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Abstract 24	
Understanding the unfolding challenges of climate change relies on climate models, many 25	

of which have large summer warm and dry biases over Northern Hemisphere continental 26	

mid-latitudes. This work, using the example of the model used in the updated version of 27	

the weather@home distributed climate model framework, shows the potential for 28	

improving climate model simulations through a multi-phased parameter refinement 29	

approach, particularly over northwestern United States (NWUS). Each phase consists of 1) 30	

creating a perturbed physics ensemble with the coupled global - regional atmospheric 31	

model, 2) building statistical emulators that estimate climate metrics as functions of 32	

parameter values, 3) and using the emulators to further refine the parameter space. The 33	

refinement process includes sensitivity analyses to identify the most influential parameters 34	

for various model output metrics; results are then used to cull parameters with little 35	

influence. Three phases of this iterative process are carried out before the results are 36	

considered to be satisfactory; that is, a handful of parameter sets are identified that meet 37	

acceptable bias reduction criteria. Results not only indicate that 74% of the NWUS regional 38	

warm biases can be reduced by refining global atmospheric parameters that control 39	

convection and hydrometeor transport, and land surface parameters that affect plant 40	

photosynthesis, transpiration and evaporation, but also suggest that this iterative approach 41	

to perturbed physics has an important role to play in the evolution of physical 42	

parameterizations.  43	

  44	
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Introduction 45	

Boreal summer (June-July-August, JJA) warm and dry biases over North Hemisphere (NH) 46	

continental midlatitudes are common in many global and regional climate models (e.g., 47	

Boberg and Christensen, 2012; Mearns et al., 2012; Mueller and Seneviratne, 2014; 48	

Kotlarski et al., 2014; Cheruy et al., 2014; Merrifield and Xie, 2016), including very high 49	

resolution convection-permitting models (e.g. Liu et al., 2017).  These biases can have non-50	

negligible impacts on climate change studies, particularly where relationships are non-51	

linear, such as is the case of surface latent heat flux as a function of water storage (e.g. 52	

Rupp et al., 2017). Biases in present-day climate model simulations cast doubt on the 53	

reliability of the future climate projections from those models. As shown by Boberg and 54	

Christensen (2012), after applying a bias correction conditioned on temperature to account 55	

for model deficiencies, the Mediterranean summer temperature projections were reduced 56	

by up to 1°C. Cheruy et al. (2014) demonstrated that of the climate models contributing to 57	

the Coupled Model Intercomparison Project Phase5 (CMIP5), the models that simulate a 58	

higher-than-average warming overestimated the present climate net shortwave radiation 59	

which increased more	than	multi-model	average in the future; those models also showed a 60	

higher-than-average reduction of evaporative faction in areas with soil moisture-limited 61	

evaporation regimes. Both studies suggested that models with a larger warm bias in surface 62	

temperature tend to overestimate the projected warming. The implication of the warm bias 63	

goes beyond climate model simulations, as many impact modeling (e.g. hydrological, fire, 64	

crop modeling) studies (e.g. Brown et al., 2004; Fowler et al., 2007; Hawkins et al., 2013; 65	

Rosenzweig et al., 2014) use climate model simulation results as driving data. Recently, 66	

there have been coordinated research efforts (Morcrette et al., 2018; van Weverberg et al., 67	
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2018; Ma et al., 2018; Zhang et al., 2018) to better understand the causes of the near-surface 68	

atmospheric temperature biases through process level understanding and to identify the 69	

model deficiencies that generate the bias. These studies suggest that biases in the net 70	

shortwave and downward longwave fluxes as well as surface evaporative fraction are 71	

contributors to surface temperature bias.  72	

 73	

Older generation Hadley Centre coupled models (HadCM2 and HadCM3), and 74	

atmospherere-only global (HadAM) and regional (HadRM) models have been used in 75	

numerous attribution studies (e.g., Tett et al., 1996; Stott et al., 2004; Otto et al., 2012; 76	

Rupp et al., 2017a; van Oldenborgh et al., 2016; Schaller et al., 2016; van Oldenborgh et 77	

al., 2017; Uhe et al., 2018), and the same models have been used for future projections 78	

(e.g., Rupp and Li, 2017; Rupp et al., 2017b; Guillod et al., 2018).  These model families 79	

exhibit warm and dry biases during JJA over continental midlatitudes, biases that have 80	

persisted over model generations and enhancements (e.g., Massey et al., 2015; Li et al., 81	

2015; Guillod et al., 2017). The more recent generations of Hadley Centre models – 82	

HadGEMx (HadGEM1, Johns et al, 2016;  HadGEM2, Collins et al., 2008 ) also have the 83	

same biases to some extent.  84	

 85	

Many of the aforementioned studies using HadAM and HadRM generated simulations 86	

through a distributed computing system known as climateprediction.net (CPDN, Allen et 87	

al., 1999), within which a system called weather@home is used to dynamically downscale 88	

global simulations using regional climate models (Massey et al., 2015; Mote et al., 2016; 89	

Guillod et al., 2017).  As with the previous version of weather@home, the current 90	
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operational version of weather@home (version 2: weather@home2) uses the coupled 91	

HadAM3P/HadRM3P with the atmosphere component based on HadCM3 (Gordon et al., 92	

2000), but updates the land surface scheme from the Met Office Surface Exchange Scheme 93	

version 1 (MOSES1, Cox et al., 1999) to version 2(MOSES2, Essery et al., 2003). 94	

 95	

Although the current model version in weather@home2 produces some global-scale 96	

improvements in the global model’s simulation of the seasonal mean climate, warm biases 97	

in JJA increase over North America north of roughly 40° compared with the previous 98	

version in weather@home1 (Fig. 2 in Guillod et al., 2017).  The warm and dry JJA biases 99	

appear clearly in the regional model simulations over the northwestern US region (NWUS, 100	

defined here as all the continental US land points west of 110° and between 40°N-49°N - 101	

the grey bounding box in Fig.S1). These biases may be related to, among other things, an 102	

imperfect parameterization of certain cloud processes, leading to excess downward solar 103	

radiation at the surface, which in turn triggers warm and dry summer conditions that are 104	

further amplified by biases in the surface energy and water balance in the land surface 105	

model (Sippel et al., 2016; Guillod et al., 2017).  The fact that recent model enhancements 106	

did not reduce biases over most of the northwest US motivates the present study, which 107	

aims at reducing these warm/dry biases by way of adjusting parameter values, herein 108	

referred to as ‘parameter refinement’.  109	

 110	

Many small-scale atmospheric processes have significant impacts on large-scale climate 111	

states. Processes such as precipitation formation, radiative balance, and convection, occur 112	

at scales smaller than the spatial resolution explicitly resolved by climate models, though 113	
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very high resolution regional climate models are able to resolve or partially resolve some 114	

of these processes (e.g., convection). These processes must be represented by 115	

parameterizations that include parameters whose uncertainty are often high because: 1) 116	

there are insufficient observations with which to constrain the parameters, 2) a single 117	

parameter is inadequate to represent the different ways a process behaves across the globe, 118	

and/or 3) there is incomplete understanding of the physical process (Hourdin et al., 2013). 119	

Many studies have demonstrated the importance of considering parameterization 120	

uncertainty in the simulation of present and future climates by perturbing single and 121	

multiple model parameters within plausible parameter ranges usually established by expert 122	

judgment (e.g., Murphy et al., 2004; Stainforth et al., 2005; Sanderson et al., 2008a, b, 123	

2010, 2011; Collins et al., 2011; Bellprat et al., 2012a,b, 2016). These studies have argued 124	

for careful tuning of models not only to reduce model parameter uncertainties by selecting 125	

parameter values that result in a better match between model simulation results with 126	

observations, but also to better understand relationships among physical processes within 127	

the climate system via systematic experiments that alter individual parameter values or 128	

combinations thereof, in order to assess model responses to perturbing parameters. 129	

