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Abstract. Future changes in Earth system state will impact agricultural yields and, through these changed yields, can have

profound impacts on the global economy. Global gridded crop models estimate the influence of these Earth system changes on

future crop yields, but are often too computationally intensive to dynamically couple into global multi-sector economic models,

such as GCAM and other similar-in-scale models. Yet, generalizing a faster site-specific crop model’s results to be used globally

will introduce inaccuracies, and the question of which model to use is unclear given the wide variation in yield response across5

crop models. To examine the feedback loop among socioeconomics, Earth system changes, and crop yield changes, rapidly

generated yield responses with some quantification of crop response uncertainty are desirable. The Persephone v1.0 response

functions presented in this work are based on the Agricultural Model Intercomparison and Improvement Project (AgMIP)

Coordinated Climate-Crop Modeling Project (C3MP) sensitivity test data set and are focused on providing the Global Change

Assessment Model (GCAM) and similar models with a tractable number of rapid to evaluate, dynamic yield response functions10

corresponding to a range of the yield response sensitivities seen in the C3MP data set. With the Persephone response functions,

a new variety of agricultural impact experiments will be open to GCAM and other economic models; for example, examining

the economic impacts of a multi-year drought in a key agricultural region and how economic changes in response to the drought

can, in turn, impact the drought.

Copyright statement. TEXT15

1 Introduction

Agricultural yields are susceptible to changes in temperature, precipitation, growing season length, CO2 concentrations, and

other Earth system factors. While both the nature of the future climate and its impact on agricultural yields are uncertain

(Rosenzweig et al., 2014; Pirttioja et al., 2015; Fronzek et al., 2018; Asseng et al., 2013, 2015; Martre et al., 2015; Lobell,

2013), it is clear that there is potential for identifying the important effects on agriculture and, in turn, the economic state20

of the world at large. The global multi-sector economic model Global Change Assessment Model (GCAM)1 (Kyle et al.,
1Model and documentation available at https://github.com/JGCRI/gcam-core, http://jgcri.github.io/gcam-doc/toc.html
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2011; Wise et al., 2014; Calvin et al., 2019; Hartin et al., 2015) and other similar-in-scale models (Nelson et al., 2014) are

ideal for understanding the far reaching impacts of this climate-agriculture-economic cycle, but rely on external projections of

agricultural yields to quantify these effects (Figure 1, panel A). This asynchronous process results in inconsistencies between

the economic and biophysical world, and overlooks feedbacks and unintended consequences as the future shifts (Ruane et al.,

2017).5

Several modeling groups, including the GCAM model development team, are interested in explicitly modeling and understanding

bidirectional feedbacks between the Earth and the human systems (e.g. Figure 1, panel C). Agriculture is one important pathway

(of many) through which these systems directly interact. A prime example would be to study the impacts of a multi-year drought

in a key agricultural region. The drought would affect yields, which would affect the agricultural supply to the global economic

market. In a model like GCAM, this would lead to price changes and shifting land to more profitable crops. The new spatial10

distribution of agricultural land would change land related emissions, which will in turn affect climate and therefore yields

moving forward. Being able to model each component of this process and the interactions among them is key to considering

important questions like this one.

Currently, GCAM operates on a five year time step and is coupled with a physical Earth system emulator, Hector (Hartin

et al., 2015) (as in Figure 1, panels A and B), to explore global change questions in rapid enough evaluation times to allow15

for large numbers of simulations to be analyzed as part of a wide range of experiments. GCAM is a recursive dynamic partial

equilibrium model that is calibrated to a historical base year of 2010 and used to simulate forward in time by incorporating

changes in quantities such as population, GDP, and technology to produce outputs that include land, water, and energy

use as well as emissions and commodity prices. For agricultural production in GCAM, yield change trends representing

generally positive change assumptions over time due to non-climate factors (changes in management, new seed genetics,20

new technologies, use of chemicals/fertilizers, adaptation, etc.) are used to calculate the profitability of a crop-irrigation-

fertilizer combination in each of 384 GCAM land units at each time step based on the global crop price. This profitability

determines land allocated to each crop, and the combination of exogenous yields and land allocation gives production of each

crop-irrigation-fertilizer combination such that global supply and global demand are met on each timestep. The details of this

allocation are provided in Kyle et al. (2011); Wise et al. (2014); Calvin et al. (2019). Shifting land allocation among different25

crop-irrigation-fertilizer combinations leads to a degree of endogenous yield intensification within GCAM.

Past agricultural impacts studies using GCAM (Calvin and Fisher-Vanden, 2017) have focused on using outputs of global

gridded crop model (GGCM) studies (e.g., Rosenzweig et al., 2014; Elliott et al., 2014; Müller et al., 2017) in a strictly

feed-forward way (Figure 1, panel A). Direct coupling of a GGCM to GCAM would result in a computationally expensive

modeling framework, limiting the number of simulations that could be performed. Yet, large ensembles of simulations are30

necessary to explore and understand future response options, so there is great need for a computationally efficient model that

could explore the uncertainty space. While GCAM is already coupled to a simple climate model, Hector (Hartin et al., 2015),

this coupling is one-way: emissions are passed to the climate model, but to date dynamic feedbacks between climate and

humans at each timestep are missing. In this paper, we describe the first version of Persephone (v1.0), a simple representation

of mean agricultural response and uncertainty to future climate that can be incorporated into GCAM and similar models.35
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Further detail of the desired studies this yield change emulator would be used for are given in Section 2.1 and discussed at

length in Ruane et al. (2017).

An ideal solution to the computational expense of coupling a GGCM to GCAM is a yield response emulator, which uses past

crop yield model runs to predict what the model would have done under different conditions, had it been run. However, previous

work in this area has been restricted to either emulating crop model results under fixed [CO2]-temperature pathways such as5

the various RCPs (Oyebamiji et al., 2015; Blanc, 2017; Ostberg et al., 2018) or building statistical models from empirical and

historical data (Lobell, 2013; Moore et al., 2017; Mistry, 2017; Mistry et al., 2017). While an emulator trained on RCP-driven

scenarios can be used to estimate yield change in any future climate, the RCPs only span a subset of possible future climates.

