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Referee#1 

In this paper, authors use a low-cost stochastic analogue forecasting method to predict the 
NAO index and ground temperatures in specific locations. The idea is the following: find 20 
analog situations using the sea level pressure at time t, randomly choose 1 of the 20 analogs 
(using a proper distance), take the corresponding successor to make the prediction at t+1, 
apply the same procedure until lead time t+T. Authors repeat this statistical forecast and 
obtain a stochastic ensemble forecast of 100 simulated trajectories. The method is original 
and have good performance compared to classic ones, using persistence or climatology. 
The introduction is very clear and is a good summary of stochastic weather generators and 
analog methods. However, quality of the figures needs to be improved. 
 

Specific comments: 

• The stochastic analog forecast presented here is a nonparametric approach (in a 
statistical sense). At some points, the reader would like to have a comparison with simple 
parametric methods like an autoregressive model, building a linear regression between the 
SLP at time t and NAO index or ground temperature at time t+1. Another option is to build 
a local linear regression between the 20 analogs and 20 successors. In that case, the 
biases given highlighted in the q-q plots should be reduced and quality of the prediction 
should be improved. But the use of low-rank methods (like Partial Least Squares method) 
must be used. Note that using such parametric methods can also lead to stochastic 
forecasts, when randomly sampling on the distribution function (e.g., Gaussian with the 
estimated mean and covariance) of the successors. 
This is an interesting suggestion, albeit quite unusual (with respect to the available 
literature). We built a multivariate autoregressive (mAR1) model on SLP. To simplify 
numerical problems, the mAR1 model is done on the first ten principal components of North 
Atlantic SLP (representing approx. 80% of the variance):  

𝑅𝑡+1 = 𝐴𝑅𝑡 + 𝐵𝑡, 
where 𝑅𝑡 is a vector of 10 PCs, 𝐴 is a 10 × 10“persistence” matrix, and 𝐵𝑡 is a 10-variate 

Gaussian centered white noise with covariance matrix 𝛴. 
The mAR1 coefficients 𝐴 and 𝛴 are determined from the covariance 𝐶(0) and lag-1 
covariance 𝐶(1) matrices of SLP: 

𝐴 = 𝐶(1)𝑡𝐶(0)−1, 
𝛴 = 𝐶(0) − 𝐶(1)𝑡𝐴. 

This procedure is similar to what was done by Michelangeli et al. (Weather regimes: 
Recurrence and quasi stationarity. J. Atmos. Sci., 52(8), 1237-1256. 1995) to simulate a 
multivariate AR1 process that mimics atmospheric geopotential heights. 
Ensembles of mAR1 simulations can be performed, with initial conditions from observed 
values of SLP, at incremental times. This is similar to the analogue weather generator of 
SLP presented in the paper.  
We performed a multilinear regression between the five temperature series and NAO index 
and the preceding values of SLP principal components:  

𝑋𝑡 = [𝑇𝑡
1, . . . , 𝑇𝑡

5, 𝑁𝐴𝑂𝑡] = 𝑎𝑆𝐿𝑃𝑡 + 𝑏 + 𝑒𝑡. 
This multivariate regression is applied to the mAR1 model to perform ensembles of forecasts 
of temperatures and NAO index. For each realization, averages over lead times between 5 
and 80 days are then performed. Such a simple model cannot reproduce a seasonal cycle 



of temperature (unless it is explicitly added, which we did not do). Therefore, only 
comparisons on the warmest (July) or coldest (January) months would be meaningful 
(although weakly more meaningful). Such a problem does not occur with the NAO index, 
which does not yield a clear seasonality. 
We computed the CRPSS and correlation of this stochastic model (mAR1). The skill scores 
always give negative (or non significantly positive) values with respect to references for 
temperature, due to the absence of seasonality in such a model. The skill scores for the 
NAO index are positive, and give an interesting background for the analogue model.  
In addition (we had not mentioned it but we will in the revised text), a stochastic IID 
perturbation is always added to the reference (climatological, persistence) forecasts. This is 
necessary because we compare probability distributions. This is an even simpler first order 
parametric stochastic model. 
This is now discussed in the manuscript, and the results with the mAR1 model are reported 
in the results section (new Figure 6) 
 
• The quality of the figures needs to be significantly improved: 
–Fig. 1, can you remove the 2nd map and put only the 5 points of interest in 

the 1st map? 
OK. The 2nd panel was removed and the 5 stations were added on the bigger map (new 
Figure 1). 
 
 
–Fig. 2, what do you mean by observed average. Is it really useful? Where are the median 

analog forecasts? Please use T instead of N in the legend. 
It should have been “the average of observed temperatures TG between Jan. 1st 2007 to 
the lead time T”. This is the values that we try to forecast. The legend of the new figure 3 is 
changed (T rather than N). Thank you for pointing this out. 
 
 
–Fig. 3, plot only 1 legend (for instance in the bottom left sub-figure)? Be careful with the y-
label on the right sub-figures. 
OK. The legends were removed, and grouped in an additional panel (new figure 4). 
 
–Fig. 4-5, authors should separate Jan and Jul in 2 sub-figures (not necessarily to plot 
"all"). Please connect the [squares, dots, triangles] between different lead times. Use a 
classic boxplot to represent error bars. 
OK. The figures are splitted in two panels. The error bars represented the 95% confidence 
interval obtained from a usual formula on uncertainty on the correlation (see H. von Storch 
and F. Zwiers, Statistical Analysis in Climate Research, 1999, Cambridge University Press, 
sec. 8.2.3) between the median of forecasts and observed values. The new figures now 
represent the spread of correlations between realization members and observations with 
boxplots. The interpretation of confidence intervals is hence different (but the mean values 
are the same). 
 

Technical corrections: 

• Avoid the use of "dynamical" and use "dynamic" instead. 
We keep the adjective “dynamical” when referring to “dynamical systems”. This is how it is 
used in textbooks, journal names, etc. The adjective was changed to “dynamic” when 
referring to the simulation mode of the stochastic weather generator.  
 



• Can you explain the difference between "predictand" and "predictor"? Avoid the use of 

predictand? 

Predictand is the variable that we want to predict. Predictor is the variable that is used to 
predict the predictand. There was a confusion p. 12, l. 32, which is now corrected. 
 
• Can you remind the difference between positive and negative values of the NAO index? 

A sentence is added to explain the pressure features during high and low values of the NAO 
index (p. 2, near l. 30). 
 

