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Abstract. The Stochastic Time-Inverted Lagrangian Transport (STILT) model is comprised of a compiled Fortran executable

that carries out advection and dispersion calculations as well as a higher level code layer for simulation control and user

interaction, written in the open source data analysis language R. We introduce modifications to the STILT-R codebase with the

aim to improve the model’s applicability to fine-scale (< 1km) trace gas measurement studies. The changes facilitate placement

of spatially distributed receptors and provide high level methods for single and multi-node parallelism. We present a kernel5

density estimator to calculate influence footprints and demonstrate improvements over prior methods. Vertical dilution in the

hyper near-field is calculated using the Lagrangian decorrelation timescale and vertical turbulence to approximate the effective

mixing depth. This framework provides a central source repository to reduce code fragmentation between STILT user groups

as well as a systematic, well documented workflow for users. We apply the modified STILT-R to light-rail measurements in Salt

Lake City, Utah, United States and discuss how results from our analyses can inform future fine-scale measurement approaches10

and modeling efforts.

1 Introduction

Cities are the source of over 70% of global fossil-fuel carbon dioxide (CO2) emissions (International Energy Agency, 2008;

Hoornweg et al., 2012; Gurney et al., 2015), the largest anthropogenic forcing on climate change (Canadell et al., 2007). As

governing bodies examine ways to address climate change, urban areas are appropriately a focus for emissions regulation.15

Atmospheric measurements (Duren and Miller, 2012; McKain et al., 2012) provide a top-down constraint for estimating ur-

ban carbon emissions, especially when combined with bottom-up information from fuel consumption statistics, traffic data,

and building characteristics that result in highly resolved emission inventories (Gurney et al., 2009, 2012). However, tradi-

tional evaluation strategies for estimating CO2 emissions that focus on quantifying regional scale (102 to 103 km) averages at

coarse resolutions are unable to resolve urban areas beyond bulk estimates. Implementing and evaluating effective policies for20

emissions mitigation requires understanding where, when, and how emissions occur at a within-city scale.
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Novel measurement strategies are emerging to help resolve fine-scale within-city trace gas concentrations, such as measure-

ments made from trains, buses, and cars (Apte et al., 2017; Bush et al., 2015; Lee et al., 2017) as well as dense networks of

inexpensive sensors (Shusterman et al., 2016; Turner et al., 2016). However, traditional atmospheric modeling tools were not

designed for densely located and spatially distributed measurements. Simulating atmospheric transport for multiple locations

over time often increases the number of simulations by factors of 101 to 103, necessitating the use of scalable parallel comput-5

ing to best utilize available hardware and reduce total simulation time. To make use of recent measurement advances, modeling

approaches must structure the model framework in ways that enable simulations to execute in parallel, adapt to finer spatial

scales, and facilitate simulating atmospheric mixing ratios for locations distributed across space and time.

The link between measured atmospheric mole fractions and upstream surface fluxes is often established using Lagrangian

particle dispersion models (LPDMs), popular tools for simulating atmospheric transport and dispersion in the Planetary Bound-10

ary Layer (PBL) (Lin, 2013). The LPDMs simulate transport of an ensemble of theoretical particles (representing air parcels)

using a combination of mean winds interpolated from meteorological model fields with stochastic fluctuations representing

turbulent motions introduced as a Markov process. This approach offers advantages over Eulerian methods by explicitly simu-

lating transport trajectories and better representing atmospheric mixing, turbulent eddies, and convection (Lin, 2013). Particle

motion can be simulated either forward in time from an emissions source or backward in time from a location of interest,15

referred to as the “receptor”. The forward configuration is often used to simulate pollutant concentrations downstream from an

emission source (Stohl et al., 2005) whereas backward simulations determine the source of observed emissions and quantify

surface fluxes (McKain et al., 2012, 2015; Stein et al., 2015). As receptors are often greatly outnumbered by sources, significant

computational savings are realized by applying LPDMs in the receptor-oriented configuration (Lin, 2013).

The Stochastic Time-Inverted Lagrangian Transport (STILT) model couples Lagrangian particle dispersion with the mean20

advection scheme from the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 2015).