In particular, should one want to consider the impacts of [CO2]-temperature pathways that substantially differ from the RCPs,

these emulators would face the difficult task of predicting yield changes outside of the conditions of the training data. Statistical10

models of empirical and historical data also must predict yield changes in response to future climate outside of the conditions of

the training data, especially in response to large [CO2] increases. Substantial departure from the RCPs and historical values of

[CO2] is very possible in the bidirectional coupled human-earth system applications outlined above and an emulator equipped

to handle that is desirable. Finally, many of these past studies have lacked a way to capture aspects of uncertainty that would

be useful for the GCAM bidirectional feedback experiments described in Section 2.1.15

The Agricultural Model Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al., 2013) took steps to begin

addressing these issues with the Coordinated Climate-Crop Modeling Project (C3MP), a modeling study specifically designed

to, among other things, provide the data necessary to develop a flexible and dynamic crop yield emulator (Ruane et al.,

2014; McDermid et al., 2015). C3MP invited point-based crop modelers from across the AgMIP community to simulate

their calibrated agricultural system’s response to 99 sensitivity tests in which 1980-2009 baseline climate data were modified to20

synthesize changes in mean carbon dioxide concentration ([CO2]), temperature, and precipitation. The 99 Carbon-Temperature-

Precipitation (denoted CTW, W for Water rather than P for Precipitation) tests that make up the C3MP protocol were selected

using a Latin hypercube to ensure that future scenarios through the end of the 21st century, including all RCPs, fall within the

training model simulation data over the vast majority of agricultural lands (Ruane et al., 2014). The full space of CTW changes

that these 99 tests represent is: 330-900 ppm global [CO2], -1◦C to +8◦C from local baseline temperature, and -50% to +50%25

from local baseline precipitation (applied as a multiplicative factor). A particular CTW perturbation could be associated with a

specific time slice, for example the 2050s climate changes from a given Earth System Model (ESM) RCP4.5 projection, or from

a climate condition generated within GCAM as a result of interactions between socioeconomic development and the natural

environment. Finally, the C3MP study featured broad spatial coverage (albeit not uniform) of a wider variety of crop models,

crops, and management practices than has been incorporated into past GGCM or emulator work. More than 50 participating30

crop modelers helped C3MP record yield response simulation results from a total of 1135 sites, differing by location, crop

species, cultivars, crop model, farm management, etc.

The Persephone framework presented in this work is designed to develop yield response functions to CTW changes from a

given data set. The Persephone V1.0 response functions, based on the C3MP data set, provide a computationally inexpensive

estimate of the change in agricultural yield due to a change in the Earth system, and make use of the promising data relating35
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yield changes to CTW changes collected in C3MP. Specifically, we present biologically reasonable response functions that are

rapid-to-evaluate and more dynamic than past options for incorporating crop responses into models like GCAM. We strictly

considered responses to long term Earth system changes. The C3MP results or other appropriate data sets could be further

used to examine the effect of inter-annual variability on yields in Persephone V2.0 and beyond, although this would require

additional complexities in seasonal yield variations that are largely averaged out in long-term trends. The response functions5

also represent the uncertainty in yield response across crop models in the C3MP data set to a given change in local Earth system

state, for use in three types of agricultural impacts studies with GCAM:

1. A partially coupled, feed forward study (Figure 1, Panel B) similar to methodology in Ruane et al. (2018). A future

climate time series of interest (a non-traditional RCP, climate stabilization level, or hypothetical drought, for instance) is

input to the yield response functions, returning yield changes. These yield changes are applied as multipliers to GCAM10

input files and GCAM is run forward for the entire time period of interest in order to trace the broad impacts on energy,

water, and land use of the future climate time series. In this type of study, we only capture the implications of climate for

human systems.

2. A fully coupled feedback loop that updates on every model timestep to understand how societal pressures drive environmental

impacts which in turn create or reduce societal pressures (Figure 1, Panel C). In this case, the yield changes must be15

calculated very quickly in order to evaluate on each step and interact with GCAM. In this type of study, we can capture

the effects of humans on climate and climate on humans, simultaneously.

3. Joint climate-crop uncertainty studies of the above two experiments. For tractability, the GCAM development team

specifically seeks a mean response function as well as two additional response functions that represent a range of yield

response uncertainty. Persephone also stores the full predictive distributions of yield changes for any given CTW change20

that these three response functions span. If a user desires a different representation of uncertainty, the distribution may

be sampled.
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Figure 1. The current method for incorporating agricultural impacts into GCAM and two experimental designs for using Persephone v1.0

with GCAM. Panel A: The current method for incorporating yield changes from a global gridded crop model into GCAM. Panel B: A

partially coupled, feed forward study incorporating yield changes from a predetermined climate scenario into GCAM. Panel C: A fully

coupled feedback loop that iteratively updates agricultural yield impacts.

5



2 Methods

2.1 C3MP dataset

Full details of the C3MP protocols, design, and the location output archive can be found in Ruane et al. (2014); McDermid

et al. (2015). Here, we highlight some of the key features of the data set and outline our processing of C3MP data for using the

Persephone framework to train V1.0 response functions with the Persephone framework.5

C3MP recorded yield response simulation results from a total of 1135 sites (differing by location, crops, crop model,

management, etc) for each of 99 CTW sensitivity tests designed to cover a range of CTW changes that most future climates

would fall into. For each site, each CTW test is applied to change a local time series of weather data from 1980-2009 and then

the crop model is run to produce 30 years of impacted yields for the CTW test, which are then averaged.

The C3MP design resulted in a wider range of crops than had been previously sampled in a coordinated agricultural10

modeling study. We separate the C3MP data into 25 different production groups for training in the Persephone framework

to create V1.0 response functions. Twenty-four of the 25 groups for this paper are collections of sites corresponding to

different crop-irrigation-latitude combinations: irrigated and rainfed versions of six key crops (maize, rice, wheat, soybeans,

a C3-photosynthesis average, and a C4-photosynthesis average ), based on sites at the extended tropics (30◦S to 30◦N) and

the mid-latitudes (30- 70◦S, 30- 70◦N) (see Section 2.1.1 for more details on spatial scales). It is also noteworthy that the15

majority of C3MP sites had high rates of fertilizer application, even in the extended tropics. These six crop groups were chosen

because most IAMs already have experience incorporating such impacts from previous AgMIP exercises (e.g., Ruane et al.

(2017); Calvin and Fisher-Vanden (2017); Nelson et al. (2014); Wiebe et al. (2015); Ruane et al. (2018)), they cover the major

agricultural commodities globally, and they offer additional benchmarks for evaluating emulator success. In particular, the

C3-photosynthesis production groups represent an average response of a very wide range of C3 crops, including wheat, rice,20

and soybeans. The C4-photosynthesis average is similarly defined, with sugarcane considered separately. The 25th production

group is rainfed sugarcane in the extended tropics: no sugarcane sites outside of 30◦S to 30◦N were submitted to C3MP and

only one irrigated sugarcane site was submitted.

We cull the 1135 contributed C3MP output datasets according to a range of criteria:

1. Sites simulated with notably older versions of crop models are eliminated. We thus eliminated uses of the DSSAT crop25

model v3 (and prior), given that important updates in crop physiology were added in version 4 (Jones et al., 2003).

2. Site simulations that exclude CO2 fertilization responses, a fundamental variable examined here, were eliminated. We

thus eliminated the SarraH-Hv32 crop model (primarily millet and sorghum sites in West Africa).