  



 

Referee#2 

In this manuscript the authors develop an ensemble forecasting system using an analog-
based weather generator. They test this ensemble forecasting system for NAO and the 
temperature at several weather stations. They focus on the forecasts of temporal averages 
from 5 to 80 days. The forecast is made for each averaging period at the first 
corresponding lead time. The skill of these forecasts are evaluated through skill scores 
(the correlation and the continuous rank probability score, CRPS, the latter being well 
adapted to ensemble forecasts). The authors claim that there is some skill of the 
temperature and NAO up to seasonal time scales. I am not convinced by the system they 
propose, nor by the skill they found, for three important reasons: 
 

(i) The system they propose suffers from a very important drawback, which is the 
progressive convergence toward the climatological mean as illustrated on the right column 
of Figure 3. There is only little variability of the forecasts for long time averages, indicating 
that the ensemble forecast is unreliable. This makes of this system a very poor 
probabilistic forecasting system, since the forecasts do not span the set of possible values 
of the observed variable. Reliability is one essential ingredient of ensemble forecasts that 
can also be easily checked with the decomposition of the CRPS in reliability and 
resolution. I therefore do not consider this ensemble system appropriate. 
We never hide the fact that there is a convergence towards climatology (this is mentioned 
in the text). But long term forecasts with full scale climate models yield the same feature of 
convergence to climatology (as outlined by Hersbach (2000) and others). Our claim is that 
this system does a better job than usual references (Climatology or Persistence) or AR1 
models (see response to referee #1). The ease of use of this system makes it possible at 
low cost to investigate the limit for large lead times. We consider that the fact that the scores 
are positive for shorter lead times (20 days ahead) is interesting. We now mention (and use) 
the CRPS decomposition of Hersbach (2000) in terms of reliability and potential CRPS. 
 
(ii) It is not clear at all to me why the authors are looking at the first lead time of the 5, … 
80 days averages. Using this approach, one can certainly expect that if one start from an 
initial state close to the reality, the forecast of the averages will always be better than the 
climatological average (provided we have access to an infinite sample). In other words 
some positive correlation will always be present, even if it is very small. This skill is 
artificial (due to averaging from the initial state) and I am wondering why the authors did 
not have looked at the skill of the daily values of NAO or temperatures. My guess is that 
there is no skill beyond a month or so. 
We never claim the contrary and discussed it in the text. Starting from an observed state, 
daily trajectories tend to diverge from each other. The computing T-averages for various 
lead times allows accessing to the limit of predictability of our system. 
This analogue method is also better than an autoregressive model (mAR1, see response to 
referee#1) that is initialized from observations. As stated in the text, we do not consider that 
the system has any skill beyond a month. 
 

(iii) The analysis of the skill of ensemble forecasts should be done with appropriate tools. 
The CRPSS is one of them, but it is much more important to look at its decomposition in 
reliability, resolution and uncertainty. These are standard tools that can be found in 
classical books or papers (e.g. H. Hersbach, 2000, Weather and Forecasting, 15, 559-
570). 



Thank you for this suggestion. We added a discussion on the decomposition of CRPS (citing 
the paper of Hersbach 2000) in terms of reliability and potential CRPS. The problem with 
reliability is that its magnitude depends on the unit of the variable to be predicted (as 
discussed by Hersbach 2000). The results reported by Hersbach give very small values of 
reliability (for precipitation forecast) when the ECMWF analysis is used. But those numbers 
are small because the variable values to predicted are small.  
We used the R package “verification” (by E. Gilleland) to compute this decomposition. The 
relative of variations of reliability that we obtain for temperature or NAO forecasts is in the 
same range of what is reported in the paper of Hersbach (2000) for lead times of 5 to 10 
days. We now discuss the values of reliability, which appears in Figures 4-5. The reliability 
values for NAO are small (≈ 8 10-3), and the ratio to the CRPS value is in the same range of 
what is reported in Hersbach’s paper. 
 

Some additional (less important) points 

1. The algorithm of page 4 (section 3.2) is far from clear. It would be nice to visualize the 
algorithm, together with the relations that are used for evaluating the weights. 
OK. A graphical illustration is added (new Figure 2) to visualize the iteration procedure and 
the choice of weights to sample analogues. 
 
2. Page 6, line 5. Is S=N? This is not clear to me. 
We compute the N=20 best analogues for each day. At each time increment, we simulate 
S=100 trajectories, sampled from those 20 best daily analogues. For a lead time of, say, 10 
days, there are 2010  possible trajectories, which is far larger than S. This is emphasized in 
the text. 
 
3. An additional concern I have is the comparison with the persistence in Figs 4 and 5. It 
seems to me that the observables based on persistence display a higher variability than 
the forecasts constructed here (that are converging to the climatology). I therefore suspect 
that the reliability of the persistent forecast is better than the one of the stochastic 
forecasts (the reliability term in the CRPS decomposition should be smaller for the 
persistence case), which is not reflected here in the analysis of the CRPSS. I would be 
very useful to evaluate the different terms of the CRPS to clarify the difference between 
the two systems. This will allow in particular to clarify why one gets 0.45 
for all averages for NAO and why the skill increases for temperature. 
A discussion on the CRPS decomposition for the different forecasts is added. The reliability 
value of CRPS for the persistence or the climatology give higher values (roughly twice larger) 
than for our model. 
 
 
 
 

 



Stochastic Ensemble Climate Forecast with an Analogue Model
Pascal Yiou1 and Céline Déandréis2

1Laboratoire des Sciences du Climat et de l’Environnement, UMR 8212 CEA-CNRS-UVSQ, IPSL and Université
Paris-Saclay, CE l’Orme des Merisiers, 91191 Gif-sur-Yvette, France
2ARIA Technologies, 8-10 Rue de la Ferme, 92100 Boulogne-Billancourt, France

Correspondence: P. Yiou (pascal.yiou@lsce.ipsl.fr)

Abstract. This paper presents a system to perform large ensembles climate stochastic forecasts. The system is based on

random analogue sampling of sea-level pressure data from the NCEP reanalysis. It is tested to forecast an NAO
:
a
:::::
North

:::::::
Atlantic

:::::::::
Oscillation

::::::
(NAO) index and the daily average temperature in five European stations. We simulated 100 member ensembles of

averages over lead times from 5 days to 80 days in a hindcast mode, i.e. from a meteorological to a seasonal forecast. We tested

the hindcast simulations with usual forecast skill scores (CRPSS
:::::
CRPS

:
or correlation), against persistence and climatology. We5

find significantly positive skill scores for all time scales. Although this model cannot outperform numerical weather prediction,

it presents an interesting benchmark that could complement climatology or persistence forecast.

Copyright statement. TEXT

1 Introduction

Stochastic weather generators (SWG) have been devised to simulate many and long sequences of climate variables that yield10

realistic statistical properties Semenov and Barrow (1997)
:::::::::::::::::::::::
(Semenov and Barrow, 1997). Their main practical use has been to

investigate the probability distribution of local variables such as precipitation, temperature or wind speed, and their impacts

on agriculture (Carter, 1996; Semenov, 2006), energy (Parey et al., 2014) or ecosystems (Maraun et al., 2010). Such systems

can simulate hundreds or thousands of trajectories on desktop computers and propose cheap alternatives to climate model

simulations.15

There are many categories of SWGs (Ailliot et al., 2015). Some SWGs are explicit random processes, whose parameters are

obtained from observations of the variable to be simulated (Parey et al., 2014). Some SWGs are based on a random resampling

of the observations (Iizumi et al., 2012). Some SWGs simulate local variables from their dependence to large-scale variables

such as the atmospheric circulation (Kreienkamp et al., 2013). This allows to simulate spatially coherent multivariate fields

(Yiou, 2014; Sparks et al., 2018) and can be used for downscaling (Wilks, 1999).20

SWGs that use observations as input could in principle be used to forecast variables. This is the case for analogue weather

generators (Yiou, 2014). Methods of analogues of atmospheric circulation were first devised for weather forecast (Lorenz,

1969; van den Dool, 1989). They were abandoned when numerical weather prediction was developed and implemented, be-
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cause their performance was deemed inadequate (van den Dool, 2007). However, recent studies on nowcasting have shown

that analogue based methods could outperform numerical weather prediction for precipitation (Atencia and Zawadzki, 2015).