 130	

Improving a model by parameter refinement can be an iterative process of modifying 131	

parameter values, running a climate simulation, comparing model output to observations, 132	

and refining the parameter values again (Mauritsen et al., 2012; Schirber et al., 2013).  This 133	

iterative process can be both computationally expensive and labor-intensive. Any 134	

parameter refinement process performed with the intent of improving the model also 135	

involves unavoidably arbitrary decisions - though guided by expert judgement - about 136	
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which parameter(s) to adjust, which metric(s) to evaluate (i.e., which feature(s) of the 137	

climate system to simulate at some level of accuracy), and which observational dataset(s) 138	

to use as the basis for the evaluation metric(s). Nonetheless, model tuning through 139	

parameter refinement is invariably needed to better match model simulations with 140	

observations (Schirber et al., 2013). 141	

 142	

One systematic, yet computationally demanding, approach to model tuning is through 143	

perturbed physics experiments (Allen et al., 1999; Murphy et al., 2004).  These experiments 144	

use a perturbed physics ensemble (PPE) of simulations from a single model where a 145	

handful of uncertain model parameters are varied systematically. Each set of perturbed 146	

parameter (PP) values is considered to be a different model variant - a PP set refers to a 147	

combination of parameter values from herein on. PPEs can be treated as a sparse sample 148	

of behaviours from a vast, high-dimensional parameter space (Williamson et al., 2013). A 149	

PPE directly informs us about model behaviour at those points in parameter space where 150	

the model is run (the PP sets), and helps us infer model behavior in nearby parameter space 151	

where the model has not been run. 152	

 153	

Studies of climate model tuning using PPEs generally fall into three categories. The first 154	

category makes only direct use of the ensemble itself (e.g., Murphy et al., 2004; Rowlands 155	

et al., 2012) by screening out ensemble members that are deemed too far from the observed 156	

target metrics. This is often referred to as ensemble filtering. However, this approach can 157	

overlook certain critical parts of the parameter space not sampled by the PPE. One 158	

promising improvement of this approach is to estimate the response of metric(s) in a 159	
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geophysical (e.g., atmospheric) model to parameter perturbations using a computationally 160	

efficient statistical model (i.e. emulator) that is trained from the PPE results. The 161	

emulator’s skill is evaluated based on its metric prediction accuracy using independent 162	

simulations of the model and, if deemed sufficiently skilful, can be used to estimate the 163	

model’s output metrics as a function of the model parameters in the parameter space not 164	

sampled by the PPE.   165	

 166	

The second category uses a PPE to train a statistical emulator, or establish some cost 167	

function, which is then used to automatically search for optimal parameter values that 168	

produce simulations closest to observations (e.g., Bellprat et al., 2012a, 2016; Zhang et al., 169	

2015; Tett et al., 2017). These studies advocated for this approach particularly because of 170	

the efficiency and automation of available searching algorithms. However, as with any 171	

model evaluation effort, the use of a cost function with multiple target metrics means that 172	

optima for different metrics may occur at different parameter values. This approach 173	

(automatically searching for optimal parameters) also runs the risk of being trapped into 174	

local minima in the associated cost function; thus, searching results are heavily dependent 175	

on the initial parameter values. Admittedly, the idea of automatic searching to obtain 176	

optimal combinations of model parameters is appealing, but in reality there is still a high 177	

level of subjectivity, e.g. selecting which model performance metrics and observation(s) to 178	

use in evaluating the model, and the methods of optimization and searching algorithm. 179	

 180	

Unlike the second category, which searches for the optimal parameter values that result in 181	

the closest match to observations, the third category, named ‘history matching’ (McNeall 182	
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et al., 2013, 2016; Williamson et al., 2013, 2015, 2017), seeks to rule out parameter choices 183	

that do not adequately reproduce observations. History matching uses PPEs to train 184	

statistical emulators that predict key metrics from the model output, and then uses the 185	

emulators to rule out parameter space that is implausible. Williamson et al. (2017) 186	

demonstrated that this method is more powerful when iterative steps are taken to rule out 187	

implausible parameter space, where each step helps refine the parameter space containing 188	

potentially better performing model variants. A drawback is that iterative history matching 189	

requires more model runs in the not-ruled-out-yet parameter space for later iterations. The 190	

method we adopted in this study fits in the third category, where the parameter values were 191	

refined through phases of experiments.  192	

 193	

All three approaches begin with an initial PPE, which can be computationally expensive 194	

even with a modest number of free parameters. To cope with the computational demand, 195	

many previous studies have generated PPEs from a global climate model (GCM) using 196	

CPDN. The studies span a range of topics, from the earlier studies focusing on climate 197	

sensitivity (e.g., Murphy et al., 2004; Stainforth et al., 2005; Sanderson et al., 2008a,b, 198	

2010, 2011), to later ones attempting to generate plausible representations of the climate 199	

without flux adjustments (e.g. Irvine et al., 2013; Yamazaki et al., 2013) and using history 200	

matching to reduce parameter space uncertainty (Williamson et al., 2013). More recently, 201	

Mulholland et al. (2016) demonstrated the potential of using PPEs to improve the skill of 202	

initialized climate model forecasts of 1 month lead time, and Sparrow et al. (2018) showed 203	

that large PPE can be used to identify subgrid scale parameter settings that are capable of 204	

best simulating the ocean state over the recent past (1980-2010). However, very little has 205	
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been published on using PPEs for parameter refinement with the aim of improving regional 206	

climate models (RCMs).  207	

 208	

The goals of this study were to: 1) identify model parameters that most strongly control the 209	

annual cycle of near-surface temperature and precipitation over the NWUS in 210	

weather@home2, and 2) select model parameterizations that reduce the warm/dry summer 211	

biases without introducing or unduly increasing other biases. We acknowledge that 212	

changing a model in any way inevitably involves making sequences of choices that 213	

influence the behaviour of the model. Some of the model behavioural changes are targeted 214	

and desirable, but parameter refinement may have unintended negative consequences. 215	

There is a general concern that ‘improved’ performance arises because of compensation 216	

among model errors, and an ‘accurate’ climate simulation may very well be achieved by 217	

compensating errors in different processes, rather than by best simulating every physical 218	

process. This concern motivated us to select multiple parameter sets from the tuning 219	

exercise rather than seek an “optimal” set. Though having multiple parameter sets does not 220	

eliminate the problem, to the degree that each parameter set compensates for errors 221	

uniquely, obtaining a similar model response to some change in forcing across parameter 222	

sets may provide more confidence in that response. 223	

 224	

It is worth noting that this study looks mainly at atmospheric parameters because we 225	

intended to focus this study on larger-scale atmospherics dynamics that influence the 226	

boundary conditions of the regional model, especially how much moisture and heat is 227	

advected to the regional model, while local land surface/atmosphere interactions are being 228	
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examined in a subsequent study that perturbs a suite of atmospheric and land surface 229	

parameters in the regional model. 230	

 231	

2.  Methodology 232	

Throughout this paper we use ‘simulated’ to refer to outputs from climate models, and 233	

‘emulated’ results to refer to estimated/predicted outputs from statistical emulators. 234	

 235	

2.1. Overview of the parameter refinement process 236	

This study carried out an iterative parameter refinement exercise, or an ‘iterative 237	

refocusing’ procedure to use a term coined in Williamson et al. (2017). The multi-238	

dimensional parameter space is reduced in phases, where each phase includes the following 239	

steps: 240	

1) Randomly sample the initially defined parameter space (defined by the bounds of the 17 241	

parameters listed in Table1) to generate sets of parameter combinations; 242	

2) generate a PPE with the parameters sets from step (1) through weather@home;  243	

3) train statistical emulators for multiple climate metrics using the PPE from step (2); 244	

4) reduce the parameter space (i.e., narrow the ranges of acceptable values for parameters) 245	

such that the space excludes ensemble parameter sets that are ‘too far away’ from target 246	

metrics; 247	

5) randomly sample the reduced parameter space to design a new set of parameter 248	

combinations; 249	

6) use the trained emulators to filter the sample from step (5), and reject a parameter set if 250	

the emulator prediction is too far away from a target value;  251	
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7) repeat steps (2) through (6) until the desired outcome is achieved.  252	

Detailed descriptions of the parameter refinement process throughout three phases is 253	

presented in Appendix A, including decisions on what key climate metrics to use in each 254	

phase, and the stopping point of this iterative exercise - after three phases.   255	

 256	

Here we briefly summarize the objective of each phase. The objective of Phase 1 was to 257	

eliminate regions of parameter space that led to top-of-atmosphere (TOA) radiative fluxes 258	

that are too far out of balance. The objective of Phase 2 was to reduce biases in the 259	

simulated regional climate of NWUS, while not straying too far away from TOA radiative 260	

(near-) balance. Lastly, the objective of Phase 3 was to further refine parameter space, 261	

specifically to reduce the JJA warm and dry bias over the NWUS.  262	

 263	

The principle climate metrics used to access the effect of parameter perturbation are: Phase 264	

