
Response to Reviewer 2 
We thank the reviewers for their constructive feedback on our manuscript 
(​https://www.geosci-model-dev-discuss.net/gmd-2018-20/​). The reviewers’ comments are 
shown below in ​italics​ with our responses directly following. 

 
Anonymous Referee #2 

 
This work documents the workflow of STILT simulations and presents improved physical 
processes for fine-scale simulations. I appreciate the authors’ efforts in addressing overdue 
problems for the community, in particular those who use STILT extensively. I hope that the 
authors continue updating their work through GitHub. 
 
I can easily follow the method and think the paper is relatively well written given the conciseness 
in length.  
 
Thanks for the positive comments. We hope that readers will agree. 
 
I have some questions/concerns in the evaluation of the improved method. In current form, the 
authors do not characterize the errors, in particular in surface emissions. So it is hard to 
evaluate the results. The model evaluation is a key result in this study, and the authors need to 
describe how much they know (or pre- scribed) the errors in surface emissions (and others if 
prescribed) so that we can be sure that the better results from GWD are due to the improved 
schemes.  
 
We have added a discussion regarding difficulties in estimating uncertainties in emissions 
inventories. Please see below for details. 

 
Detailed Comments: 

 
L13 - 21: STITL-R should be applicable to other tracer gases, not only CO2. The authors 
describe CO2 only, which seem to be strange. This is probably because the authors show an 
evaluation study using CO2, but this CO2 focus is limited. 
 
STILT’s applications certainly exceed only simulating atmospheric CO2. We attempt to describe 
the use of LPDMs and the STILT model (~p2L9, ~p2L20) using generalized language such as 
“atmospheric mole fractions”, “pollutant concentrations”, and model applicability to “observed 
emissions” and “surface fluxes”. We use urban CO​2​ as the primary motivation for several 
reasons: urban CO​2​ cycling is the focus of a large and growing body of scientific literature that 
this model update will play a prominent role in, it allows for the use of novel CO​2​ surface flux 

https://www.geosci-model-dev-discuss.net/gmd-2018-20/


inventories purpose-built for the study region (the Hestia model), and it applies well to the case 
study using the unique data available from the light-rail measurement system. 
 
P2, L21: Need to cite older work about HYSPLIT. 
 
We have added a citation for Draxler, R.R., and G.D. Hess, 1998. 
 
P2, L28 - 29: Need to mention more recent work on city-scale or regional inversion work based 
on multiple receptors that uses STILT extensively. Literature review here does not represent a 
full range of the use of the traditional STILT, which I believe is import to for the reader to 
understand the context, and motivation for the new development. 
 
We have added citations for McKain et al., 2012 and McKain et al., 2015 describing STILT 
modeling applications in Salt Lake City and Boston as well as Kort et al., 2013 describing 
STILT’s use to assess measurement network design in Los Angeles. 
 
P3, L6: Need to include the reference for R properly. Not doing so is irresponsible because 
without R this work is not possible. 
 
Thank you for the suggestion. We have added the citation for the R software at ~p3L7. 
 
P3, L20: For large-scale simulations, the users have applied other types of parallelizations in 
running STILT, e.g., running multiple jobs (each job may represent one receptor for a give 
period) at the same time taking advantage of high performance computing. The authors need to 
briefly mention what the difference between the old method and the one introduced here would 
be although the method described here seems to be similar to what users have been using. Is 
there a new concept here? 
 
We recognize that we did not adequately describe past efforts to run parallel simulations. While 
the concept of executing batches of receptors across multiple jobs is not new, users have 
previously had to write and run separate scripts defining the receptors and relevant data inputs 
for each job which can require significant manual labor or develop their own methods for batch 
processing receptors. The manuscript formalizes methods for automatically executing the 
parallel batches of receptors, with receptor batches distributed between the parallel jobs and 
managed by the code itself rather than the user. The workflow presented, controlled with 
run_stilt.r​ and with output saved to simulation ID directories, remains the same for serial and 
parallel execution with only changing the setting for the number of parallel processes. 
 
To clarify this point, the following text has been added to ~p3L28 : 

However, past methods for parallelizing simulations require users to manually define 
batches of receptors and relevant meteorological inputs in unique initialization scripts 
and submitting each script as a separate job to the scheduler. While increasing the 



number of parallel threads decreases the size of each simulation batch, the 
requirements of the user become more complex. 

