructured and rewritten the model code and
added several new features to improve the flexibility and automation of the original Dynamic
TOPMODEL code so the model can be applied from single small headwater catchments to
regional, national and continental scales. These changes include:

1. Both legacy and new model code has been updated to a FORTRAN 2003 compliant
version with new array and memory handling to allow significantly larger and more
complex gauging networks to be processed

2. The model build process is now fully automated to allow national/continental scale
data to be easily and quickly processed, and to build and apply models in complex
multi-catchment regions.

3. New model code and functions have been written to:

a. Enable greater flexibility in the complexity and spatial characteristics of river
network and routing properties. A newly developed river network scheme allows
flow simulations to be produced for any gauged or ungauged point on a river
network and segment river reaches into any length for individual hillslope-river
flux contributions.

b. Ensure that multiple points on the river network can be initialised via local
storages and fluxes in each HRU successfully.

¢. Seamlessly facilitate DTA classification layers and results into rainfall-runoff
model configuration that allows each individual HRU to have a different model
structure, parameters, and climatic inputs.

4. A new analytical solution of the subsurface flow equations has been implemented,
resulting in increased computational speed and numerical stability

5. The model can be easily adopted and adapted because it is open source, version
controlled and includes a detailed user manual

HRUs are defined prior to rainfall-runoff modelling and DECIPHeR consists of two key steps
where (1) digital terrain analyses are performed to define the gauge network, set up the river
network and routing, discretise the catchment into HRUs and characterise the spatial
variability and hydrologic connectivity in the landscape, and (2) HRUs are run in the rainfall
runoff model to provide flow timeseries. These two steps are described in the following
sections. More detailed descriptions of the input and output files, code workflows and codes
can be found in the user manual.
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2.2 Digital Terrain Analysis (DTA)

The DTA in DECIPHeR constructs the spatial topology of the model components to define
hillslope and riverine elements. The DTA defines the spatial extent of every HRU based upon
multiple attributes, quantifies the connectivity between these HRU’s in the landscape,
determines the river network and all downstream routing properties, and determines the
extent and where simulated output variables (i.e. discharge) should be produced (including
gauged or ungauged locations) (see Figure 1).

2.2.1 Data Prerequisites

The minimum data requirement to run the DTA is a digital elevation model (DEM) and XY
locations where flow time series are needed on the river network. The DEM must contain no
sinks or flat areas to ensure that the river network and catchments can be properly delineated
as is common in digital terrain analyses._This means that any real inland sinks (such as lakes)
will be filled. Accounting for these features in the modelling framework will be a focus for
future model development.

Additional data can also be incorporated depending on data availability and modelling
objectives. A river network can be supplied if the user wishes to specify headwater cells
from a predefined river network and reference catchment areas and masks can be used to
identify the best station location on the river network. Depending on user requirements,
topographic, land use, geology, soils, anthropogenic and climate attributes can be supplied to
define the spatial topology and thus differences in model inputs, structure and
parameterisation.

2.2.2 River Network, Catchment Identification and River Routing

DECIPHeR generates streamflow estimates at any point on the river network specified by the
user. A river network is generated in DECIPHeR which matches the DEM flow direction and
always connects to the boundary of the DEM or the sea. The river network is created from a
list of headwater cells, which the functions can use/produce in three different ways depending
on user requirements and/or data availability:

1. Alist of pre-defined headwater (i.e. starting) river locations read into the DTA
algorithms from a file

2. Headwater cells are found from a pre-defined river network

3. Where no pre-defined river network or headwater locations are available, then
headwater cells are found from a river network which is derived from cells that meet
thresholds of accumulated area and/or topographic index

Each headwater location is then routed downstream in a single flow direction via the steepest
slope until reaching a sea outlet, other river or edge of the DEM, to construct a contiguous
river network for the whole area of interest. Gauge locations are then generated on the river
network from the point locations specified by the user. If a reference catchment mask or area
is available, catchment masks are produced for candidate river cells found in a given radius
and the catchment mask with the best fit to the reference mask or area is chosen as the gauge
location. Otherwise the closest river cell is chosen as the gauge location.

Catchment masks are created from the final gauge list, with both individual masks for all the
points specified on the river network and a combined catchment mask with the nested
catchment masks created for use in the creation of the hydrological response units. From the
river network and gauge locations, the river network connectivity is derived with each river
section labelled with a unique river ID. A suite of routing tables is also produced so that each

9
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ID knows its downstream connections and to allow multiple routing schemes to be
configured (see section 2.3.4 for a description of the current routing scheme implemented in
the modelling framework). These codes also provide the option of setting a river reach length
where output time series can also be specified at different reach lengths between gauges (see
Figure 1, HRU Setup D).

2.2.3 Topographic Analysis

Topography, slope, accumulated area and topographic index are important properties of the
landscape to aid the definition of hydrologic similarity and more dominant flow pathways.

In DECIPHEeR, they provide the basis for river routing and river network configuration and
they also can be used to help determine the initial separation of landscape elements for
defining hydrological similarity using percentiles of accumulated area, elevation and slope (in
addition to alternative catchment attributes such as urban extent, geology, landuse, soils etc.).

Topographic index is calculated using the M8 multiple flow directional algorithm of (Quinn
etal., 1995). The DTA calculates slope, accumulated area and topographic index for the
whole domain. It uses the river mask to define the cells where accumulated area cannot
accumulate downstream and the catchment mask to ensure accumulated area does not
accumulate across nested catchment boundaries.

2.2.4 Hydrological Response Units

The most critical aspect of running DECIPHeR is to define HRU’s according to user
requirements. The HRU configuration determines the spatial connectivity and complexity of
model conceptualisation as well as the spatial variability of inputs and conceptual structure
and parameters to be implemented in each part of the landscape. Any number of different
spatial discretisations can be derived and subsequently applied in the DECIPHeR framework
allowing the user to experiment with different model structures and parameterisations and
modify representations of spatial variability and hydrologic connectivity.

In the DTA, hydrologically similar points in the landscape are grouped together so that each
HRU is a unique combination of four different classification layers. These specify: (1) the
initial separation of landscape elements from topographic information (e.g. slope,
accumulated area and/or elevation); (2) inputs; (3) process conceptualisations; and (4)
parameters implemented for each HRU store in the model (see Figure 2). These
classification layers can be derived from climatic inputs, such as spatially varying rainfall and
potential evapotranspiration, and landscape attributes such as geology, land use,
anthropogenic impacts, soils data, slope, accumulated area. The simplest setup will consist of
one HRU per catchment while the most complex can consist of a HRU for every grid cell (i.e.
fully distributed).

To maintain hydrological connectivity in the landscape, the proportions of flow between the
cells comprising each HRU are calculated based on accumulated area and slope. The flow
fractions are then aggregated into a flow distribution matrix that summarises the proportions
(weightings) of lateral subsurface flow from each HRU either to (1) itself, (2) another HRU
or (3) ariver reach. For n hydrological response units, the weights (W) are defined as:

Wi ot Win
W — E "- E
Wni ° Wnn

10

Equation 1
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Where each row defines how the HRU’s output is distributed to other HRU’s, any river
reaches or itself and each column represents the total input to each HRU at every time step as
the weighted sum of all the upstream outputs. Each row and column sum to one to ensure
mass balance. The weights are detailed in a HRU flux file (which is fixed for a simulation)
as a flow distribution matrix along with tabulated HRU attributes to provide information on
which inputs, parameter and model structure type each HRU is using.

2.3 Rainfall-Runoff Modelling
2.3.1 Data Pre-requisites

To run the rainfall-runoff modelling component of DECIPHeR, time series forcing data of
rainfall and potential evapotranspiration are required. Discharge data can also be provided
for gauged locations and are used to initialise the model.

Besides forcing data, the model also needs, (1) the HRU flux file and routing files produced
by the DTA, (2) a parameter file specifying parameter bounds for Monte-Carlo sampling of
parameters and (3) project/settings files specifying the number of parameter sets to run,
which HRU and input file to use etc.

2.3.2 Initialisation

Initialisation is an important step for any rainfall-runoff model. To ensure that subsurface
flows, storages and the river discharge have all stabilised can be particularly problematic
when modelling regionally over a large area as not all HRU’s will initialise at the same rate
(depending on size and slope characteristics).

A simple homogenous initialisation is currently implemented in DECIPHeR where the
storage deficits for all HRU’s are determined from an initial discharge. This is calculated as
a mean area weighted discharge of the starting flows at timestep 1 for all output points on the
river network. [If a gauge does not have an initial flow, then the initial flow is either
calculated from the mean of the data or set to a value of 1 mm/day (as a representative
starting flow for most catchments) if no flow data is available. [The initial discharge is
assumed to be solely due to the subsurface drainage into the river so is used as the starting
value for Qsat (subsurface flow) and to determine the associated storage and unsaturated zone
fluxes. The model is then run for an initialisation period to allow its model stores and fluxes
to fully stabilise with the catchment climatic information. Initialisation periods depend in part
on the parameterisation of the model simulation run as well as the size and characteristics of
the catchment being considered.

2.3.3 Parameters

DECIPHeR can be run either using default parameter values or through Monte-Carlo
sampling of parameters between set parameter bounds to produce ensembles of river flows.
In the DTA, the user can set different parameter bounds for each HRU or sub-catchment thus
specifying areas of the landscape where different parameter bounds may be needed.
Alternatively, a single set of parameter bounds can be applied across the model domain.