1) TOA radiative fluxes, where we considered outgoing (reflected) shortwave radiation 265	

(SW) and outgoing longwave radiation (LW) separately; Phase 2) NWUS regional surface 266	

metrics - the mean magnitude of the annual cycle of temperature (MAC-T), and mean 267	

temperature (T) and precipitation (Pr) in December-January-February (DJF) and (JJA), 268	

while still being mindful of SW and LW; and Phase 3) same as Phase 2, except for selecting 269	

model parameterizations that reduce the JJA warm and dry biases over the NWUS.  270	

 271	

2.2. Climate simulations with weather@home  272	

The climate simulations used in this study were generated through the weather@home 273	

climate modelling system (Massey et al., 2015; Mote et al., 2016) with updates (Guillod et 274	
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al., 2017) that includes MOSES2. MOSES2 simulates the fluxes of CO2, water, heat, and 275	

momentum at the interface of the land and atmospheric boundary layer, and is capable of 276	

representing a number of sub-grid tiles within each grid box, allowing a degree of sub-grid 277	

heterogeneity in surface characteristics to be modeled (Williams et al., 2012).  278	

 279	

The western North America application of weather@home (weather@home-WNA) 280	

consists of HadRM3P (0.22° × 0.22°) nested within HadAM3P (1.875° longitude ×1.25° 281	

latitude). Weather@home-WNA prior to recent enhancements was evaluated for how well 282	

it reproduced various aspects of the recent historical climate of the western US by Li et al. 283	

(2015), Mote et al. (2016), Rupp and Li (2016), and Rupp et al. (2017).  Notable warm/dry 284	

biases in JJA were present over the NWUS and these biases persist with MOSES2 (Fig. 285	

S1), with a temperature bias of 3.9 °C and a precipitation biases of -8.5 mm/month (-32%) 286	

in JJA over Washington, Oregon, Idaho and western Montana, as compared with the 287	

PRISM gridded observational dataset (Daly et al., 2008). Note these were biases using 288	

default, i.e. standard physics (SP), model parameter values.  289	

 290	

Each simulation in the PPE spanned 2 years, with the first year serving as spin-up and only 291	

the second year used in the analysis. Simulations began on 1 December of each year for 292	

the years 1995 to 2005, except for Phase 1 (see description of Phases in Appendix A).  293	

Climate metrics were averaged over December 1996 to November 2007 (except Phase 1).  294	

This time period was chosen because it contained a wide range of SST anomaly patterns - 295	

including the very strong 1997-98 El Niño – which helps reduce the influence that any 296	
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particular SST anomaly pattern may have on the sensitivities of chosen climate metrics to 297	

parameters.  298	

 299	

2.3. Perturbed parameters 300	

In our PPE, we initially selected 17 model parameters to perturb simultaneously, 16 in the 301	

atmospheric model, and one in the land surface model (Table 1). The atmospheric 302	

parameters are a subset of those perturbed in Murphy et al. (2004) and Yamazaki et al. 303	

(2013); both studies also perturbed ocean parameters, and Yamazaki et al. (2013) perturbed 304	

forcing parameters (e.g., scaling factor for emission from volcanic emissions) as well. Our 305	

selection of parameters was constrained to those available to be perturbed using 306	

weather@home at the time. Ranges for most parameter perturbations were 1/3 to 3 times 307	

the default value, but for certain parameters (e.g., empirically adjusted cloud fraction, 308	

EACF), only values greater than the default value were used (Table 1).  We intentionally 309	

began with ranges generally wider than those used in previous studies (Murphy et al. 2004; 310	

Yamazaki et al. 2013) because we intended to refine the ranges through multiple phases of 311	

PPEs. 312	

 313	

Though a principal objective was to evaluate sensitivity of the regional climate to 314	

atmospheric parameters, sensitivities may be a function of land-atmosphere exchanges 315	

(Sippel et al., 2016; Guillod et al., 2017).  While many parameters influence land-316	

atmosphere energy and water exchanges in MOSES2, one (V_CRIT_ALPHA) has been 317	

shown to be particularly important (Booth et al., 2012) so was included in our tuning 318	
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exercise.  V_CRIT_ALPHA defines the soil water content below which transpiration 319	

begins being limited by soil water availability and not solely the evaporative demand.  320	

 321	

2.4 Observational data 322	

The regional biases in MAC-T, JJA-T, JJA-Pr, DJF-T and DJF-Pr  - were all calculated 323	

with respect to the 4-km resolution monthly PRISM dataset, after regridding the PRISM 324	

data to the HadRM3P grid. To consider observational uncertainty, we also compared JJA-325	

T biases using four other observational datasets: 1) NCEP/NCAR Reanalysis 1 (NCEP, 326	

Kalnay et al., 1996), 2) the Climate Forecast System Reanalysis and Reforecast (CFSR, 327	

Saha et al., 2010), 3) the Modern-Era Retrospective Analysis for Research and 328	

Applications Version2 (MERRA2, Gelaro et al., 2017), and 4) Climatic Research Unit 329	

temperature dataset v4.00 (CRU, Harris et al., 2014).  The four datasets are not shown here 330	

for the regional analysis because the maximum regionally averaged difference (0.71 °C) 331	

among the datasets is less than 1/5 of  the regionally averaged JJA-T bias. Throughout this 332	

paper, regional biases are calculated with respect to PRISM. 333	

 334	

The biases in global temperature were calculated with respect to CRU, MERRA2, CSFR, 335	

NCEP, and the Climate Prediction Centre global land surface temperature data; the latter 336	

is a combination of the station observations collected from Global Historical Climatology 337	

Network version 2 and the Climate Anomaly Monitoring System (GHCN-CAMS, Fan and 338	

van den Dool, 2008).  The biases in global precipitation were calculated with respect to 339	

CRU, MERRA2, CFSR, Global Precipitation Climatology Project monthly precipitation 340	

(GPCP, Adler et al., 2003), Global Precipitation Climatology Centre monthly precipitation 341	
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(GPCC, Schneider et al., 2013), ERA-Interim reanalysis dataset (ERAI, Dee et al., 2011), 342	

Japanese 55-year Reanalysis (JRA-55, Onogi et al., 2007) and NOAA-CIRES 20th Century 343	

Reanalysis version 2c (20CRv2c, Compo et al.. 2011). All the datasets were regridded to 344	

the HadAM3P grid before biases were calculated.  345	

 346	

For all the observational datasets, data from December 1996 to November 2007 (the same 347	

time period the model simulations cover as shown in Table2) was used to calculate model 348	

biases.  349	

 350	

2.5 Sensitivity Analysis 351	

The response of the climate model to perturbations in the multidimensional parameter 352	

space can be non-linear. In order to isolate the influence of each parameter on key climate 353	

metrics and eliminate parameters that do not have a strong control on those metrics, we 354	

performed two types of sensitivity analysis. One determines the sensitivity of a single 355	

parameter by perturbing one parameter with all other parameters fixed, i.e. one-at-a-time 356	

(OAAT) sensitivity analysis. Following Carslaw et al. (2013) and McNeall et al. (2016), 357	

we also used a global sensitivity analysis using Fourier Amplitude sensitivity test (FAST) 358	

for qualitative sensitivity analysis to validate the results of OAAT and to estimate 359	

interactions among parameters. FAST allows the computation of the total contribution of 360	

each input parameter to the output’s variance, where total includes the factor’s main effect, 361	

as well as the interaction terms involving that input parameter. The computational aspects 362	

and advantages of FAST are described in Satelli et al. (1999).   363	

 364	

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-198
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 23 October 2018
c© Author(s) 2018. CC BY 4.0 License.



