
OceanMesh2D 1.0: MATLAB-based software for two-dimensional
unstructured mesh generation in coastal ocean modeling
Keith J. Roberts1, William J. Pringle1, and Joannes J. Westerink1

1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall,
Notre Dame, IN

Correspondence: Keith J. Roberts (krober10@nd.edu)

Abstract. OceanMesh2D is a set of MATLAB functions with pre- and post-processing utilities to generate two-dimensional

(2D) unstructured meshes for coastal ocean circulation models. Mesh resolution is controlled according to a variety of feature

driven geometric and topo-bathymetric functions. Mesh generation is achieved through a force-balance algorithm to locate

vertices and a number of topological improvement strategies aimed at increasing the minimum triangle quality. The placement

of vertices along the mesh boundary is adapted automatically according to a mesh size function eliminating the need for contour5

simplification algorithms. The software expresses the mesh design and generation process via an objected-oriented framework

that facilitates efficient workflows that are flexible and automatic. This paper illustrates the various capabilities of the software

and demonstrates its utility in realistic applications by producing high-quality, multiscale, unstructured meshes.

1 Introduction

Many phenomena in the coastal ocean, such as tides, tsunamis and storm surges, can be accurately modeled by the shallow wa-10

ter equations. Unstructured meshes are often used for numerical simulations of the coastal ocean because they can resolve the

large range of horizontal length scales necessary for accurate hydrodynamic predictions and can conform well to complicated

shoreline boundaries. The accuracy and the associated computational expense of the mesh are in direct conflict, which makes

the mesh design process challenging. Computational work is governed by the distribution of vertices (mesh resolution) and

accuracy is determined, in part, by the representation of relevant geometrical and bathymetric features that may influence the15

simulation. Due to this balance between accuracy and computational work, the prescription of the mesh resolution often leads to

a highly subjective mesh generation process which is often handled through graphical user interface (GUI) based software, e.g.,

Surface-water Modeling System (https://www.aquaveo.com/software/sms-surface-water-modeling-system-introduction), Blue

Kenue (https://www.nrc-cnrc.gc.ca/eng/solutions/advisory/blue_kenue_index.html) and Delft’s Flexible Mesh suite (https://

www.deltares.nl/en/software/delft3d-flexible-mesh-suite/). Although GUIs allow the user to carefully edit detailed aspects of20

the mesh they do not promote automation, objectivity, or reproducibility. To address this issue, the ocean modeling commu-

nity have developed approaches and tools to support the automated generation of unstructured meshes for coastal circulation

problems (Hagen et al., 2002; Bilgili et al., 2006; Gorman et al., 2006, 2008; Lambrechts et al., 2008; Conroy et al., 2012; En-

gwirda, 2017; Candy and Pietrzak, 2018; Avdis et al., 2018; Remacle and Lambrechts, 2018). Most works have either tried to
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minimize topo-bathymetric interpolation error on the mesh (e.g., Gorman et al., 2006) or construct the mesh based on resolving

relevant physical processes in the domain and/or preserving the geometry of the shoreline boundary (e.g., Conroy et al., 2012;

Engwirda, 2017). An iterative a posteriori method which aims to keep the local truncation error constant throughout the mesh

has also been employed (Hagen et al., 2002).

Modern interpreter-based programming environments such as MATLAB and Python are attractive for many users to develop5

mesh generators because they include a plethora of built-in or community developed functions, toolboxes, and packages that

are freely available. For instance, a simple and easily adaptable mesh generator based on the concept of force equilibrium and

written in a few dozen MATLAB lines is DistMesh2D (Persson and Strang, 2004). The simplicity of the force-equilibrium

algorithm makes it attractive as a general-purpose mesh generator by allowing users and developers to adapt it for various

applications (e.g., Engsig-Karup et al., 2008; Liu, 2009; Nguyen et al., 2010; Wang et al., 2014). However, due to the general10

nature of DistMesh2D, it tends to be computationally inefficient for the large and highly multi-scale geophysical domains that

are encountered in coastal ocean hydrodynamic modeling problems. Additionally, there are a number of pre-processing steps

that must be performed to prepare the geospatial data for meshing and a number of post-processing steps to make sure the

mesh is amenable for simulation. For instance, one must obtain a shoreline boundary that will lead to a mesh that is practical

to simulate with. By integrating the tools to pre-process the geospatial data into the mesh generator directly, it reduces the time15

spent performing these essential tasks and largely automates the mesh development process.

In a related previous work, the Advanced Mesh generator (ADMESH; Conroy et al., 2012) implemented a DistMesh2D

based coastal ocean mesh generator in MATLAB. In this work, we build on many of the ideas described in ADMESH with the

following primary improvements: a) a focus on computational efficiency to enable the software to become practically useful

even for large geophysical datasets (e.g., ∼1 km resolution global topo-bathy) in the MATLAB scripting language; b) the20

inclusion of pre- and post-processing workflows; c) a greater variety of mesh size functions and flexibility in their application

which offers more control over mesh resolution placement; and critically: d) code written in an open-source environment for the

benefit of the community. The codes place emphasis on facilitating automatic mesh design workflows that lead to the creation

of meshes and the necessary model inputs for a numerical simulation. These mesh generation workflows (i.e., a user-specified

MATLAB control script) are typically represented by a few lines of MATLAB code and take between minutes to an hour to25

generate relatively large, multiscale, high-fidelity meshes (potentially global-to-channel scale) and their auxiliary components

automatically.

The software is written in an objected-oriented framework that is divided into a set of standalone classes. Special attention

has been made to ensure that only open-source functions are required to generate a mesh. Further, in its current state the

software contains a number of post-processing functions specific to the ADvanced CIRCulation model (ADCIRC; Luettich30

and Westerink, 2004), but these can be adapted to other solvers in the future. The rest of this paper is structured as follows:

we begin by introducing the framework and organization of the code followed by a detailed description of each of the four

standalone classes, and ending with a discussion on how the software can be useful for coastal ocean model development.
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Table 1. The parameters (defined in Sect. 3.3) that are used to generate the three example meshes for this paper, which were released with
the toolkit. The final mesh quality (defined in Sect. 3.1.1) and the number of iterations in the mesh generator to achieve this are noted.

Region Meshing Parameters Mesh Quality Iterations
h0 (m) hmax (m) αR αwl αslp αg αch ∆t (s) qE qEmin 3 qL3σ > 0.75

JBAY 15 1,000 3 – – 0.15 – 2 0.97 0.60 38
GBAY 60 1,000 3 – – 0.25 0.10 – 0.97 0.53 71
PRVI 10 & 30 & 1,000∗ 10,000 5 30 15 0.2 – 0∗∗ 0.97 0.45 30

∗: Different values of h0 are used for each separate mesh size function domain as indicated in Fig. 1 (PRVI)
∗∗: Setting ∆t = 0 invokes the automatic time step selector option (see section 3.3.7)

1.1 Example problems

To demonstrate the overall workflow and the design of the classes, three examples located along the East Coast and Gulf

Coast of the United States of America are documented (Fig. 1). The first example produces a mesh of the Jamaica Bay

estuary in New York (JBAY), demonstrating the utility of the software in incorporating high-resolution (∼1/9-arc second

or approximately 3-m horizontal resolution) LIght Detection And Ranging (LIDAR) datasets with fine (∼15-m) resolution5

triangular elements nearshore. The second example meshes the Galveston Bay in Texas (GBAY), demonstrating the utility of

a new mesh size function that can be used to target resolution along deep-draft marine navigation and tidal channels. The third

example demonstrates how the software can produce truly multiscale unstructured meshes in less than one hour by building

a mesh of the Western Atlantic Ocean with focused refinement around Puerto Rico and the U.S. Virgin Islands (PRVI). See

Table 1 for details of the various options/parameters that were used to generate these example meshes.10

2 Architecture Overview

The automated generation of geophysical-use unstructured meshes often requires a number of user defined parameters and a

variety of geospatial data as inputs. As a result, the mesh is strongly related to the algorithms and data that were used to create

it. These task- and object- specific properties of the mesh generation process provide the motivation behind the development

of an objected-oriented programming (OOP) approach. In this software, the use of OOP leads to automation and promotes the15

usage of efficient workflows.