Yiou (2014) showed some skill for temperature simulations in Europe of an analogue SWG.

Due to uncertainties in observations and the high sensitivity to initial conditions (van den Dool, 2007) weather forecasts es-

timate probability density functions rather than deterministic meteorological values. Therefore, weather forecasts examine the5

properties of all possible trajectories of an atmospheric system from an ensemble of initial conditions. Such properties include

the range and the median, for example. Then one can compare how the ensemble of trajectories compares to observations, and

other reference forecasts. Numerical weather forecasts rely on large ensembles of model simulations and require a massive use

of supercomputers in order to provide estimates of the probability density function (pdf) of variables of interest, for various

lead times. Being able to increase the ensemble size of weather forecast systems in order to lower the bias of the forecast skill10

has been a challenge of major centers of weather prediction (Weisheimer and Palmer, 2014).

The most trivial prediction systems are based on either climatology (i.e. predicting from the seasonal average) or persistence

(i.e. predicting from the past observed values) (Wilks, 1995). Probabilistic and statistical models can provide more sophisticated

benchmarks for weather forecast systems, still without simulating the underlying primitive hydrodynamic equations and using

supercomputers. For example, statistical models of forecast for precipitation based on analogues (of precipitation) were tested15

for North America (Atencia and Zawadzki, 2015). Such systems tend to outperform numerical weather forecast systems,

although their computing cost is steeper than most SWGs. Therefore the potential of analogue based methods can be useful to

assess probability distributions, rather than a purely deterministic forecast.

Machine learning algorithms were recently devised to simulate complex systems (Pathak et al., 2018a) with surprising

performances. Such algorithms are sophisticated ways of computing analogues of observed trajectories in a learning step, and20

simulating potentially new trajectories from this learning. The main drawback is that such algorithms generally require a tricky

tuning of parameters that might not be based on a physical intuition. From the inspiration of machine learning algorithms,

we propose to devise a weather forecast system based on a stochastic weather generator that uses analogues of circulation to

generate large ensembles of trajectories. The rationale for using analogues, rather than more sophisticated machine learning, is

that they correspond to a physical interpretation of relations between large scale and regional scales. Moreover, mathematical25

results in dynamical system theory (Freitas et al., 2016; Lucarini et al., 2016) suggest that properties of recurring patterns is

asymptotically independent on the distance that is used to compute analogues.

This paper presents tests of such a system to forecast temperatures in Europe and an index of the North Atlantic Oscillation

(NAO). The NAO controls the strength and direction of westerly winds and location of storm tracks across the North Atlantic

in the winter (Hurrell et al., 2003). It is therefore
::::::
Positive

::::::
values

::
of

:::
the

:::::
index

:::::::
indicate

::
a

::::::::::
strengthened

:::::::
Azores

:::::::::
anticyclone

::::
and30

:
a
::::::
weaker

::::::::
Icelandic

::::
low.

::::::::
Negative

::::::
values

:::::::
indicate

:
a
:::::
weak

::::::
Azores

::::::::::
anticyclone

::::
and

:
a
::::::
strong

::::::::
Icelandic

::::
low.

:::
The

::::::
North

:::::::
Atlantic

:::::::::
Oscillation

::
is strongly tied to temperature and precipitation variations in Europe (Slonosky and Yiou, 2001).

Since the set up of such a system is fairly light, it is possible to test it for time leads from a meteorological forecast (5 days

ahead) to a seasonal forecast (80 days ahead). We test this system in hindcast experiments to forecast climate variables between

1970 and 2010. The tests are performed with usual skill scores (continuous rank probability score and correlation).35
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The paper is organized as follows. Section 2 presents the datasets that are used as input of the system. Section 3 presents the

forecast system based on analogues, the skill scores and the experimental protocol. Section 4 presents the results on simulations

of the NAO index and European temperatures.

2 Data

We used data from different sources for sea-level pressure (SLP), NAO index and temperatures. SLP data are used for analogue5

computations as predictor. The NAO index and temperatures are the predictands
:::
(i.e.

:::::::
variables

::
to
:::
be

::::::::
predicted). It is important

that they share a common chronology, in order to allow their simulation because the NAO index and temperatures are simulated

from from SLP analogues.

2.1 Sea-level pressure

We use the reanalysis data of the National Centers for Environmental Prediction (NCEP) (Kistler et al., 2001). We consider the10

sea-level pressure (SLP) over the North Atlantic region. We used SLP daily averages between January 1st 1948 and April 30th

2018. The horizontal resolution is 2.5◦ in longitude and latitude. The rationale of using this reanalysis is that it covers more

than 60 years and is regularly updated, which makes it a good candidate for a continuous time forecast exercise.

One of the caveats of this reanalysis dataset is the lack of homogeneity of assimilated data, in particular before the satellite

era. This can lead to breaks in pressure related variables, although such breaks are mostly detected in the southern hemisphere15

and the Arctic regions (Sturaro, 2003). We are not interested in the evaluation of SLP trends, therefore breaks should only

marginally impact our results.

2.2 NAO index

The North Atlantic Oscillation (NAO) is a major mode of atmospheric variability in the North Atlantic (Hurrell et al., 2003). Its

intensity is determined by an index that can be computed as the normalized sea-level pressure difference between the Azores20

and Iceland (Hurrell, 1995). The NAO index is related to the strength and direction of the westerlies, so that high values

correspond to zonal flows across the North Atlantic region, stormy conditions and rather high temperatures in Western Europe

(Slonosky and Yiou, 2001; Hurrell et al., 2003).

We retrieved the daily NAO index from the NOAA web site:

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml.25

The procedure to calculate the daily NAO teleconnection indice is detailed on the NOAA web site. In short, a Rotated

Principal Component Analysis (RPCA) is applied to monthly averages of geopotential height at 500 hPa (Z500) anomalies

(Barnston and Livezey, 1987) in the 20N–90N region, between January 1950 and December 2000, from the NCEP reanaly-

sis. The empirical orthogonal functions (EOFs) provide climatological monthly teleconnection patterns (Wilks, 1995). Those

monthly teleconnection patterns are interpolated for every day in the year. Then daily Z500 anomaly fields are projected onto30

the interpolated climatological teleconnection patterns in order to obtain a daily NAO index.

3
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Figure 1. Upper panel: North Atlantic region (blue rectangle) and Western European region (red rectangle) on which analogues are com-

puted.Lower panel: European stations used for daily mean temperature.

The geographical domain on which this NAO index is computed is larger than the one for SLP data. Scaife et al. (2014) used

an NAO index to test the UKMO seasonal forecast system. The index they used is based on monthly SLP differences between

the Azores and Iceland, and is therefore different from ours.

2.3 European temperatures

We took daily averages of temperatures from the ECAD project (Klein-Tank et al., 2002). We extracted data from Berlin, De5

Bilt, Toulouse, Orly and Madrid (Fig. 1). Those
:::
five

:
stations cover a large longitudinal and latitudinal range in western Europe.