For the model structure provided in the standard build and described below, there are seven
parameters that can be sampled or set to default parameters. These parameters describe the
transmissivity of the subsurface, the water holding capacity and permeability of soils and the
channel routing velocity (see Table 1). More parameters can easily be added by the user if
required for different model structures by changing the model source code.
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2.3.4 Model Structure

The description below details the model structure that is provided in the open source code
(see Figure 3 and Table 1). While the code is built to be modular and extensible so that a
user can easily implement multiple model structures if so wished, the aim of this paper and
the initial focus of the code development was on applying the model across large scales and
beginning with a release that has relatively simple representations of the core processes.
Thus, we provide a single model structure in the open source code that serves as a model
benchmark to be built upon in future iterations.

The model structure consists of three stores defining the soil profile (Sg;. Syz. Sp_in Figure
3), which are implemented as lumped stores for each HRU. The first store is the root zone
storage (Sgz). Precipitation (P) is added to this store and then evapotranspiration (ET) is
calculated and removed directly from the root zone. The maximum specific storage of Srz is
determined by the parameter SR,,,,,.. Actual evapotranspiration from each HRU depends on
the potential evapotranspiration (PET) rate supplied by the user and the root zone storage
using a simple common formulation where evapotranspiration is removed at the full potential
rate from saturated areas (i.e. if the root zone storage is full) and at a rate proportional to the
root zone storage in unsaturated areas:

ET = PET * (SRZ/SRmax)
Equation 2

Once the root zone reaches maximum capacity (i.e. deficit of zero and conceptually
analogous to field capacity), any excess rainfall input that is remaining is either-added to the
unsaturated zone (Suz) where it is routed to the saturated zone (S, )subsurface-store.-of ilf theis
saturated zonestere is also full (as determined by S,,,.), Qexus is added to the saturation
excess storage (Sex) and routed directly overland as saturated excess overland flow (QoF).l
The unsaturated zone links the Srz and saturated zones according to a linear function that
includes a gravity drainage time delay parameter (Td) for vertical routing through the
unsaturated zone. The drainage flux (Quz) from the unsaturated zone to the saturated zone is
at a rate proportional to the ratio of unsaturated zone storage (Su.) to storage deficit (Sp):

Quz = Syz/(Sp *Td)
Equation 3

#—Changes to storage
deficits for each HRU are dependent on recharge from Sy, (Qyuz), fluxes from upslope HRUs
(Qin) and downslope flow out of each HRU (Qs4r), with subsurface flows for each HRU
distributed according to the DTA flow distribution matrix described in section 2.2.4.

F = Qsar — Qv — Quz

Equation 4

Where S, is the current deficit in the saturated zone, Qg4 is outflow from this HRU, Q, is
inflow into the HRU representing subsurface flow from other HRUs representing-drainage
from-the-unsaturated-zone-of this HRU-and Qy, is inflow into the HRU representing drainage
from the unsaturated zone of this HRUrepresenting-subsurface-flow-from-other HRUs. This
equation is solved sequentially for each HRU and provides values for the deficit S, and
outflow Qg4 at time step t for each HRU. In DECIPHeR, this equation is solved analytically
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(see appendix for derivation of this solution), assuming a transmissivity profile that declines
exponentially with depth and is truncated at depth S, such that no flow is generated when
the deficit is greater than S,,,4, (Beven and Freer, 2001). The analytical solution provides
better computational speed and increased numerical stability compared to the iterative 4-point
numerical scheme described by Beven and Freer (2001).

The exponential transmissivity profile takes the shape (Beven and Freer, 2001; eq. 6):
Qsar = To tan f exp(—fz) = Qoexp(— S/SZM)
Equation 5

The truncated exponential transmissivity profile takes the shape (rewritten from Beven and
Freer, 2001; eq. 9):

Oonr = {QO cos B [exp(—cos B S/SZM) — exp(— cos B Spax/SZM)] S:S Smax
sar 0 S$> Smax
Equation 6

Where g is the mean slope of the HRU and S is the average deficit across the HRU. The
parameter, SZM, sets the rate of the exponential decline in saturated zone hydraulic
transmissivity with depth thereby controlling the shape of the recession curve in time. The
parameter, Smax, Sets the saturated zone deficit threshold at which downslope flow between
HRUs no longer occurs. If the storage deficit is less than zero (i.e. the soil is at or above its
saturation capacity), then excess storage (Qexs) is added to saturation excess overland flow
(Qor). Qg is the maximum rate of Qg, from a HRU when the HRU is at saturation and is
calculated from:
To
Qo = e_}“

Equation 7

Where the parameter T, determines the lateral saturated hydraulic transmissivity at the point
when the soil is saturated and A is the average topographic index across the HRU.

Channel flow routing in DECIPHeR is modelled using a set of time delay histograms that are
derived from the digital terrain analyses for the points where output is required. A fixed
channel wave velocity (CHV) is applied throughout the network to account for delay and
attenuation in the simulated flows (Qsiv). DECIPHeR is a mass conserving model and
therefore the model water balance always closes (subject to small rounding errors).

2.4 Model Implementation

The DECIPHeR model code is available on github (https://github.com/uob-
hydrology/DECIPHeR) and is accompanied by a user manual which provides a detailed
description of the file formats, how to run the codes and a code workflow. All the model
code is written in FORTRAN for its speed, efficiency and ability to process large scale spatial
datasets. Two additional bash scripts are provided as an example of calling the digital terrain
analysis codes.
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3 Great Britain National Model Implementation and Evaluation

While the modelling framework has a wide range of functionality, in this paper we wanted to
demonstrate the ability of the model to be applied across a large domain to generate
ensembles of flows at thousands of gauging stations and evaluate its current capability across
large scales to guide future model developments. Consequently, we applied DECIPHeR to
1,366 gauges in Great Britain (GB) and in this section we describe the model setup, input
data, evaluation criteria and model results.

3.1 Great Britain Hydrology

Catchments in Great Britain (GB) cover a wide hydrologic and climatic diversity. Hydro-
climatic characteristics were derived from rainfall, potential evapotranspiration and flow data
described in Section 3.3.1. Figure 4 shows the mean annual rainfall, mean annual potential
evapotranspiration, runoff coefficient, and slope of the flow duration curve between the 30
and 70 flow percentiles for the 1,366 catchments in this study. Rainfall is highest in the West
and North of GB and lowest in the East and South ranging from 540 to 3400 mm/year (Figure
4a), while potential evapotranspiration is highest in the East and South and lowest in the West
and North ranging from 370 to 545 mm/year (Figure 4b). This regional divide of rainfall and
potential evapotranspiration is reflected in the runoff coefficients (Figure 4c) where generally
runoff coefficients are lowest in the East and South and highest in the North and West. Slope
of the flow duration curve (Figure 4d) is a more mixed picture across GB with lower values
(i.e. a less variable flow regime) found in North-East Scotland, Midlands and patches of the
South-East and higher values (i.e. a more variable flow regime) in the West, with the highest
values for ephemeral and/or small streams in the South-East.

River flows vary seasonally with the highest totals generally occurring during the winter
months when rainfall totals are highest and evapotranspiration totals are lowest, and the
lowest totals during the summer months (April — September) resulting from lower
precipitation totals and higher evapotranspiration losses due to seasonal variations in energy
inputs. Snowmelt has little impact on river flows in GB except for some catchments in the
Scottish Highlands where snowmelt contributions can impact the flows. River flow patterns
are also heavily influenced by groundwater contributions from various regional aquifer
systems. In catchments overlying the Chalk outcrop in the South-East of the GB, flow is
groundwater-dominated with a predominantly seasonal hydrograph that responds less quickly
to rainfall events. Land use and human influences also significantly impact river flows, with
flows most heavily modified in the South-East and Midland regions of England due to high
population densities.

3.2 Digital Terran Analyses for GB

To implement DECIPHeR across GB, the UK NEXTMAP 50m gridded digital elevation
model was used as the basis of the Digital Terrain Analysis (Intermap, 2009). The first step
was to ensure that the DEM contained no sinks or flat areas before being run through the
DTA codes. Many freely available packages and codes exist to sink fill DEMs but for use
with large national data sets, a two-stage process is often necessary to ensure no flat areas in
the DEM and that important features, such as steep sided valleys, are not filled due to pinch
points in the DEM. For this study, we first applied an optimised pit removal routine (Soille,
(2004), code available on github https://github.com/crwr/OptimizedPitRemoval). This tool
uses a combination of cut and fill to remove all undesired pits while minimizing the net
change in landscape elevation. We then applied a sink fill routine to ensure no flat areas
remained in the DEM.
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The inputs and outputs for the GB DTA is summarised in Figure 5. To build the river
network, we first extracted headwater cells from the Ordnance Survey MasterMap Water
Network Layer; a dense national river vector dataset for GB. These headwater cells were
then routed downstream via the steepest slope to generate the river network used by the
model. This ensures that the DEM and the calculated stream network are consistent for flow
accumulations based on surface slope. Locations of 1,366 National River Flow Archive
gauges were used to define the gauging network and specify points on the river network
where output was required. We used NRFA catchment areas and masks as a reference guide
to evaluate the best point for the gauge locations from potential river cell candidates within a
local search area. Slope, accumulated area and the topographic index were then calculated for
every grid cell and routing files produced.

Finally, we chose three classifiers to demonstrate the modelling framework while ensuring
the number of HRUs was still computationally feasible for modelling across a large domain,
these being:

1. The catchment boundaries for each gauge were used to ensure minimal fluxes across
catchment boundaries.

2. A 5km grid for the rainfall and potential evapotranspiration inputs was used to
represent the spatial variability in climatic inputs across GB.

3. Three equal classes of slope and accumulated area were implemented resulting in
HRU’s that cascade downslope to the valley bottom.