3. When C3MP modelers provided simulation sets that were identical other than the use of local weather data or AgMERRA

climate forcing data (Ruane et al., 2015)), we used only the local dataset to avoid double counting. AgMERRA was30

provided for all datasets given frequent data gaps and governmental restrictions (Ruane et al., 2014).
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These steps together eliminate more than 550 of the C3MP sites. Finally, for each production group, outliers are statistically

identified and eliminated (Davies and Gather, 1993; Bond-Lamberty et al., 2014), in addition to those previously identified

by the C3MP steering team. A total of 575 unique sites remain after culling, maps of which are included in Figure 2. These

remaining sites cover 43 countries, 85 models, and 17 crop species. More than half of the C3MP sites have been eliminated,

but this still results in a larger number of diverse sites, models, and crop species performing coordinated sensitivity tests than5

in any previous study (Asseng et al., 2013; Pirttioja et al., 2015; Fronzek et al., 2018). Since C3MP, the AgMIP-Wheat team

has conducted an extensive analysis of temperature response at 30 wheat sites with 30 models (Asseng et al., 2015), but this

only captures one of the CTW dimensions.

2.1.1 Known caveats of the C3MP data set

Additional discussion of the C3MP data set in the context of other AgMIP modeling efforts is presented in Ruane et al. (2017).10

One relevant point to this work is that, while C3MP spatial coverage is not spatially uniform or production-weighted for any

of the crops under consideration, sites for many of the major production regions are represented for each crop (Figure 2). A

major advantage of using site-specific crop models run voluntarily by experts is that the individual baseline runs at each site

have been configured against local information in the historical period. However, the application of crop yield response from

these sites to estimate response in any given grid cell with temperature and precipitation data is imperfect by its methodological15

nature. Yet this extension is necessary for use with GCAM: gridded yield changes for a subset of crops must be aggregated and

converted to yield impact multipliers for each GCAM commodity in each land unit, defined as water basins in GCAM (Calvin

et al., 2019).

Given the size and details of the C3MP data set, production groups were formed based on two latitude zones as a way

to account for baseline local temperature (which is important in addition to the change from local temperature) without20

having to eliminate the many valid C3MP sites that could not report local weather data due to data gaps or local government

restrictions. As this breakdown already results in some production groups with small sample sizes (see Table 1 and Section

3.1.1), further spatial disaggregation of production group is unjustified in this data set. While this means there will be limited

spatial granularity in yield response functions, there can still be appreciable spatial granularity in yield changes due to variation

in the gridded fields of temperature and precipitation changes. Future data sets with more comprehensive spatial coverage than25

the C3MP data may be used rather to create V2.0 response functions.

The site-specific percent change in yield from the 1980-2009 baseline yield is the dependent variable used to train our

emulator (see Section 2.2). Baseline yields differ widely across the C3MP archive due to regional and system differences,

however the percent change in yield from baseline is more consistent across sites for each CTW. Further, by training on

change in yield rather than yield, we are able to introduce additional, scientifically grounded constraints to the functional forms30

we fit (Equations (4) - (6)). However, no baseline simulation was requested under the C3MP protocols. Therefore, for each

individual set of output yields corresponding to each of the 575 simulation sites, we perform ordinary least squares regression

for eight different functional forms relating the site-specific output yield to the input CTW values and select the best performing

regression to estimate baseline yield (details in Appendix B, Equations (B1)-(B8)).

7



It is also worth noting that the C3MP experimental protocols (Ruane et al., 2014; McDermid et al., 2015) do not account

for changing growing seasons, either through changes of within season distribution of temperature and rainfall or in the

possible autonomous adaptation of farmers to shift planting and harvest dates. Ruane et al. (2014) showed that within season

distribution changes had a small effect and the possible shift in planting and harvest dates are a topic of adaptation. Modeling

autonomous adaptation behaviors is a challenging area for coordinated agricultural efforts and is only beginning to be addressed5

in coordinated sensitivity intercomparison studies as a scenario option, with no publicly available data sets at this time.
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Figure 2. Maps of the C3MP data set culled sites. Each site represents a site-specific model of a single crop, with differing management

practices. The sites are overlaid on Monfreda et al. (2008) harvested area data, except for the C3 and C4 averages.
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2.2 Emulation

The majority of past agricultural yield emulator work has used ordinary least squares regression to estimate coefficients of

functional forms. Given a set of predictors, x, and given a particular value of the predictors xi with corresponding training data

yi, an emulator would be some linear-in-parameters function f(x) that returns an emulated value f(xi) for comparison with

yi. Ordinary least squares regression requires that residuals ri = yi−f(xi)∼N(0,σ2) for all i (e.g., Williams and Rasmussen,5

2006, Section 2.1.1). A key requirement is that σ is a constant value across all i.

Figure 3 displays the spread of yield responses across sites for each CTW test for one production group, rainfed soybeans

between 30- 70◦S, 30- 70◦N (the mid-latitudes). A successful emulator will produce the mean response (Figure 3, black dots)

across sites for each CTW. Therefore examining the spread of the individual site yield changes about the mean yield gives some

sense of the behavior of residuals in the most successful emulation case.The spread of yield change across sites relative to the10

mean response is different for each CTW test and appears to change in a systematic way - larger magnitude changes in yield

are correlated with greater spread across sites. In light of this, a classic, ordinary least squares regression is not an appropriate

approach for this emulator. We also desire more than just the mean response: we desire a measure of how this variation of

site responses changes with CTW. With these considerations in mind, we take a slightly different approach to creating the

Persephone V1.0 response functions, working from texts such as Gelman et al. (2013); Sivia and Skilling (2006); McElreath15

(2016).
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Figure 3. A plot of the percent yield change at each rainfed soybeans in the mid-latitudes site (blue points) for each CTW test (each horizontal

line of points is a different test). The black dot for each test represents the mean response across the sites for that test.

We create the Persephone V1.0 response functions to emulate the mean yield response and two additional yield response

scenarios spanning a range of individual site responses. For a given production group (crop - irrigation - latitude zone combination),

we collect the data for the 99 CTW tests for each of K C3MP simulation sets drawn from the culled-down archive. In other

words, for each of 99 CTW combinations, there exist K 30-year average yield percent changes from the baseline (no changes

in CTW) for a group. This ensemble of 99K yield changes is used to calculate the posterior densities for every parameter of5

µCTW and σCTW in the model defined by Equations (1) - (7) according to Bayes’ theorem (posterior ∝ likelihood×prior).

From the posteriors, the maximum a posteriori (MAP) estimates of parameters, the most plausible value for each parameter

given both the model being used and the training data, is returned.

We define our likelihood as a normal distribution with mean µCTW and variance σ2
CTW :

∆Y emulated
CTW ∼N(µCTW ,σ2

CTW ) (1)10

For a production group with site-specific yield responses that are normally distributed for each CTW value, µCTW is the mean

response across sites for that CTW value (the black points in Figure 3), and σ2
CTW is a measure of agreement (or disagreement)

of responses across sites for that CTW value. We present results for our most broadly optimal mean and variance functional

form combination in this paper, and present the details of our selection criteria among the different functional forms in the

Appendix.15
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To have unitless coefficients in our emulator, all predictor variables are standardized. Defining the collection of 99 T changes

sampled by C3MP as TC3MP , the collection of precipitation changes as WC3MP , and the collection of CO2 concentrations as

CC3MP , we have:

∆T =
T −Tbaseline
sd(TC3MP )

∆W =
W −Wbaseline

sd(WC3MP )

∆C =
C −Cbaseline

sd(CC3MP )

(2)

Tbaseline is a change of 0◦ C from baseline, Wbaseline is a 0% change in precipitation from baseline, and Cbaseline is 360ppm.5

Plugging these baseline values into Equation (2) returns ∆Tbaseline = ∆Wbaseline = ∆Cbaseline = 0, as one would expect.