These datasets were also chosen because

– they start before 1948 and end after 2010. This allows the computation of analogue temperatures with the SLP from the

NCEP reanalysis, which includes that period,

– they contain less than 10% of missing data.10

These two criteria allow keeping 528 out of the 11422 ECAD stations that are available in 2018.

3 Methods

3.1 Analogues of circulation

Analogues of circulation are computed on SLP data from NCEP (Sec. 2.1). For each day between Jan. 1st 1948 and Dec. 31st

2017, the best 20 analogues (with respect to a Euclidean distance) in a different year are searched. This follows the procedure15

of (Yiou et al., 2013). The analogues are computed over two regions (large region: North Atlantic region (80W–30E; 30–70N);

small region: Western Europe (30W–20E; 40–60N)). The large region is used to simulate/forecast the NAO index. This choice

is justified by the fact that the North Atlantic atmospheric circulation patterns are well defined over that region (Michelangeli

et al., 1995). The small region is used to simulate/forecast continental temperatures, following the domain recommendations

of the analysis of Jézéquel et al. (2018).20

3.2 Forecast with analogue stochastic weather generator

Ensembles of simulations of temperature or the NAO index can be performed with the rules illustrated by Yiou (2014), with

an analogue-based stochastic weather generator. This stochastic weather generator can be run in so called dynamical
:::::::
dynamic

mode. For each day t
:::::
initial

:::
day

::::
t(1), we have N best SLP analogues. We randomly select one

::
(k)

:
of those N analogues and

time t̃
:::
t
(1)
k , with a probability weight that is25
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Figure 2.
::::::::
Schematic

::
of

:::
the

::::::
iteration

::::::::
procedure

::
to

:::::::
simulate

:::
one

::::::
random

:::::::
trajectory

::
of

:::::::::
temperature

::::
(TG)

::::
from

::::
SLP

::::::::
analogues.

::::
The

:::::
values

::
of

:::
t(k)

::
are

:::
the

::::
days

::
to

::
be

::::::::
simulated

::
by

:::
the

::::::
system.

:::
The

:::::
values

::
of

::::::::::
t
(k)
1 , . . . , t

(k)
N :::

are
::
the

:::::::
analogue

::::
days

:::
for

::::
t(k).

:::
The

:::
red

:::
SLP

::::::::
rectangles

:::
are

:::
the

:::::::
randomly

::::::
selected

::::::::
analogues,

::::::::
according

::
to

::
the

::::
rule

:::::
defined

::
in
:::
the

:::::
lower

:::
box.

::::
This

::::::::
procedure

:
is
:::::::
repeated

:
S
:::::

times
::
to

::::::
generate

::
an

::::::::
ensemble

::
of

::::::::
trajectories.

1. inversely proportional to the calendar distance of the analogues dates t̃ to t
:::
t
(1)
k ::

to
::::
t(1). This constrains the time of

analogues to move forward.

2. inversely proportional to the correlation of the analogue with the SLP pattern at time t
:::
t(1). This constraint favors ana-

logues with the best patterns, among those with the closest distance.

3. a zero weight if t̃
:::
t
(1)
k is larger than t

:::
t(1). This ensures that no information coming from times beyond t

::
t(1)

:
is used in5

the simulation process.

The simulated SLP at t+ 1
:::
the

::::
next

:::
day

::::
t(2)

:
is then the next day of the selected analogue

:::::::::::::
(t(2) = t

(1)
k + 1). We repeat this

operation
::
on

:::::::::
t(2), . . . t(t)

:
until a lead time T . This generates one random trajectory between t and t+T

::::
daily

:::::::::
trajectory

:::::::
between

:::
t(1)

:::
and

:::::::
t(1) +T . The random sampling procedure is repeated S times to generate an ensemble of trajectories. Here, S = 100.

::::
This

::::::::
procedure

::
is

::::::::::
summarized

::
in

::::
Fig.

::
2.10

If we want to simulate a
::::
daily

:
sequence starting at time t and until t+T , we have excluded all analogues whose date falls

in [t, t+T ] in the random analogue selection. This provides a simple way of performing hindcast forecast for temperature or

NAO index.

In this paper, the lead time T is 5, 10, 20, 40 and 80 days ahead.
:::
The

:::::
latter

:::
two

::::::
values

:::
are

:::::
meant

::
to

::::::::
illustrate

:::
the

:::::
limits

::
of

:::
the

::::::
system.

:
For each daily trajectory starting at t, we compute the

:::::::
temporal

:
average between t and t+T . Therefore, we go from a15

::
an

::::::::
ensemble meteorological forecast (5 days) to a seasonal forecast (80 days) of averaged trajectories.

The S = 100 simulations at each time steps allow computing medians and quantiles of the averaged trajectories.

For comparison purposes, climatological and persistence forecasts are also computed. The climatological forecast for a lead

time T is determined from the seasonal cycle of T averages of the variable we simulate. For each time t, the climatological

forecast for t+T is the mean seasonal cycle of T averages at the calendar day of t. The persistence forecast at time t for a20

lead time of T is the observed average between t−T and t. Those two types of forecasts are illustrated in Fig. 3.
:::::::::
Ensembles

::
of

:::::::
reference

::::::::
forecasts

:::
are

:::::::::
performed

::
by

::::::
adding

:
a
::::::::
Gaussian

::::::
random

:::::
noise

:::::::::::
(independent

:::
and

:::::::::
identically

::::::::::
distributed),

::::::
whose

:::::::
variance

:
is
:::
the

::::::::
variance

::
of

:::
the

::::::::
observed

::
T

::::::::
averages.

:
These two definitions ensure a coherence between the predictand (averages over

T values ahead) and predictors
::
for

:::::::::
references (mean of averages over T values for climatology, or average over T preceding

values for persistence).25

3.3
:::::::::

Alternative
:::::::::::::
autoregressive

:::::::
weather

:::::::::
generator
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Figure 3. Illustration of average forecast for daily mean temperature (TG) in Toulouse, for Jan. 1st 2007. The continuous black line indicates

the observations of TG for the first 90 days of 2007. The colors indicate lead times T . The continuous arrows are for observed averages of

::::::
observed

:
TG on

::::
from Jan. 1st 2007.

::::
2007

::
to

::
the

::::
lead

::::
time

::
T . The dashed lines are for the persistence forecast of TG and the dotted lines are

for the climatology forecast of TG on Jan. 1st 2007.

::::
This

:::
non

:::::::::
parametric

:::::::
weather

::::::::
generator

::::::
(based

:::
on

::::
data

::::::::::
resampling)

::
is

::::::::
compared

::
to

::
a

:::::::::
parametric

::::::::::::
autoregressive

::::::
simple

::::::
model,

:::::
based

::
on

:
a
::::::
similar

::::::::
principle

::
of

:
a
:::::::
relation

:::::::
between

::::
SLP

:::
and

::::::::
variables

::::
like

::::::::::
temperature

:::
and

:::::
NAO

:::::
index.

:::
We

:::::
build

:
a
:::::::::::
multi-variate

:::::::::::
autoregressive

::::::
model

::
of

:::::
order

:
1
:::
Rt:::

for
::::
SLP

::
by

::::::::::
expressing:

Rt+1 =A ·Rt +Bt,
::::::::::::::::

(1)

:::::
where

::
A

::
is

:
a
:::::::::
"memory"

::::::
matrix

::::
and

::
Bt::

is
::::::::::
multivariate

:::::::
random

::::::::
Gaussian

:::::
noise

::::
with

:::::::::
covariance

::::::
matrix

:::
Σ.