3.3 Rainfall Runoff Modelling
3.3.1 Input and Evaluation Datasets

Daily data of precipitation, potential evapotranspiration and discharge for a 55-year period
from 01/01/1961-31/12/2015 were used to run and assess the model. This period was chosen
as an appropriate test for the model covering a range of climatic conditions and to
demonstrate the model’s ability to simulate long time periods within uncertainty analyses
frameworks. The year 1961 was used as a warm-up period for the model; therefore no model
evaluation was quantified in this period.

A national gridded rainfall and potential evapo-transpiration product was used as input into
the model. Daily rainfall data were obtained from the CEH Gridded Estimates of Areal
Rainfall dataset (CEH-GEAR) (Keller et al., 2015; Tanguy et al., 2016). This dataset consists
of 1km? gridded estimates of daily rainfall from 1961 - 2015 for Great Britain and Northern
Ireland derived from the Met Office UK rain gauge network. The observed precipitations
from the rain gauge network are quality controlled and then natural neighbour interpolation is
used to generate the daily rainfall grids. Daily potential evapotranspiration data were
obtained from the CEH Climate hydrology and ecology research support system potential
evapotranspiration dataset for Great Britain (CHESS-PE) (Robinson et al., 2016). This
dataset consists of 1km? gridded estimates of daily potential evapotranspiration for Great
Britain from 1961 - 2015 calculated using the Penman-Monteith equation and data from the
CHESS meteorology dataset. Both datasets were aggregated to a 5km grid as forcing for the
national model run.

The model was evaluated against daily streamflow data for the 1366 gauges obtained from
the National River Flow Archive (www.nrfa.ceh.ac.uk). This data is collected by measuring
authorities including the Environment Agency (EA), Natural Resources Wales (NRW) and
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Scottish Environmental Protection Agency (SEPA) and then quality controlled before being
uploaded to the NRFA site.

3.3.2 Model Structure and Parameters

To initially evaluate the model, DECIPHeR was run within a Monte-Carlo simulation
framework whereby 10000 parameter sets were randomly sampled from a uniform prior
distribution. This number of parameter sets was chosen to provide a reasonable sampling of
the parameter space for demonstration purposes, however, for a full evaluation of the
parameter space, more parameter sets would be needed.

These parameters were applied uniformly across the HRUs and used within a single model
structure (as described in Section 2.3.4). Given the wide range of hydroclimatic conditions
across GB, sampling of the feasible parameter space was ensured by using wide sampling
ranges based on previous studies that have used Dynamic TOPMODEL (Beven and Freer,
2001; Freer et al., 2004; Page et al., 2007) (Table 2).

3.3.3 Model Evaluation

Daily time series of discharge for the 10,000 model simulations from each gauge were
evaluated against daily observed flow for all 1,366 gauges. This is a challenging test for the
model as these catchments cover a large range of hydrologic behaviour across GB and are
impacted by a variety of climatic, geological and anthropogenic processes as outlined in
Section 3.1. However, evaluating the model over such a large number of gauges acts as a
benchmark of model performance and a means of identifying future areas for model
development.

To benchmark model performance, we wanted to evaluate the model’s ability to capture a
range of hydrologic behaviour including maintaining overall water balance, capturing flow
variability, reproducing low and high flows and the timing of flows. Consequently, multiple
metrics, including hydrological signatures, standard hydrological model performance metrics
and statistics of the flow time series were used to provide insights into model performance.
Based on previous studies evaluating national scale models (McMillan et al., 2016) and
considering a diagnostic approach to model evaluation (Coxon et al., 2014; Gupta et al.,
2008; Yilmaz et al., 2008); four metrics were chosen which are summarised in Table 3
alongside their equations i) NSE (Nash and Sutcliffe, 1970), ii) Slope of the Flow Duration
Curve (Yadav et al., 2007) iii) Bias in Runoff Ratio (Yilmaz et al., 2008) and iv) Low Flow
Volume (Yilmaz et al., 2008).

These metrics are also used to determine a behavioural ensemble of parameter sets. The
focus of this model application is to demonstrate the model can be run in a Monte Carlo
framework. Consequently, while many different approaches could be used to determine a
behavioural ensemble of parameter sets (see for example (Beven, 2006; Coxon et al., 2014;
Krueger et al., 2010; Westerberg et al., 2011)), in this study we adopt a simple approach to
produce ensembles of flows. The four metrics described above are combined and the
behavioural ensemble was then taken as the top 1% of the model simulations according to
this combined score. To calculate the combined score, each metric was ranked in turn, these
ranks were summed, and all simulations sorted by the total combined rank. Weaker and
stricter performance thresholds in NSE and bias metrics were also defined to further explore
the performance of the ensembles against a common set of criteria (see Table 3). These were
chosen based on previous studies and although subjective, the hydrological modelling
community is yet to agree on benchmarks for the comparison of model performance (Seibert
et al., 2018).
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3.4 Results
3.4.1 Digital Terrain Analysis and Model Simulation

DECIPHeR was set up for GB covering a total catchment area of 154,763km? for 1366
gauges and 365 principal basins. Principal basin area ranged from 7.87km? to 9935km? with
a median of 137km?. Using the HRU classifiers specified in Section 3.2, the number of
HRUs contained within each principal basin ranged from 17 to 8978 with a median of 123
HRUs. HRU area ranged from 0.0025km? to 14.33km? with a median HRU area of 0.65km?.

In total 13,660,000 55 year time series, flow simulations were produced. One simulation
over the 55 year time period for the largest river basin (9935km?) with 8978 HRUs takes
approximately 15 minutes to run on a standard CPU, outputting simulated discharge for all
the 98 gauges that lie within the Thames at Kingston river basin. For the smallest river basin
that has 17 HRUs and one river gauge, a single simulation over the 56 year time period on a
standard CPU takes less than a second.

3.4.2 Overall Model Performance

Our first assessment of model performance is the overall model performance for the four
performance metrics calculated from the 10000 simulated daily flow time series produced for
each gauge. Figure 6 shows the percentage of catchments that met the stricter and weaker
performance thresholds defined in Table 3 from the entire ensemble of 10000 model
simulations and from the top 1% behavioural ensemble generated from the combined ranking
of the four metrics. Our results show that most catchments are able to meet both the
performance thresholds. The vast majority of catchments (92%) gain a NSE score greater
than zero (i.e. better than mean climatology) and 80% of the catchments gain a NSE score
greater than 0.5. The model does well in reproducing Low Flow Volumes and Slope of the
Flow Duration Curve with most gauges (98 and 96% respectively) meeting the stricter
performance threshold.

RRBIAS evaluates the model’s ability to reproduce water balance in the catchment; the
current implementation of the model has to maintain mass balance while many of the
observed flow data for many of these catchments does not maintain mass balance either due
to inter-catchment groundwater flows, anthropogenic influences such as surface and ground
water abstractions, or data errors (this is further discussed in section 4.4.4). Consequently,
RRBIAS is a more difficult metric for the model to capture and this is reflected by the fact
that 75% of the catchments meet the weaker threshold and just over 62% meet the stricter
threshold.

These numbers decrease slightly for the behavioural ensemble as expected due to trade-offs
between the four metrics but the overall trends remain the same.

3.4.3 Spatial Model Performance

To analyse model performance spatially across GB, the four evaluation metrics for the best
simulation (as defined by the combined rank across all four metrics) for each catchment is
summarised in Figure 7.

For NSE, model performance is variable across the country but generally, better model
performance is found in the wetter catchments in the North and West of GB, with poorer
model performance in drier catchments in the South and East. Model performance is poor in
groundwater dominated areas, particularly in the underlying chalk regions in the South East.
This region has particularly low runoff coefficients (see Figure 4d) and does not maintain
mass balance with large water losses. Consequently, results for RRBIAS shows that the
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model tends to over-estimate flows in the South-East. While bias in the runoff ratio shows
the model is generally over-estimating flows, biases in the low flow volume is a more mixed
picture with the model under-estimating low flows in some locations, particularly in the
Midlands and North East Scotland. From Figure 4d, these areas are characterised by
particularly low flow duration curve slopes suggesting strongly damped flow responses with
high baseflow. Flow in the Midlands region is heavily regulated by reservoirs which sustain
low flows and could be a potential reason for over-estimating low flows in this area. The bias
in slope of the flow duration curve shows DECIPHeR does well at reproducing the flow
variability but tends to under-estimate the slope in Scotland and North Wales suggesting that
the hydrographs in these catchments are too smooth and not sufficiently flashy.

3.4.4 Relationship Between Model Performance and Catchment Characteristics

To further analyse and understand the reasons for good/poor model performance,
relationships between key catchment characteristics and model performance were further
explored. Firstly, the catchments were grouped according to key catchment characteristics
based on discharge; runoff coefficient and base flow index. The 5™, 50" and 95t percentiles
of NSE and RRBIAS were calculated from the ensemble of runs for all catchments within
each group to explore relationships between model performance and catchment
characteristics (see Table 4). The relationship between runoff coefficient, wetness index and
RRBIAS was also analysed to further explore the importance of water gains/losses on model
performance.

There is a clear link between model performance and catchments with a low runoff
coefficient. Table 4 highlights poor model performance in catchments where observed runoff
coefficients are less than 0.2. In this group, the model always over-predicts (as shown by the
RRBIAS result) and consequently leads to poor NSE scores. Figure 8 shows that for many
catchments where the model over-predicts flows (and particularly for catchments with a
runoff coefficient less than 0.2) observed potential evapotranspiration estimates are not high
enough to account for water losses culminating in an over-estimation of flows. This is
unsurprising given that currently the model maintains water balance and can’t lose or gain
water beyond the ‘natural’ conceptualisations of precipitation, discharge and evaporation
dynamics. Consequently, we are either missing a process (such as water loss due to inter-
catchment groundwater flows or anthropogenic impacts) or the data is wrong.