We exploit the fact that we are emulating change in yield (and not yield) and the fact that ∆Tbaseline = ∆Wbaseline =

∆Cbaseline = 0 in constructing Equations (4)-(7), which relate the mean and standard deviation of the likelihood in Equation

(1) to our unitless predictor values ∆C,∆T,∆W . By definition, percentage change in yield in response to no change in CTW

is 0% at baseline for every individual C3MP site. This implies that both mean and variance at baseline are 0 for all production10

groups, and we must construct the Persephone response functions to reflect this, independent of the estimated baseline yield at

each site:

µbaseline = 0

σ2
baseline = 0

(3)

Implementing this constraint for the mean is straightforward. Any functional form representation of µCTW that does

not include a constant parameter a0 will force µbaseline = 0% yield change precisely because ∆Tbaseline = ∆Wbaseline =15

∆Cbaseline = 0.

µCTW = a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 + a7∆T∆W + a8∆T∆C + a9∆W∆C

+ a10∆T∆W∆C + a11(∆T )2∆W + a12(∆T )2∆C + a13∆T (∆W )2 + a14∆T (∆C)2 + a15(∆W )2∆C

+ a16∆W (∆C)2 + a17(∆T )3 + a18(∆W )3 + a19(∆C)3

(4)

Constraining the variance to be 0 at baseline as in Equation (3) should be equally easy by simply not considering any

functional form that includes a constant parameter. However, this approach leads to numerical stability issues when estimating

parameters. Therefore, we estimate the variance using the following functional form:20

σ2
CTW =

(
b0 + b1∆T + b2(∆T )2 + b3∆W + b4(∆W )2 + b5∆C + b6(∆C)2 + b7∆T∆W + b8∆T∆C + b9∆W∆C

)2
(5)
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This results in the following functional form representation for the standard deviation:

σCTW = +
√
σ2
CTW

= |b0 + b1∆T + b2(∆T )2 + b3∆W + b4(∆W )2 + b5∆C + b6(∆C)2 + b7∆T∆W + b8∆T∆C + b9∆W∆C|
(6)

This functional form estimates parameters that may individually be negative but which together result in a non-negative

standard deviation for any CTW value being considered. At baseline, this functional form representation has standard deviation

σbaseline = |b0| as opposed to the required σbaseline = 0 in Equation (3). This is done for numerical reasons and is addressed5

with the prior for b0 ∼N(0,0.012). This constrains the value of b0 to be between -0.02% and 0.02% with 95.45% probability,

reflecting that b0 should be as close to 0 as possible without causing numerical solver issues. This results in σbaseline values

between 0% and 0.02% and therefore 0%≤∆Y emulated
baseline ≤ 0.02%, which we judge acceptable for incorporating into GCAM

as a multiplier. All other parameters have very broad priors:

b0 ∼N(0,0.012)

ai, bi ∼ Uniform(−300,300) ∀ai, bi, i 6= 0
(7)10

The functional form for µCTW is equivalent to estimating the coefficients of a third order Taylor polynomial, which

can approximate a wide variety of functions fairly well. Similarly, the functional form for σCTW is conceptually related to

estimating the coefficients of a second order Taylor polynomial. Because of the C3MP experimental design, emulating yield

changes throughout the 21st century using Equations (1)-(7) does not require extending beyond the range of mean growing

season CTW values used to train the Persephone V1.0 response functions. These functional forms are an evolution from15

C3MP’s hybrid polynomial (Ruane et al., 2014). An exploration of other functional forms to address potential overfitting is

included in Appendix A. Ruane et al. (2014) also reviews previous emulator forms across the literature, including discussion

of the potential to look at non-linear terms such as killing degree days used in Schlenker and Roberts (2009), for example.

From the model defined by Equations (1)-(7), we construct the three Persephone v1.0 response functions for each production

group:20

Mean response: ∆Y emulated
CTW = µCTW ; ∆Y emulated

baseline = µbaseline = 0%

High response: ∆Y emulated
CTW = µCTW + |σCTW |; ∆Y emulated

baseline ∈ (−0.02%,0.02%)with 95.45%probability

Low response: ∆Y emulated
CTW = µCTW − |σCTW |∆Y emulated

baseline ∈ (−0.02%,0.02%)with 95.45%probability

(8)

The default high and low responses are at one standard deviation of the production group yield responses (as opposed to two

or three) because we are interested in scenarios that capture a range of the simulated site responses, but not the most extreme

simulated site response. This does not affect how µ and σ are fit in Persephone v1.0, only how they are used. The Persephone

v1.0 code is written flexibly enough that a user more interested in capturing the most extreme simulated site response could25

certainly add a multiplicative factor (e.g. µ+2|σ|) when using µ and σ without having to spend the computational time refitting.
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3 Evaluation

We primarily present figures and analysis using the model and response functions defined by Equations (1)-(8) because we

found these functional forms to be the most broadly optimal of those considered. To investigate overfitting, we also examined

nine other possible functional form combinations of µCTW and σCTW for each production group, defined in Equations (A1)-

(A7). Details of the cross-validation experiments used as a method of functional form selection are in the Appendix. Briefly,5

because we are interested in the ability of any given response function to accurately predict yield changes in response to CTW

values not used for training, we perform leave-one (CTW test)-out cross-validation experiments for each production group.

The best performing functional form at the cross-validation experiments is then the selected functional form. This can be done

to find the most broadly optimal functional form (using the same functional form for all production groups, Figure A1) or to

find the best functional form for each production group (if a user wishes to vary the functional form for each production group,10

Table A10). This choice does not introduce additional fitting, or computational time. It is changed only by the calls to each

function in the Persephone R package by the user.

Here, we quantitatively evaluate the performance of the Persephone V1.0 response functions (Equation (8)) trained on the full

span of CTW values that the 99 tests represent for each production group (Section 3.1). We also present heuristic evaluations

of mean response function performance (Section 3.2).15

Files with the point estimate, as well as the standard deviation of the posterior distribution, for each coefficient in µ and σ for

all 10 functional form combinations for all production groups are available (archived at https://doi.org/10.5281/zenodo.1414423)

and as part of the Persephone v1.0 R package (https://github.com/JGCRI/persephone).

3.1 Quantitative

We categorize the performance of the Persephone V1.0 response functions trained on the full span of CTW values (mean,20

high, and low response, Equation (8)) for each production group based on comparing the 99 emulated yields output from the

response functions to the 99 corresponding values from the C3MP simulation data: the in sample measurement of error. These

are the actual response functions an end user would have and it is important to have a performance measure for them, although

this is not the performance measure used to select functional forms.