STILT simulations are reversible in time (Lin et al., 2003), enable quantitative evaluation of transport error (Lin and Gerbig,

2005), and are closely coupled with the commonly used Weather Research and Forecasting mesoscale meteorological model

(Nehrkorn et al., 2010), on which the High Resolution Rapid Refresh (HRRR) model is based (Sun et al., 2014). STILT is

most commonly used to follow the backwards time evolution of a particle ensemble and calculate a receptor’s footprint, a25

sensitivity matrix defining the upstream area that contributes to tracer mole fractions observed at the receptor. Footprints can

be convolved with emissions inventories and an atmospheric background signal to calculate atmospheric mole fractions at the

receptor, which is among the most common applications of the STILT model (Gerbig et al., 2003; Lin et al., 2004; Kort et al.,

2008; Macatangay et al., 2008; Mallia et al., 2015; Miller et al., 2008).

This paper discusses limitations within the existing STILT codebase and introduces an updated framework intended to30

improve the model’s applicability to fine-scale spatially distributed measurement approaches. We introduce the hyper near-

field (HNF) area, typically covering length scales of 1 - 10 km and time scales of 0.1 - 1 hr, from which surface fluxes are

diluted to a fraction of the PBL height and thus more strongly influence the receptor. Parameterizations within the STILT model

were originally intended for regional scales and require refinements to improve source-receptor relationships in the HNF. We

also describe a footprint calculation scheme using kernel density estimation, rescaling of the effective mixing depth for fluxes35
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in the HNF, and methods for parallelizing simulations. The value of STILT as a tool for interpreting within-city CO2 mole

fractions is shown using an example of data collected on the roof of a train car on Salt Lake City’s light-rail system. We discuss

how results from our analyses can inform future measurement approaches and modeling efforts.

2 Modifications to the STILT model

2.1 Software enhancements5

The R component of the STILT model exists as a group of core functions used to track particle locations, calculate footprints,

and apply surface flux grids. User groups have built upon these functions, adding scripts for common modeling workflows

and additional functionality. Key components of the higher level functions remain unpublished and undocumented prior to this

paper, including a description of methods used to aggregate the particle ensemble to calculate footprints. Here, we adopt a

widely-used collaborative software development platform (GitHub) as a common source code repository that meets the needs10

of STILT users. This repository is built upon existing advection and dispersion calculations but has restructured and modernized

the core functions used to interact with the model (Fig. 1).

A single script (run_stilt.r) defines model inputs such as receptor locations and meteorological fields, controls and executes

the parallelized model, and outputs footprints. Footprints are saved in a netCDF format consistent with conventions for Cli-

mate and Forecast metadata (cfconventions.org), the standard for gridded model datasets by the University Corporation for15

Atmospheric Research (UCAR). This format is compatible with most popular data analysis software platforms and facilitates

analysis of model output. The script run_stilt.r serves as the primary STILT interface, interacting with R functions which in

turn call Fortran subroutines for the bulk of calculations and providing a systematic, well documented workflow for users.

2.2 Model parallelization

Executing simulations in parallel is essential to leverage the full capability of computing resources. STILT receptors are defined20

in a table of space (x,y,z) and time (t) coordinates enabling users to fix a receptor in space and model the time evolution of

the influence field, distribute receptors across space and capture a snapshot at a single time, or distribute the receptors across

both space and time. Since each STILT simulation is computationally independent, total simulation time can be reduced by

distributing batches of simulations between parallel threads (Fig. 2). As the number of parallel threads increases, the size of

each simulation batch decreases. Within-node parallelism is achieved through process forking, in which batches of receptors25

are allocated across multiple parallel threads on a single machine. Multi-node parallelism is accomplished by interfacing

with the Simple Linux Utility for Resource Management (SLURM), an open-source tool that provides the framework for

interfacing with clusters of computer nodes (Jette and Grondona, 2003). SLURM allocates computational resources with low

overhead and can be used to dispatch job arrays of STILT simulations to multiple nodes. SLURM is used to parallelize between

nodes and process forking by the modified STILT framework is used to parallelize within nodes. Process forking can be used30

independently to execute parallel simulations on a single machine or combined with SLURM to parallelize simulations within
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each SLURM node. Provided that memory limits are not exceeded, these methods enable total simulation time to decrease

linearly with available CPU cores.