Poorer model performance is also found in high BFI catchments (Table 4), however, the
results also show we can also gain very good simulations in these types of catchments (5th
percentile has a NSE score of 0.83), hence the challenge is to better understand water
losses/gains in groundwater catchments to improve the representation of groundwater
dynamics in the model.

3.45 Simulated Flow Time Series

Finally, we examined the simulated flow time series for six example catchments with
different characteristics. Figure 9 shows the observed discharge, observed precipitation and
the 51-95™ percentile uncertainty bounds of the behavioural simulations for six catchments
with different characteristics (see Table 5) for a representative two-year period of the 55-year
time series simulated. The 51-95t percentile uncertainty bounds are generated from the
likelihood-weighted distribution of the top 1% of the model simulations using the GLUE
framework (Beven, 2006).

Our results show the model can capture a range of different hydrological dynamics from
wetter catchments in the North-West (Figure 9a) to drier catchments in the South-East
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(Figure 9b). While model performance for groundwater catchments can be very good (Figure
9c and Table 5), it also shows that we need to incorporate additional model capability to
simulate the dynamics of groundwater dominated catchments. Where we have a very low
(for Great Britain) runoff coefficient, this is assumed to involve water losses into a more
regional groundwater storage not expressed at the outlet and not yet represented in this
version of the model (Figure 9d). While the catchments shown in Figure 9a-d are relatively
un-impacted by human influences, the catchments shown in Figure 9e and 9f are heavily
impacted by human influences and highlight the challenge of simulating flows nationally
across catchments with diverse hydrological behaviour.

4 Outlook and Ongoing Developments

4.1 National Scale Model Evaluation

This is the first study to comprehensively benchmark hydrological model performance across
GB. We calculated four evaluation metrics for 10,000 model simulations for 1,366 GB
gauges to provide an initial benchmark of model performance. DECIPHeR generally
performs well for the flow time series evaluated in this study, with better results in the West
and North in wet catchments as compared to drier catchments in the South and East. This is a
common finding for hydrological models, with many studies finding poor model performance
and greatest water balance errors in drier catchments (Gosling and Arnell, 2011; McMillan et
al., 2016; Newman et al., 2015; Pechlivanidis and Arheimer, 2015). These results are also
reflected in other GB model evaluation studies. For example, Coxon et al., (2014) applied
FUSE to 24 GB catchments and found the best model performances in wet catchments
compared to dry, chalk catchments, (Rudd et al., 2017) evaluated G2G for low flows across
61 GB catchments and found positive bias in low flow volumes in small catchments in the
South-East of England and (Crooks et al., 2010) evaluated PDM across 120 GB catchments
and found poorer model performance in groundwater dominated, drier catchments.

Poor model performance in these catchments is partially due to some of the metrics chosen in
this study, for example percent bias is most sensitive to small absolute biases in the driest
catchments when compared to other metrics such as absolute bias. However, positive bias in
the runoff ratio could be caused by a number of factors such as under-estimation of potential
evapotranspiration (there are other UK gridded potential evapotranspiration products which
estimate much higher potential evapotranspiration), inter-catchment groundwater flows,
and/or human influences such as water abstraction. Population density is much higher in the
South and East compared to the North and West so this regional disparity in model
performance could also be explained by a greater rate of abstractions and managed
watercourses which alter the flow time series. For example, 55% of the effective rainfall in
the Thames catchment is licensed for abstraction (Thames Water, 2017).

These results provide an initial test of DECIPHeR capabilities against a large sample of
catchments, but this is only a first-order evaluation of model performance. A more rigorous
evaluation would assess the model: over different seasons (Freer et al., 2004); under changing
climatic conditions (Fowler et al., 2016); for different hydrological extremes (Coron et al.,
2012; Veldkamp et al., 2018; Zaherpour et al., 2018); for multiple objectives simultaneously
(Kollat et al., 2012); and, incorporate input and flow data uncertainty (Coxon et al., 2014;
Kavetski et al., 2006; McMillan et al., 2010; Westerberg et al., 2016).

4.2 Characterising Spatial Heterogeneity and Connectivity

The intended use of DECIPHeR is to determine how much spatial variability and complexity
is required for a given set of modelling objectives. It can be run as a lumped model (1 HRU),
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semi-distributed (multiple HRUS) or fully gridded (HRU for every single grid cell). In this
paper DECIPHeR was applied across 1,366 GB gauges, with catchment masks, 5 km input
grids and three classes of accumulated area and slope as classifiers for the hydrological
response units, resulting in a total of 133,286 HRUSs. Future work needs to consider the
appropriate spatial complexity and hydrologic connectivity needed to represent relevant
processes (Andréassian et al., 2004; Bl6schl and Sivapalan, 1995; Boyle et al., 2001; Chaney
et al., 2016; Clark et al., 2015; Metcalfe et al., 2015; Wood et al., 1988). While this work
highlights the clear potential of a computationally-efficient large-scale modelling framework
that can run large ensembles, a balance is required to ensure computational efficiency when
running large ensembles that also maintains sufficient spatial complexity to represent
different hydrological processes.

4.3 Hypothesis Testing and Model Parameterisation

To demonstrate the modelling framework we implemented a single model structure, provided
in the open source model code, in all HRUs across GB and did not experiment with different
model structures in different parts of the landscape. This provides a good benchmark of
DECIPHeR’s ability at the national scale across GB, but the results suggest different model
structures are needed to represent a greater heterogeneity of hydrological responses beyond
the conceptual dynamics currently implemented in this simple model (as shown in Figure 9).
We can gain new process understanding of regional differences in catchment behaviour by
testing different model representations (Atkinson et al., 2002; Bai et al., 2009; Perrin et al.,
2001). Future work will concentrate on adding modules to DECIPHeR to enhance
performance across national and continental scales with a focus on improved representation
of groundwater dynamic and human influences to address poor model performance in
catchments with a low runoff coefficient. Furthermore, we have ensured the code is open-
source and well-documented so that the hydrological community can contribute new/different
conceptualisations of the processes shown in this paper.

It is challenging to parameterise a hydrological model across large scales. Here we simply
applied the same parameter set across each catchment. Using this basin-by-basin approach
has the disadvantage of producing a “patchwork quilt” of parameter fields, with
discontinuities in parameter values across catchment boundaries. This is only effective for
gauged catchments (Archfield et al., 2015). Ongoing work aims to address these issues by
implementing the multiscale parameter regionalisation (MPR) technique for DECIPHeR
across GB. This technique links model parameters to geophysical catchment attributes
through transfer functions applied at the finest possible resolution (Samaniego et al., 2010).
The coefficients of the transfer functions are then calibrated, and parameters are upscaled to
produce spatially consistent fields of model parameters at any resolution across the entire
model domain. The MPR technique has been applied elsewhere, proving that it can produce
seamless parameter fields across large domains and produce scale-invariant parameters
(Kumar et al., 2013; Mizukami et al., 2017; Samaniego et al., 2017), which is ideal for a
flexible framework such as DECIPHeR.

5 Conclusions

DECIPHEeR is a new flexible modelling framework which can be applied from small
catchment to continental scale for complex river basins resolving small-scale spatial
heterogeneity and connectivity. The model is underpinned by a flexible, computationally
efficient framework with a number of novel features:
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1 Spatial variability and connectivity - ability to modify spatial variability and
connectivity in the model via the specification of hydrological response units with
different topographic, landscape, input layers

2. Model structures and parameterisations - ability to experiment with different
model structures and parameterisations in different parts of the landscape
3. Computationally efficient - grouping of hydrologically similar points in the

landscape into hydrological response units enables faster run times

Automated build — to allow easy application over large scales

5. Open source - the open source model code is implemented in Fortran, with a user
manual to help researchers and/or practitioners to use the model.

e

This paper describes the modelling framework and its key components and demonstrates the
model’s ability to be applied a large model domain. DECIPHeR is shown to be
computationally efficient and perform well over large samples of gauges. This work
highlights the potential for catchment to continental scale predictions, by making use of
available big datasets, advances in flexible modelling frameworks and computing power.
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Appendix A - Analytical Solution for Kinematic Subsurface Flow

1. Introduction

This appendix provides an analytical solution to the equations which were solved numerically
by Beven and Freer (2001) in Dynamic TOPMODEL to route subsurface flows-between
HRUSs. Here, we use calculus to integrate the relevant equations through time, as opposed to
the finite volume scheme described by Beven and Freer (2001), for better computational
speed and increased numerical stability.

This development starts from the kinematic wave description of flow (a partial differential
equation), integrates that partial differential equation along the flow direction-everthe-entire
HRU to obtain an ordinary differential equation in time, and then integrates that ordinary
differential equation in time to get an analytical solution which gives the flow and storage at
the end of each timestep, in relation to the conditions at the start of the timestep, and the
inflow from both upslope and from drainage._Each Hydrological Response Unit (HRU) in
the model may be comprised of one or more sets of spatially contiguous cells. We use the
term “spatial element” (SE) to refer to one of these contiguous sets of cells within a HRU.
This is the same scale as referred to by Beven and Freer (2001) as a “group of elements”.

By first integrating the kinematic wave equation everthe-HRUin space, we have effectively
chosen to model the flow at this scale-in-the-HRY using a nonlinear reservoir, so there is no
wave travelling_in space within a spatial element-acrossthe-HRY. A wave-like behaviour at
larger scales is mimicked by having the groups of elements in a type of cascade (linked by
the weighting matrix). This approach of integrating in space is the same as selected by Beven
and Freer (2001), using their finite volume approach.