The categorization is based on the normalized root mean square error (NRMS) and the comparison for each response function25

is as follows:

– The 99 emulated yields returned by the mean response function are compared to the mean yield response across the

production group C3MP sites for each of the 99 sensitivity tests (what we call the simulated mean yields).

– The 99 emulated yields returned by the high response function are compared to the 84.135th percentile of yield responses

across C3MP sites for each of the 99 sensitivity tests (what we call the simulated high yields). This corresponds to30

matching C3MP site responses at the mean plus one standard deviation level for each of the 99 sensitivity tests when the

production group C3MP site responses were normally distributed for each sensitivity test.
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– The 99 emulated yields returned by the low response function are compared to the 15.865th percentile of yield responses

across C3MP sites for each of the 99 senstivity tests (what we call the simulated low yields). This corresponds to

matching C3MP site responses at the mean minus one standard deviation level for each of the 99 sensitivity tests when

the production group C3MP site responses were normally distributed for each sensitivity test.

As noted in Willmott (1984); Legates and McCabe (1999); Snyder et al. (2017), NRMS < 1 is one benchmark for adequate5

model performance, NRMS< 0.5 is a benchmark for good model performance, and NRMS = RMSE = 0 is perfect model

performance. We further subdivide these categories and define excellent in-sample performance as NRMS≤ 0.25 for all three

response functions; good performance to be 0.25<NRMS ≤ 0.5 for at least one response function and NRMS≤ 0.25 for

at least one response function; adequate performance to be all three response functions having NRMS < 1 but at least one

response function with 0.5<NRMS < 1; and finally poor performance occurs when any one of the three response functions10

has NRMS ≥ 1.

The mean response function performs excellently for all of our production groups, although the performance of the high

and low response functions differs. These measures are presented in Table 1 for the response functions defined using cubic

µCTW (Equation (4)) and quadratic σCTW (Equation (6)) for all production groups. The excellent performance of the mean

response function holds across all functional form combinations explored (Table A1-A9). In the event that a user is only15

concerned with a mean response scenario, a shared functional form for all production groups is acceptable. A user interested

in the high and low response functions may wish to use the production group specific functional form combinations listed

in Table A10, which includes the in-sample performance metric for the optimal functional form for each production group.

The majority of production groups (17/25) feature excellent in-sample performance while the remaining 8 production groups

feature good overall performance. For more detail than the summary tables presented here, files of results for the leave-one-out20

cross validation exercises for all functional form combinations for all production groups are available in the paper analysis

archive.

We also present a dashboard of quantitative evaluation plots for four of our 25 production groups in Figures 5 and 4 to

provide a visual interpretation of the four in-sample performance categories. Each dashboard is organized to address the

following questions:25

– Top Left: For a given group, do the three representative responses span the range of sites? In this plot, individual site

yield changes for each test (blue dots), are overlaid with the emulated mean, high, and low response functions evaluated

for each test (black dots). Each horizontal line of points represents one of the 99 CTW sensitivity tests.

– Top Right: For a given group, how does the emulated mean for each of the 99 tests compare to the simulated mean for

each test?30

– Bottom Left: For a given group, how does the emulated high response for each of the 99 tests compare to the simulated

high yield for each test?
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Table 1. Persephone v1.0 response function performance for all production groups, for cubic µCTW (Equation (4)), quadratic σCTW

(Equation (6))

Production group1 Num. C3MP sites NRMS mean2 NRMS high NRMS low In-sample Performance

c4 IRR mid 47 0.010 0.148 0.112 Excellent

Maize IRR mid 45 0.010 0.164 0.116 Excellent

Rice RFD mid 4 0.044 0.150 0.195 Excellent

Rice RFD tropic 41 0.020 0.199 0.146 Excellent

Soybeans IRR mid 32 0.017 0.230 0.176 Excellent

Soybeans IRR tropic 2 0.039 0.150 0.170 Excellent

Soybeans RFD mid 35 0.016 0.151 0.145 Excellent

Soybeans RFD tropic 9 0.043 0.198 0.160 Excellent

c3 RFD mid 165 0.010 0.316 0.270 Good

c4 RFD mid 74 0.016 0.319 0.241 Good

c4 RFD tropic 25 0.019 0.365 0.177 Good

Maize IRR tropic 7 0.012 0.345 0.118 Good

Maize RFD mid 66 0.018 0.293 0.230 Good

Maize RFD tropic 20 0.022 0.407 0.170 Good

Rice IRR tropic 53 0.088 0.339 0.261 Good

Wheat IRR mid 61 0.024 0.372 0.380 Good

Wheat IRR tropic 8 0.076 0.382 0.329 Good

Wheat RFD mid 103 0.021 0.302 0.280 Good

Wheat RFD tropic 4 0.093 0.364 0.311 Good

c3 RFD tropic 63 0.024 0.757 0.546 Adequate

c4 IRR tropic 14 0.012 0.998 0.214 Adequate

Rice IRR mid 6 0.029 0.656 0.427 Adequate

c3 IRR mid 103 0.012 1.038 0.701 Poor

c3 IRR tropic 67 0.072 1.662 0.790 Poor

Sugarcane RFD tropic 12 0.047 1.382 1.162 Poor

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70◦S, 30- 70◦N), “tropic" = 30◦S to 30◦N. 2. Note that the mean response function

performs “excellent" for all production groups. 16



– Bottom Right: For a given group, how does the emulated low response for each of the 99 tests compare to the simulated

low yield for each test?

Figure 4 displays one performance dashboard from each in-sample performance category for the broadly optimal, shared

functional form cubic µCTW and quadratic σCTW (Equations (4)-(6)), to aid interpretation of Table 1 (and Tables A1-A9).

As indicated in Table A10, any production group can be fit to result in response functions with an in-sample performance of5

good or excellent, if a user is willing to vary the functional forms used for each production group. Figure 5, left, presents the

dashboard for one of the production groups that featured poor performance when the common functional form cubic µCTW

and quadratic σCTW (Equations (4)-(6)) was used for all production groups: rainfed sugarcane in the extended tropics. Figure

5, right, presents the dashboard when the response functions are based on the production group specific functional forms

selected by cross-validation (Table A10): C3MP µCTW (Equation (A2)) and cubic σCTW (Equation (A7)). The high and10

low response functions perform better in the latter case, though it is at the cost of a slightly worse (but still excellent) mean

response function performance. Examination of the sugarcane entry in Tables 1, A1-A9 indicates that a cubic description of

σCTW (Equation (A7)) leads to better high and low response function performance than a quadratic representation (Equation