OceanMesh2D is composed of four classes (geodata, edgefx, meshgen, and msh, see Fig. 2), and a utilities directory contain-

ing various standalone functions. The geodata class is used as a pre-processor to mesh generation and creates an appropriate

meshing boundary from user-supplied geospatial datasets and inputs. The edgefx class enables the user to build standardized

mesh size functions with a variety of parameters and constraints. The meshgen class is associated with mesh generation in-20

heriting various options from the geodata and edgefx classes. The msh class is a data storage class for the mesh and related

attributes. Additional technical information can be found in the user guide (Roberts and Pringle, 2018).

Although each individual class is standalone, there exists a specific workflow that is typically followed to build coastal ocean

meshes with the OceanMesh2D software (Fig. 2). The structure of this workflow enables the user to create numerous instances
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Figure 1. The geographical location and triangulation of the three meshes used as examples in this work. The minimum mesh sizes (h0)
are annotated in black text and the names of the digital elevation models (DEMs) used in the construction of the mesh size functions are
annotated in red text on each panel. The colormap indicates topographical data (bathymetric data was removed for production of this figure)
in the DEMs, which are freely available through the NOAA Bathymetric data viewer website (https://coast.noaa.gov/dataviewer).
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geodata: process geospatial data

edgefx: build mesh size function

meshgen: generate mesh
based on mesh boundaries
and mesh size function

msh: store and visu-
alize mesh topology

Figure 2. Description of the four classes and the standard workflow in OceanMesh2D. The black arrows indicate that multiple instances of
the geodata and edgefx classes can generated and used as inputs to the meshgen class (see Sect. 3.1.4).

of the geodata and edgefx classes that can be subsequently passed to the meshgen class. Numerous instances of the geodata

and edgefx classes can be combined to seamlessly mesh high-resolution insets contained within wider coverage geospatial

datasets. The ability to incorporate datasets over a wide-range of scales is particularly useful and pragmatic given the finite

computational memory and highly-variable horizontal resolution of available high-resolution topo-bathymetric data.

3 Component Design5

In the following section, each of the four classes that comprise OceanMesh2D are described.

3.1 Mesh generation : meshgen class

Mesh generation is achieved through the use of the DistMesh2D algorithm with a number of modifications to help improve

the quality of the final triangulation, the speed of the mesh generation, and the memory footprint of the overall application.

It’s noted that the architecture of OceanMesh2D software could additionally support other mesh generation packages be-10

sides DistMesh2D, such as JIGSAW-GEO (Engwirda, 2017). In its current state, the class is a wrapper function around the

DistMesh2D algorithm that automatically uses classes that describe the meshing domain and the mesh size functions.

For coastal mesh generation, a key advantage of using the DistMesh2D smoothing-based algorithm over Delaunay refine-

ment and/or Frontal Delaunay mesh generation algorithms is that the boundary is implicitly defined through a signed-distance

function. While the boundary of the meshing domain is stored as a set of linear segments, these segments do not represent the15

boundary of the final mesh as all vertices can move during mesh generation in accordance with the mesh size function. The

final mesh boundary that approximates the shoreline is thus dependent on the mesh size function and post-processing strate-
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gies that we employ to ensure that there are no self-intersecting boundaries or small disconnected portions of the mesh. Thus,

the need for shoreline approximation pre-processing (e.g. Gorman et al., 2007) to define the mesh boundary as required by

Delaunay refinement and/or Frontal Delaunay mesh generation approaches (Gorman et al., 2008) is eliminated. In this section,

we document the mesh improvement strategies that occur during the execution of the DistMesh2D algorithm that lead to a

high-quality approximate representation of the domain and are in congruence with mesh size functions.5

3.1.1 Termination criterion

In the DistMesh2D algorithm, the vertices of the mesh are allowed to move iteratively to achieve a force equilibrium state in

which the edges of the triangulation are in balance with an external force. After some number of meshing iterations, the algo-

rithm must then terminate. Persson and Strang (2004) proposed a termination criterion based on convergence to a configuration

of vertices in which negligible movement of the mesh vertices would occur with additional meshing iterations. In practice, our10

studies have found that a configuration of vertices with negligible movement is difficult to achieve within hundreds of meshing

iterations for realistic coastal ocean mesh domains because of the complex shoreline boundary and mesh size functions. Thus,

we propose an alternative termination criterion based on element quality.

The notion of what constitutes a high quality mesh is application dependent. Mesh quality can be viewed as a combination

of geometric element measures, application dependencies, and numerics (Shewchuk, 2002). A geometric measure of triangle15

equilateral-ness can be calculated through:

qE = 4
√

3AE

(
3∑
i=1

(λ2E)i

)−1

(1)

where AE is the area of the triangle and (λE)i is the length of the ith edge of the triangle. qE = 1 corresponds to an equilateral

triangular element and qE = 0 indicates a triangle that degenerates to a line. A mesh with a sufficiently high minimum bound

on qE is often desired (Shewchuk, 2002; Persson and Strang, 2004; Engwirda, 2017). However, we find that a minimum bound20

on qE is a strict measure for large domains with millions of elements and complex shoreline features, and difficult to achieve

within the modified DistMesh2D algorithm (Fig. 3). Instead, we use the following termination criterion:

qL3σ ≡ qE − 3σqE > 0.75 (2)

where the over-line and σ denote the mean and standard deviation respectively, and qL3σ is the “three-sigma lower control

limit” element quality, used as a proxy for the minimum element quality.25

Upon termination through the above criterion the majority of triangles are of adequate quality. Moreover, in the approach

used here, a number of mesh cleaning steps are performed after this mesh generation termination criterion has been met

(Sect. 3.1.3) in order to improve a typically small number of the worst quality (Fig. 3).

6



Figure 3. The geometric triangle quality q, Eq. (1), as a function of iterations in the mesh generation process for the three mesh examples
(Fig. 1 and Table 1). The dotted and solid lines indicate the progression of quality metrics with the mesh improvement strategies turned off
and on, respectively, during mesh generation. At the end of mesh generation, a secondary round of mesh improvement strategies are applied
and the resulting quality after this step is indicated by the colored asterisk. In each panel, the dotted vertical black line demarcates when the
mesh generation process finished.

3.1.2 Mesh improvement strategies during mesh generation

Approximately every ten meshing iterations the qL3σ element quality starts to saturate. The termination criteria can be met

more quickly by relying on the following mesh improvement strategies that are conducted every ten iterations (except item 4

which is executed every meshing iteration):

1. Edges in the mesh that are greater than two times the length as given by the mesh size function (at the midpoint of the5

edge) are bisected.

2. Edges that are half as short as their intended length are deleted.

3. A vertex not on the mesh boundary that is connected to less than or equal to four vertices is deleted (this is also performed

when the termination criterion is satisfied).

4. Triangles with exceedingly thin angles (< 5◦) and large angles (> 175◦) are removed every iteration.10

Improvement strategies one and two add and delete vertices when they are part of edges that are too long and short, which

produces a set of new edges that more closely approximate the mesh size function. Improvement strategy three directly reduces

the occurrence of low vertex-to-vertex connectivity (valency of three or four) where a valency of six is ideal (Canann et al.,

1993). Note that improvement strategy one also helps to reduce high vertex-to-vertex connectivity indirectly by avoiding steep

transitions in the element size where valencies greater than six tend to develop. The fourth improvement strategy removes15

triangles with small and large angles allowing neighboring vertices to form a triangulation that has a better geometric quality.

We demonstrate the benefit from using these mesh improvement strategies through the three example meshes (Fig. 1, Ta-

ble 1). The time evolution of the geometric quality demonstrates the benefit directly from these mesh improvement strategies.