17	
	

3. Results and Discussion 365	

Top-of-atmosphere (TOA) radiative balance is an emergent property in GCMs (Irvine et 366	

al., 2013), and the fact that the models of the IPCC Assessment Report 4 did not need flux-367	

adjustment was seen as an improvement over earlier models (Solomon et al., 2007). 368	

Although climate models approximately balance the net absorption of solar radiation with 369	

the outward emission of longwave radiation (OLR) at the TOA, the details of how solar 370	

absorption and terrestrial emission are distributed in space and time depend on global 371	

atmospheric and oceanic circulation, clouds, ice, and other aspects of model behaviour. 372	

The surface expression of those global processes is also important given that a primary and 373	

practical purpose of climate modelling is to understand how (surface) climate will change. 374	

We describe the responses of both global TOA and regional surface climate to parameter 375	

refinement.   376	

 377	

3.1. TOA radiative fluxes 378	

In Fig. 1, we show the TOA energy flux components from the PPEs from each of the three 379	

phases.  In Phase 1, many parameter sets (72%) resulted in TOA energy fluxes that vastly 380	

exceeded our ranges of acceptability (as defined in Appendix A).  In Phase 2, most of the 381	

parameter sets resulted in TOA energy fluxes that fell within the ranges of acceptability; 382	

the 20% that did not reveal the error in our predictions using the emulator since the 383	

parameter sets were chosen to specifically achieve TOA fluxes within the region of 384	

acceptability.  In Phase 3, nearly all (97%) the parameter sets yielded acceptable results.  It 385	

is worth mentioning again that in Phase 3, selection of parameter sets was based only 386	
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secondarily on TOA fluxes and primarily on regional climate metrics (see detailed 387	

description of Phase 3 in Appendix A). 388	

 389	

Rowlands et al. (2012) discarded any ensemble member that required a global annual mean 390	

flux adjustment of absolute magnitude greater than 5 W m-2 (see red lines in Fig. 1) and 391	

Yamazki et al. (2013) defined a confidence region of (SW, LW) that corresponded to a 392	

TOA imbalance of less than 5 W m-2 as one that did ‘not drift significantly’ from a realistic 393	

TOA state.  Although the ranges of acceptability (Fig.1) permits net TOA imbalance 394	

greater than 5 W m-2, more than half (55.8%) of the Phase 3 parameter sets generated a 395	

TOA imbalance less than 5 W m-2, and the smallest TOA imbalance was less than 0.1 W 396	

m-2.  397	

 398	

The entrainment coefficient (ENTCOEF) and the ice fall speed (VF1) were the dominant 399	

controls on the TOA outgoing SW and LW fluxes, respectively (see SW and LW response 400	

to these two parameters shown in the bottom two rows of Fig. S2).  Why these parameters 401	

are important becomes clear from understanding their respective roles in the climate model, 402	

especially with respect to convection and hydrometeor transport. 403	

 404	

The atmospheric model simulates a statistical ensemble of air plumes inside each 405	

convectively unstable grid cell. On each model layer, a proportion of rising air is allowed 406	

to mix with surrounding air and vice-versa, representing the process of turbulent 407	

entrainment of air into convection and detrainment of air out of the convective plumes 408	

(Gregory and Rowntree, 1990). The rate at which these processes occur in the model is 409	
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proportional to ENTCOEF, which is a parameter in the model convection component 410	

(Table1). The implication of perturbing ENTCOEF has been investigated by (Sanderson et 411	

al, 2008b) using single perturbation experiments, and they showed that a low ENTCOEF 412	

leads to a drier middle troposphere and moister upper troposphere. Conversely, increasing 413	

ENTCOEF results in increased low level moisture (more low level clouds) and decreased 414	

high level moisture (less high level clouds). Because the albedo effects of low clouds 415	

dominate their effects on emitted thermal radiation (Hartmann et al., 1992; Stephens, 416	

2005), increasing ENTCOEF increases the outgoing SW fluxes.  417	

 418	

VF1 is the speed at which ice particles may fall in clouds. A larger ice fall speed is 419	

associated with larger particle sizes and increased precipitation. Wu (2002) studied ice fall 420	

speed parameterization in radiative convective equilibrium models, and found that a 421	

smaller ice fall speed leads to a warmer, moister atmosphere, more cloudiness, weak 422	

convection and less precipitation, which could lead decreased outgoing LW TOA flux due 423	

to absorption in the cloud itself and/or in the moist air.	Higher ice fall speeds produce the 424	

opposite - a cooler, clearer, less cloudiness, strong convection and more precipitation, 425	

which increases the outgoing LW flux. 426	

 427	

3.2. Regional climate improvements 428	

A primary and practical purpose of climate modelling is to understand how (surface) 429	

climate will change, but model biases can have non-negligible impacts on projections. In 430	

Phase 2 and 3 we evaluate the response of regional surface climate to parameter 431	
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perturbations, and refine the parameter space to reduce biases in regional temperature and 432	

precipitation. 433	

 434	

In Phase 2, we identified ENTCOEF and VF1 as distinct from the other 15 parameters with 435	

respect to their influence on the overall suite of climate metrics to a first order 436	

approximation (Fig. S3). Recall the regional surface metrics considered were MAC-T, JJA-437	

T, JJA-Pr, DJF-T, and DJF-Pr. Though MAC-T is our principal metric (section2.1), MAC-438	

T co-varies with JJA-T, JJA-Pr, and DJF-T (Fig. S3), so moving in parameter space toward 439	

lower bias in MAC-T reduces biases in JJA-T, JJA-Pr, and DJF-T. MAC-T does not co-440	

vary strongly with DJF-Pr.   441	

  442	

Each OAAT relationship in Fig. 2 depends on the initial ranges of the input parameters 443	

from the ensemble design, and is computed while holding all other parameters at their 444	

ensemble mean values.  Because sensitivity can change as one moves through the 445	

parameter space (e.g. CW_LAND and ENTCOEF in Fig. 2), these relationships must be 446	

interpreted with care. Within the refined parameter space in Phase 2, ENTCOEF and the 447	

parameter that limits photosynthesis (and thereby latent heat flux via transpiration) as a 448	

function of soil water (V_CRIT_ALPHA) were the most influential individual parameters  449	

and counter each other when both increased (Fig. 2 and Fig. S3).  The parameter that 450	

controls the cloud droplet to rain threshold over land (CW_LAND) also had strong 451	

influence on MAC-T across the lower end of the parameter perturbation range (up to 452	

0.004). The other parameters had little to effectively no influence on MAC-T. The results 453	

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-198
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 23 October 2018
c© Author(s) 2018. CC BY 4.0 License.



21	
	

of OAAT sensitivity analysis for the other output metrics considered in Phase 2 are 454	

presented in Fig. S6-S11.  455	

 456	

The global sensitivities of the simulated outputs (the ones considered in Phase 2) due to 457	

each input, as both a main effect and total effect, including interaction terms, are presented 458	

in Fig. 3. ENTCOEF was the most important parameter for all three surface temperature 459	

metrics, with a total sensitivity index of ~0.7, 0.5, and 0.4 for MAC-T, JJA-T, and DJF-T 460	

respectively , where maximum sensitivity is 1 (see Satelli et al. 1999). For the metrics 461	

MAC-T and JJA-T, V_CRIT_ALPHA was the next most important, with a total sensitivity 462	

index of ~0.3 for both metrics. For JJA-Pr, the most important parameter was VF1, 463	

followed by ENTCOEF; for DJF-Pr, the most important parameter was ENTCOEF, closely 464	

followed by the parameter that controls the roughness length for free heat and moisture 465	

transport over the sea (Z0FSEA).  466	

 467	

The interaction terms were relatively small, accounting for a few percent of the variance, 468	

except for the effect of ENTCOEF on DJF-Pr, where the interaction with other parameters 469	

accounts for ~ 1/3 of the variance.  In a study constraining carbon cycle parameters by 470	

comparing emulator output with forest observations, McNeall et al. (2016) also found the 471	

importance of the interaction terms negligible.  In contrast, Bellprat et al. (2012b) used 472	

quadratic emulator to objectively calibrate a regional climate model, and found non-473	

negligible interaction terms. They showed that excluding the interactions in the emulator 474	

increased the error of the emulated temperature and precipitation results by almost 20%. 475	
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Further work could be done to assess the magnitude and functional form (i.e. linear or 476	

nonlinear) of the interaction terms, but is beyond the scope this study. 477	

 478	

Only the parameters with a total sensitivity index larger than ~0.1 for MAC-T, JJA-T, DJF-479	

T, JJA-Pr, or DJF-Pr were retained for perturbation in Phase 3: CW_LAND, VF1, 480	

ENTCOEFF, V_CRIT_ALPHA, ASYM_LAMBDA, G0, and Z0FSEA. Although the 481	

parameter that controls the rate at which cloud liquid water is converted to precipitation  482	

(CT) had a total sensitivity index of ~0.1 for SW, it was excluded from further perturbation 483	

because the primary interest in Phase 2 was in regional surface metrics, not TOA radiative 484	

fluxes. 485	

 486	

Phase 3 demonstrated the power of our approach for reducing regional mean biases in 487	