(A6)), regardless of functional form used for µCTW (Equations (A1)-(A5)). In other words, the uncertainty across C3MP site

responses for each CTW test requires a more detailed Taylor series approximation to describe. This is also generally the case15

for the other production groups that rated adequate or poor in-sample performance in Table 1: sometimes the C3MP individual

site yield responses are distributed in such a way for each CTW test that a more flexible fit for σCTW is necessary. Perhaps

unsurprisingly, this usually occurs for either very broad production groups (such as those based on C3-photosynthesis), or

for production groups with very few C3MP site outputs (irrigated rice in the mid-latitudes) rather than due to a discernible

biophysical trend or requirement.20
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Figure 4. Top left: Rainfed soybeans in the mid-latitudes, an example of the excellent in-sample performance category. Top right: Irrigated

wheat in the mid-latitudes, an example of the good in-sample performance category. Bottom left: Irrigated rice in the mid-latitudes, an

example of the adequate in-sample performance category. Bottom right: Rainfed sugarcane in the extended tropics, an example of the poor

in-sample performance category (also seen in Figure 5, left). Vertical error bars indicate 95% credible interval for each of mean, high, low

emulated responses. 18



Figure 5. Rainfed sugarcane in the extended tropics. Left: The performance dashboard for the most broadly optimal functional form

representations (i.e. if we want to use the same functional form combination for all production groups), and for which the high and low

response functions poorly reproduce the simulated high and low yields for each of the 99 tests. Right: The performance dashboard for the

production group specific functional forms (i.e. if we want the functional form to vary by production group). Vertical error bars indicate 95%

credible interval for each of mean, high, low emulated responses.

3.1.1 Production groups with small sample size

It is worth noting that 7 of the 25 production groups considered here are characterized by fewer than 10 C3MP sites (Table

1). For all of these groups, it is possible to fit high and low response functions that capture the spread of the group’s C3MP

site responses well (Figures 6 and 7). For many of these groups, the spread in response is relatively small. The Persephone

framework does not fail, rather the data upon which the V1.0 response functions are trained is imperfect and would be improved5

by greater density in spatial sampling. Had the spatial disaggregation used in forming production groups resulted in small

sample size groups with more significant spread in site response, the Persephone framework is unlikely to represent the full

spread of the sample. As this is not the case, it is left to an eventual user to judge whether such responses serve their purpose.

Figure 6 highlights this fact for the production group with smallest sample size, irrigated soybeans in the Extended tropics.

The spread of C3MP sites as well as the performance dashboards for the shared optimal functional form (as from Table 1)10

and for the group-specific optimal functional form (Table A10). While the shared optimal functional form (middle panel)
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overestimates the small spread between the two C3MP sites, the group-specific optimal functional form (right panel) captures

the spread well.

Figure 6. Left:The spread of yield responses for the two C3MP sites making forming the irrigated soybeans in the extended tropics production

group. Middle: The performance dashboard of the shared optimal functional from (Table 1) for this production group. Right: The performance

dashboard of the group-specific optimal functional form (Table A10) for this production group.

Figure 7 repeats this analysis for the next three smallest sample size groups: rainfed wheat in the extended tropics (Top),

rainfed rice in the mid-latitudes (Middle), and irrigated ice in the mid-latitudes (Bottom). In all three cases the group-specific

optimal functional form represents the spread of the data well. This is also the case for the two remaining production groups5

with fewer than 10 C3MP training sites: irrigated wheat in the extended tropics and rainfed soybeans in the extended tropics

(not shown).
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Figure 7. The same arrangement of figures as in Figure 6, for the rainfed wheat in the extended tropics (Top row), rainfed rice in the mid-

latitudes (Second row), irrigated rice in the mid-latitudes (Third row), and irrigated maize in the extended tropics (bottom row) production

groups.
21



3.2 Qualitative

One motivation for the 25 production groups based on [maize, wheat, rice, soybeans, C3, C4 (minus sugarcane), and sugarcane]

X [irrigated or rainfed] X [extended tropics or mid-latitudes] is to evaluate emulator performance beyond the quantitative. Given

that some GCAM users will only be interested in the mean response functions, it is particularly important to validate that these

functions capture key biological features of each crop, beyond the quantitative agreement for the 99 C3MP tests measured by5

the in-sample performance metric in Section 3.1. In particular, these are features motivated by biophysical intuition and present

in most of the C3MP sites. Therefore we verify that these features are retained in the emulator.

We use impact response surfaces to visualize these features, examples of which are given in Figures 8 and 9. The three-

dimensional CTW space is most easily examined by looking at cross sections where one of the CTW dimensions is kept

constant while the other two vary. The brown to blue color bar in each of these figures depicts contours for the value of the10

mean yield response (µCTW ) while the overlaid labeled black lines depict contours representing uncertainty (σCTW , used to

create the high and low response functions).

We first identify three important relationships we would expect a successful emulation of C3MP mean responses (brown to

blue color bar) to obey:

– C3 crops respond strongly and positively to increases in global CO2 concentrations; C4 crops have noticeably less benefit15

from CO2 increases.

– Agriculture in the tropics tends to response more negatively/less positively to changes in temperature than agriculture in

the higher latitudes as the extended tropics correspond to a higher baseline temperature.

– Irrigated crops have almost no response to changes in precipitation, whereas rainfed crops do.

These benchmarks are met: Figure 8 features impact response surfaces that highlight the C3-photosynthesis and C4-photosynthesis20

difference, the rainfed and irrigated difference, and the latitude difference. The full collection of impact response surfaces for

all production groups are included in the paper analysis archive. These benchmarks for the mean response are met in those

as well. When there are exceptions, we have investigated to find that the mean response function is faithfully representing

the underlying C3MP data and that it is the sampling of C3MP sites making up the production group responsible for the

discrepancy. Note that, in Figure 8, uncertainty is greatest in the CO2-precipitation and CO2-temperature slices, and increases25

with larger changes from the baseline condition. This follows with current practices for the process-based crop models forming

the C3MP data set: CO2 is clearly related to yields but the details of this relationship are highly uncertain and implemented

differently across process-based, site specific crop models.
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Figure 8. Select impact response surfaces - a collection of 2-parameter slices of our 3-parameter space (not a visualization of the full space).

The color represents the yield change for a given local CTW perturbation as a % of baseline yields (1980-2009 planting year average, position

shown as red square). Labeled black contours are uncertainty across the submitted site specific crop models.

The pattern of yield response to CTW changes appears to be more qualitatively consistent across C3MP sites than the

quantitative differences across sites (for example, Figure 3). Figure 9 displays this pattern for one cross-section of CTW space

for 12 of 66 rainfed maize sites in the mid-latitudes, and for the emulated mean response. While the actual numerical values

of the response surfaces differ at each site, the pattern of response seen at most sites (increasing yield with high CO2 and low

temperature changes in the upper left, decreasing yields elsewhere) is consistent and shared by the emulated mean response.5

The high and low response functions are able to capture much of the quantitative spread in site responses, though, as noted in

Section 2.3, not the most extreme sites. We specifically included the sites at Ames, IA, Naousa, Greece, and Lublin Poland

because they feature the most qualitatively different patterns. The pattern at the 54 sites not displayed closely resemble the

other 9 sites in Figure 9. This pattern is seen in the broader impact response surfaces literature (Ruane et al., 2014; Pirttioja

et al., 2015; Fronzek et al., 2018) as well, further improving confidence in the emulated mean response. All individual site10

impact response surfaces are included in the paper analysis archive.
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Figure 9. Yield responses to changes in temperature and precipitation with fixed [CO2] = 360 ppm for 12 (of 66 total) rainfed maize sites

located in the mid-latitudes, as well as the emulated mean response for use in GCAM.