2.3 Hyper Near Field vertical mixing depth

The influence of surface fluxes on air arriving at the receptor depends upon vertical dilution within the atmospheric column.

The STILT model determines the height of the boundary layer zpbl using a modified Richardson number method (Vogelezang5

and Holtslag, 1996). In the original STILT model, surface fluxes are instantaneously diluted within an effective mixing depth of

h∗ = 0.5 · zpbl for which the vertical mixing timescale is comparable to the model timestep for advection (Gerbig et al., 2003).

As described in Lin et al. (2003), an atmospheric column of height h(x,y, t,p) is used to relate surface fluxes F (x,y, t) to the

mole fraction influence S(x,y, t,p) for each particle p as

S(x,y, t,p) =





F (x,y,t)mair

h(x,y,t,p)ρ(x,y,t,p) z ≤ h

0 z > h
(1)10

where ρ is the average air density below h andmair is the molar mass of dry air. Thus, particles below h perceive surface fluxes

diluted within an atmospheric column of depth h. However, the advective timescale is often too short for complete turbulent

mixing of HNF fluxes to h before arrival at the receptor. Thus, this method underrepresents the influence of HNF fluxes on the

tracer mole fraction arriving at the receptor.

We apply a method of calculating the effective mixing depth in the HNF based on homogeneous turbulence theory, described15

by Taylor (1922). Each model time step component k of the HNF mixing depth h′ at time tk will be of the form

h′k(p,t) = zr +

tk∫

0

σw

√
2TL

(
t+TL

(
e
− t

TL − 1
))
dt (2)

where zr is the height above ground of the receptor, σw is the standard deviation in vertical velocities encountered by p during

the integration timestep, and TL is the Lagrangian decorrelation timescale. This method grows the dilution depth over time

relative to local turbulence. Substitution of h= min(h′,h∗) into Eq. (1) enhances the mole fraction influence of HNF sources20

on the receptor (Fig. 3). For surface based applications, h′ grows to h∗ over roughly 10 minutes, affecting a spatial domain of

approximately 1 km adjacent to the receptor.

2.4 Kernel density estimation of footprint field

Prior to methods described in this section, STILT footprints have been calculated by accumulating the influence of particles

over an averaging volume. To lessen grid noise from few particles spread throughout the grid, the spatial extent of the particle25

ensemble was used to dynamically coarsen the size of the averaging volume by a factor of 2 as the particle cloud spreads, first

shown in Gerbig et al. (2003). However, at finer resolutions, this method results in excessive smoothing, removing information

calculated by the advection and dispersion routines (Fig. 3).
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Here we introduce a kernel density estimator to spatially allocate the influence of particles to the footprint grid and show

improvements over the prior method at fine spatial resolutions. This method distributes the influence of each particle using a

Gaussian weighted spatial kernel centered over the particle’s position. The size and intensity of the spatial kernels are defined

by the kernel bandwidth, which is determined at each model time step using elapsed time and total dispersion of the stochastic

ensemble as proxies for uncertainty in the locations of individual particles. Dispersion of the particle cloud at each time step is5

represented using a nondimensionalized standard deviation of particle locations σd given by

σd =
√
σ2
x +σ2

y (3)

where σ2
x and σ2

y are Euclidean variances in horizontal particle positions in degrees. We find σd to agree with other dispersion

metrics for the particle ensemble, such as the average pairwise distance (r2 > 0.99), with less computational expense. Kernel

bandwidths are then given by10

b= f
0.06
√
tσd

cosφ
(4)

where t is time elapsed in days, φ is latitude used for approximation for meridional grid convergence, and 0.06 is an empirically

derived constant. f defaults to 1 and is provided as a user defined smoothing adjustment to enable manual manipulation of

kernel sizing.