Figure 3 illustrates that in all three examples the mesh improvement strategies lower the number of iterations necessary to
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achieve the termination criterion. Further, the rate at which qL3σ increases is accelerated when mesh improvement strategies

are enabled. Note that in the subsequent iteration after each improvement cycle (ten iterations), a slight degradation in the

geometric quality (Fig. 3) can occur as edges and vertices are decimated. For the development of large multi-scale meshes,

20-50 iterations can often save between 5-20 minutes for the problems to reach the termination criterion. Based on the ter-

mination criterion and the improvements listed here, we generally find that complex coastal ocean meshes are generated in5

approximately 30-100 iterations. Thus, the maximum allowed number of iterations is commonly set to 100, which typically

takes a few minutes to half an hour to compute depending primarily on the geometric complexity of the boundary and the ratio

of domain size to minimum element size.

3.1.3 Mesh improvement strategies after mesh generation

After mesh generation has terminated, a secondary round of mesh improvement strategies is applied that is focused towards10

improving the geometrically worst quality triangles that often occur near the boundary of the mesh and can make simulation

impossible (e.g., Fig. 4(a)). Low quality triangles can occur near the mesh boundary because the geospatial datasets used

may contain features that have horizontal lengthscales smaller than the minimum mesh resolution. To handle this issue, a

set of algorithms are applied that iteratively address the vertex connectivity problems. The application of the following mesh

improvements strategies results in a simplified mesh boundary that conforms to the user-requested minimum element size.15

Topological defects in the mesh can be removed by ensuring that it is valid, defined as having the following properties:

1. The vertices of each triangle are arranged in the counter-clockwise order.

2. Conformity: a triangle is not allowed to have a vertex of another triangle in its interior.

3. Traversability: the number of boundary segments are equal to the number of boundary vertices, which guarantees a

unique path along the mesh boundary.20

Properties one and two are handled with the fixmesh.m function that was provided with the original DistMesh2D package.

Property three (traversability) is often not satisfied upon termination of the mesh generator because a simplification of the

shoreline was not applied. Fragmented patches of triangles may appear near the shoreline boundary destroying traversability

(Fig. 4).

A function, called Make_Mesh_Boundaries_traversable, was developed to iteratively remove patches of elements that are25

either disconnected from the major portion of the mesh or are not disconnected but prevent traversability. The former set of

offending elements are defined as being “exterior” disjoint components of the mesh. Exterior disjoint components of the mesh

are defined as: starting from a random seed element in the mesh, the total area of a connected set of elements (i.e., elements

that share an edge) is smaller than a user-defined threshold µco. The user-defined threshold can be defined in terms of either

the total mesh area-fraction or an absolute area cutoff (by default we set µco = 0.25 which is equivalent to a 25% total mesh30

area-fraction cutoff). These patches are identified and removed through the use of a breadth-first search (BFS) (Fig. 4(a)-(b)).

The latter set of offending elements are defined as being “interior” elements of the mesh that interfere with the traversability
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(a) (b) (c) (d)

Figure 4. Mesh triangulation within the JBAY example before and after different stages of the Make_Mesh_Boundaries_Traversable function
enabling mesh traversability. (a) After initial mesh generation (before entry to function); (b) After deleting offending exterior elements;
(c) After deleting offending interior elements; (d) After exit of function once all offending exterior and interior elements are deleted and
traversability is obtained. The thick blue line indicates the mesh boundary at each stage, and red patches indicate the elements that are
deleted between stages (sub-plots).

of the mesh boundary path. First, an offending vertex that has more than two connecting boundary edges is identified. One of

the elements connected to this vertex is chosen to be deleted based on a hierarchy of, first, triangles that have two boundary

edges, and second, triangles with the lowest quality, qE (Fig. 4(b)-(c)). Offending exterior and interior elements are deleted

iteratively until traversability is achieved (Fig. 4(c)-(d)).

After ensuring traversability, three additional functions, depicted visually in Fig. 5, are applied to the mesh in the following5

order to improve mesh quality:

1. Fix_single_connec_edge_elements: elements that share an edge with only one other element (singly connected elements)

poorly approximate geospatial datasets and are thus removed from the mesh iteratively (Fig. 5(a),(d)).

2. bound_con_int: bounds the vertex-to-vertex connectivity (e.g., Fig. 5(b),(e)) in the mesh to a user-defined value in order

to improve mesh quality and gradation, and also increase solution accuracy and computational speed (Massey, 2015).10

3. direct_smoother_lur: provides additional improvement to the mesh quality by moving non-boundary vertices based on

a single-step implicit operation (Balendran, 1999) (Fig. 5(c),(f)). The application of this function significantly enhances

the statistical distribution of qE (Fig. 3).

3.1.4 Multiscale meshing approach

The DistMesh2D algorithm uses memory inefficiently for the development of multiscale regional and global meshes of the15

coastal ocean because it requires a uniform vertex spacing to initialize. The memory inefficiency becomes especially prob-

lematic when employing high-resolution elements locally to fully incorporate the information contained in high-resolution

geospatial datasets while using coarser mesh resolution elsewhere. To reduce the memory overhead when constructing re-

gional coastal meshes using the DistMesh2D algorithm, the meshgen class has been specifically developed to allow the user to

pass multiple instances of the boundary description (geodata) and mesh size (edgefx) classes to the meshgen class, an approach20
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Figure 5. The mesh improvement strategies that are applied in sequence from left to right after mesh generation, with the red ovals denoting
areas of change in the connectivity along with the function’s name that performs the operation. The top row indicates various regions in
the mesh before the improvement strategy, and the bottom row after improvement. Panels (a) and (d) indicate the deletion of elements that
share an edge with only one other element (singly-connected elements); panels (b) and (e) illustrate the reduction of the vertex-to-vertex
connectivity to an upper bound of six using the algorithms documented in Massey (2015); and panels (c) and (f) illustrate the single-step
implicit smoothing operation (Balendran, 1999) that is used to maximize the overall mesh quality.

that we term ‘multiscale meshing’. Instances of these classes are defined within axis-aligned bounding boxes (rectangles) that

reflect the available geospatial dataset coverage and can be partially or fully nested any number of times with largely disparate

mesh sizes between nests. Examples of the multiscale meshing technique are shown in Figs. 1 (PRVI) and 6 in which the mesh

sizes seamlessly transition between the different DEM extents.

Only minor modifications to the DistMesh2D algorithm were involved with enabling the multiscale meshing capability. The5

nested domains are evaluated in a loop inside DistMesh2D in a hierarchical order from comparatively coarser to finer resolution

minimum mesh sizes. The hierarchical evaluation of the force function enables vertices of the mesh to move between the

nested boxes so long as the outer box fully encloses the inner box. Since the finest local meshing boundary and mesh size

function take precedent within each nested box, it enables many variable resolution geospatial datasets to be included into the

mesh generation process simultaneously. In order for the multiscale meshing capability to work, it requires smooth mesh size10

transitions between nests. A routine (smooth_outer.m) was developed to ensure a smooth resolution transition occurs between

nested boxes by using a marching method (Persson, 2006) that has been adapted for structured grids.
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Figure 6. An example of the multiscale meshing technique applied to a set of domains around the New York/Long Island area. The green
boxes are specified by the user. The minimum resolution of the outermost green box in each panel is different: (a) it is 1 km, (b) 500 m, and
(c) 35 m. Notice how the regions of overlap gradually transition into each other.

In contrast to the development of nested coastal circulation models (Deleersnijder et al., 2010; Nash and Hartnett, 2014;

Debreu et al., 2012; Brown et al., 2016; Pringle et al., 2018) the application of the multiscale meshing capability allows

for the construction of a single seamless unstructured mesh with mesh size transitions that are bounded by the user-defined

allowable limit, while the resolution is not significantly altered away from the boundaries of their nests. The multiscale approach

is beneficial over traditional structured grid nesting approaches employed by ocean models because it avoids the need for5

an explicit coupling paradigm in the numerical solver as well as issues associated with interpolation and smoothing at the

interfaces between disparate resolution grids that ultimately reduce numerical accuracy.