4 Applications

Figure 10 demonstrates the basic procedure followed in using Persephone within GCAM (using the average of 2071-2100

HadGEM2-ES RCP 8.5 projections as an example). The first requirement is a global gridded file of local precipitation and

local temperature drawn from climate projections, along with a global CO2 concentration level. Temperature and precipitation
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changes are calculated only for the relevant local growing season months in comparison to a 1980-2009 baseline value. The

different maps of local temperature and precipitation changes on the left side of Figure 10 reflect that there are differences

in the dates of the local growing season for rainfed maize and wheat. Note that this includes a global CO2 concentration of

812 ppm, compared to the baseline level of 360 ppm. The CO2 change alone leads to increased yields for rainfed wheat mid-

latitude even in the absence of changes in temperature and precipitation. Indeed, the higher CO2 elevates yields (compared to5

the baseline) across all but the most extreme hot and dry conditions. Conversely, the yield response for rainfed tropical maize

is barely helped by elevated CO2.

In a typical RCP 8.5 scenario, there are sometimes a few grid cells with local precipitation changes that are out of sample.

We convert these out of sample points to the extreme of our sample so that we avoid extrapolation (eg a 74% local increase

in precipitation gets the response of 50% increase in precipitation - the maximum response to increased precipitation). Note10

that many of these large percentage changes in precipitation are actually the symptoms of ESM biases or small precipitation

changes in arid regions that are unlikely to have agriculture. Holding to 50% precipitation change likely improves the fidelity

of these estimates (Ruane et al., 2014).

The second step in using Persephone for GCAM is that CTW changes for each grid cell with climate data are passed into

the Persephone V1.0 response functions (depending on species/management/latitude zone) to create the desired global gridded15

map of yield changes that would represent the likely agricultural response. The abrupt change in behavior across 30◦N and 30◦S

(particularly noticeable for wheat in Southern Asia) are due to our division of training data into mid-latitudes and extended

tropics production groups. Those abrupt changes will soften as these impacts are aggregated to the larger GCAM land region

level before being applied as multipliers in the experiments outlined in Figure 1.

Figure 11 presents the rainfed maize impact response surfaces and yield change maps for the bias-corrected ISIMIP entry20

of HadGEM2-ES RCP 8.5 (Warszawski et al., 2014) 2071-2100 average CTW changes (displayed in Figure 10) for the low

(left), mean (center) and high (right) response functions. The high and low response surfaces result from adding or subtracting

the gray uncertainty contours to the brown-blue mean yield response contours in the mean response surfaces (Equation (8)).

Note that under the high response function, there are a few regions that experience increased yields due to large increases in

precipitation offsetting temperature increases. The differences in these three response functions will allow the boundaries of25

crop response uncertainty to be run through GCAM, resulting in a spread of socioeconomic and environmental impacts in

response to a particular future climate.
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Figure 10. Tracing the path from gridded local growing season temperature and precipitation changes and global CO2 = 812 ppm

concentration under HadGEM2-ES RCP 8.5 for 2071-2100 compared to 1980-2009, through the relevant yield response functions

(represented here as impact response surfaces) to generate mean yield change maps for Rainfed maize (top) and rainfed wheat (bottom).

The open red square is placed at no change in temperature and precipitation for each impact response surface. For plotting clarity, we use a

harvested area mask of grid cell harvested area > 10 hectares in the SPAM 2005 data set (You et al., 2014)
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Figure 11. Low, mean, and high response surfaces for the mid-latitudes (top row) and extended tropics (middle row) for rainfed maize, as

well as the resulting maps of yield changes under the same HadGEM2-ES RCP 8.5 2071-2100 CTW changes as Figure 10.

4.1 Comparison to other crop modeling results

We further examine the Persephone V1.0 response functions driven by HadGEM2-ES RCP 8.5 CTW changes by comparing

our results with previous AgMIP global gridded crop model (GGCM) yield change data released under ISIMIP (Rosenzweig

et al., 2014; Warszawski et al., 2014). In order to compare the best possible emulation of the C3MP data set to the range of

AgMIP/ISIMIP GGCM results, the production group-specific optimal functional forms provided in Table A10 are used here.5

To have the most direct comparison possible, the ISIMIP GGCM yield time series were converted from actual yield values to

percent changes from 1980-2009 baseline yields. It is important to note that the GGCMs were driven by historical climate data

from 1980-2004. 2005-2009 yield data for each GGCM was driven by HadGEM2-ES RCP 8.5, given that this was considered a

“future" simulation according to the GCM projections from 2005 forward. The results from the GGCMs which include model-

specific [CO2] effects were used. Both Persephone V1.0 and the ISIMIP GGCM yield change data are compared only on grid10

cells with harvested area > 10 hectares in the SPAM 2005 data set (You et al., 2014).
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As the ISIMIP GGCMs did not directly participate in the C3MP exercise, no version of these GGCMs was used in the

training data that produced the Persephone V1.0 response functions, and there is no a priori reason to expect the Persephone

V1.0 range of yield changes to match the ISIMIP range. The site-specific simulations using various versions of DSSAT

submitted to the C3MP exercise feature different configurations and model versions than the ISIMIP GGCM pDSSAT (a

global gridded implementation of DSSAT). Given this fact, and that the C3MP archive includes results from non-DSSAT site-5

specific crop models, there is again no expectation of replicating pDSSAT results even though the fundamental crop responses

are similar. Finally, it is also worth noting is that the 1980-2009 historical/RCP8.5 HadGEM2-ES simulation is not the same as

the historical, site specific and AgMERRA data used by modelers submitting to C3MP. This combination of different responses

and different baselines across C3MP and the ISIMIP GGCMs means there could be considerable differences in interannual

variability and mean yields, which may be a reason that the Persephone V1.0 response functions may predict different yield10

changes from the ISIMIP range for some crops.

However, it is still worth evaluating our results against the GGCM data. Figure 12 compares the range of aggregated (via

MIRCA2000 harvested area Portmann et al., 2010), time averaged 2071-2100 yield changes from Persephone V1.0 response

functions to the range of ISIMIP yield changes at the global level (top), in the extended tropics latitude band (bottom left) and

in the mid-latitudes band (bottom right) for both irrigated and rainfed maize, rice, soybeans, and wheat. For context, in the time15

since the AgMIP/ISIMIP results were published, the IMAGE-LEITAP model has been largely abandoned. Further, IMAGE-

LEITAP, LPJ-GUESS, and LPJmL feature relatively unlimited nutrient constraints, resulting in frequent yield increases given

an unconstrained CO2 response. For many of the production groups, the range of Persephone V1.0 yield changes lies at

least partially within the ISIMIP range, suggesting that the response functions for those production groups result in yield

changes consistent with ISIMIP. Those production groups that differ substantially from the ISIMIP yield range are due to20

underlying differences in the C3MP data set versus those produced from the ISIMIP GGCMs. That is, while the Persephone

framework emulates the C3MP data well, response functions based on a different data set may behave more consistently with

the ISIMIP GGCMs given differences between the model selection and local farm system configurations of the C3MP and

GGCM ensembles.