MAC-T, JJA-T and JJA-Pr. Simulations from Phase 3 resulted in MAC-T biases 1- 3°C 488	

lower than SP (Fig.4 middle row). All Phase 3 parameter sets improved the JJA-Pr dry bias 489	

with several eliminating the bias entirely. Many parameter sets reduced the bias in JJA-T 490	

to less than 1.5°C, a dramatic improvement (~63%) over the 4°C SP bias. However, these 491	

improvements come at a small price, namely a larger regional (NWUS) dry bias in DJF-Pr 492	

(about -15% compared with PRISM in the worst case). Because our primary goal was to 493	

reduce JJA warm and dry biases, any model variant from Phase 3 is preferable to SP. Any 494	

subset of parameterizations from phase 3 can now be used in subsequent experiments.  495	

 496	

V_CRIT_ALPHA plays an important role in controlling JJA-T and MAC-T (as shown in 497	

Fig. 2 and Fig. S6) due to its role in the surface hydrological budget. V_CRIT_ALPHA 498	
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defines the critical point as a fraction of the difference between the wilting soil water 499	

content and the saturated soil water content (as described in Appendix C).  The critical 500	

point is the soil moisture content below which plant photosynthesis becomes limited by 501	

soil water availability. When V_CRIT_ALPHA is zero, transpiration starts to be limited as 502	

soon as the soil is not completely saturated, whereas when it is one, transpiration continues 503	

unlimited until soil moisture reaches wilting point at which point transpiration switches 504	

off. Lower values of V_CRIT_ALPHA reduce the critical point allowing plant 505	

photosynthesis to continue unabated at lower soil moisture levels, i.e. plants are not water-506	

limited. As plants photosynthesize water is extracted from soil layers and transpired, 507	

increasing the local atmospheric humidity and lowering the local temperature through 508	

latent cooling. Our results are consistent with previous findings by Seneviratne et al. 509	

(2006), who also show reducing the temperature and increasing humidity can feedback 510	

onto the regional temperature and precipitation during the summer months. 511	

 512	

The only apparent constraints on ranges of parameter values through three phases of 513	

parameter refinement were seen for V_CRIT_ALPHA and ENTCOEF. Values of 514	

V_CRIT_ALPHA  lower than 0.7 were required to keep the bias of MAC-T under 3 °C. 515	

For ENTCOEF, the range between 3 and 5 contains the best candidates to reduce regional 516	

warm/dry biases. The range of ENTCOEF identified here is consistent with findings of 517	

Irvine et al. (2013), which also show that low values of ENTCOEF tend to give warmer 518	

conditions. However, results from other previous studies varies. Williamson et al. (2015) 519	

found that low values of ENTCOEF are implausible, and that there are more plausible 520	

model variants at the upper end of its perturbed range, whereas Sexton et al. (2011) and  521	
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Rowlands et al. (2012) consider the range between 2 and 4 to contain the best model 522	

variants. The discrepancy in optimal ranges for ENTCOEF are to be expected given that 523	

the primary metrics used to evaluate the effect of parameter refinement are different, with 524	

ours being JJA warm/dry biases over the NWUS, William et al. (2015) being the behaviour 525	

of Antarctic Circumpolar Current, and other previous studies being climate sensitivities. 526	

This demonstrates that any parameter refinement process is tailored to a specific objective, 527	

and choices regarding metrics (e.g., variables, validation dataset(s), and / or cost functions) 528	

may determine which part of parameter space is ultimately accepted.  529	

 530	

3.3. Effects on global scale climate 531	

To avoid introducing or increasing biases over other parts of the globe by our regionally-532	

focused model improvement effort,  we investigated the large-scale effects of the selected 533	

10 ‘good’ (least biased in MAC-T) sets of global parameter values. We focused on surface 534	

temperature and precipitation because they are key variables of the climate system and are 535	

of high interest for impact studies. 536	

 537	

Figure 5 shows the meridional distribution of Northern Hemisphere (NH) mid-latitude 538	

temperature (over land) and precipitation in DJF and JJA. Because of the wide range of 539	

parameter values in the PPEs of Phase 1 and Phase 2, the spread for these PPEs is quite 540	

large, whereas the ensemble spread in Phase 3 is substantially smaller. Compared with the 541	

SP ensemble, the new parameter values (final 10 sets) reduced the zonal mean JJA 542	

temperature throughout the NH mid-latitudes (30 °N -60 °N), by ~1 °C – 4 °C (depending 543	

on the particular combination of parameters), and increased JJA precipitation over the same 544	
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latitude bands, except for latitudes south of 33 °N and north of 58 °N. In DJF, the effects 545	

are not as large nor are the changes consistent in sign across the NH mid-latitude region 546	

(though south of ~38 °N all 10 parameter sets give increasing precipitation).  547	

 548	

To examine how parameter refinements affect spatial patterns of biases, we compare the 549	

seasonal mean biases of temperature (Fig. 6) and precipitation (Fig. 7) under SP and the 550	

selected PP settings, against CRU data. The SP simulations have large warm biases in JJA 551	

(and to a lesser extent in MAM and SON, Fig. 6 b-d) over the NH mid-latitude land region, 552	

that are substantially lower in the PP simulations (Fig. 6 f-h and Fig.6 j-l).  In the tropics, 553	

the SP simulations have cold biases over northern South America, central Africa and 554	

southern Asia in most seasons that are ameliorated in the PP simulations in some cases 555	

(e.g. central Africa in DJF and SON) - even though the focus of the PP simulations was 556	

improving the climate of the NWUS. The SP simulations also have cold biases over most 557	

of the Southern Hemisphere continents in mid-latitudes in most seasons. A large fraction 558	

of the JJA temperature biases were reduced in the PP simulations, as shown in Fig. 6c, g 559	

and k. These salient features in JJA temperature biases under SP and PP are not particular 560	

to the selection of observational dataset (see Fig. S12-S15 for comparison with other 561	

datasets). In the other three seasons, however, the spatial patterns of temperature biases are 562	

not consistent across observational datasets.  563	

 564	

The reduction of JJA temperature from SP to PP (Fig. 6k) and the resulting reduction in 565	

bias are accompanied by reduction in precipitation in the equatorial regions; increased 566	

precipitation over northern North America, northern Africa, and Europe (Fig. 7k); and 567	
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decreased incoming shortwave radiation at the surface and increased evaporation (Fig. 568	

S16). Stronger evaporative cooling and reduced surface radiation lead to a cooling of the 569	

JJA climate, which roughly agrees with the geographical pattern of reduced mean JJA 570	

temperature, consistent with findings in Zhang et al. (2018) that both overestimated surface 571	

shortwave radiation and underestimated evaporation contribute to the warm biases in JJA 572	

in CMIP5 climate models.  573	

 574	

For precipitation, the largest biases in SP are over Amazonia in DJF and MAM (Fig. 7a 575	

and b), and northern South America, equatorial Africa, and south Asia in JJA (Fig. 7c). 576	

These summer biases are increased in the PP simulations (Fig. 7k). However, it is difficult 577	

to know whether we are improving the model’s global precipitation patterns because of the 578	

large uncertainty in historical precipitation observational datasets. Still, it is worth 579	

comparing the PP simulations with both a variety of observational-based datasets and other 580	

GCMs (Fig. 8). The precipitation amounts differ substantially across different 581	

observational datasets, as well as across climate models. In the tropics, Phase 3 PP 582	

simulated precipitation is mostly lower (except DJF just north of the equator) and has 583	

narrower range than the observations or other climate models, but is higher in DJF and JJA 584	

(up to 25% higher) than the SP simulation results. Outside the tropics, the precipitation 585	

distributions in PP remain similar to those of SP, and differences from observational 586	

datasets and other GCMs are less affected by the use of PP. The tropical precipitation 587	

improvements in JJA can be taken as a general improvement, though not with high 588	

confidence due to the variability across observational datasets. To further highlight the 589	

uncertainties in precipitation, global maps of differences in biases between SP and our 590	
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selected parameter settings, in comparison with other observational-based datasets, are 591	

presented in Fig. S17-23. 592	

 593	

The fact that the large JJA warm bias (shared with many other GCMs and RCMs; see e.g. 594	