Next, we test the new footprint calculation methods against a brute force simulation with an atypically large particle ensemble15

size (N = 105) aggregated over a homogeneous grid (Fig. 4). This large simulation is computationally expensive but generates

an idealized, physically constrained footprint without smoothing algorithms. The simulation receptor was positioned at a Salt

Lake City CO2 measurement site on a summertime afternoon and particles were followed backward in time for 24 hours.

We then demonstrate differences between the new kernel density estimator and the old dynamic grid coarsening footprint

calculation methods (Fig. 3) for a typical particle ensemble (N = 200) and for an extreme case with atypically few particles20

(N = 10). The effects of varying the smoothing parameter (f = 1,2) are also shown.

For the typical case (N = 200 and f = 1), the kernel method shows improved agreement with the brute force method,

preserving a Gaussian plume adjacent to the receptor, a clustered area of high influence, and capturing split flow upstream.

When the kernel bandwidths are doubled by increasing the smoothing parameter (f = 2), the footprint field becomes over-

smoothed and loses similarity with the brute force case. In the extreme case using atypically few particles (N = 10), the25

dynamic grid coarsening method produces a footprint field dominated by noise from individual particles. The kernel density

estimator (f = 1) improves results but shows fragmentation further from the receptor. In this case, the scarcity of particles

can be compensated for by increasing the smoothing parameter (f = 2). While tracer mole fraction differences between the

two footprint calculation methods vary depending upon the locations of footprint differences relative to sources, tracer mole

fraction calculated using the kernel density estimator improves similarity with the idealized brute force case.30
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3 Evaluation

3.1 Salt Lake City light-rail measurements

We demonstrate these changes to STILT by comparing CO2 mixing ratios simulated by the STILT model with corresponding

measurements on-board an electric Salt Lake City, Utah light-rail commuter train during July 2015. The Salt Lake Valley

(SLV) is a 1,300 km2 area encompassing Salt Lake City and its surrounding suburbs, bounded by the Wasatch mountain range5

to the east, the Oquirrh mountain range to the west, the Traverse mountain range to the south, and the Great Salt Lake to the

northwest. A light-rail train is equipped to measure high-frequency (1 Hz) CO2 mole fractions in repeated transects of the SLV

using a Los Gatos Research Ultraportable Greenhouse Gas Analyzer. CO2 and CH4 mole fractions are corrected for water

vapor dilution and spectrum broadening and are calibrated every hour using a compressed whole air tank with known tracer

mole fractions traceable to World Meteorological Organization standards. For details related to the measurement platform,10

refer to Mitchell et al. (in review).

The observations generally show higher CO2 mole fractions in Salt Lake City’s urban center and along the north-south

oriented urbanized corridor centered in the SLV (Fig. 7), consistent with urban spatial CO2 gradients observed in previous

studies (Idso et al., 2001; Pataki et al., 2007). The lowest mole fractions were observed in the southwest corner of the SLV at the

margin of recent suburban developments. At a finer scale, the high-frequency measurements show mole fraction enhancements15

near busy roads and intersections. Measured mole fractions are also consistently higher along a 3 km section of the light-rail

track running along the center of a busy six-lane road.

3.2 Surface flux inventories

The Hestia bottom up anthropogenic CO2 emissions inventory characterizes carbon fluxes by estimating emissions at the

scale of individual buildings and roadways (Gurney et al., 2012). Hestia is available for a handful of U.S. cities including20

Indianapolis, Los Angeles, Baltimore/D.C., and Salt Lake City. Details pertaining to the Salt Lake County Hestia product are

described by Patarasuk et al. (2016). For this simulation, Hestia anthropogenic CO2 fluxes are aggregated hourly to a 0.002◦

grid (Fig. 6).

Anthropogenic CO2 emissions outside of Salt Lake County are derived from the 1km× 1km ODIAC (Oda and Maksyutov,

2011) emissions inventory. These flux estimates are temporally allocated to hourly time steps using methods described by25

Nassar et al. (2013).