:::
We

::::::
impose

::::
that

:::
the5

::::::::::
multivariate

::::::
process

:::
Rt:::::

yields
:::
the

:::::
same

:::::::::
covariance

::::::
matrix

::::
C(0)

::::
and

::::
same

:::::
lag-1

:::::::::
covariance

::::::
matrix

::::
C(1)

:::
as

::::
SLP.

:::
The

::::::::
matrices

::
A

:::
and

::
Σ

:::
can

::
be

:::::::::
estimated

:::
by:

A= C(1)t ·C(0)−1
::::::::::::::::

(2)

:::
and

Σ = C(0)−C(1)t ·A.
::::::::::::::::::

(3)10

:::
The

::::::::::
superscript

:

t
::
is

::::::
matrix

::::::::::::
transposition.

::
In

:::::
order

::
to

:::::
avoid

:::::::::
numerical

::::::::
problems

::
in
::::

the
:::::::::
estimation

::
of

::::::::
C(0)−1,

:::
the

:::::
model

:::
in

:::
Eq.

:::
(1)

::
is

:::::::::
formulated

:::
on

:::
the

::::
first

::
10

::::::::
principal

::::::::::
components

:::::::::::::::::::::::::::
(von Storch and Zwiers, 2001) of

::::::
North

:::::::
Atlantic

::::
SLP

::::::::::
(80W–30E;

:::::::
30–70N:

::::
blue

::::::::
rectangle

::
in

::::::
Figure

::
1),

::::::
which

:::::::
account

::
for

::
≈
:::

80
::
%

::
of

:::
the

::::::::
variance.

::
In

::::
this

::::
way,

:::::
C(0)

:
is
::

a
:::::::
diagonal

::::::
matrix

::::::
whose

:::::::
elements

:::
are

:::
the

::::::::
variances

::
of

:::
the

:::
10

:::::::
principal

::::::::::
components

::
of

:::::
SLP.

::::
Such

:
a
::::::::::
parametric

:::::
model

:::
has

::::
been

:::::
used

::
as

:
a
::::
null

:::::::::
hypothesis

::
for

:::::::
weather

::::::
regime

::::::::::::
decomposition

:::
by

::::::::::::::::::::::
Michelangeli et al. (1995).15

:::
We

::::
then

:::::::
perform

:
a
::::::::::
multilinear

:::::
linear

::::::::
regression

::::::::
between

:::
the

:::
five

:::::
mean

:::::
daily

::::::::::
temperature

::::::
records

::::
(TG

::
at
::::::
Berlin,

:::::::::
Toulouse,

::::
Orly,

:::::::
Madrid,

:::
De

::::
Bilt)

:::
and

:::
the

:::::
NAO

:::::
index:

:

Xt = aSLPt + b+ εt
:::::::::::::::::

(4)

:::::
where

:::::::::::::::::::::::::::::::
X = (TGBerlin, . . . ,TGDeBilt,NAO),

::
a

::
is

:
a
::::::

6× 10
:::::::

matrix,
:
b
::

is
::

a
:::::::::::::
10-dimensional

::::::
vector,

::::
and

::
εt::

is
::
a

::
10

:::::::::::
dimensional

::::::
residual

:::::
term.

:::
We

:::::::
simulate

:::
Eq.

:::
(1)

::::
with

:::
the

::::
same

::::::::
observed

:::::
initial

:::::::::
conditions

::
as

:::
for

::
the

::::::::
analogue

:::::::
forecast.

:::::
Then

:::
Eq.

:::
(4)

:
is
:::::::
applied20

::
to

:::::::
simulate

::
an

:::::::::
ensemble

::
of

::::::::
forecasts

::
of

:::::::::::
temperatures

:::
and

:::::
NAO

:::::
index.

:::
In

:::
this

::::::::::
multivariate

::::::::::::
autoregressive

::::::
model

::::::::
(mAR1),

:::
the

:::::::
temporal

::::::::::
atmospheric

:::::::::
dynamics

::
is

::::::::
contained

::
in

:::
the

::::::
matrix

:::
A.

:::
The

::::::
major

:::::
caveat

:::
of

:::
the

:::::::::
parametric

:::::
model

:::
in

::::
Eqs.

::
(1

::::
and

::
4)

::
is

:::
that

::
it

::::
does

:::
not

::::::
contain

::
a

:::::::
seasonal

:::::
cycle.

::::::::::
Introducing

:
a
::::::::
seasonal

:::::::::
dependence

:::
on

:::
the

:::::::
matrices

::
A

::::
and

:
a
::::::
would

::::::
require

:::::
many

::::
tests

:::
that

:::
are

::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::
paper.

:
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3.4 Forecast skill

The simplest score we use is the temporal correlation between the median of the ensemble forecast and the observations.

Due to the autocorrelation and seasonality of the variables we try to simulate (temperature and NAO index), we consider the

correlations for the forecast in the months of January and July.

The continuous rank probability score (CRPS) compares the cumulated density functions of a forecast ensemble and obser-5

vations yt, for all times t (Ferro, 2014).

CRPS(t) =

∞∫
−∞

(Ft(x)−1(x≥ yt))2 dx. (5)

Ft is the cumulated density function of the ensemble forecast at time t. It is obtained empirically from the ensemble of

simulations of the model. 1(x≥ yt) is the empirical cumulated density function of the observation yt.

The score is the average over all times:10

CRPS =
1

N

N∑
t=1

CRPS(t). (6)

The CRPS is a fair score (Ferro, 2014; Zamo and Naveau, 2018) in that it compares the probability distributions of forecasts

and observations and it is optimal when they are the same. Discrete estimates of CRPS can yield a bias for small ensemble

sizes M
:
S. We simulate M = 100

:::::::
S = 100 trajectories for each forecast. This is more than most ensemble weather forecasts

(typically, M = 51
:::::
S = 51

:
for the European Center for Medium Range Forecast (ECMWF) ensemble forecast) and guaranties15

that the bias due to the number of samples is negligible.

A perfect forecast gives a CRPS value of 0.

:::
The

::::::
CRPS

:::
can

::
be

:::::::::::
decomposed

:::
into

::
a

::::::::
reliability,

:::::::::
resolution

:::
and

::::::::::
uncertainty

:::::
terms

::::::::::::::::::::::
(Hersbach, 2000, Eq. (35)):

:

CRPS = Reli−Resol + U.
::::::::::::::::::::::

(7)

:::
The

::::::::
reliability

::::
Reli

::::
term

::::::::
measures

:::::::
whether

::::::
events

:::
that

:::
are

:::::::
forecast

::::
with

:
a
::::::
certain

:::::::::
probability

::
p

:::
did

:::::
occur

::::
with

::
the

:::::
same

:::::::
fraction20

:
p
::::
from

:::
the

:::::::::::
observations

:::::::::::::::
(Hersbach, 2000).

:::
The

:::::::::
remaining

:::::
terms

::
of

:::
the

::::
right

::::
hand

::::
side

::
of

:::
Eq.