3.2 Geospatial data: geodata class

The geodata class is a pre-processor to the mesh generator. It is used to create an appropriate mesh boundary description from

user supplied input files. The geodata class also stores the region of the digital elevation model (DEM) that overlaps with the10

desired meshing domain efficiently in memory. This DEM data is used in the construction and computation of a number of

mesh size functions (see edgefx class) and msh methods. The following section describes the methodologies to prepare the

mesh boundary description.

3.2.1 Projections

Mesh resolution sizes need to be accurately distributed according to the mesh size function. In order to accurately enforce these15

constraints on the Earth, a projection from the spherical geometry of the Earth to a planar one is necessary. In this software,

the mesh is generated and output in the World Geographic Coordinate System (WGS84). For the formation of some mesh size

functions that rely on bathymetric gradients and distances, we use a simple relationship between WGS84 degrees and planar

meters to calculate the underlying grid spacing:

δ∗lon = δlon
πRE
180

cosφ, δ∗lat = δlat
πRE
180

(3)20
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where δlon and δlat define the DEM resolution in WGS84 degrees between meridians and parallels, respectively, RE is the

mean radius of the Earth (≈ 6378 km), δ∗lon and δ∗lat are the distances between meridians and parallels in meters, and φ is

the latitude in radians. To enforce mesh resolution constraints, we use the Haversine formula to convert between WGS84 and

meters. An assumption is made that the length in geographic degrees forms a horizontal (i.e., latitude parallel) edge starting

at the point it is defined at. The distance between the start and end point of this edge are converted to Great Circle distances5

using the Haversine method and then, later, we invert the Haversine formula and solve for WGS84 degrees by assuming that

the distance between latitudes is zero:

hd = 2arcsin

(
secφsin

(
h∗

2RE

))
(4)

where h∗ is the length of the edge in meters, and hd is the length of the edge in WGS84 degrees. The assumption that the

edge length extrudes along a latitude parallel is reasonable in practice because the mesh size function constraints matter mostly10

in areas of relatively high mesh refinement and, in these locations, the variation in φ is small.

3.2.2 Automatic mesh boundary definition

Since a coastline is often approximated by a series of piecewise linear segments, the mesh boundary is often unbounded on the

ocean-side and is not a polygon (i.e., first point does not equal the last). Thus, the user often has to turn their segments that

represent the shoreline into a closed polygon for any meshing algorithm to work properly. To make this process automatic, we15

enable the user to specify the meshing region as a rectangular box, bbox. The mesh domain is then defined as the intersection of

the area enclosed by the bbox and the area enclosed by the shoreline polygon. The boundary of the meshing domain is implicitly

defined through the use of a signed distance function, d, whereby the distance to the nearest coastline point is zero (Persson

and Strang, 2004). Note that a negative value of the signed distance function indicates a point within the mesh boundary, and a

positive value of the signed distance function indicates a point outside the mesh boundary.20

In addition to defining the meshing boundary, the signed distance function is also used to form mesh size functions (see

Sect. 3.3) and is used during the execution of the DistMesh2D meshing algorithm. To ensure the calculation of the signed

distance is computationally efficient, the calculation relies on a combination of the MATLAB class version of the Approximate

Nearest Neighbor (ANN) method (Arya and Mount, 1993; Mount and Arya, 2006) (to obtain the absolute distance) and a

points-in-polygon test function (inpoly.m; Engwirda, 2017) (to get the sign). The ANN method has high computational effi-25

ciency with a negligible memory footprint in comparison to the dsegment.m function available in DistMesh2D. Further, the

inpoly.m function is several hundred-fold quicker (O(logN) vs. O(n2)) than MATLAB’s built-in inpolygon.m function.

In our methodology, the shoreline polygon is internally partitioned into mainland and island polygons (this categorization

is defined below). New vertices are added to the shoreline polygon so that it conforms to the user-requested minimum mesh

resolution (h0) inside the bbox. Vertices are decimated outside bbox to save both memory and time during the mesh generation30

process since the calculation of signed distance function is proportional to the number of shoreline vertices.

1. The segments of shoreline polygon that intersect with bbox are read in to memory.
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Figure 7. Example of boundary treatment in and around New York, United States; the bounding box of the mesh domain bbox is indicated
by the thick dashed black line, the meshing domain is hatched in blue, and the categorization of land boundary types are indicated according
to the colored lines.

2. The segments of shoreline polygon are classified into three types: mainland, inner, or outer.

(a) The mainland category contains segments that are not totally enclosed inside the bbox.

(b) The inner (i.e., islands) category contains polygons totally enclosed inside the bbox.

(c) The outer category is the union of the mainland, inner, and bbox.

3. New vertices are added on these segments so that no two consecutive vertices along it are further than h0
2 apart. This5

is necessary for accurate re-projection of points that exit the meshing domain during the execution of the DistMesh2D

algorithm (Persson and Strang, 2004).

4. All segments are smoothed using a n-point moving average. Simultaneously, small islands that have an area less than

(p ∗h0)2 are removed where n and p are user-specified integers (n= 5, p= 4 by default).

As an example, the following steps are applied to a shoreline extracted from a NCEI Post-Sandy DEM (JBAY in Fig. 1)10

leading to a classification of shoreline points that is crucial for correct automatic meshing of the complicated coastal domain it

describes without human intervention (Fig. 7).
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Figure 8. (a) The GSHHS fine (i.e., GSHHS_f) shoreline centered around New York, United States; (b) a shoreline extracted from mosaicing
NCEI Post-Sandy DEM tiles with the GRASS GIS software.

The capability to use geometric contours extracted directly from geospatial datasets in the mesh generation process without

the need for shoreline simplification algorithms or external shoreline datasets improves workflow efficiency and automation.

Further, by using a geometric contour, the resulting shoreline boundary in the mesh is consistent with the topo-bathymetric

dataset that is subsequently interpolated onto the mesh vertices. Since many coastal mesh generators rely on the Global Self-

consistent Hierarchical High-resolution Shorelines (GSHHS) dataset (Wessel and Smith, 1996), we consider the automatic5

geospatial data processing algorithms to represent a significant step forward towards more comprehensive coastal modeling

efforts. For example, the GSHHS dataset is largely insufficient for meshes with a desired resolution finer than 100-m as it often

misses critical connections between water bodies (Fig. 8).

3.3 Automatic mesh size function: edgefx class

The careful placement of mesh resolution is critical to create meshes that lead to accurate but efficient simulations. There are10

a number of heuristics used to design unstructured meshes for shallow water flow applications. A review of some common
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resolution heuristics utilized in coastal ocean modeling can be found in Greenberg et al. (2007). We have considered a variety

of constraints involved in the formation of the mesh size functions by integrating and adapting past work on the topic. The

various mesh size functions are detailed in this section.

Mesh resolution is distributed in the domain according to a mesh size function. The mesh size functions are constructed on

a structured grid that relates every point in the meshing domain to a desired mesh size h, or more precisely, a triangular edge-5

length (hence edgefx). Defining the mesh size function on a structured grid has advantages over an unstructured one (Conroy

et al., 2012; Engwirda, 2017) in relation to computational efficiency when storing, querying, interpolating, and performing cal-

culations. Further, bathymetric data is often defined on structured grids, and in these cases, computing the mesh size function

directly on the same grid can minimize seabed interpolation error for the mesh size function calculation. Given these reasons,

we calculate our mesh size functions on Cartesian grids defined in geographical coordinates (i.e., WGS84). A major drawback10

to this approach is that the entire domain must be uniformly refined which becomes particularly severe for relatively large

meshing domains. This impacts the scalability of the subsequent mesh generation process for regional and global coastal mesh

generation, but the multiscale mesh capability (Sect. 3.1.4) alleviates this problem.