2. Flow in a_Spatial Element

Assume the HRUspatial element (SE) has area A, and that x is distance measured along the
flow direction of the SEHRUY. Define Q as the downslope flow rate [L3/T] at some point x.
Assume that the flow is kinematic, i.e. that Q depends only on S [L], the local storage deficit
per unit area, and the SEHRY geometry. The drainage input from above is assumed to be r
[L/T]. Assume the width of the SE-HRY is w(x), at distance x [L]. At any point x in the
SEHRUY we can write a partial differential equation for Q:

osw _ 20 _ i
ot TV Equation Al

This is a kinematic wave equation describing the subsurface flow at point x within a SEn
HRU. Note that both S and r have been multiplied by w, the width of the SEHRY, so that
they can be compared with @, which is the total flow through the SEHRUY, at distance x.

To simplify the problem, we will now average over the entire SEHRY, along the flow
direction, x, from the upslope end (x=0) to the downslope end (x=L). This will produce an
equation describing how S, the HRUSE-average of S, changes with time.

foL a;;” oL Zf dx - ‘f rwdx Equation A2
Lppasw g QL0 _ Lyl Equation A3

The variables Q(0,t) and Q(L, t) refer to flows at the upslope and downslope ends of the
SEHRU [L¥/T]

. 1 (L
If we assume S and w are uncorrelated as x varies, and let W = Zfo wadx then
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W Lf;t x _ Q(L't)LQ(O-t) W Equation A4
Dividing by W,
95 _ewn-eon Equation A5

at w

Note that A = LW is the area of the HRUSE, so we can now define g=Q/A as flow per unit
plan area [L/T] which is the same dimension as used by Beven and Freer (2001).

g =q(Lt) - (q(0,8) + 1) Equation A6

In equation 6, q(0, t) and r are assumed to be known, and g (L, t), the outflow from the
HRUSE, is assumed to be a function of the mean deficit S. Thus the SEHRUY is being
modelled as a nonlinear reservoir, where S is the state variable, the input is q(0,t) + r, and
the outflow q(L,t) = £(S(¢)). Note that the inflow is now assumed to be applied as a
spatially uniform flux within the HRUSE, rather than being applied at x=0. There is no
representation of motion within the SEHRY._Motion at larger scales is represented by the
cascading of flow from one reservoir to another.

Note that in the following equations, Q is equivalent to Qsar (eq. 4). Because no motion
within the SE-HRUY is represented, Qv and Quz (eq. 4) can be lumped together into a single
term, here called r.

Analytical solutions for an exponential conductivity profile

There are several parsimonious descriptions of the vertical profile of saturated hydraulic
conductivity which are hydrologically plausible. Here we consider the standard exponential
profile and a profile truncated at finite depth. In each case we find the analytical solution for
both S and g(L, t) as functions of time. Analytical solutions are also possible for the
parabolic and linear profiles given in Ambroise et al (1996).
Define u = (q(0,t) + r) and g = q(L, t)

q = qoexp(—S/m) Equation A7

g—f =q—u Equation A8

If we substitute 7 into 8, and integrate 8 from S (0) at t=0 up to S (t), we obtain the
intermediate result

exp(S/m) = % + exp(S5(0)/m) (1 - %ﬁ(o)/m) exp (— u;t) Equation A9

From this we can get expressions for both S (t) and q(t)

T — 90 1 90 ut f
S(t) =m lOg I:? + (m - ;) exp (— ;)] EqUathn Al0

1 101 ut\171 .
q(t) = [; + (ﬁ - ;) exp (— ;)] Equation AL

In the special case where u=0, we instead obtain

5(t) = mlog (exp(f(()) /m) + %) Equation A12

1 t171 .
q(t) = [@ + ;] Equation A3
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Note that parameters m and q, in these equations are equivalent to SZM and Q, as defined in
the paper.

Exponential truncated smoothly at Smax (Beven and Freer, 2001 equation 9)

- Ky - - s<
g = {1005 B1exp(- cosFS/m) — exp(=co5 B Suax/m] 5 < Smax gquion Ase
0 5> Smax
- Ky - S<
= (O COSBI/m) ~dz 3= S Equation ALS
()} 5> Smar

Where q; = qgcosB and q, = qq cos B exp(— cos B Spax/m)
Let’s look first at the case where S < S«

g—f = q.exp(—S/(m/cos B)) — (q; + u) Equation A16
If we let m, = m/cos B and u, = q, + u, then we can rewrite this as

g—f = q.exp(—S/m,) —u, Equation A17

This is now exactly the same form as the exponential profile above, so the solution is
formally identical: we just put g, instead of q,, m, instead of m, and u, instead of u. The
resulting equations are:

S(t) = mylog |2 + ;g(o) — ) exp (— ”—2t) Equation A18
v \ew(22) W e
-1
q(0 = ul_z n (q(l_o) - ul_z) exp (_ ‘r‘n_zzt)] Equation A19

This solution collapses to the standard exponential result if cos§ = 1 and S, = .
Note that provided S,,,, < o, then g, > 0 so u2>0, and there is no need to consider the case
of zero forcing.

The deficit cannot go beyond S, as a result of outflow; however deficits larger than S,,,4,
can arise through evaporation (this prepares for future developments, evaporation is not
currently included in the conceptualisation of the saturated zone). Here we consider the case
where S > S,,q., S0 g=0, but u>0, so the deficit is decreasing.
a5
==

This can be integrated to give

—u Equation A20

S(t) =5(0) —ut Equation A21

If S(t)< ;10 then we switch to the S < S,,.4, Solution partway through the computational
interval.

We use the equation for S (t) when § < S,,,4,, because in that case the q(t) equation will lead
to division by zero if it is started at q(0)=0.

Extra note on computational issues:

If u, is very small but not zero, numerical problems can arise in the calculation of S(t),
because of loss of significance when subtracting two numbers of very different magnitudes.
This can lead to calculating the logarithm of zero during calculation of S(t).
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This can be avoided by making a Taylor series expansion of S (t) for small non-zero values of
u,. We obtain

S(t) = mylog

Gy () _uat 1 (uat)? i
2 (m &) uZ) (1 2ty 2(%) )] Equation A22

If we expand and then neglect terms in u,? we obtain

N 1 qit upt 1 194t
S(t) = mylo S L L U
0 min () - 1)

We use this solution in cases where l:n—zt « 1, currently implemented as um—zt < 10710
2 2

Equation A23
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Code Availability
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Author Contribution

G Coxon and T Dunne wrote and modified the majority of the source code with contributions
from R Lane, N Quinn and J Freer. J Freer provided overall oversight for the model
development. R Woods and W Knoben derived the analytical solution for the subsurface
zone equations. G Coxon prepared the input data and produced and evaluated the model
simulations shown in this paper, with input from all co-authors on the experimental design.
The manuscript was prepared by G Coxon with contributions from all co-authors.

Competing Interests
The authors declare that they have no conflict of interest.
Acknowledgements

G Coxon, J Freer, T Wagener, R Woods and N Howden were supported by NERC MaRIUS:
Managing the Risks, Impacts and Uncertainties of droughts and water Scarcity, grant number
NE/L010399/1. Partial support for T Wagener comes from a Royal Society Wolfson
Research Merit Award, and for N Howden from a University Research Fellowship. R Lane
and W. Knoben were funded as part of the Water Informatics Science and Engineering
Centre for Doctoral Training (WISE CDT) under a grant from the Engineering and Physical
Sciences Research Council (EPSRC), grant number EP/L016214/1.

26


https://github.com/uob-hydrology/DECIPHeR

10

15

20

25

30

35

References

Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C. and Loumagne, C.: Impact of
spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A
theoretical study using chimera watersheds, Water Resour. Res., 40(5),
d0i:10.1029/2003WR002854, 2004.

Archfield Stacey A., Clark Martyn, Arheimer Berit, Hay Lauren E., McMillan Hilary, Kiang
Julie E., Seibert Jan, Hakala Kirsti, Bock Andrew, Wagener Thorsten, Farmer William H.,
Andréassian Vazken, Attinger Sabine, Viglione Alberto, Knight Rodney, Markstrom Steven
and Over Thomas: Accelerating advances in continental domain hydrologic modeling, Water
Resour. Res., 51(12), 10078-10091, doi:10.1002/2015WR017498, 2015.

Arnold, J. G., Srinivasan, R., Muttiah, R. S. and Williams, J. R.: Large Area Hydrologic
Modeling and Assessment Part I: Model Developmentl, JAWRA J. Am. Water Resour.
Assoc., 34(1), 73-89, doi:10.1111/j.1752-1688.1998.tb05961.x, 1998.

Atkinson, S. E., Woods, R. A. and Sivapalan, M.: Climate and landscape controls on water
balance model complexity over changing timescales, Water Resour. Res., 38(12), 50-1-50—
17, doi:10.1029/2002WR001487, 2002.

Bai, Y., Wagener, T. and Reed, P.: A top-down framework for watershed model evaluation
and selection under uncertainty, Environ. Model. Softw., 24(8), 901-916,
d0i:10.1016/j.envsoft.2008.12.012, 2009.

Bell, V. A,, Kay, A. L., Jones, R. G. and Moore, R. J.: Development of a high resolution grid-
based river flow model for use with regional climate model output, Hydrol Earth Syst Sci,
11(1), 532549, d0i:10.5194/hess-11-532-2007, 2007.

Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320(1-2), 18-36,
doi:10.1016/j.jhydrol.2005.07.007, 2006.

Beven, K. and Freer, J.: A dynamic TOPMODEL, Hydrol. Process., 15(10), 1993-2011,
doi:10.1002/hyp.252, 2001.

Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin
hydrology / Un mode¢le & base physique de zone d’appel variable de 1’hydrologie du bassin
versant, Hydrol. Sci. Bull., 24(1), 43-69, doi:10.1080/02626667909491834, 1979.

Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L. E., David, C. H., Roo, A.
de, Doll, P., Drost, N., Famiglietti, J. S., Florke, M., Gochis, D. J., Houser, P., Hut, R.,
Keune, J., Kollet, S., Maxwell, R. M., Reager, J. T., Samaniego, L., Sudicky, E., Sutanudjaja,
E. H., Giesen, N. van de, Winsemius, H. and Wood, E. F.: Hyper-resolution global
hydrological modelling: what is next?, Hydrol. Process., 29(2), 310-320,
doi:10.1002/hyp.10391, 2015.

Bloschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: A review, Hydrol.
Process., 9(3-4), 251-290, doi:10.1002/hyp.3360090305, 1995.

27



Boyle, D. P., Gupta, H. V., Sorooshian, S., Koren, V., Zhang, Z. and Smith, M.: Toward
improved streamflow forecasts: value of semidistributed modeling, Water Resour. Res.,
37(11), 2749-2759, doi:10.1029/2000WR000207, 2001.

Burnash, R. J. C.: The NWS River Forecast System-Catchment Modeling, in Computer
Models of Watershed Hydrology, pp. 311-366, Water Resour. Publ., Littleton, Colo., 1995.

Chaney, N. W., Metcalfe, P. and Wood, E. F.: HydroBlocks: a field-scale resolving land
surface model for application over continental extents, Hydrol. Process., 30(20), 35433559,
d0i:10.1002/hyp.10891, 2016.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A, Vrugt, J. A., Gupta, H. V., Wagener,
T. and Hay, L. E.: Framework for Understanding Structural Errors (FUSE): A modular
framework to diagnose differences between hydrological models, Water Resour. Res.,
44(12), nfa—n/a, doi:10.1029/2007WR006735, 2008a.

Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J.
and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: Use of
streamflow observations to update states in a distributed hydrological model, Adv. Water
Resour., 31(10), 1309-1324, doi:10.1016/j.advwatres.2008.06.005, 2008b.

Clark, M. P., Kavetski, D. and Fenicia, F.: Pursuing the method of multiple working
hypotheses for hydrological modeling, Water Resour. Res., 47(9), W09301,
doi:10.1029/2010WR009827, 2011.

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J.
E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold, J. R., Gochis, D. J. and Rasmussen,
R. M.: A unified approach for process-based hydrologic modeling: 1. Modeling concept,
Water Resour. Res., 51(4), 2498-2514, doi:10.1002/2015WR017198, 2015.

Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M. and Hendrickx, F.:
Crash testing hydrological models in contrasted climate conditions: An experiment on 216
Australian catchments, Water Resour. Res., 48(5), W05552, doi:10.1029/2011WR011721,
2012.

Coron, L., Thirel, G., Delaigue, O., Perrin, C. and Andréassian, V.: The suite of lumped GR
hydrological models in an R package, Environ. Model. Softw., 94, 166-171,
doi:10.1016/j.envsoft.2017.05.002, 2017.

Coxon, G., Freer, J., Wagener, T., Odoni, N. A. and Clark, M.: Diagnostic evaluation of
multiple hypotheses of hydrological behaviour in a limits-of-acceptability framework for 24
UK catchments, Hydrol. Process., 28(25), 6135-6150, doi:10.1002/hyp.10096, 2014.

Coxon, G., Freer, J., Westerberg, I. K., Wagener, T., Woods, R. and Smith, P. J.: A novel
framework for discharge uncertainty quantification applied to 500 UK gauging stations,
Water Resour. Res., n/a-n/a, doi:10.1002/2014WR016532, 2015.

Crooks, S. M., Kay, A. L. and Reynard, N. S.: Regionalised impacts of climate change on
flood flows: hydrological models, catchments and calibration. Milestone report 1, [online]
Auvailable from:
http://randd.defra.gov.uk/Document.aspx?Document=FD2020_8853_TRP.pdf (Accessed 26
November 2018), 2010.

28



10

15

20

25

30

35

40

EC: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000
establishing a framework for Community action in the field of water policy. [online]
Available from: http://data.europa.eu/eli/dir/2000/60/0j/eng (Accessed 30 May 2018), 2000.

EC: Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007
on the assessment and management of flood risks (Text with EEA relevance). [online]
Available from: http://data.europa.eu/eli/dir/2007/60/oj/eng (Accessed 17 July 2018), 2007.

Fenicia, F., Kavetski, D. and Savenije, H. H. G.: Elements of a flexible approach for
conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resour.
Res., 47(11), doi:10.1029/2010WR010174, 2011.

Fowler, K. J. A, Peel, M. C., Western, A. W., Zhang, L. and Peterson, T. J.: Simulating
runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual
rainfall-runoff models, Water Resour. Res., 52(3), 1820-1846, doi:10.1002/2015WR018068,
2016.

Freer, J. E., McMillan, H., McDonnell, J. J. and Beven, K. J.: Constraining dynamic
TOPMODEL responses for imprecise water table information using fuzzy rule based
performance measures, J. Hydrol., 291(3-4), 254-277, d0i:10.1016/j.jhydrol.2003.12.037,
2004.

Gosling, S. N. and Arnell, N. W.: Simulating current global river runoff with a global
hydrological model: model revisions, validation, and sensitivity analysis, Hydrol. Process.,
25(7), 1129-1145, doi:10.1002/hyp.7727, 2011.

Gupta, H. V., Wagener, T. and Liu, Y.: Reconciling theory with observations: elements of a
diagnostic approach to model evaluation, Hydrol. Process., 22(18), 38023813,
doi:10.1002/hyp.6989, 2008.

Henriksen, H. J., Troldborg, L., Nyegaard, P., Sonnenborg, T. O., Refsgaard, J. C. and
Madsen, B.: Methodology for construction, calibration and validation of a national
hydrological model for Denmark, J. Hydrol., 280(1), 52—71, doi:10.1016/S0022-
1694(03)00186-0, 2003.

Kavetski, D. and Fenicia, F.: Elements of a flexible approach for conceptual hydrological
modeling: 2. Application and experimental insights, Water Resour. Res., 47(11), n/fa-n/a,
doi:10.1029/2011WR010748, 2011.

Kavetski, D., Kuczera, G. and Franks, S. W.: Bayesian analysis of input uncertainty in
hydrological modeling: 2. Application, Water Resour. Res., 42(3), W03408,
doi:10.1029/2005WR004376, 2006.

Keller, V. D. J., Tanguy, M., Prosdocimi, I., Terry, J. A, Hitt, O., Cole, S. J., Fry, M.,

Morris, D. G. and Dixon, H.: CEH-GEAR: 1 km resolution daily and monthly areal rainfall
estimates for the UK for hydrological and other applications, Earth Syst. Sci. Data, 7(1), 143—
155, doi:https://doi.org/10.5194/essd-7-143-2015, 2015.

Kollat, J. B., Reed, P. M. and Wagener, T.: When are multiobjective calibration trade-offs in

hydrologic models meaningful?, Water Resour. Res., 48(3), W03520,
doi:10.1029/2011WR011534, 2012.

29



10

15

20

25

30

35

Krueger, T., Freer, J., Quinton, J. N., Macleod, C. J. A, Bilotta, G. S., Brazier, R. E., Butler,
P. and Haygarth, P. M.: Ensemble evaluation of hydrological model hypotheses, Water
Resour. Res., 46(7), n/fa—n/a, doi:10.1029/2009WR007845, 2010.

Kuczera, G., Renard, B., Thyer, M. and Kavetski, D.: There are no hydrological monsters,
just models and observations with large uncertainties!, Hydrol. Sci. J., 55(6), 980991,
doi:10.1080/02626667.2010.504677, 2010.

Kumar, R., Livneh, B. and Samaniego, L.: Toward computationally efficient large-scale
hydrologic predictions with a multiscale regionalization scheme, Water Resour. Res., 49(9),
5700-5714, doi:10.1002/wrcr.20431, 2013.

Leavesley, G. H., Markstrom, S. L., Brewer, M. S. and Viger, R. J.: The modular modeling
system (MMS) — The physical process modeling component of a database-centered decision
support system for water and power management, Water. Air. Soil Pollut., 90(1-2), 303-311,
doi:10.1007/BF00619290, 1996.

Lindstrém, G., Johansson, B., Persson, M., Gardelin, M. and Bergstrém, S.: Development
and test of the distributed HBV-96 hydrological model, J. Hydrol., 201(1-4), 272-288,
doi:10.1016/S0022-1694(97)00041-3, 1997.

Lindstrém, G., Pers, C., Rosberg, J., Strémqvist, J. and Arheimer, B.: Development and
testing of the HYPE (Hydrological Predictions for the Environment) water quality model for
different spatial scales, Hydrol. Res., 41(3—-4), 295-319, d0i:10.2166/nh.2010.007, 2010.

Liu, Y., Freer, J., Beven, K. and Matgen, P.: Towards a limits of acceptability approach to the
calibration of hydrological models: Extending observation error, J. Hydrol., 367(1-2), 93—
103, doi:10.1016/j.jhydrol.2009.01.016, 2009.

McMillan, H., Freer, J., Pappenberger, F., Krueger, T. and Clark, M.: Impacts of uncertain
river flow data on rainfall-runoff model calibration and discharge predictions, Hydrol.
Process., 24(10), 1270-1284, doi:10.1002/hyp.7587, 2010.