:::
(7)

:::
are

:::::
called

:::
the

::::::::
potential

::::::
CRPS,

::
i.e.

::
it
::
is

:::
the

::::::
CRPS

:::::
value

:::
one

::::::
would

:::::
obtain

::
if
:::
the

:::::::
forecast

:::::
were

:::::::
perfectly

:::::::
reliable

:::::::::
(Reli = 0).

::::::::::::::::::::
Hersbach (2000) argues

::::
that

:::
the

:::::::
potential

:::::
CRPS

::
is
::::::::
sensitive

::
to

:::
the

::::::
average

::::::
spread

::
of

:::
the

:::::::::
ensemble.

The units of CRPS are those of the variable to be forecasted
:::::::
forecast,

:
therefore its interpretation is not universal, and

comparing the CRPS values for NAO index and temperatures is not directly possible. Therefore, it is useful to compare the25

CRPS of the forecast with the one of a reference
:::::::
forecast. A normalization of CRPS provides a skill score with respect to that

reference:

CRPSSref = 1− CRPS

CRPSref
. (8)
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The CRPSS indicates an improvement over the reference forecast. A perfect forecast has a CRPSS of 1. A positive im-

provement over the reference yields positive a CRPSS value. A value of 0 or less indicates that the forecast is worse than the

reference.

We compute CRPSS for the climatological and persistence references. We used the package
::::::::
packages "SpecsVerification"

:::
and

:::::::::::
"verification"

:
in R to compute CRPS

:::::::::::
decomposition

:
and CRPSS scores. Hence we compare our stochastic forecasts with5

forecasts made from climatology and persistence. By construction, the persistence forecast shows an offset with the actual

value ahead, because the persistence is the value of the average of observations between t−T and t. The variability of the

climatological forecast is low because it is an average of T long sequences.

3.5 Protocole

We tested the ensemble forecast system on the period between 1970 and 2010. We simulate N = 100 trajectories of length10

::::::
lengths T ∈ {5,10,20,40,80} days for a given date t, and average each trajectory over T . The dates t are shifted every δt ∈
{2,5,10,10,20} days, respectively for each different value of lead times T .

We recall that the tests we perform are on the average of the forecast between t and t+T , not on the value at time t+T .

The
:::::
CRPS

:::
and

:
CRPSS is computed for each value of lead times T , with references of climatology and persistence. We

::::::::
determine

:::
the

::::::
CRPS

::::::::
reliability

:::
and

:
plot quantile-quantile plots for observed and forecast values of the averages. This allows15

assessing biases in simulating averages. Variables such as temperature yield a strong seasonality, which is larger than daily

variations. It is hence natural to have very high correlations or skill scores if one considers those scores over the whole year.

Therefore we compare the skill scores for January and July, in order to avoid obtaining artificially high scores.

4 Results

We performed our stochastic forecasts on the NAO index and European temperatures
:::
with

:::
the

::::::::
analogue

:::::::::
stochastic

:::::::
weather20

::::::::
generator

:::
and

:::
the

::::::
mAR1

::::::
model. The two datasets

:::::
(NAO

:::
and

:::::::::::
temperature)

:
are treated separately because the simulations are

done with two different analogue computations (Sec. 3.1).

4.1 NAO index

4.1
::::

NAO
:::::
index

For illustration purposes, we crepommenrt
:::::::
comment

:
on the skill on simulations of 2007. Fig. 4 shows the simulated and25

observed values of averages of the NAO index, for five values of T (5, 10, 20, 40 and 80 days). This example suggests a good

skill to forecast the NAO index from SLP analogues, especially at lead times of T = 5 to 10 days.

The q-q plots of the median of simulations versus observations show a bias that reduces the range of variations (Fig. 4, right

column). There are two reasons for this reduction of variance, which is proportional to the lead time T :

1. individual simulated trajectories tend to "collapse" toward a climatological value after ≈ 10 days,30

8



Figure 4. Left column: time series of
:::::::
analogue ensemble forecasts for 2007, for lead times T ∈ {5,10,20,40,80} days.

:::
Red

::::
lines

:::::::
represent

::
the

::::::
median

::
of

:::
100

:::::::::
simulations;

::::
pink

::::
lines

:::::::
represent

::
the

:::
5th

:::
and

::::
95th

:::::::
quantiles

:
of
:::
the

:::
100

:::::::
member

:::::::
ensemble.

:
Right column: q-q plots of NAO

forecasts vs. observed values for all years in 1970–2010 for all lead times. The dotted line is the first diagonal.

Figure 5. Skill scores for NAO index for lead times T of 5, 10, 20, 40 and 80 days for all days (black), January (
:::
left: blue) and July (

::::
right:

red). Square
:::::
Squares

:
indicate CRPSSpers, triangles CRPSSclim and circles

::::::
boxplots

:
are fore

::
for

:
correlation.

:::
The

:::::::
diamonds

:::::::
indicate

:::
the

:::::::
reliability

::
of

:::::
CRPS

:::
(on

:::
the

::::
same

::::
scale

:::
as

:::::::
CRPSS). Triangles are identical for all days, January and July. The error bars

::::::
boxplots

:
for the

correlation indicate a 95% confidence interval (von Storch and Zwiers, 2001)
::
the

:::::
spread

:::::
across

:::
the

:::
100

::::::
member

:::::::
ensemble

:::::::
forecasts.

2. taking the median of all simulations also naturally reduces the variance.

The q-q plots are almost linear. This means that the bias could in principle be corrected by a linear regression. We will not

perform such a correction in the sequel.

The correlation
:
,
:::::
CRPS

:::::::::
reliability and CRPSS values for NAO index forecast are shown in Fig. 5. The values of CRPSSpers

(for a persistence reference) are rather stable (with a slight increase) near 0.45, and the climatology score slightly decreases5

with T although positive.

:::
The

::::::
CRPS

::::::::
reliability

::::::
values

:::::
range

::::
from

:::::::
5 · 10−3

:::
(10

:::::
days)

::
to

::::
0.01

::::
(40

:::::
days).

::
If

::::
they

:::
are

:::::::::
normalized

::
to
::::

the
:::::
CRPS

:::::
value

:::
(or

::
the

::::::::
variance

::
of

:::
the

::::
NAO

::::::
index),

::::
this

::
is

::
in

:::
the

::::
same

:::::
range

::
as

:::
the

::::::
results

::
of

:::::::::::::::::
Hersbach (2000) for

:::
the

:::::::
ECMWF

:::::::
forecast

::::::
system

:::
up

::
to

::
10

:::::
days.

One the one hand, tThe
:::
the CRPSSclim values do not depend on the season (identical triangles in Fig. 5). On the other hand,10

CRPSSpers values are higher in July than January for lead times T ≤ 10 days, and lower for lead times T ≥ 40 days (squares in

Fig. 5). This means that the climatology forecast tends to be better than the persistence forecast for T > 5 days (squares higher

than triangles in Fig. 5), which can be anticipated because of the inherent lag of the persistence forecast.