Each individual mesh size function is based on either shoreline data and/or the bathymetric datasets that were passed to

the edgefx class constructor. Currently, the software supports a variety of mesh size functions that are used in the ocean15

modeling community: wavelength-to-grid-size (Westerink et al., 1994; Luettich and Westerink, 2013), topographic length

scale (Greenberg et al., 2007; Lambrechts et al., 2008), Euclidean distance from the shoreline (Persson and Strang, 2004),

approximate feature size of the shoreline (Persson, 2006; Koko, 2015), thalweg/polyline (Heinzer et al., 2012), and Courant-

Friedrichs-Lewey (CFL)-limiting (Bilgili et al., 2006). Each mesh size function can either be incorporated or omitted based

on the user’s requirements. The mesh size function is graded using a marching algorithm (Persson, 2006) to ensure that the20

triangle-to-triangle change in edgelength is bounded below a user-defined percent, αg .

3.3.1 Distance and feature size

A high degree of refinement is often necessary near the shoreline boundary to capture its geometric complexity. If mesh

resolution is poorly distributed, critical conveyances may be missed leading to larger scale errors in the nearshore circulation

(Greenberg et al., 2007). Thus, a mesh size function that is equal to a user-defined minimum mesh size h0 along the shoreline25

boundary, growing as a linear function of the signed distance d from it may be appropriate:

hdis = h0−αdd (5)

where αd is the percent change of mesh size with distance from the shoreline boundary. Eq. (5) is what we call the distance

mesh size function and was originally presented in the DistMesh2D algorithm (Persson and Strang, 2004).

One major drawback of the distance mesh size function is that the minimum mesh size will be placed even along straight30

stretches of shoreline. If the distance mesh size function generates too many vertices, a feature mesh size function that places

resolution according to the geometric width of the shoreline should instead be employed (Conroy et al., 2012; Koko, 2015). In
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this function, the feature size (e.g., the width of channels/tributaries, and the radius of curvature of the shoreline) along the coast

is estimated by computing distances to the medial axis of the shoreline geometry. Here we have implemented an approximate

medial axis method closely following Koko (2015). This involves finding local extrema in the gradient of the d, which in

practice, amounts to defining a medial point as a location where ||∇d||< 0.9 and d < 0 (Koko, 2015). Sometimes due to the

configuration of the mesh size function grid juxtaposed on the shoreline geometry, medial points inside small channels may5

be lost. These medial points can be recovered by classifying mesh size function grid points as medial points if both adjacent

neighbors (in the north-south or east-west directions) are outside of the domain but the mesh size function point under question

is within the domain. Once the medial points are computed, the local feature size hlfs is calculated as:

hlfs =
2(dMA− d)

αR
(6)

where αR is the user specified number of desired elements per local feature size (commonly 2≤ αR ≤ 6), and dMA is the10

absolute distance to the nearest medial point. Since the medial axis is an approximation, the identification of the full set of

medial points depends on the horizontal resolution of the mesh size function. This implies that the feature mesh size calculation

will work best when computed on a structured grid of resolution similar or finer than the horizontal resolution of the supplied

geophysical datasets.

To demonstrate the efficacy of the feature mesh size function, we use a 1/9 arc second (∼3-m) topo-bathy DEM to generate15

an approximate 10-m minimum element size mesh of Jamaica Bay in New York, United States (JBAY; Fig. 1), with αR =

3. Relatively coarse resolution is placed along linear regions of the sand bar, while the dark patches indicate where higher

resolution is automatically placed around points of high curvature in the coastline and through channels. For example, two

closeups are shown where higher resolution is placed along a narrow constriction and around perpendicular coastal groins

along a beach.20

3.3.2 Wavelength

In shallow water theory, the wave celerity, and hence the wavelength λ, is proportional to the square-root of the depth of the

water column. This relationship indicates that more mesh resolution at shallower depths is required to resolve waves that are

shorter than those in deep water. With this considered, a mesh size function hwl that ensures a certain number of elements are

present per wavelength (usually of the M2 dominant semi-diurnal tidal species) can be deduced:25

hwl =
λM2

αwl
(7)

hwl =
TM2

αwl

√
gb (8)

where λM2 and TM2 are the wavelength and period (≈12.42 hours) of the M2 tidal wave, g is the acceleration due to Earth’s

gravity, b is the bathymetric depth, and αwl is the user specified number of elements chosen to resolve the wavelength. If

the M2 wavelength is sufficiently captured, the diurnal species will also be sufficiently resolved since their wavelengths are30
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[m]

Figure 9. Mesh resolution (defined as the local element circumradius [m]) in the PRVI example (see Table 1) around the Puerto Rico and
U.S. Virgin Island inset region, with (a) and without (b) the Rossby radius slope filter applied. The ‘thermal’ color palette from cmocean
(Thyng et al., 2016) is used in this figure.

approximately twice as large as the M2. In general, the wavelength parameter αwl is set to a value somewhere between 25 and

100 (Westerink et al., 1994; Le Provost and Lyard, 1997).

3.3.3 Topographic length scale

The distance, feature size, and/or wavelength mesh size functions can lead to coarse mesh resolution in deeper waters that

under-resolve and smooth over the sharp topographic gradients that characterize the continental shelf break. These slope fea-5

tures can be important for coastal ocean models in order to capture dissipative effects driven by the internal tides, transmissional

reflection at the shelf break that control the astronomical tides, and trapped shelf waves (Huthnance, 1995). The scaling of the

slope parameter, commonly called the topographic length scale, is usually represented by the following:

hslp =
2π

αslp

b

|∇b|
(9)

where 2π/αslp is the number of elements that resolve the topographic slope, and∇b is the gradient of the bathymetry evaluated10

on a structured grid of horizontal resolution h0. The 2π factor is a convention introduced by Lyard et al. (2006) so that αslp

can be set to a value similar in magnitude to αwl, e.g., around 10-30.
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Typically the gradient of the bathymetry often contains a high degree of noise, which results in high mesh refinement with

the application of hslp despite the fact that small features have marginal effects on shallow water flow, particularly in deep water

(LeBlond, 1991). We would like to filter bathymetric features that are not relevant to the underlying shallow water processes,

like the astronomical tides. Therefore, we propose to low-pass filter the bathymetry before calculating the gradient. The filter

cutoff length is based on an estimate of the local Rossby radius of deformation:5

LR =

√
gb

f
(10)

where f is the Coriolis parameter. By local we mean that we discretely bin values of LR in the meshing domain and apply

a low-pass filter to those binned grid points with a cutoff set to LR at the bin midpoint. For this approach to work correctly,

partitioning the meshing domain is critical because meshing domain often spans large regions of latitude with highly varying

f . Here, the PRVI example (Fig. 1 and Table 1) is used to demonstrate the effect of the Rossby radius slope filter (Fig. 9). The10

mesh with the Rossby radius slope filter focuses mesh resolution at large and relatively shallow features such as the continental

shelf break avoiding the placement of fine resolution over deep and small scale features that are not comparable to LR. As a

result, the mesh with the filtered seabed has 27% fewer vertices in the illustrated region.

3.3.4 Channel thalwegs/polylines

Closer to the shoreline, the width of the nearshore geometry through which water must flow eventually becomes the dominant15

length scale instead of LR. Thus, constraints imposed by continuity normally become more important than dynamic balances

in determining spatial scales in estuaries (LeBlond, 1991). Following this logic, the representation of the cross-sectional area

of the channel that connects the ocean to the estuary is important in order to simulate an accurate exchange of water.

The predominant conveyance through a watercourse is often approximated by a series of neighboring points that connect

local minimums in bathymetric depth. These locations are referred to collectively as a thalweg and are represented as polylines20

in the GIS framework. The level of mesh refinement near and around the thalweg can affect the bathymetric representation in

the mesh through aliasing local minimums in bathymetric depth. Often the associated length scale of these features is too small

to efficently resolve through the other mesh size functions. Instead we propose a mesh size function to locally enhance mesh

refinement around thalwegs.

Thalwegs can be located by thresholding upslope area (O’Callaghan and Mark, 1984) in a DEM with GIS software such25

as GRASS. One difficulty with thresholding upslope area to identify submerged channels is that it may produce spurious

non-physical channel networks, especially in areas of flat bathymetry.