The biological CO2 inventory determines land surface types using the 2011 National Land Cover Database (Homer et al.,

2007) and 1 m LIDAR derived discrete land cover classifications across the SLV . The link between land cover classification

and CO2 exchange is established using AmeriFlux eddy covariance data that provides a robust estimate of biologic fluxes from

different vegetation types (Strong et al., 2011). A lookup table with independent axes for temperature, incoming shortwave30

radiation, and week of year is used to describe the relationship between land cover classification and biological fluxes (Strong

et al., 2011) over a 0.01◦ grid. For details pertaining to the biological flux inventory, refer to Strong et al. (2011) and Catharine

et al. (in preparation).
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3.3 STILT configuration

STILT receptors are defined by averaging light-rail measurements hourly over a 0.002◦ grid (roughly 200 m at φ= 41◦ N)

to pair analyses with the Hestia inventory that has the finest spatial and temporal resolution of the flux inventories used. This

method results in 33,608 unique receptors for the month of July, 2015, necessitating the use of parallel simulations and fine

scale footprint calculation included in the modified framework. From each receptor, 24 h backward trajectories of 200 particle5

ensembles are calculated using meteorological fields from the HRRR model, available at an hourly interval with a 3 km grid

resolution.

We compute footprint fields using the legacy dynamic grid coarsening (LEG) algorithm as well as gaussian kernel density

estimation with the HNF dilution correction (GWD) and without the HNF dilution correction (GND) to illustrate the dif-

ferences between methods. Further, these three methodologies are applied for two model domains, resulting in six different10

permutations of footprint fields for each receptor. A fine-scale 0.002◦ grid encompasses the SLV and is used to apply SLV

anthropogenic emissions. A 0.01◦ grid covering a larger area of Northern Utah is used to apply biological fluxes and non-SLV

anthropogenic emissions. Computation of the 33,608 particle trajectories and a single set of footprints completed in 5.5 hours

utilizing 80 parallel threads across 5 nodes, each equipped with 64 GB of memory with two 8-core Intel XEON E5-2670 2.6

GHz processors. 6.7% of simulations failed to complete due to short-term outages in the HRRR data product.15

Footprints are convolved with anthropogenic and biological CO2 fluxes and added to background CO2 mole fractions that

are representative of CO2 mole fractions that have not been influenced by urban emissions (Mitchell et al., in press). The

background mole fractions are taken from a nearby high elevation measurement site at Hidden Peak at the top of the Snowbird

ski resort in the Wasatch Mountains (Stephens et al., 2011). We use a similar approach to prior studies (e.g. McKain et al.

(2012)) and focus this analyses on the afternoon and early evening hours (12:00-19:00 Local Daylight Time, LDT) to lessen20

the influence of boundary layer development, nocturnal stratification of the boundary layer, and shallow turbulence on measured

mole fractions that would not be represented in the 3 km resolution of the HRRR meteorological fields.

3.4 Results

Observed and simulated mole fractions are averaged by hour of day to generate mean diel cycles, shown in Fig. 5. Observa-

tions show elevated mole fractions at night and early morning, decreasing into the afternoon as convective mixing increases25

(Mitchell et al., in press). All three of the simulated diel cycles derived from the different footprint algorithms systematically

underestimate nighttime and early morning mole fractions, consistent with previous studies (Macatangay et al., 2008; McKain

et al., 2015; Mallia et al., 2015; Lauvaux et al., 2016). However, during afternoon hours the simulated values track more closely

with the observations, with GWD exhibiting closer correspondence than GND and LEG (Fig. 5).

Correlations over space between the time-averaged modeled and measured concentrations are highest for GWD (r = 0.52)30

followed by GND (r = 0.46) and lastly LEG (r = 0.45). While we have demonstrated GND to compare favorably with ideal-

ized footprints calculated with brute force particle simulations, this analysis found modeled concentration differences between
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GND and LEG fall within the uncertainties in surface flux inventories. As GWD agrees most closely with observations over

time and space, we focus on GWD for the remainder of analyses.