McMillan, H., Jackson, B., Clark, M., Kavetski, D. and Woods, R.: Rainfall uncertainty in
hydrological modelling: An evaluation of multiplicative error models, J. Hydrol., 400(1-2),
83-94, doi:10.1016/j.jhydrol.2011.01.026, 2011.

McMillan, H., Krueger, T. and Freer, J.: Benchmarking observational uncertainties for
hydrology: rainfall, river discharge and water quality, Hydrol. Process., 26(26), 4078-4111,
d0i:10.1002/hyp.9384, 2012.

McMillan, H. K., Booker, D. J. and Cattoén, C.: Validation of a national hydrological model,
J. Hydrol., 541, 800-815, doi:10.1016/j.jhydrol.2016.07.043, 2016.

Mendoza, P. A., Clark, M. P., Barlage, M., Rajagopalan, B., Samaniego, L., Abramowitz, G.
and Gupta, H.: Are we unnecessarily constraining the agility of complex process-based
models?, Water Resour. Res., 51(1), 716-728, doi:10.1002/2014WR015820, 2015.

Metcalfe, P., Beven, K. and Freer, J.: Dynamic TOPMODEL: A new implementation in R

and its sensitivity to time and space steps, Environ. Model. Softw., 72, 155-172,
doi:10.1016/j.envsoft.2015.06.010, 2015.

30



10

15

20

25

30

35

40

Metcalfe, P., Beven, K., Hankin, B. and Lamb, R.: A modelling framework for evaluation of
the hydrological impacts of nature-based approaches to flood risk management, with
application to in-channel interventions across a 29-km2 scale catchment in the United
Kingdom, Hydrol. Process., 31(9), 1734-1748, doi:10.1002/hyp.11140, 2017.

Mizukami, N., Clark, M. P., Newman, A. J., Wood, A. W., Gutmann, E. D., Nijssen, B.,
Rakovec, O. and Samaniego, L.: Towards seamless large-domain parameter estimation for
hydrologic models, Water Resour. Res., 53(9), 8020-8040, doi:10.1002/2017WR020401,
2017.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part | — A
discussion of principles, J. Hydrol., 10(3), 282-290, d0i:10.1016/0022-1694(70)90255-6,
1970.

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J.,
Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T. and Duan, Q.: Development of a large-
sample watershed-scale hydrometeorological data set for the contiguous USA: data set
characteristics and assessment of regional variability in hydrologic model performance,
Hydrol Earth Syst Sci, 19(1), 209-223, d0i:10.5194/hess-19-209-2015, 2015.

Page, T., Beven, K. J., Freer, J. and Neal, C.: Modelling the chloride signal at Plynlimon,
Wales, using a modified dynamic TOPMODEL incorporating conservative chemical mixing
(with uncertainty), Hydrol. Process., 21(3), 292—-307, doi:10.1002/hyp.6186, 2007.

Pechlivanidis, I. G. and Arheimer, B.: Large-scale hydrological modelling by using modified
PUB recommendations: the India-HYPE case, Hydrol Earth Syst Sci, 19(11), 4559-4579,
doi:10.5194/hess-19-4559-2015, 2015.

Perrin, C., Michel, C. and Andréassian, V.: Does a large number of parameters enhance
model performance? Comparative assessment of common catchment model structures on 429
catchments, J. Hydrol., 242(3-4), 275-301, doi:10.1016/S0022-1694(00)00393-0, 2001.

Peters, N. E., Freer, J. and Beven, K.: Modelling hydrologic responses in a small forested
catchment (Panola Mountain, Georgia, USA): a comparison of the original and a new
dynamic TOPMODEL, Hydrol. Process., 17(2), 345-362, doi:10.1002/hyp.1128, 2003.

Quinn, P. F., Beven, K. J. and Lamb, R.: The in(a/tan/B) index: How to calculate it and how
to use it within the topmodel framework, Hydrol. Process., 9(2), 161-182,
doi:10.1002/hyp.3360090204, 1995.

Robinson, E. L., Blyth, E., Clark, D. B., Comyn-Platt, E., Finch, J. and Rudd, A. C.: Climate
hydrology and ecology research support system potential evapotranspiration dataset for Great
Britain (1961-2015) [CHESS-PE], NERC Environ. Inf. Data Cent.,
doi:https://doi.org/10.5285/8baf805d-39ce-4dac-b224-c926ada353b7, 2016.

Rudd, A. C., Bell, V. A. and Kay, A. L.: National-scale analysis of simulated hydrological
droughts (1891-2015), J. Hydrol., 550, 368—385, doi:10.1016/j.jhydrol.2017.05.018, 2017.

Samaniego, L., Kumar, R. and Attinger, S.: Multiscale parameter regionalization of a grid-

based hydrologic model at the mesoscale, Water Resour. Res., 46(5),
doi:10.1029/2008WR007327, 2010.

31



10

15

20

25

30

35

40

Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N., Eisner, S.,
Muller Schmied, H., Sutanudjaja, E. H., Warrach-Sagi, K. and Attinger, S.: Toward seamless
hydrologic predictions across spatial scales, Hydrol Earth Syst Sci, 21(9), 4323-4346,
doi:10.5194/hess-21-4323-2017, 2017.

Seibert, J., Vis, M. J. P., Lewis, E. and Meerveld, H. J. van: Upper and lower benchmarks in
hydrological modelling, Hydrol. Process., 32(8), 1120-1125, doi:10.1002/hyp.11476, 2018.

Soille, P.: Optimal removal of spurious pits in grid digital elevation models, Water Resour.
Res., 40(12), W12509, doi:10.1029/2004WR003060, 2004.

Tanguy, M., Dixon, H., Prosdocimi, I., Morris, D. G. and Keller, V. D. J.: Gridded estimates
of daily and monthly areal rainfall for the United Kingdom (1890-2015) [CEH-GEAR],
NERC Environ. Inf. Data Cent., doi:https://doi.org/10.5285/33604ea0-c238-4488-813d-
Oad9ab7c51ca, 2016.

Thames Water: Draft Water Resources Management Plan 2020 - 2100, Thames Water
Utilities Ltd, Reading, UK., 2017.

Veldkamp, T. I. E.,, Zhao, F., Ward, P. J., de Moel, H., Aerts, J. C. J. H., Schmied, H. M,
Portmann, F. T., Masaki, Y., Pokhrel, Y., Liu, X., Satoh, Y., Gerten, D., Gosling, S. N.,
Zaherpour, J. and Wada, Y.: Human impact parameterizations in global hydrological models
improve estimates of monthly discharges and hydrological extremes: a multi-model
validation study, Environ. Res. Lett., 13(5), 055008, doi:10.1088/1748-9326/aab96f, 2018.

Wada, Y., Wisser, D. and Bierkens, M. F. P.: Global modeling of withdrawal, allocation and
consumptive use of surface water and groundwater resources, Earth Syst. Dyn., 5(1), 15-40,
doi:10.5194/esd-5-15-2014, 2014.

Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V.,
Kumar, P., Rao, P. S. C., Basu, N. B. and Wilson, J. S.: The future of hydrology: An evolving
science for a changing world, Water Resour. Res., 46(5), doi:10.1029/2009WR008906, 2010.

Westerberg, I. K., Guerrero, J.-L., Younger, P. M., Beven, K. J., Seibert, J., Halldin, S., Freer,
J. E. and Xu, C.-Y.: Calibration of hydrological models using flow-duration curves, Hydrol
Earth Syst Sci, 15(7), 2205-2227, doi:10.5194/hess-15-2205-2011, 2011.

Westerberg, I. K., Wagener, T., Coxon, G., McMillan, H. K., Castellarin, A., Montanari, A.
and Freer, J.: Uncertainty in hydrological signatures for gauged and ungauged catchments,
Water Resour. Res., 52(3), 1847-1865, doi:10.1002/2015WR017635, 2016.

Wood, E. F., Sivapalan, M., Beven, K. and Band, L.: Effects of spatial variability and scale
with implications to hydrologic modeling, J. Hydrol., 102(1), 2947, doi:10.1016/0022-
1694(88)90090-X, 1988.

Wood, E. F., Roundy, J. K., Troy, T. J., Beek, L. P. H. van, Bierkens, M. F. P., Blyth, E.,
Roo, A. de, Déll, P., Ek, M., Famiglietti, J., Gochis, D., Giesen, N. van de, Houser, P., Jaffé,
P. R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield,
J., Wade, A. and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a
grand challenge for monitoring Earth’s terrestrial water, Water Resour. Res., 47(5),
d0i:10.1029/2010WR010090, 2011.

32



10

15

Yadav, M., Wagener, T. and Gupta, H.: Regionalization of constraints on expected watershed
response behavior for improved predictions in ungauged basins, Adv. Water Resour., 30(8),
1756-1774, doi:10.1016/j.advwatres.2007.01.005, 2007.

Yilmaz, K. K., Gupta, H. V. and Wagener, T.: A process-based diagnostic approach to model
evaluation: Application to the NWS distributed hydrologic model, Water Resour. Res., 44(9),
n/a—n/a, doi:10.1029/2007WR006716, 2008.

Younger, P. M., Gadian, A. M., Wang, C.-G., Freer, J. E. and Beven, K. J.: The usability of
250 m resolution data from the UK Meteorological Office Unified Model as input data for a
hydrological model, Meteorol. Appl., 15(2), 207-217, doi:10.1002/met.46, 2008.