The correlation scores decrease with lead time T . The correlation skill is higher in January than in July. It is no longer

significantly positive for T larger than 40 days (confidence
::
25

::
to

::::
75th

:::::::
quantile

:
intervals contain the 0 value). The correlation15

score values range between 0.65 and 0.82 for T = 5 day forecasts, and 0.45 and 0.77 for T = 10 day forecasts, depending on

the season. This is consistent with the NAO forecast of the Climate Prediction Center (r = 0.69 for a 10 day forecast). The cor-

relation score is still significantly positive for T = 20 days. The higher correlation scores over the whole year (black circles
:::
not

:::::
shown) reflect a (small) seasonal cycle of the NAO index. This artificially enhances the score for those lead times because SLP

analogue predictands tend to reproduce the seasonality of the SLP field (by construction of the simulation procedure), and the20

NAO index and SLP variations are closely linked on monthly time scales (by construction of the NAO index).

:::
For

::::::::::
comparison

::::::::
purposes,

:::
the

:::::::::::
multivariate

::::::::::::
autoregressive

::::::
model

:::::
NAO

::::
time

:::::
series

:::
are

::::::
shown

:::
in

::::
Fig.

::
6.

::::
The

::::
skill

::::::
scores

:::::::::
(correlation

::::
and

:::::::
CRPSS)

:::
for

::::
the

:::::
NAO

:::::
index

::::
give

:::::::
positive

::::::
values,

::::
but

:::
not

::
as

:::::
high

::
as

:::
for

:::
the

::::::::
analogue

::::::::
forecast.

:::::
Since

::::
this

::::::
weather

::::::::
generator

::
is
::::::::
designed

::
to

:::::
yield

::::::::
stationary

::::::::
statistical

::::::::::
properties,

:::
the

::::
score

::::::
values

:::
do

:::
not

::::::
depend

:::
on

:::
the

::::::
season.

:::::::
CRPSS

:::::
values

:::
for

::::::::::
climatology

:::::
range

:::::
from

::::
0.36

:::::::
(T = 5

:::::
days)

::
to

::::
0.23

:::::::
(T = 80

::::::
days).

:::::
Those

::::::
values

:::
are

:::::
lower

:::::
than

:::
for

:::
the

::::::::
analogue25
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Figure 6.
:::::::::
Multivariate

:::::::::::
autoregressive

::::::
(mAR1)

:::::
model

::::
time

::::
series

::
of

::::::::
ensemble

::::::
forecasts

:::
for

::::
2007,

:::
for

:::
lead

:::::
times

:::::::::::::::::
T ∈ {5,10,20,40,80}

::::
days.

::::
Black

::::
lines

:::::::
represent

:::::::
observed

:::::::
averages

::::
over

:::
lead

:::::
times

::
T .

:::
Red

::::
lines

:::::::
represent

:::
the

::::::
median

::
of

:::
100

:::::::::
simulations;

::::
pink

::::
lines

:::::::
represent

:::
the

:::
5th

:::
and

:::
95th

:::::::
quantiles

::
of

:::
the

:::
100

::::::
member

::::::::
ensemble.

::::::
system

::
for

::::
lead

:::::
times

:::::
lower

:::::
than

::
20

::::
days

:::::
(Fig.

::
5,

:::::::::
triangles).

:::
The

::::::::::
correlation

:::::
values

::::::::
decrease

::::
from

::::
0.58

:::::::
(T = 5

::::
days)

:::
to

::::
0.05

:::::::
(T = 80

:::::
days),

:::::
which

::
is

:::::
lower

::::
than

:::
for

:::
the

::::::::
analogue

::::::
system

::::
(Fig.

::
5,

:::::::::
boxplots).

4.2 European temperatures

The correlation and CRPSS values for temperature
::::
daily

:::::
mean

::::::::::
temperature

::::
(TG)

:
forecast are shown in Fig. 7. The values of

CRPSSpers (for a persistence reference) increases with lead time T . This is not surprising because the forecast for the next T5

days is based on the average of the past T days. Therefore, the persistence forecast is always "late" due to the strong seasonality

of temperature variations.

The CRPSSclim values decrease with T and plateau near ≈ 0.2. This skill score is still positive (albeit small) for a seasonal

forecast. This positive average skill (CRPSS > 0.2) illustrates that the stochastic weather generator follows the seasonality of

temperature variations. We note that the CRPSS values for temperature are higher than for the NAO index. This is explained10

by the seasonality of temperatures, which is more pronounced than in the daily NAO index.

The CRPSS values are rather consistent for the four of the stations (Toulouse, De Bilt, Berlin and Orly). The stochastic

model CRPSS fares slightly worse at Madrid station.

The
:::::
CRPS

::::::::
reliability

::::::
values

:::
are

::::::
shown

::
in

:::
Fig.

:::
7.

:::::
Their

:::::::
absolute

:::::
values

::::
are

:::::
larger

::::
than

:::
for

:::
the

:::::
NAO

:::::
index,

::::
and

::::
need

::
to

:::
be

:::::::::
normalized

:::
by

:::
the

:::::::
variance

::
of

:::::::::::
temperature

::
(or

::::
the

:::::
CRPS

:::::
value

::::::
itself),

::
as

:::
the

:::::
units

::
of

:::
TG

:::
are

::::::
tenths

::
of

:::::::
degrees.

::::
The

:::::::
average15

::::::
relative

::::::::
reliability

::::::
values

:::
for

:::::
lead

:::::
times

:::::
lower

::::
than

:::
10

::::
days

::::
are

::::
also

::::::
similar

::
to

:::::
what

::
is

:::::::
reported

:::
by

:::::::::::::::
Hersbach (2000).

::::
The

::::::::
reliability

:::::
values

:::::
seem

::
to
::::::::

decrease
::::
with

::::
lead

:::::
times

::
in

::::::
winter.

:::::
They

:::::
peak

::
at

::::
lead

:::::
times

::
of

:::
40

::::
days

::
in

:::
the

:::::::
summer

:::::::
(except

:::
for

:::::
Berlin,

::::::
where

:::
the

::::
peak

::
is

::
at

::
20

:::::
days

::
in

:::
the

::::::::
summer),

::::
then

:::::::
decrease.

:

:::
The

:
correlation scores for January and July decrease with lead time T . The correlation score values for all days are above 0.97

due to the seasonality of temperatures and forecasts. Since this is not informative, this is not shown in Fig. 7. The correlations20

are always significantly positive for Toulouse, De Bilt, Berlin and Orly. The summer correlation intervals contain the 0 value at

Madrid. This is probably due to the fact that temperature is not linked to the atmospheric circulation in the summer, but rather to

local processes of evapo-transpiration (Schaer et al., 1999; Seneviratne et al., 2006).
:::
The

::::::::::
distribution

::
of

:::
the

:::::::::
correlation

::::::
scores

::::::::
(boxplots

::
in

::::
Fig.

::
7)

::
is

::::::::::
significantly

:::::::
positive

:::
for

::::
lead

:::::
times

:::
up

::
to

::
20

:::::
days.

::
It
::::::::
becomes

:::::
stable

::::
near

::::::
values

::
of

:::
0.2

:::
(or

:::::::::
increases)

::
for

::::
lead

:::::
times

:::::
larger

::::
than

:::
40

::::
days.

::::
This

::::::::
indicates

:::
that

:::::
there

::
is

:::::::
certainly

:::
an

:::::::
artificial

:::::::::::
predictability

::::::
beyond

:::::
those

::::
lead

:::::
times,

::::
that25

::::
show

:::
an

:::::
upper

::::
limit

::
of

::::::::
forecasts

::
for

::::
this

::::::
system.