Footprints convolved with surface flux inventories (Fig. 6) show measurements made on the light-rail train to be highly

sensitive to fluxes in the HNF domain. Spatially averaged model results capture the mole fraction gradient between the urban

center and surrounding suburbs (Fig. 7). The lowest modeled mole fractions occurred in the southwest corner of the SLV,5

in agreement with measurements. The model also reproduced mole fraction enhancements (∆CO2) downwind from major

roadways (Fig. 6) as well as the evening rush hour enhancement (Fig. 5). On average, we found the largest contributor to

modeled CO2 mole fractions is the SLV anthropogenic fluxes (∆CO2 = 4.18ppm), followed by biological fluxes (∆CO2 =

−0.89ppm), and the smallest contribution is from non-SLV anthropogenic fluxes (∆CO2 = 0.37ppm).

Key differences between modeled and measured mole fractions exist near HNF sources at the sub-grid scale (Fig. 7). While10

the model does capture localized mole fraction enhancements near busy roads and intersections (’I’ in Fig. 7), measured mole

fractions are systematically higher than corresponding model estimates in these areas. These results indicate that the light-rail

measurement platform is sampling emissions prior to mixing with the surrounding air. This is evident along the section of light-

rail track that shares the six-lane road with other vehicles (’R’ in Fig. 7) on which large discrepancies between measurements

and model estimates are regularly observed. By diluting emissions throughout a larger grid cell, the model predicts elevated15

mole fractions localized within and downwind from cells containing significant sources but does not fully capture the magnitude

of enhancement resulting from the close proximity to the emissions source.

To demonstrate the benefits of the fine-scale approach, we use the above 0.002◦ grid as well as spatially degraded 0.01◦

and 0.1◦ grid resolutions for footprints and fluxes (Fig. 8) to compare against light-rail measurements. Correlations over space

between the time-averaged modeled and measured concentrations are highest for the 0.002◦ grid (r = 0.52). We find that20

degrading the resolution to 0.01◦ still captures the SLV-scale urban-suburban-rural mole fraction gradient but fails to resolve

much of the roadway and intersection scale enhancements, resulting in a modest decrease in agreement with measurements

(r = 0.48). However, degrading the resolution to 0.1◦ prevents the model from resolving much of the spatial mole fraction

variation (r = 0.25). Further, evaluating the spatially-averaged concentration by hour of day shows improved agreement with

measurements among the finer grid resolutions (0.002◦, 0.01◦) over the more coarse 0.1◦ resolution (Fig. 9). While all three25

resolutions mimic the temporal pattern in the observed mole fraction enhancements due to the temporal variability assigned

to emissions inventories, the finer resolutions better capture the mole fraction enhancements observed by the light-rail train in

both time and space.

4 Summary and Conclusions

In this paper, we have introduced modifications to the STILT-R code that have improved the spatial averaging of the footprints30

and the model speed. These changes improve the functionality of the STILT model for applications investigating fine-scale

patterns in urban emissions. Given the importance of footprints in the STILT workflow, a kernel density estimator was applied

and shown to improve agreement with an idealized brute force method over prior methods. High level methods for single and
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multi-node parallelism were introduced in this distribution, significantly reducing total simulation time. We then applied STILT

to simulate CO2 mole fractions observed along a light-rail train in Salt Lake City, at high resolution and show that the model

and observations track one another in terms of average spatial and temporal patterns during the afternoon period. However, key

differences remain between modeled and measured mole fractions at night and in the proximity of HNF sources.

Results indicate that fine-scale inverse analyses will be sensitive to the proximity of observations to upwind sources. Mod-5

eling difficulties arise when emissions within the HNF are distributed throughout a larger grid cell that no longer reflects the

close proximity of fluxes to the receptor. Fine-scale measurements and modeling approaches are useful for applications such as

quantifying pollution exposure in different neighborhoods or locating large point source emitters. However, fluxes originating

within the HNF domain can often dominate the modeled signal and error. Observation techniques that are strongly influenced

by HNF fluxes such as trains and cars can have limited usefulness in larger scale applications for which LPDMs have previously10

been used, such as bulk flux estimates from urban areas. Measurements striving to quantify emissions or assess the validity of

emissions inventories should seek to reduce the influence of HNF sources. Prioritizing measurement placement at the top of

tall buildings or towers or at least 0.5 km from large sources such as busy roadways enables natural dilution of emitted species,

reduces direct sampling of emissions, and improves model agreement with observations.