Zaherpour, J., Gosling, S. N., Mount, N., Schmied, H. M., Veldkamp, T. I. E., Rutger
Dankers, Eisner, S., Gerten, D., Gudmundsson, L., Haddeland, I., Hanasaki, N., Hyungjun
Kim, Leng, G., Liu, J., Masaki, Y., Oki, T., Pokhrel, Y., Satoh, Y., Jacob Schewe and Wada,
Y.: Worldwide evaluation of mean and extreme runoff from six global-scale hydrological
models that account for human impacts, Environ. Res. Lett., 13(6), 065015,
d0i:10.1088/1748-9326/aac547, 2018.

Zhao, R. J.: Watershed Hydrological Modelling, Water Resour. and Electr. Power Press,
Beijing., 1984.

33



Table 1. Overview of DECIPHeR’s stores, fluxes and parameters

Stores

Srz Root Zone Storage m
Suz Unsaturated Storage m
Sex Saturation Excess Storage m

Sp Saturated Storage Deficit m
Internal Fluxes

Quz Drainage Flux m ts?!
QN Upslope Input Flow mts?!
Qexs Saturated Excess Flow mts?
Qexus Precipitation Excess Flow m ts?!
Qor Overland Flow (sum of Qexs and Qexus) mts?t
Qsat Saturated Flow mts?t
External Fluxes: Input

P Precipitation m ts?t
E Potential Evapotranspiration mts?!
Qobs Observed Discharge (for starting value of Qsar) mts?t
External Fluxes: Output

Qsim Simulated Discharge mts?t
Model Parameters

SZM Form of exponential decline in conductivity m
SRimax Maximum root zone storage m
SRinit Initial root zone storage m

Ta Unsaturated zone time delay tsm mts™?
CHV Channel routing velocity mts?t
In(To) Lateral saturated transmissivity In(m?tst)
Smax Maximum effective deficit of saturated zone m
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Table 2. Parameter Ranges

Parameter Units Lower Bound Upper Bound
SZM m 0.001 0.15

SRmax m 0.005 0.3

SRinit m 0 0.01

Ta m hr! 0.1 40

CHV m hr? 100 4000

In(To) In(m?hrt) -7 7

Sax m 0.3 3
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Table 3. Evaluation metrics used in the study
Focus Performance Threshold

Evaluation Equation
Metric q Weaker Stricter
Nash Sutcliffe NSE = 1 - 2220~ B Flows, 0 05
icie Cy i=1(Q0 - QO) T|m|ng
.. S—0Q0
Bias in Runoff RRBias = Z(Q—Q) * 100 Water 20 10
Ratio XQo Balance
L. %5 (1 S,) —1 [0)
Bias in Low Flow LFVBias = —100 * Zp=70 ;);g (QSp) — 10g(Q0p)) Low 20 10
Volume p=70(108(Q0p)) Flows
Bias in Slope of
the Flow
Duration Curve . [log(QS30) — 10g(QS70)] — [log(Q030) — 1og(Q07)] Flow
SFDCB = L 2 1
betweedn;gg 30 1as [log(Q030) — 10g(Q07)] 100 ariapility 0 0
an
percentile
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Table 4. Summary statistics of DECIPHeR performance metrics for GB with catchments grouped by
runoff coefficient and base flow index. Percentiles are taken from the behavioural ensemble from all
catchments within each group. The column ‘N’ indicates the number of catchments in each group.
Cells are coloured according to the thresholds outlined in section 4.3.3, green for the stricter
threshold, yellow for the weaker threshold and red where it doesn’t meet either of the thresholds.

Runoff Coefficient

Base Flow Index

N NSE () RRBias (%) N NSE RRBias
95th  Med 5th | 95th Med 5th 95th Med 5th | 95th Med 5th
002 | 8 | =73 44 035 | 41 177 8% | 20 |011 044 076 | 31 054 | 134
02-04 | 362 | 14 036 073 | 05 | 22 123 | 320 [ 04 057 079 | -12 14 100
04-06 | 348 | 012 054 081 | 34 58 . 39 | 629 |01 054 080 | -89 39 81
06-08 | 352 | 031 065 083 | -10 014 14 | 257 | -15 051 082 | -10 8 113
>0.8 | 219 | 002 064 081 | 41 6 35 | 140 | -37 004 083 | 32 31 540
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Table 5. Catchment characteristics and model performance for the six catchments shown in Figure 9. Baseflow index is a measure of the proportion of the
river runoff that can be classified as baseflow and is derived from Marsh and Hannaford (2008). Water balance is calculated as mean annual rainfall minus
mean annual discharge and potential evapotranspiration (as actual evapotranspiration is not available). NSE and BiasRR for the best ranked simulation
according to the combined score described in Section 3.3.3 are shown for each catchment alongside the NSE and BiasRR derived from the mean of the
behavioural ensemble.

Mean Mean Annual Mean Best Ranked
Gauge . Gauging Catchment Annual Potential Annual R”'?O.ff Water Baseflow Simulation Ensemble Mean
River ! Area - - f Coefficient Balance
Number Station (km?) Rainfall | Evapotranspiration | Discharge o) (mmiyear) Index (-) . .
(mm/year) (mm/year) (mm/year) ! NSE (-) RRBias NSE (-) RRBias

(%) (%)

76014 | Eden ;é;khbg] 69 1531 453 1230 08 152 0.26 .17 26 0.79 49
37005 Colne Lexden 238 582 529 143 0.25 -91 0.52 0.63 18.8 0.43 21.3
43005 Avon Amesbury 324 781 513 352 0.45 -84 091 0.91 -0.1 0.93 0.3
43004 Bourne | Laverstock 164 800 514 153 0.19 133 0.91 <0 1474 <0 148
Cow 0.10 -85 0.10 -12.9

25023 Tees Green 58 1696 446 1598 0.94 -348 0.57
Reservoir
39001 | Thames | Kingston 9948 724 513 200 0.28 11 0.65 0.56 49 0.40 48.9
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Digital Terrain Analysis
Catchment to Global Datasets -
(==
[ Topographic Information

(elevation, slope, accumulated
area, topographic index)

(gauged or ungauged points)

[ Landscape Layers

[ Gauge and River Network

(e.g. geology, soils, land use)

(e.g. gridded rainfall or PET)

T

[ Spatially Varying Inputs

HRU HRU HRU HRU
Setup A Setup B Setup C Setup D

River Reach

QO Gauged Point O Ungauged Point 7 HRU Number

Figure 1. Digital Terrain Analysis and simplified examples of using classification layers to discretise

a hypothetical catchment into Hydrological Response Units, from a) the gauge network, b) landscape

layer with a chalk outcrop for HRU 2, c) the gauge network, ungauged flow point and landscape layer
and d) same as ¢ with individual river reach lengths specified
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Hydrological Response
Units

Figure 2. DECIPHeR represents spatial heterogeneity in the landscape through hydrological response
units (HRUs). Each HRU can have a different model structure, parameters or inputs.
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In(To)
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o SZM
Stores
Parameters
External Fluxes QSlM

Figure 3. Simplified conceptual diagram of the model structure currently implemented in
DECIPHeR. All scientific notations are described in Table 1.
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10

Figure 4. Hydro-climatic characteristics of 1366 GB catchments (a) Annual Rainfall (mm/year), (b)
Annual potential evapotranspiration (mm/year) (c) Runoff Coefficient (-), d) Slope of the Flow
Duration Curve between the 30t and 70t percentiles (-). Min/max values on colorbars have been
chosen to show clear differences between catchments.
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A

Hydrologically consistent digital
elevation model (50m)

—I

Create river network from EA
headwaters routed downstreamto
coastal zones

L

Identify gauges on all rivers and cut
catchment masks

Calculate slope and accumulated
area to derive basic HRU definition

Spatially varying inputs — 5km input
grid for rainfall and PET

~~

Derive hydrological response units
for principal basins from
classification layers

Figure 5. Inputs and Outputs of Digital Terrain Analyses for GB a) 50m Hydrologically Consistent
Digital Elevation Model, b) DECIPHeR River Network, c) Nested Catchment Mask, d) Topographic

Index, €) 5km input grid
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[ Istricter Threshold [l Weaker Threshold
100 1 T ' T T T T 1

il . -

80}
1 1|
60|
50|
a0t

30

Percentage of Catchments (%)

20

NSE  RRBias LFVBias SFDCBias NSE  RRBias LFVBias SFDCBias
Entire Ensemble Behavioural Ensemble

Figure 6. Percentage of catchments for each metric that meet the weaker and stricter performance
thresholds for the entire ensemble of 10000 model simulations and from the top 1% behavioural
5  ensemble of 100 model simulations generated from the combined ranking of the four metrics.
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Figure 7. Model performance for the best simulation (as defined by the combined rank across all four
metrics) for each evaluation metric a) NSE (-), b) Bias in Runoff Ratio (%), c) Bias in Low Flow
Volume (%), and d) Bias in Slope of the Flow Duration Curve between the 30t and 70" percentile
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Figure 8. Scatter plot of wetness index (mean annual precipitation divided by mean annual potential
evapotranspiration), runoff coefficient (mean annual discharge divided by mean annual precipitation)
and bias in runoff ratio for each GB catchment evaluated in this study. Any points above the
horizontal dotted line are where runoff exceeds total rainfall inputs in a catchment and any points
below the curved line are where runoff deficits exceed total potential evapotranspiration in a
catchment.
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a) 76014

b) 37005

c) 43005

d) 43004

e) 25023

f) 39001

Discharge (mm/day)

Precipitation {(mm/day)

[l Simulated 5-95th Percentile - = Simulated 50th Percentile —— Observed Discharge [IlllPrecipitation

Figure 9. Observed discharge and uncertainty bounds for the behavioural simulations (5" and 95" percentile of the likelihood-weighted simulated discharge)
for six catchments with different characteristics (shown in Table 5). The plots show a two year period (2010-2012) from the 55 year time series simulated.
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