 
We formalize methods for automatically distributing batches of receptors across many 
parallel threads managed by the model rather than the user. 

 
P3, L27: Not all systems use SLURM although it is popular. Is there an option for a different job 
scheduling tool? 
 
As of writing, SLURM is the only cluster job scheduler that has been implemented. SLURM is 
open source and utilized heavily by the high performance computing (HPC) systems at the 
University of Utah. Due to limited availability of HPC clusters, SLURM is the only job scheduler 
that has been validated. However, modifications to the project scaffolding described in this 
manuscript that facilitate parallel computation within single-node and SLURM-scheduled 
environments opens the doors to other queue managers as well. We encourage future 
collaboration with users who have access to these job schedulers and would be willing assist 
with testing development code on their systems. To clarify this in the text, we have added the 
following statement: 

 
While SLURM is the only cluster job scheduler that has been implemented to date, the 
open source code can be modified to run on systems managed by other job schedulers 
including TORQUE/OpenPBS, Sun Grid Engine, OpenLava, Load Sharing Facility, or 
Docker Swarm using methods described by Lang et al. (2017). 

 
P4. L4 - 22: In many cases, PBL heights from meteorological models (e.g., WRF) are directly 
used to represent z_pbl. The authors need to clarify this and describe more on the use of WRF 
PBL related to equations (1) and (2). For HNF simulations, WRF needs to be run at a similarly 
fine sale, which is really expensive? If not, what would be the impact on h = min(h’,hˆ*)? 
 
The formulation for the HNF vertical mixing depth adjustment h’ is intended to fix systematically 
low footprints without needing to explicitly resolve z​pbl​ at HNF resolutions. It provides an 
estimate for the effective mixing depth based on homogeneous turbulence theory without 
requiring meteorological inputs (e.g. WRF) to be at a scale that explicitly defines the fine 
variations in PBL height within a city. However, the meteorological data are used outside of the 
HNF domain to calculate h* using a modified Richardson number method that has been 
extensively validated for the traditional “near-field” domain.  
 
P5, L1-2: Reading this, my immediate thought was if this would require more simulation time to 
estimate the weighted influence. It would be nice to mention the cost. 
 
Agreed. Calculating the footprint field using smoothing methods involves a cost tradeoff with a 
larger particle ensemble. While it is almost always less expensive to apply smoothing methods 
compared to calculating particle trajectories, quantifying the advantage is difficult. The cost to 



calculate particle trajectories varies depending on model configuration, meteorological data 
source, the size of the meteorological domain, and the size of the ensemble while the cost to 
apply smoothing depends on the method and the spatial and temporal domain of the output 
footprint. 
 
To clarify this point, the following text has been added to ~p5L1: 

Computing trajectories of large particle ensembles (N > 10​4​) is computationally 
expensive. To lessen the cost of each simulation, footprint fields are often calculated 
from smaller particle ensembles by applying smoothing methods to compensate for the 
smaller ensemble size. These smoothing methods are less computationally expensive 
than calculating trajectories for a larger ensemble but vary in their ability to reproduce 
the robust footprint field of the large particle ensemble. 

 
P6, L32: Should not include a paper in preparation. 
 
Agreed. We removed the citation since the manuscript is still in preparation. 
 
P7, L5: 24-h backward in time seems to be too short. How was the upstream boundary 
condition treated? I see a short description from L17. Boundary conditions are complex due to 
wind directions. Is the wind consistent from one direction? I would like to see a more description 
on this. 
 
We find that particles exist within the footprint domain for 11 hours on average. The 
meteorological domain encompasses a larger area than the footprint domain and fluxes from 
outside of the footprint domain are assumed to be resolved by the background atmospheric 
signal described at p8L6. 
 
To clarify this point, the following text has been added to ~p7l24: 

Urban development and expansion in the area surrounding SLC is limited by the 
mountainous topography surrounding the city and the Great Salt Lake which restrict the 
expansion of the city and suburbs. This confines large anthropogenic and biologic 
sources into a relatively small area surrounding the SLV and simplifies boundary 
conditions for SLV-centric modeling efforts. From each receptor, 24 h backward 
trajectories of 200 particle ensembles were calculated using meteorological fields from 
the HRRR model, available at an hourly interval with a 3 km grid resolution. On average, 
particles travel within the model domain for 11 h. Computation of the 33,608 particle 
trajectories and a single set of footprints completed in 5.5 hours utilizing 80 parallel 
threads across 5 nodes, each equipped with 64 GB of memory with two 8-core Intel 
XEON E5-2670 2.6 GHz processors. 6.7% of the simulations were not completed due to 
short-term outages in the HRRR data product. 