Mearns et al., 2012; Kotlarski et al., 2014) could be reduced substantially through the use 595	

of PP is a notable result, especially since the bias persisted through initial tuning efforts 596	

and through the recent updates from version 1 to version 2 of weather@home. We 597	

demonstrated here that significant improvements in the simulation of JJA temperature can 598	

be made through parameter refinements, and that these JJA temperature biases are not 599	

necessarily structural issues of the climate model. These improvements in simulating JJA 600	

temperature generally did not overall improve JJA precipitation patterns across the globe, 601	

and even worsened the bias in some places (e.g. South America). 602	

 603	

4. Conclusions  604	

Through an iterative parameter refinement approach to improve model performance, we 605	

identified a region of climate model parameter space in which HadAM3P outperforms the 606	

SP variant in simulating summer climate over the NWUS specifically, and over NH mid-607	

latitude land in general, while approximately maintaining TOA radiative (near-) balance.  608	

Improving the northwest US climate comes with tradeoffs, e.g. larger JJA dry bias over 609	

Amazonia. However, it is important to note that there are large uncertainties in observed 610	

precipitation climatology, especially outside of the North American and European mid-611	

latitudes, so both apparent increases and decreases in biases should be treated with caution, 612	

and compared against the range across observational datasets.  In the end, we consider the 613	
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cost of increasing biases in parts of the globe acceptable for the purposes of selecting 614	

multiple global model variants to drive the regional model with reduced JJA biases over 615	

NWUS. The fact that improvements can be made at all (for a substantial area of the world) 616	

through targeted PPE is encouraging.  617	

 618	

Our parameter refinement yielded important improvements in the representation of the 619	

summer climate over the NWUS, and it follows that biases in other models may also be 620	

reduced by refining certain parameters that, although may not be identical to those in 621	

HadAM3/RM3P, influence the same physical processes similarly. We found ENTCOEF 622	

and V_CRIT_ALPHA to be the dominant parameters in reducing JJA biases. These 623	

parameters control cloud formation and latent heat flux, respectively.  Bellprat et al. (2016) 624	

found the key parameter responsible for reduction of JJA biases is increased hydraulic 625	

conductivity, which increases the water availability at the land surface and leads to 626	

increased evaporative cooling, stronger low cloud formation, and associated reduced 627	

incoming shortwave radiation. We only perturbed one land surface parameter, but the 628	

effects of additional land surface parameters are being explored in a subsequent study. 629	

Given that land model parameters such as V_CRIT_ALPHA could reasonably be expected 630	

to interact with sensitive atmospheric parameters like ENTCOEF, it is particularly 631	

interesting to consider the multivariate sensitivity of a range of parameters that span across 632	

component models (e.g., land, ice, atmosphere, ocean). We argue that this frontier of 633	

parameter sensitivity exploration should be done in a transparent and systematic manner, 634	

and we have demonstrated that statistical emulators can be effectively leveraged to reduce 635	

computational expense.  636	
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 637	

The fact that V_CRIT_ALPHA (which is a parameter in the land surface scheme MOSES2) 638	

was found to be an important parameter on regional MAT-C and JJA-T, has much further 639	

implications beyond this study. MOSES2 is the land surface scheme used in HadGEM1 640	

and HadGEM2 family, which were used in CMIP4 and CMIP5.  Moreover, the Joint UK 641	

Land Environment Simulator (JULES) model (which is the land surface scheme of the 642	

CMIP6 generation Hadley Centre models HadGEM3 family, https://www.wcrp-643	

climate.org/wgcm-cmip/wgcm-cmip6) is a development of MOSES2.  What we have 644	

learned about the atmosphere-land surface interactions here is relevant to  even the most 645	

recent HadGEM model generation and the in-progress CMIP6.  646	

 647	

The reduction of JJA biases that we achieved in our multi-phase parameter refinement is 648	

notable. However, despite out efforts, the ‘best’ performing parameter set still simulates a 649	

MAC-T bias of 1.5 °C, and a JJA-T bias of 1 °C, over the NWUS. Future work could be 650	

done to determine whether the model can be further improved by tuning additional land-651	

surface scheme parameters, and/or to what extent the remaining biases are due to structural 652	

errors of the model for which we cannot (nor even should not) compensate by refining 653	

parameter values. However, with the reduction in JJA temperature bias, future projections 654	

using the new parameter settings over the SP should be at less risk of overestimating 655	

projected warming in summer (as discussed in the introduction).  656	

 657	

It is also worth noting that we restricted our analysis to seasonal and annual mean climate 658	

metrics.  Given the use of weather@home for attribution studies of many extreme weather 659	
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events (e.g., Otto et al., 2012; Rupp et al., 2017a) as well as their impacts, such as flooding-660	

related property damages (Schaller et al., 2016) and heat-related mortality (Mitchell et al., 661	

2016), an important next step would be to investigate how the tails of distributions of 662	

weather variables respond to parameter perturbations.   663	

 664	

Another important next step would be to apply the selected PPE over the weather@home 665	

- European domain, given the non-trivial JJA warm bias identified over Europe by previous 666	

studies (Massey et al., 2014; Sippel et al., 2016; Guillod et al., 2017). Bellprat et al. (2016) 667	

showed that regional parameters tuned over Europe domain also produced similar 668	

promising results over North America domain but the same model parameterization yielded 669	

larger overall biases over North America than for Europe. One could test the transferability 670	

of parameter values over different regional domains in the weather@home framework, 671	

given weather@home currently uses the same GCM to drive several RCMs over different 672	

parts of the world, all using the  same parameter values. 673	

 674	

The methodology presented in this study could be applied to other models in the evolution 675	

of physical parameterizations, and we advocate that parameter refinement process should 676	

be more explicit and transparent as done here. Choices and compromises made during the 677	

refinement process may significantly affect model results and influence evaluations against 678	

observed climate, hence should be taken into account in any interpretation of model results, 679	

especially in intercomparison of multimodel analyses to help understanding of model 680	

differences.  681	

 682	
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Code availability  683	

HadRM3P is available from the UK Met Office as part of the Providing REgional 684	

Climates for Impacts Studies (PRECIS) program. Access to the source code is dependent 685	

on attendance at a PRECIS training workshop 686	

(http://www.metoffice.gov.uk/research/applied/international-development/precis/obtain). 687	

The code to embed the Met Office models within weather@home is proprietary and not 688	

within the scope of this publication. 689	

 690	

Data availability 691	

The model output data for the experiment used in this study will be freely available at the 692	

Centre for Environmental Data Analysis (http://www.ceda.ac.uk) in the next few months. 693	

Until the point of publication within the CEDA archive, please contact the corresponding 694	

author to access the relevant data. 695	

 696	

Appendix A: Detailed experimental process 697	

The overarching goal is to refine parameter values to reduce warm and dry summer bias in 698	

the NWUS. In total four ensembles were generated, one using the SP values and one for 699	

each of 3 PPE phases.  Details of each ensemble are listed in Table 2.   700	

 701	

Internal variability of the atmospheric circulation can confound the relationship between 702	

parameters values and the response being sought (i.e. result in a low signal-to-noise ratio).  703	

Averaging over multiple ensemble members with the same parameter values but different 704	

atmospheric initial conditions (ICs) can clarify the true sensitivity to parameters by 705	
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increasing the signal-to-noise ratio. We set up multiple ICs for each parameter set, but the 706	

numbers of ICs applied was not consistent throughout the experiment. The IC applied in 707	

each phase was determined somewhat subjectively, trying to strike a balance between 708	

running a large enough PPE to probe as many processes and interactions between 709	

parameters as possible, having multiple ICs so that the results were representative of the 710	

parameter perturbations instead of reflecting the influence of any particular IC, while under 711	

the practical limitation of data transfer, storage, and analysis. The actual IC ensemble size 712	

used in the final analysis was also constrained by the number of successfully completed 713	

returns from the distributed computing network.   714	

 715	

The four ensembles are summarized below: 716	

SP: A preliminary “standard physics” (SP) ensemble with 10 ICs that used only the default 717	

model parameters was generated to provide a benchmark to access the effects of parameter 718	

perturbations.  719	

 720	

Phase 1:  The objective of this phase was to eliminate regions of parameter space that led 721	

to top-of-atmosphere (TOA) radiative fluxes that are strongly out of balance.  Exclusion 722	

criteria were deliberately lenient, to avoid eliminating regions of the parameter space that 723	

could potentially reproduce the observed temperature and precipitation over the western 724	

US. We perturbed 17 parameters simultaneously, using space-filling Latin hypercube 725	

sampling (McKay et el., 1979) - maximizing the minimum distance between points - to 726	

generate 340 sets of parameterizations across the range of parameter values described in 727	