Similar to the feature-constraint algorithm (Heinzer et al., 2012) this mesh size function treats the thalwegs as a set of con-

nected vertices that form polylines and operates on the polylines that intersect with the meshing domain. The mesh resolution

is distributed as follows:30
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Figure 10. A schematic illustrating various aspects of the channel mesh size function. The thalweg is depicted by the maroon line. Along
the thalweg, cones are drawn at arbitrary locations along it to depict the regions where the mesh sizes follow equation 11. The symbol on the
left of the figure indicates the height of the water level and the inset titled “Planar view" indicates the stencil in the mesh size function that is
impacted by the channel mesh size function.

1. A circular region in the mesh size function is formed on each thalweg point with a diameter, dia, equal to:

dia= 2btan(θ) (11)

where θ is the angle of reslope.

2. In each circular region, the mesh size function is assigned resolution by

hch =
b

αch
(12)5

This assumes the thalweg has a cross-sectional area that resembles a v-shape with a bank angle of θ (which is set to 60◦ by

default) and that the stencil becomes larger as b increases (Fig. 10). The parameter αch is a user-defined value that is chosen to

scale resolution according to the user’s desire.

As the water column deepens, the horizontal length scale greatly enlarges, which implies that the dynamical effects from

small-scale features like thalwegs should weaken. This dynamic is qualitatively captured through Eq. (11) by the enlargement10

of the thalweg region in the mesh size function as the water depth increases. Additionally, the quotient αch in Eq. (12) alters

how the resolution scales with bathymetric depth to further reflect the fact that the horizontal length scale tends to grow as the

water becomes substantially deeper, thus reducing the resolution around thalwegs.

As an example of this mesh size function, a mesh is built in and around Galveston Bay, Houston (GBAY; Fig. 1 and Table 1),

a shallow-estuary with a heavily trafficked shipping channel along its centerline. In this example, we have provided the thalweg15

19



Figure 11. Panels (a) and (c) show the bathymetry and mesh connectivity in the GBAY example (Fig. 1 and Table 1) created without the
thalweg mesh size function enabled; panels (b) and (d) are with the thalweg mesh size function enabled. The ‘deep’ color palette from
cmocean (Thyng et al., 2016) is used in palettes (a) and (b).

points by thresholding the Galveston DEM (Fig. 1) with an upslope area of 10,000 cells using GRASS GIS. Visually, the mesh

generated using the channel mesh size function clearly captures the bathymetric feature of the Houston Ship Channel to a higher

degree of accuracy (Fig. 11). The channel mesh size function provides a mechanism to localize high resolution elements around

polylines that can be extracted from GIS software suites. Many mesh generation packages include methods for selective and

ad hoc mesh size variations in order to resolve local seabed features. In our approach, we try to make the application of mesh5

size variation more objective by assuming a channel width and depth dependence to scale mesh sizes. Further, the polylines

extracted here originate from a DEM and are not hand drawn to further improve objectivity and model design reproducibility.

3.3.5 Finalizing the mesh size function

The final mesh size function, h, is determined by applying the minimum function to the set of individual local mesh size

functions, i.e.,10

h= min[(hdis or hlfs),hwl,hslp,hch] (13)
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Note that it is possible to operate on any given subset of mesh size functions. Following this h is further refined based on mesh

size transition bounds (Sect.3.3.6), Courant-Friedrichs-Lewey limiting (Sect.3.3.7), and global user-defined maximum (hmax)

and minimum (h0) mesh size bounds.

3.3.6 Mesh size gradation

It is necessary to ensure a mesh size smoothness limit αg such that for any two adjacent vertices xi, xj connected by an edge,5

the local increase in mesh size is bounded above such that:

h(xj)≤ h(xi) +αg||xi−xj || (14)

This bound on the mesh size gradation is enforced with the marching method that was introduced in Sect. 3.1.4. A smoothness

criteria is essential to produce a mesh that can simulate physical processes with a practical time step as sharp gradients in

mesh resolution typically lead to triangles with highly skewed angles that results in low numerical accuracy (Shewchuk, 2002).10

In general, a smoother edgelength function is congruent with a higher overall triangle quality but with more triangles in the

mesh. It is important to note that the rate of mesh resolution increase is bounded above by the grade; therefore, if the distance

parameter in Eq. (5) is set to a value lower than the grade (αd < αg), then grading should have no effect on the mesh size

function.

Figure 12 demonstrates the relative effects of the distance and feature mesh size functions and their interaction with the15

grade. To illustrate this mesh size function, we built a mesh over an estuary-like geometry with distance (αd = 0.15 and

αd = 0.35) and feature (αR = 3 and αR = 6) mesh size functions, each using two different gradation bounds (αg = 0.15 and

αg = 0.35). The distance mesh size function focuses resolution on the mesh boundary, which is often not necessary to resolve

areas that are geometrically simple. Further, the use of a distance mesh size function often results in comparatively larger

triangles in the center of the geometry; especially with a relatively high grade (i.e., 35%; Fig. 12(d)). In shallow estuaries,20

this can be undesirable as the bathymetric representation of high conveyance channels in the center of the estuary will be

inaccurate, aliasing the transported mass and energy. In contrast, the feature mesh size function places a uniform number of

triangles across the widest axis of the feature (Fig. 12(e)-(f)). It focuses mesh resolution on regions that are narrow and/or

where the shoreline has high curvature. The net result is a comparatively smaller number of vertices than the distance mesh

size function (for αR < 20 in this example). Depending on the selection of αR in the local feature size equation Eq. (6), the size25

of the mesh resolution in the center of the estuary can be bounded even when using a relatively high mesh grade (αg > 0.25).

This is advantageous because a higher grade can dramatically lower the overall vertex count. Conversely, a relatively low grade

(αg < 0.20) can hinder the feature mesh size function from expanding efficiently and may be somewhat counter-productive to

its purpose.
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Figure 12. Depiction of mesh resolution interactions between the grade (αg), distance (DIS), and feature (FS) mesh size functions. Panels
(a)-(c) depict the resolution with a grade equal to 15% (αg = 0.15), panels (d)-(f) with a grade equal to 35% (αg = 0.35). The first column
depicts how mesh resolution is distributed with a distance mesh size function and the second and third columns show how the mesh size
varies with the feature mesh size function with αR equal to 3 and 6, respectively. In the title of each panel, the number of vertices n in the
triangulation is shown.

3.3.7 Courant-Friedrichs-Lewey (CFL)-limiting

The computational expense of a computational model and associated code is significantly affected by the time step that must be

used to ensure stability and accuracy. For models that use explicit time stepping schemes, a necessary condition for numerical

stability is determined by the Courant-Friedrichs-Lewey (CFL) condition. Although this is not a sufficient condition, it is a

practical way to gauge the success of a new mesh. The CFL condition states that the Courant number (Cr) must be less than or5

equal to a critical value which is numerical scheme dependent. Additionally, the accuracy of a numerical scheme is impacted

by the Cr as high values tend to give poorer accuracy even in implicit solvers. For the application of solving the shallow water

equations the Cr can be estimated and bounded in the mesh (Bilgili et al., 2006). We define an estimate of Cr at the vertices

of the mesh by adding the shallow water wave speed with an estimate of the anticipated flow speed:

Cr =
(u+

√
gH)∆t

∆X
(15)10

where u is the magnitude of the flow, g is the acceleration due to gravity, H is the total water depth, ∆t is the time step, and

∆X is the element size or the shortest connected edge to each vertex. Since the wave speed is a function of depth and ∆X

is equivalent to the mesh size, h, the user can estimate the CFL condition a priori for a given ∆t. Note that to obtain this a

priori estimate of Cr in Eq. (15), we set H ≈ b, and approximate the flow speed with the long wave linear orbital velocity, i.e.,

u≈ η
√
g/b, where η is the wave amplitude which we set to 1 m by default. Applying these approximations and rearranging15
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gives the following CFL-limiting condition on the mesh size:

h≥
(η
√
g/b+

√
gb)∆t

Cr
(16)

where b is set to a minimum of 1 m to allow for the CFL condition to be satisfied overland in the case inundation were to occur.