Code availability. The source code and documentation can be obtained through https://uataq.github.io/stilt/. Development of the model is15

ongoing and updates will continue to become available through this repository. Contributions are welcome and should be submitted via pull

request. Issues should be reported to the integrated issue tracking system. Questions should be directed to the author.
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Figure 1. STILT workflow to model tracer mole fraction at a receptor. STILT advects particles and calculates the influence footprint for each

receptor. Footprints are convolved with surface fluxes and an atmospheric background signal to model the tracer mole fraction.

Figure 2. Receptor batches are distributed across parallel threads to enable multiple concurrent simulations. Provided memory limits are not

exceeded, the total simulation time decreases linearly with the number of CPU cores available.
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Figure 3. Growth of the effective mixing depth. From the receptor (a), surface fluxes are diluted within an atmospheric column depth of h′

in the HNF until h′ = h∗ (b), amplifying the contribution of Hyper Near Field (HNF) sources and sinks on the receptor. Once h′ has reached

h∗, surface fluxes are diluted to depth h∗ until the end of the simulation (c).
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Figure 4. Comparison of footprint calculation methods. Simulating a large number of particles (N = 105) and gridding by location (top left)

gives a physically constrained expectation for the footprint. Using subsets of 200 particles (top) and 10 particles (bottom), the kernel density

estimator demonstrates considerable improvements over the traditional dynamic grid coarsening. Modifying the kernel bandwidths (f = 2)

can improve results in uncommon cases, such as the 10 particle ensemble.
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Figure 5. Mole fractions of various footprint calculation methods by hour of day during light-rail operating hours from early morning to late

evening. Purple shading indicates afternoon hours used for analyses. Solid lines represent the mean and shading represents the interquartile

range. Mole fractions modeled using Gaussian kernel calculated footprints with correction for HNF dilution depth (GWD) modeled mole

fractions agree most closely with measurements, with underestimation attributed to sub-grid scale sampling of emissions sources.
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Figure 6. July 2015 afternoon Salt Lake Valley (SLV) Hestia-derived and non-SLV ODIAC-derived anthropogenic CO2 emissions, biological

fluxes, and average STILT footprint. The anthropogenic and biological flux inventories convolved with the footprints give the contribution

of near-field fluxes to measured mole fractions in ppm. The light-rail train is highly sensitive to HNF emissions sources and is strongly

influenced by large roadways and agriculture adjacent to the line.
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Figure 7. Key differences between measured and modeled tracer mole fraction occur near HNF sources, including passing large roadways

and intersections (I) and where the light-rail track is shared by other vehicles on the roadway (R). Orange arrow indicates viewpoint of bottom

panels. The model captures the overall urban-suburban-rural CO2 mole fraction gradient (top) as well as localized enhancements near many

busy roads (bottom).
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Figure 8. Spatially degraded flux and footprint grids to 0.01◦ and 0.1◦ resolutions demonstrates the advantages of the fine-scale, 0.002◦ grid

(Fig. 7). While the 0.01◦ resolution (left) retains the CO2 mole fraction enhancements for the SLV-scale urban-suburban-rural gradient, the

0.1◦ resolution (right) fails to resolve the locations and magnitudes of observed CO2 variations.
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Figure 9. Modeled mole fraction at 0.002◦ as well as spatially degraded 0.01◦ and 0.1◦ grid resolutions by hour of day during light-rail

operating hours. Purple shading indicates afternoon hours used for analyses. Solid lines represent the mean and shading represents the

interquartile range. Mole fractions using finer grid resolutions (0.002◦, 0.01◦) agree more closely with observations than the coarser 0.1◦

due to the close proximity of the light-rail train to emissions sources.

19

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-20
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 2 March 2018
c© Author(s) 2018. CC BY 4.0 License.