Table 1.  To generate enough ensemble members for a statistical emulator, Loeppky et al. 728	
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(2009) suggested that the number of sets of parameter values be 10 times the number of 729	

parameters (p). We used more than 10p sets of parameter values in this, and subsequent 730	

phases of PPE.  A total of 2040 simulations (340 sets of parameter values x 6 ICs) were 731	

submitted to the volunteer computing network.  This phase was considered finalized when 732	

simulations with 220 sets of parameter values and 3 IC ensemble members per set were 733	

returned from the computing network. 734	

 735	

Model results were used to train a statistical emulator which maps the relationship between 736	

parameter values and key climate metrics. In this phase, the metrics were outgoing LW and 737	

(reflected) SW TOA radiative fluxes. We considered these two metrics separately because 738	

the total net radiation could mask deficiencies in both types of radiation through 739	

cancellation of errors.   740	

 741	

For the emulator, a 2-layer feed-forward Artificial Neural Network (ANN, Knutti et al., 742	

2003; Sanderson et al., 2008; Mulholland et al., 2016) was used. Although other machine-743	

learning algorithms could be suitable (Rougier et al., 2009; Neelin et al., 2010; Bellprat et 744	

al., 2012a,b, 2016), we chose ANN because it permits multiple simultaneous emulator 745	

targets (i.e., TOA SW and LW at the same time). We used an ellipse (Fig. 1) to define the 746	

space of acceptability for SW and LW, starting with the observational uncertainty ranges 747	

given in Stephens et al. (2012), but tripling them (deliberately setting a lenient elimination 748	

criteria), and then expanding both the negative and positive thresholds by an additional 1 749	

W m-2 to account for internal variability as estimated from SP (Fig. S5).  Sets of parameter 750	
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values that fall within our range of acceptability were retained, and the ranges of these 751	

refined/restricted parameter values defined the remaining  parameter space. 752	

 753	

A new set of 1,000 parameter configurations was generated from the remaining parameter 754	

space using space-filling Latin hypercube sampling. With this new ensemble we increased 755	

the sample density within the refined parameter space. The statistical emulator was used to 756	

predict SW and LW for each of these 1,000 new sets of parameters, and 41% fell within 757	

our range of acceptability, reflecting the deficiency of the emulator to some extent. 758	

Parameter sets that fell within the acceptable range were used in Phase 2. 759	

 760	

Phase 2: The objective of this phase was to reduce biases in the simulated climate of the 761	

NWUS, where the warm summer biases were the most obvious (Fig. S1), while not straying 762	

far from TOA radiative (near-) balance. The climate metrics considered were the mean 763	

magnitude of the annual cycle of temperature (MAC-T), and mean temperature (T) and 764	

precipitation (Pr) in December-January-February (DJF) and June-July-August (JJA).  765	

Although a primary motivation for this study was to investigate and reduce the warm and 766	

dry bias in JJA over NWUS, MAC-T was treated as the primary metric in Phase 2 because 767	

it is a comprehensive measure of climate feedbacks in response to a large change in forcing, 768	

e.g., solar SW (Hall and Qu 2006).  MAC-T is also strongly correlated to the other regional 769	

metrics (particularly JJA-T) as evident in Fig. S3 – MAC-T against other metrics. We chose 770	

a NWUS average MAC-T of +/-3 °C as the bias threshold over which parameter space 771	

would be eliminated.  Though this threshold is arbitrary, falling below it would mean 772	

reducing the MAC-T bias for the NWUS by about 50%. 773	
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 774	

We did not treat all metrics as equally important.  The order of importance in this second 775	

phase was MAC-T > JJA-T, JJA-Pr, DJF-T, and DJF-Pr > SW and LW.  776	

 777	

The 410 sets of new PPE from Phase 1 became the starting point for Phase 2.  A total of 778	

27,060 simulations (410 sets of parameter values x 6 ICs x 11 years) was submitted to the 779	

computing network. This phase was considered finalized when simulations with 170 sets 780	

of parameter values and 3 IC ensemble members per set and per year were completed.  781	

These 5,610 simulations were used to train a suite of statistical emulators for various 782	

climate metrics.  An additional 94 sets of parameters with 3 IC ensemble members per set 783	

and per year completed after starting Phase 3 and were used to validate the emulators 784	

trained within Phase 2 (see Appendix B). 785	

 786	

Separate statistical emulators were trained for MAC-T, JJA-T, JJA-Pr, DJF-T, DJF-Pr, 787	

SW, and LW. Although ANN has the advantage of using multiple metrics as targets 788	

simultaneously, the underlying emulator structure remains obscure, because an ANN is a 789	

network of simple elements called neutrons which are organized in multilayer, and 790	

different layers may perform different kinds of transformations on the inputs.  For the sake 791	

of simplicity and transparency,  in Phase 2 we used kriging instead - which is similar to a 792	

Gaussian process regression emulator -  following McNeall et al. (2016) as coded in the 793	

package DiceKriging (Roustant et al., 2012) in the statistical programming environment R. 794	

We used universal kriging, with no ‘nugget’ term, meaning that the uncertainty on model 795	

outputs shrinks to zero at the parameter input points that have already been run through our 796	
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climate model (Roustant et al., 2012).  To validate if the emulators were adequate to predict 797	

outputs at unseen parameter inputs, we needed to assure that it predicted relatively well 798	

across our designed parameter inputs. For each emulator, we performed ‘leave-one-out’ 799	

cross validation.  The cross validation results showed no significant deviations in prediction 800	

of the outputs (results not shown).  801	

 802	

In addition to reducing parameter space in Phase 2, we also looked for parameters that 803	

consistently showed little influence on our metrics of interest, as any reduction in 804	

parameters could benefit subsequent experiments by reducing the overall dimensionality.  805	

To identify which parameters have the most influence over the metrics of interest, we 806	

performed two types of sensitivity analyses as described in Section 2.5.  In the end, the 7 807	

most influential parameters were retained after parameter reduction in Phase 2; these are 808	

the bold-faced parameters in Table 1. 809	

 810	

After eliminating parameter space resulting in MAC-T biases larger than 3°C, and reducing 811	

the number of perturbed parameters to 7, we continued the parameter refinement process, 812	

and randomly selected 100 parameter sets that emulated MAC-T biases less than 3°C and 813	

had large spread in ENTCOEF and VIF1 (within the refined ranges of Phase 2). 100 was 814	

subjectively chosen as a cut off number of new PPE sets to run through weather@home in 815	

the next phase, mainly due to concern of not knowing how many more phases would be 816	

required to reach our goal, while recognizing the practical constraints posed by the large 817	

datasets that would potentially be generated in the following phases. 818	

 819	

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-198
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 23 October 2018
c© Author(s) 2018. CC BY 4.0 License.



37	
	

Phase 3:  This objective of this phase was to further refine parameter space to reach the 820	

target of northwest US regional bias in MAC-T less than 3°C, and then select 10 sets of 821	

parameter values that met this criterion. The results in this phase satisfied our target, so we 822	

stopped the iterative process here. 823	

 824	

We were aware that our approach of regionally targeted parameter refinements might 825	

degrade model performance elsewhere. Upon achieving our regional target, we 826	

investigated the effects of our model tuning on global model metrics. 827	

 828	

Appendix B: Emulated vs. simulated results   829	

We used 94 additional ensemble members returned from Phase 2 (the 94 simulations that 830	

completed after building the emulators from the Phase 2 PPE and starting Phase 3) to 831	

provide out-of-sample validations of the emulators trained in Phase 2.  In Fig. B1, we show 832	

predictions from emulators against model-simulated values for all the output metrics. In all 833	

cases, the linear relationship between the emulated and simulated is very strong (regression 834	

coefficient regcoef>0.9), while the emulated results can predict the simulated results 835	

relative well, with coefficient of determination R2 > 0.9 in the best cases (SW, LW and 836	

JJA-T). It is not surprising that R2 for DJF-Pr is the smallest, considering precipitation in 837	

DJF over NWUS is dominated by larger-scale atmospheric features such as the polar jet 838	

stream, the Pacific subtropical high, and storm tracks (e.g.,Mock, 1996; Neelin et al., 2013; 839	