 
P7, L30: Please use rˆ2 and state which method was used in calculating r. Pearson’s method? 
How are these rˆ2 values statistically different? The simulations from GWD is distinguishably 



from a different distribution from the other two so that we have more confidence in GWD? Note 
that in this evaluation, we want to clearly see better results from GWD. Right? 
 
As recommended, we have modified the text to use r​2​  instead of r to explain model variance 
and have clarified that it is based on Pearson’s method. 
 
While there is likely no statistical significance in the differences between GND and LEG for this 
case study, we show that GND agrees better with the physical “ideal” case and may give 
improvements that depend on the locations of differences between GND and LEG relative to the 
locations of surface fluxes. With the vertical dilution correction (GWD), the results agree more 
closely with measurements in both time and space. 
 
P8: L1: I think this is probably the most important single statement in this paper. I would like to 
know how the authors determined the uncertainty in the surface fluxes. Without precise 
uncertainty characterization, the results are not reliable. What if the inventory is systematically 
low and GWD overestimated the mole fraction, which could be shown to be closer to the 
observations than the other two methods? I believe that the authors have considered this point, 
but I don’t see the details here to the level that I can clearly see the outperformance of GWD. 
Also we need to note that the rˆ2 values are all low and similar to each other. 
 
We agree that it is important to investigate uncertainty in inventory estimates. While we can 
show improvements to footprint smoothing algorithms using physically constrained “ideal” 
cases, uncertainty estimates within emissions inventories remains an unresolved question 
within the emission inventory scientific community. Developers of the Hestia inventory have 
documented that “a devoted effort is needed to generate uncertainty and propagate those 
uncertainties through the Hestia approach to provide an improved understanding of where 
results are more or less certain in space and time. This remains a high priority for future 
research“ (Patarasuk et al., 2016) and determination of GHG fluxes and uncertainty bounds is 
one of the primary goals in the ongoing Indianapolis Flux Experiment 
(​http://sites.psu.edu/influx/​). Improvements to LPDMs can help future inverse modelling 
frameworks that would be better equipped to quantify uncertainties in flux inventories. 
 
To further clarify this, we have added a discussion regarding the difficulties in assessing 
emission inventory uncertainties. Both of the inventories we discussed in the manuscript (Hestia 
and ODIAC) agree on the total emissions within the SLV domain which is evidence one 
inventory is not systematically lower than the other. However, mapping uncertainty to a moving 
receptor using two emissions inventories that encompass different spatial domains and allocate 
fluxes using different methods in time and space is a difficult question that requires more tools 
and analysis than are available in our present manuscript and should be the focus of future 
work. 
 
The following text has been added to ~p7L20: 

http://sites.psu.edu/influx/


Within the SLV domain where the inventories overlap, Hestia and ODIAC agree on the 
total anthropogenic emissions to within 1.5% during our study period. However, 
uncertainties of fluxes applied to our analyses are likely larger since the two inventories 
allocate fluxes differently in space and time. Further, only Hestia is used to represent the 
SLV whereas ODIAC is used outside of the SLV to account for regional-scale emissions. 
Uncertainties in inventory estimates are difficult to quantify in time and space and require 
a devoted effort within the emission inventory scientific community to propagate 
uncertainties through underlying assumptions within each inventory (Patarasuk et al., 
2016; Lauvaux et al., 2016). 

 
P8, L6: Please be more quantitative. It is not clear what has been reproduced. C3 
 
We have changed the text to generalize that the model sees enhancements downwind from 
major roadways and introduced a caveat that better details the limitations regarding model 
resolution. 
 
The following text was added to ~p8L21: 

The model generally produced mole fraction enhancements (​Δ​CO​2​) for grid cells 
containing or downwind from major roadways (Fig. 7). However, modeling intersection 
scale enhancements would require finer grid spacing capable of resolving sub-city-block 
spatial scales that is not yet feasible given current constraints on inventories, 
meteorological data, and computing resources.  

 
P8, L10 - 15: The simulated mole fractions are a combined result of transport and surface flux 
emissions. The authors, as mentioned, need to say how much we know about the surface 
emissions (used here) related to this discrepancy as well as the transport arguably improved 
from this work.  
 
See comments relating to p8L1. 