:

:::
The

::::::
mAR1

::::::
system

:::
for

::::::::::
temperature

::
is
:::
not

::::::::
designed

::
to

:::::
yield

:
a
::::::::
seasonal

::::
cycle

::::::::
(contrary

:::
to

:::
the

:::::::
analogue

::::::::
system).

:::::::::
Therefore,

::
the

::::
skill

::::::
scores

::
of

:::
this

::::::
system

:::
for

:::::::::::
temperatures

:::
are

:::::::
negative

::::
(for

:::::::
CRPSS)

::
or

::::
with

::::
non

::::::::
significant

:::::::::::
correlations.

10



Figure 7. Skill scores for mean daily temperature in Toulouse, De Bilt, Madrid and Berlin,
::
for

:
lead times T of 5, 10, 20, 40 and 80 days.

Square indicate CRPSSpers, triangles CRPSSclim and circles are fore correlation. Black symbols are for all days, blue
:::
The

::::::::
diamonds

::::::
indicate

::
the

::::::::
reliability

::
of

::::
CRPS

:::
(on

:::
the

::::
same

::::
scale

::
as

:::::::
CRPSS).

::::
Blue symbols

:::
(left)

:
are for January and red symbols

:::::
(right) are for July. Triangles are

identical for all days, January and July. The correlations for "all days" are very close to 1, due to the seasonal cycle and do not appear on the

figure. The error bars
::::::
boxplots for the correlation indicate a 95% confidence interval (von Storch and Zwiers, 2001)

::
the

:::::
spread

:::::
across

:::
the

:::
100

::::::
member

:::::::
ensemble

:::::::
forecasts.

Figure 7.
::::
Skill

:::::
scores

::
for

:::::::::
temperature

::
in

::::::
Madrid

:::
and

:::::
Berlin

:::::::::
(continued).

5 Conclusions

We have presented a system to generate ensembles of stochastic simulations of the atmospheric circulation, based on pre-

computed analogues of circulation. This system is fairly light in terms of computing resources as it can be run on a (reasonably

powerful) personal computer. The most fundamental assumption of the system is that the variable to be predicted is linked to

the atmospheric circulation. The geographical window for the computation of analogues needs to be adjusted to the variable to5

be predicted, so that a prior expertise is necessary for this analogue forecast system. This implies that this approach would not

be adequate for variables that are not connected in any way to the atmospheric circulation (here approximated by SLP). The

use of other atmospheric fields (e.g. geopotential heights) might increase the skill of the system. The computation of analogues

with other parameters (geographical zone, atmospheric predictand,
::::::::
predictor,

::::
type

::
of

:
reanalysis, climate model output, etc.)

can be easily performed with a web processing service (Hempelmann et al., 2018).10

We have tested the performance of the system to simulate an NAO index and temperature variations in five European

stations. The performance of such a system cannot beat a meteorological or seasonal forecast with a full-scale atmospheric

model (Scaife et al., 2014), but its skill is positive, even at a seasonal
:::::::
monthly time scale, with a rather modest computational

cost.
:::::
From

:::
the

::::::::::
combination

::
of

::::::
several

::::
skill

::::::
scores

:::::
(from

:::::
CRPS

::::
and

::::::::::
correlation),

:::
we

:::::
obtain

::
a
:::::::
forecast

::::
limit

::
of

:::
40

::::
days,

:::::::
beyond

:::::
which

:::
the

:::::::::::
interpretation

::
of

:::::
score

:::::
values

::
is
::::::::
artificial.

:::
We

:::::::::
emphasize

:::
that

:::
the

:::::::
forecast

::
is

::::
done

:::
on

:::::::
averages

::::
over

::::
lead

:::::
times,

:::
not

:::
on15

::
the

::::
last

:::::
value

::
of

:::
the

:::
lead

:::::
time.

:

The reason for the positive skill (especially against climatology) remains to be elucidated, especially for long lead times

:::
lead

:::::
times

::::::
longer

::::
than

:::
20

::::
days. We conjecture that the information contained in the initial condition (as done with regular

weather forecasts) actually controls the mean behavior of the trajectories from that initial condition. But such a skill is actually

"concentrated" in the first few days, because the trajectories tend to converge to the climatology after 15 days.
::
20

:::::
days.

::::
The20

Figure 7. Skill scores for temperature in Orly (continued).
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::::::::::
combination

::
of

::::::
several

::::
skill

::::::
scores

:::::
shows

::::
that

::::
such

:
a
::::::
system

::
is

:::
not

::::::::::
appropriate

::
for

::::::::
ensemble

::::::::
forecasts

::::::
beyond

::::
lead

:::::
times

::
of

:::
40

::::
days,

::::::
which

:
is
:::::
lower

::::
than

:::::
what

::
is

:::::::
reported

::
by

:::::::::::::::::::
Baker et al. (2018) for

:
a
::::::::::::
meteorological

:::::::
forecast

::
of

:::
the

::::::
NAO.

::::::::
Although

:::
the

:::::::
forecast

::::::
system

::
is

:::::::
random,

::
it
:::::::
contains

::::::::
elements

::
of

::::
the

::::::::
dynamics

::
of

:::
the

:::::::::::
atmosphere,

::::
from

:::
the

::::::
choice

:::
of

:::
the

::::::::
analogues.

:::::
This

::::::
system

::
is

::::::::::
consistently

:::::
better

::::
than

::
a

::::::
simple

::::::::::
multivariate

::::::::::::
autoregressive

:::::::
(mAR1)

::::::
model

:::
for

::::
lead

:::::
times

::::::
shorter

:::
than

:::
20

:::::
days.

:::::
Since

:::
the

:::::::
seasonal

:::::
cycle

:
is
::::::::
naturally

:::::::::
embedded

::
in

:::
the

::::::::
analogues

:::::::::::
simulations,

::::
there

::
is

::
no

:::::
need

::
to

:::::::::::
parameterize

::
it,5

:::::::
contrary

::
to

:::
the

:::::
mAR1

::::::
model.

:

Recent experimental results in chaotic systems have shown that a well tuned neural network algorithm could simulate

efficiently the trajectories of a chaotic dynamical system (Pathak et al., 2018b). Our system is an extreme simplification of

an artificial intelligence algorithm, but it does demonstrate the forecast skill of such approaches. The advantage here is the

physical constraint between the atmospheric circulation and the variables to be simulated.10

This system was tested on temperature for five European datasets. This could be extended to precipitation or wind speed.

If a real-time forecast is to be performed, we emphasize that only the predictand
:::::::
predictor

:
(here, SLP) needs to be regularly

updated for the computation of analogues.

The goal of such a system is not to replace ensemble numerical weather/seasonal forecast. Rather, it can refine the usual ref-

erences (climatology and persistence) for the evaluation of skill scores. This would create a third "machine learning" reference15

for CRPSS that might be harder to beat than the classical references.

Code and data availability. The code for the computation of analogues is available at (free CeCILL license):

https://a2c2.lsce.ipsl.fr/index.php/deliverables/101-analogue-software

The temperature data are available at: https://www.ecad.eu

The NAO index data are available at: http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml20

The NCEP reanalysis SLP data is available at: https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
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