Thus, the user can specify a value of ∆t to bound the mesh resolution based on some value of Cr < 1. The aim of CFL-

limiting is to help facilitate a mesh to be simulated with a certain time step when using explicit time stepping numerical models.5

However, this often comes with a loss of mesh resolution that may be critical for resolving important conveyances, so the user

must consider reasonable values of ∆t based on the minimum edgelength. To avoid this choice, we have also implemented an

option that automatically selects a suitable ∆t that satisfies the condition Eq. (16) for the hdis or hlfs (whichever is induced)

mesh size functions. The purpose of this is to preserve the nearshore resolution while applying the CFL-limiting to other mesh

size functions that may give higher refinement offshore.10

To demonstrate the CFL-limiting option, we return to the JBAY example (Fig. 1 and Table 1), generated using the feature

mesh size function. In one instance of the mesh, no CFL-limiting is used (TwoCFL), in another instance, CFL-limiting with ∆t

= 2 s (TwCFL) is invoked. In the generation of TwCLF , the mesh size function is conservatively bounded by Cr = 0.5 to allow

a buffer for the effects of nonlinearities, bathymetric interpolation, and mesh smoothing. After the mesh is generated, the NCEI

Post-Sandy DEM is interpolated onto each vertex using a cell-averaging approach (see interp method in Sect. 3.4), and the15

resulting CFL is calculated by Eq. (15) with ∆t= 2 s. The use of the CFL-limiter acts to shift the distribution of Cr to smaller

values (Fig. 13). The maximum Cr decreases from 3.64 to 0.96 and the mean Cr shifts from 0.68 to 0.36. In the mesh with the

CFL-limiting, there are no vertices that violate the CFL condition as compared to 10,492 in the mesh without it. CFL-limiting

thus reduces the number of vertices by locally coarsening h (TwCFL has 45.6% fewer vertices than TwoCFL). Again, the user

must be careful when selecting ∆t as CFL-limiting may lead to choke points in small channels nearshore which are generally20

the first areas that violate the CFL (Fig. 14). Depending on the application this may or may not be tolerable.

Although the above example demonstrates that theCr of all vertices is reduced to under 1 when using the CFL-limiting mesh

size function, the maximumCr is still 0.96 for ∆t= 2 s, which may be too close to the theoretical condition to simulate without

instabilities. Based on our experience we need to impose a stricter CFL condition such asCr < 0.5 to ensure numerical stability,

accuracy, and to minimize numerical artifacts. To ensure that this more conservative condition is fully satisfied, we propose the25

CheckTimestep post-processing function (Algorithm 1). This function iteratively deletes vertices in the mesh associated with

edges that violate the CFL. With each deletion, the vertices on the outer fan containing all the connected elements are smoothed

using the Laplacian operator. The algorithm relies on MATLAB’s implementation of the Bowyer-Watson incremental Delaunay

triangulation to preserve the mesh connectivity outside of the modification patch. For example, in the JBAY example with CFL-

limiting, CheckTimestep converged after 5 iterations resulting in a mesh with approximately 2,240 less vertices but one that30

fully satisfied Cr < 0.5 everywhere for ∆t= 2 s. In addition to ensuring the CFL condition is fully met, CheckTimestep in

practice is often used to explore how the mesh would have to be modified in order to achieve a stable simulation for a particular

∆t.
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Figure 13. Panel (a) illustrates the effect of CFL-limiting on the Courant number Cr when constructing the JBAY example (Fig. 1 and
Table 1) and (b) without it. The colored bars indicate the vertices with Cr > 0.5 and are shown to assist in the comparison of histograms.

Algorithm 1 Incrementally adapts a triangulation of points p and connectivity matrix t with bathymetric data b defined at p to
a given timestep ∆t in seconds through vertex decimation.

1: Function (p,t) = CheckTimestep(p, t ,b,∆t)
2: Form nearest neighbor bathymetric interpolant with p, t, and b.
3: Calculate Cr at all vertices using Eq. (15) given b, ∆t, and the shortest connected edge to the vertex.
4: If Cr ≤ 0.5 ∀ p, then exit.
5: Otherwise, determine point set pv with Cr > 0.5
6: Incrementally delete pv from t using Bowyer-Watson algorithm.
7: Apply Laplacian operator to the patch around each pv containing the connected triangles.
8: Re-interpolate b onto p using nearest-neighbor interpolant and proceed back to 3.
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Figure 14. Selected closeup regions in Jamaica Bay, New York (left (a) and (c): West Pond, Queens; right (b) and (d): Old Howard Beach,
Queens) of the mesh connectivity built with the JBAY example script (Fig. 1 and Table 1). Top panels (a) and (b) show the mesh connectivity
without invoking the CFL-limiter, and the bottom panels (c) and (d) show it when using the CFL-limiting option with ∆t = 2 s.

3.4 Mesh container: msh class

To store the triangulation and related files, the msh data storage class contains triangulation-related attributes and support for

solver-specific input files. While the underlying purpose of the msh class is to store the mesh data, the OOP framework enables

specific methods to be associated with it. This enables the msh class to act as an intermediary between the numerical solver

and the user to assist the creation of solver-specific files and perform common data-driven operations on the mesh.5

A substantial effort is often required after the triangulation is constructed to enable simulation with a coastal ocean solver

such as ADCIRC, FVCOM, SELFE, or SCHISM. For example, the mesh often needs to be visualized and quality checked,

boundary conditions must be specified, and seabed topography must be interpolated onto the mesh vertices (Fig. 15). Rather

than have each user independently write their own methods to accomplish these tasks, we believe it to be more advantageous

to place these static or dynamic methods inside the msh class that can be edited by everyone using a version control software.10
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Figure 15. Illustration of key msh methods: plot can be used to visualize mesh resolution (top-left), mesh triangulation and boundary
types (top-right), and seabed topography (bottom row); interp interpolates seabed topography onto the mesh using cell-averaging or built-in
griddedInterpolant methods (bottom row); makens classifies mesh boundary vertices into land and open ocean types automatically using the
native geodata class (top-right).
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Table 2. Wall-clock time in seconds (% of total) for the steps involved in mesh generation. The pre-processing includes reading and processing
the geospatial data (in geodata) and forming the mesh size functions (in edgefx). The vertex relocation timings include the time elapsed in the
initial point rejection, vertex re-projection back into the meshing domain, vertex movement, and mesh improvement strategies during mesh
generation (Sect. 3.1.2). The cleaning category includes the time spent on mesh improvement strategies after mesh generation (Sect. 3.1.3).

Mesh generation time
Example Pre-processing time Vertex relocation Triangulation Cleaning Total Time
JBAY 13.7 (22.5%) 24.9 (41.0%) 18.3 (30.0%) 3.83 (6.25%) 60.8
GBAY 23.9 (25.1%) 34.1 (35.8%) 31.4 (33.0%) 5.79 (6.09%) 95.2
PRVI 1,770 (64.1%) 498 (18.1%) 316 (11.5%) 174 (6.31%) 2,760

Figure 15 illustrates a few of the key methods associated with the msh class (see the user guide for a complete list) that

we have implemented, such as the visualization of mesh triangulation, resolution, seabed topography, and boundary types.

Further, a standardized method for interpolating seabed topography, which employs a generalized cell-averaging approach by

default, has been developed. The method can also be used as a wrapper to the built-in MATLAB griddedInterpolant function

with nearest, linear, and various higher-order interpolation methods. Comparison of the mesh seabed topography using cell-5

averaging and linear interpolation methods is shown along the bottom row in Fig. 15. Also included is a msh method to

automatically classify mesh boundary vertices into open ocean, enclosed islands, and mainland types based on the native

geodata class (top-right in Fig. 15).

4 Mesh Generation Wall-Clock Time

The total and component-based wall-clock times for generating each of the three examples presented in this study is shown10

in Table 2. Overall, the small examples (JBAY and GBAY) complete in under 2 minutes, and the large PRVI example takes

approximately 45 minutes. Consistently for all examples vertex relocation consumes slightly more time than Delaunay trian-

gulation, and the mesh cleaning (post-processing improvement strategies) accounts for approximately 6% of the total time.