Seager et al., 2014; Langenbrunner et al., 2015), and the internal variability of this metric 840	

is the highest among those considered. 841	

 842	
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In Fig. B2, we present the emulated vs. simulated results in Phase 3 for the 95 PP sets that 843	

were returned in Phase3. These 95 PP sets were run through the emulators from Phase 2 to 844	

predict the climate metrics, then the emulated results were compared with the simulated 845	

results returned from weather@home simulations. In most cases, r and R2 are lower than 846	

the Phase 2 results (Fig. B1), except for LW and DJF-T, where R2 increases by a few 847	

percent. This decrease in emulator prediction accuracy could be due to the fact that in Phase 848	

3, only 7 parameters were perturbed simultaneously while keeping the rest at their default 849	

values, so we have eliminated parts of the parameter space, which are no longer available 850	

to the emulators. 851	

 852	

The comparisons between simulated and emulated results from Phase 2 to Phase 3 highlight 853	

the necessity of doing parameter refinement exercise in phases. Training a statistical 854	

emulator once, then using it to search for optimal parameter settings may not always yield 855	

optimum results.  An emulator may not fully capture the behaviour of the climate model in 856	

every aspect, especially when the number of parameters perturbed was changed during the 857	

process, such as in our case. 858	

 859	

Appendix C: Soil moisture control on plant photosynthesis in MOSES 860	

The critical point qcrit (m3 of water per m3 of soil) is the soil moisture content below which 861	

plant photosynthesis becomes limited by soil water availability and is calculated by: 862	

qcrit = qwilt + V_CRIT_ALPHA (qsat-qwilt) 863	
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where qsat is the saturation point, i.e. the soil moisture content at the point of saturation; 864	

and qwilt is the wilting point, below which leaf stomata close. V_CRIT_ALPHA varies 865	

between zero and one, meaning that qcrit varies between qwilt and qsat (Cox et al., 1999). 866	
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 1241	

Figure 1. Global mean top-of-atmosphere (TOA) outgoing (reflected) shortwave radiation 1242	

(SW) and outgoing longwave radiation (LW) from the four ensembles run through 1243	

weather@home2. Horizontal and vertical dashed lines denote the reference values for SW 1244	

and LW taken from Stephens et al. (2012). The filled brown circle denotes our SP. The 1245	

ellipse indicates the uncertainty ranges we are willing to accept for SW and LW 1246	

respectively, which includes the observational uncertainty range taken from Stephens et al. 1247	

(2012), but tripled, plus the uncertainty range due to initial condition perturbations 1248	

estimated from our SP reference ensemble. The red solid lines highlight net TOA energy 1249	

flux of +/- 5 Wm-2. 1250	
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 1252	

Figure 2. One-at-a-time sensitivity analysis of magnitude of annual cycle of temperature 1253	

(MAC-T) over Northwest to each input parameter in turn, with all other parameters held at 1254	

mean value of all the designed points. Heavy lines represent the emulator mean, and shaded 1255	

areas represent the estimate of emulator uncertainty, at the ±1 SD level. 1256	
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Figure 3. Sensitivity analysis of model output metrics in Phase 2 via the FAST algorithm 1269	

of Saltelli et el. (1999). 1270	

 1271	

Figure 4. Phase 3 PPE parameter inputs and summary model output metrics evaluated. 95 1272	

parameter sets are shown. The parameter values and model outputs under SP are marked 1273	

in red. The horizontal and vertical red lines mark the transition from parameter inputs and 1274	

model output metrics. 1275	
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 1277	

Figure 5. Comparison between three PPEs and SP zonal mean HadAM3P simulated North 1278	

Hemisphere mid-latitude (30°N-60°N) a) DJF mean temperature over land, b) JJA mean 1279	

temperature over land, c) DJF mean precipitation, and d) JJA mean precipitation. Output 1280	

from the selected 10 parameter sets selected, based on NWUS MAC-T, are shown in blue. 1281	

Note that the plotting order is the same as the legend, so most Phase 1 curves are obscured 1282	

by subsequent phases. 1283	
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 1287	

Figure 6. Biases of SP temperature over land in a) DJF, b) MAM, c) JJA, and d) SON, 1288	

compared with CRU over December 1996 through November 2007. Biases of selected PP 1289	

compared with CRU are shown in e)-h), while the differences between selected PP and SP, 1290	

i.e. the absolute increase or decrease of biases in PP with respect to the SP values,  are 1291	

shown in i) - l). The PP results are the composites of the 10 selected sets, 6 IC per set. 1292	
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 1293	

Figure 7. Same as Fig. 6, but for precipitation. 1294	
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 1295	

Figure 8. Annual (a,d), DJF (b,e) and JJA (c,f) meridional distributions of precipitation 1296	

from Phase 3 and SP (all panels), reanalysis datasets MERRA2, JRA-55, CFSR, ERAI and 1297	

20CRv2c shown (a - c) and GCMs CanAM4-AMIP, CESM1-CAM5, and HadGEM2-A, 1298	

shown in (d - f ).  1299	
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 1300	

Figure B1. Emulator predicted results vs. model simulated results in Phase 2 for different 1301	

model output metrics based on 94 parameter sets not used to train the emulator (the 94 sets 1302	

that finished after starting Phase3). The regression coefficient (regcoef) and coefficient of 1303	

determination (R2) by emulated results are shown in each panel. The dashed line in each 1304	

panel denotes the 1:1 line. 1305	
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 1306	

Figure B2. Same as Fig. B1, but for the 95 parameter sets in Phase 3. Note the ranges of 1307	

x- and y-axis are set to be the same as in Fig. B1. 1308	
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Table 1. Parameters perturbed in our tuning exercise with the 

post-culling parameters highlighted in bold. 

 

 

Parameter Default Low High Description Model component 
CT  (s-1) 6×10-4 0.5×10-4 1.2×10-3 Rate at which 

cloud liquid 
water is 
converted to 
precipitation 

Cloud 

CW_SEA (kg m-3) 2.0×10-5 0.5×10-5 2.0×10-4 Threshold cloud 
liquid water 
content over sea 

Cloud 

CW_LAND (kg m-3) 1.0×10-3 0.5×10-3 1.0×10-2 Threshold cloud 
liquid water 
content over 
land 

Cloud 

EACF 0.5 0.5 0.6 Empirically 
adjusted cloud 
fraction 

Cloud 

VF1 (m s-1) 2  0.5 4 Ice fall speed Cloud 
ENTCOEF 3 0.3 9.5 Entrainment 

rate coefficient 
Convection 

ALPHAM 0.5 0.45 0.65 Albedo at 
melting point of 
sea ice 

Radiation 

DTICE (°C) 10  2 11 Temperature 
range over 
which ice 
albedo varies 

Radiation 

ICE_SIZE (m) 3.0×10-5 2.5×10-5 4.0×10-5 Ice particle size Radiation 
KAY_GWAVE (m) 1.8×104 1.0×104 2.0×104 Surface gravity 

wave drag: 
typical 
wavelength 

Dynamics 

KAY_LEE_GWAVE (m-3/2) 2.7×105 1.5×105 3.0×105 Surface gravity 
wave trapped 
lee wave 
constant 

Dynamics 

START_LEVEL_GWDRAG 3 3 5 Lowest model 
level for gravity 
wave drag 

Dynamics 

V_CRIT_ALPHA 0.5 0.01 0.99 Control of 
photosynthesis 
with soil 
moisture 

Land surface 

ASYM_LAMBDA 0.15 0.05 0.5 Vertical 
distance over 
which air 
parcels travel 
before mixing 

Boundary layer 
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with their 
surroundings 

CHARNOCK 0.012 0.009 0.020 Constant in 
Charnock 
formula for 
calculating 
roughness 
length for 
momentum 
transport over 
sea 

Boundary layer 

G0 10 5 20 Used in 
calculation of 
stability 
function for 
heat, moisture, 
and momentum 
transport 

Boundary layer 

Z0FSEA (m) 1.3×10-3 2.0×10-4 5×10-3 Roughness 
length for free 
heat and 
moisture 
transport over 
the sea 

Boundary layer 

 1315	
Table 2. The specifics of four ensembles used in this study. 1316	

 1317	
Experiment Start dates Number of 

parameters 
Number of 
parameter sets 
in PPE 

IC per parameter set per year 
used in the analysis 

SP  1 Dec 1995, 
1996, …, 2005 

1 1 6 

PPE Phase 
1 

1 Dec 1995 17 220 3 

PPE Phase 
2 

1 Dec 1995, 
1996, …, 2005 

17 264 3 

PPE Phase 
3 

1 Dec 1995, 
1996, …, 2005 

7 95 6 
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