The relative balance between mesh generation and pre-processing times depends on the resolution of the shoreline and the size

of the meshing domain. For example, in the small domain problems (JBAY and GBAY), the pre-processing time makes up15

roughly a quarter of the total time. In contrast, in the PRVI example which meshes most of the north western Atlantic ocean

using four separate geodata and edgefx classes, the pre-processing time accounts for 64% of the total time.

5 Discussion and conclusions

A self-contained model development toolkit to automate the generation of two-dimensional (2D) triangular unstructured

meshes for coastal ocean models was developed. The overarching goal of the software is to reduce the complexity and hours20

spent constructing real-world unstructured meshes to the degree that it allows one to more carefully and systemically study the

impact on the coastal circulation. This is achieved through a standardized scripted workflow comprising pre- and post- pro-

cessing steps of geospatial datasets and mesh properties, which are performed by four dedicated classes. While the scripting
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based approach used to generate meshes promotes automation and approximate reproducibility, the pointers contained within

the script do not adequately describe provenance attribution of the geospatial datasets and computing environment used. In the

future, employing formal Research Data Management practices in the context of geophysical mesh generation (Avdis et al.,

2018; Candy and Pietrzak, 2018) into OceanMesh2D would be beneficial to heighten reprodubility.

For coastal mesh generation, a key advantage of using the DistMesh2D smoothing-based algorithm over Delaunay refinement5

and/or Frontal Delaunay mesh generation algorithms is that the boundary is implicitly defined using a signed distance function.

The implicit definition of the mesh boundary enables the vertices, including the boundary vertices that represent the highly

irregular shoreline boundary, to move during mesh generation step in accordance with the mesh size function. In contrast,

Delaunay refinement and advancing front schemes incrementally modify the triangulation starting from a partitioning of the

polygonal boundary and then propagate into the interior of the meshing domain. This aspect required by front-based mesh10

generation schemes requires that the shoreline boundary be simplified in accordance with the mesh size function before mesh

generation commences, which can be a challenging step.

A set of common coastal ocean relevant mesh size functions were built into the mesh size function class (edgefx) that can

handle a variety of user-based constraints and facilitate the approximate reproducibility of mesh vertex locations. The imple-

mentation of these mesh size functions were largely borrowed from pre-existing literature with some minor enhancements. We15

presented a polyline mesh size function to locally enhance resolution around and near marine navigation channels and deep-

draft channels (i.e., thalwegs). These features are found by thresholding upslope-area calculated from a digital elevation model

(DEM) using GIS software. The polyline mesh size function may have interesting future applications for the development of

overland meshes that seamlessly mate with ocean meshes. For example, the user could provide a set of lines that characterize

overland ridges so that the polyline mesh size function can be used to locally enhance mesh resolution to better capture the20

local maximums in the topographic heights. Since the representation of the inter-tidal and floodplain zone in the mesh is crit-

ical for coastal flooding applications, ensuring overland features like hills and levees are correctly represented in the mesh is

a important feature. In its current state, the toolbox is able to constrain piecewise linear segments that may represent e.g., a

series of levees; however, if there is a large degree of disparity between the point spacing on the constraints and the mesh size

function, then the resulting mesh will be of poor quality.25

To ensure that a mesh is computationally stable with a user-requested time step (relevant when simulating with explicit/semi-

implicit numerical models), a CFL-limiting mesh size function similar to Bilgili et al. (2006) was introduced. In this approach,

we estimate the Courant (Cr) number based on shallow water wave theory and ensure that the final mesh size function satisfies

the CFL condition (Cr < 1). Although applying CFL-limiting to the mesh size function was shown to help encourage stability

by lowering the Cr, the resulting unstructured mesh may not necessarily satisfy the CFL condition due to that fact that bathy-30

metric interpolation from the DEM is not easily constrained. Thus, an iterative algorithm to be applied after the mesh was

developed (CheckTimestep) to locally alter the connectivity by decimating vertices that violate the CFL condition. Depending

on the users choice of time step and the various mesh size constraints, the algorithm decimates vertices in certain regions (e.g.,

small constricted channels) that may or may not be tolerable for the problem at hand. In such regions, anisotropic mesh ele-

ments (e.g., Piggott et al., 2009) that could be generated using mesh size functions which include a directional component may35
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be more beneficial than isotropic equilateral elements. Thus, implementing anisotropic mesh size functions into the software,

along with the testing of the resultant meshes in real coastal ocean problems, is an interesting direction for future work.

We emphasized the expensive nature of building large-scale high-fidelity mesh size functions which motivates the use of

a multiscale meshing approach. This approach reflects the often sparse spatial coverage and heterogeneous nature of freely

available digital elevation data that are often used in the construction of the mesh size functions. Multiscale meshing allows the5

user to build (extremely) high-resolution local mesh size functions that are embedded in larger scale ocean domains. The end

result is a mesh that seamlessly transitions from the high refinement region to coarser elements outside the region of interest.

This is practically useful to accurately model coastal flooding in small regions (e.g., a city or a small island – here we show

an example of the approach with the mesh refinement region around Puerto Rico and the U.S. Virgin Islands) that may be

susceptible to storms and tropical cyclones (TC) passing over it. For large-scale TC-driven storm surge events, it has been10

shown that a large model domain is essential to capture the pre-event conditions that can alter the modeled severity of the event

(Blain et al., 1994). In forecasting scenarios, the multiscale meshing approach could be used to mesh around the predicted

land-falling region based on the cone of uncertainty of the path of the storm to locally higher resolution. This approach could

generate meshes for the prediction of coastal flooding on-the-fly as new forecast data becomes available. Given the local nature

of the mesh refinement in this approach, these meshes could be computationally more efficient with smaller minimum element15

sizes than pre-existing ones, e.g., the U.S. National Ocean Service’s (NOS) Hurricane Storm Surge Operational Forecast

System (HSSOFS) mesh (Technology Riverside Inc. and AECOM, 2015), which cover entire swaths of coastline with medium

level resolution.

The objected-oriented structure of the software enables each component to be used in isolation and/or under workflows

different to that presented here. For instance, mesh size functions constructed through the edgefx class could be used with other20

mesh generators to distribute vertices. Furthermore, the ability of OceanMesh2D to automatically adapt user-supplied shoreline

datasets to a mesh size function is a new feature to the authors’ knowledge. This ability could be used as a standalone feature

to produce polygonal boundaries that approximate the shoreline with a variety of spatial constraints for other mesh generator

packages or GIS applications.

Three examples were used for demonstration in this study (Fig. 1 and Table 1). A further three separate examples are25

illustrated in the user guide (Roberts and Pringle, 2018). All six examples are released with this version of the OceanMesh2D

package. They can be used to become familiar with the software, for testing purposes, and as templates for scripts used to

generate the user’s custom mesh.

Code availability. The OceanMesh2D mesh generator toolbox is hosted on the following GitHub page: https://github.com/CHLNDDEV/

OceanMesh2D. The version release presented in this paper is available as a Zenodo archive: https://doi.org/10.5281/zenodo.1341385. The30

software requires no paid MATLAB toolboxes to generate meshes; however, some auxiliary functions (e.g., those that create ADCIRC input

files) not used in primary workflows may. A user guide (Roberts and Pringle, 2018) and a suite of examples is available from the main GitHub

page. All components of the OceanMesh2D toolbox are free software, being released under the GNU General Public License version 3.0.
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Full details of the license, including the compatible copyright notices of third party routines included in the package, are provided in the

LICENSE file in the source distribution.

Data availability. The geospatial data sets required to execute the three examples presented in this study can be accessed at the Zenodo

archive: https://doi.org/10.5281/zenodo.2605388. Additionally, the PRVI example requires the global shoreline data set, GSHHS (Wessel

and Smith, 1996) (full resolution ESRI shapefile version) and the SRTM global land-ocean topography data set (Sandwell et al., 2014)5

(‘topo15_compressed.nc’) which are freely accessible at the links included in the respective references.
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