Of the production groups with yield ranges much smaller than the range of ISIMIP yield changes, several (irrigated and25

rainfed soybeans in the extended tropics and irrigated and rainfed rice in the mid-latitudes) are small sample size groups (Table

1, Section 3.1.1). Future coordinated sensitivity studies of site-specific crop models would ideally include more participation

in a broader range of regions, but this is a current limitation of the Persephone V1.0 response functions. This adds additional

support to the call for a designed network of site-based crop models, intended to cover all regions and systems, to participate

in coordinated sensitivity studies raised in Ruane et al. (2017).30
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Figure 12. Aggregated (via MIRCA2000 harvested area (Portmann et al., 2010)), time averaged 2071-2100 yield changes for Persephone

V1.0 response functions and the ISIMIP GGCM range of results for multiple production groups. Top: Comparison of global average yield

changes. Bottom left: Comparison of average yield changes in the extended latitude band. Bottom right: Comparison of average yield changes

in the mid-latitude band.

The Persephone V1.0 range of yield changes for irrigated maize also noticeably departs from the ISIMIP range of yield

changes in the mid-latitudes (Figure 12, bottom right), which in turn drives the disagreement at the global level (Figure 12,

top). This is not due to an error in emulation or due to small sample sizes (Table 1, Figure 7, bottom), but rather due to a

fundamental disagreement in the predicted maize response among the site-specific crop models of C3MP and the ISIMIP
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GGCMs. It is worth noting that yield changes predicted by Persephone V1.0 response functions are consistent with work

examining maize site data. Namely, a 2014 site-specific model comparison study by the AgMIP-Maize team found irrigated

and rainfed maize yield changes in response to a local temperature +6◦C of similar values to the Persephone V1.0 range of

responses (see Figure 3 of Bassu et al., 2014). The HadGEM2-ES RCP 8.5 local growing season temperature 2071-2100 change

map for irrigated maize used to drive the Persephone V1.0 response functions is shown in Figure 13 and it is worth noting that5

many major producers of maize see temperature increases of at least +6◦C. Further, recent analysis of FACE experiments

and crop model results suggest that maize primarily benefits from high [CO2] during drought, indicating that models of the

effects of [CO2] fertilization on irrigated maize (and rainfed maize during non-drought periods) may be overly beneficial

(Durand et al., 2018). This suggests that the more pessimistic irrigated maize yield changes predicted by the C3MP sites and

therefore Persephone V1.0 are more consistent with site-specific crop models and FACE experiments than they are with the10

ISIMIP GGCM range of results. While it would be ideal to have GGCM results from more GGCMs and more recent model

versions for comparison, such results are not yet public. This discrepancy between the results of site-specific crop models and

FACE experiments versus GGGMs supports the call in Leakey et al. (2012) for further investigation to understand regional and

system-specific variation in [CO2] response.

Figure 13. Gridded local growing season temperature and precipitation changes for irrigated maize under HadGEM2-ES RCP 8.5 for 2071-

2100 compared to 1980-2009, global CO2 = 812 ppm concentration.

Figure 14 includes a spatial comparison of the Persephone V1.0 low, mean, and high yield changes for irrigated maize15

(analogous to Figure 11) with the range of ISIMIP responses in each grid cell. Specifically, maps of the minimum, median,

and maximum irrigated maize yield change across the ISIMIP GGCMs are plotted in each grid cell; no individual GGCM

would produce any of these maps. As noted above, the Persephone range of yield changes in each grid cell is generally more

pessimistic than the ISIMIP range, but there does appear to be spatial consistency in terms of response strength in several

regions between the Persephone V1.0 range and the ISIMIP range. C3MP, and therefore the Persephone V1.0 projections,20

capture a strong temperature dependence and a lesser response to precipitation (particularly for irrigated crops). Because
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warmer temperatures are nearly universal in the HadGEM2-ES RCP 8.5 projection (Figure 13), there is limited irrigated

crop response to precipitation changes, and [CO2] response for maize is small among the mechanistic models that are more

prominent in C3MP than in the GGCMs, there is nothing but yield decreases in the Persephone projection. In the ISIMIP range

of GGCMs, there are models that are more positively responsive to precipitation and [CO2] in the C4-photosynthesis maize

crop, so wetter conditions and/or higher [CO2] are much more beneficial in the ISIMIP maximum map (Rosenzweig et al.,5

2014).

Figure 14. Top: grid cell specific minimum (Left), median (Middle), and maximum (Right) yield change across the ISIMIP GGCMs for

irrigated maize. Bottom: the low, mean, and high Persephone V1.0 yield changes in each grid cell for irrigated maize.

Figure 15 presents the same analysis for a production group that Persephone V1.0 matches the ISIMIP global average range

well: rainfed wheat. For reference, the HadGEM2-ES RCP 8.5 local growing season temperature and precipitation projections

for rainfed wheat are included in Figure 10, bottom. Again, there is noticeable spatial consistency in response strength between

the Persephone V1.0 range and the ISIMIP range. For wheat, the C3MP models and therefore the Persephone V1.0 projections10

are in closer agreement with the ISIMIP GGCMs on C3-photosynthesis [CO2] response and water limitations in many regions.

Additionally, the harvested area mask used for rainfed wheat include many more regions that are limited by cool baseline

temperatures and thus stand to gain from warmer conditions than the regions considered for irrigated maize. Put together, these

observations indicate that both Persephone V1.0 and ISIMIP are capable of the large gains in the optimistic maximum model
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response scenario. Together with Figure 14, this suggests that the Persephone V1.0 response functions are spatially consistent

with the ISIMIP range of yield changes even when the global average ranges may disagree.

Figure 15. Top: grid cell specific minimum (Left), median (Middle), and maximum (Right) yield change across the ISIMIP GGCMs for

rainfed wheat. Bottom: the low, mean, and high Persephone V1.0 yield changes in each grid cell for rainfed wheat.

5 Conclusions and discussion

We have presented the Persephone emulator framework that results in three V1.0 response functions to emulate a range of crop

yield changes in response to future CTW changes for 25 production groups. The response functions are inexpensive to evaluate,5

open doors to new feedback loops between society and the natural environment (Figure 1), and represent multiple models and

farming systems. The Persephone V1.0 response functions agree well with the underlying C3MP training data and are rapid to

evaluate, with in-sample performance metrics being particularly strong for the mean response in each production group. The

rapid evaluation time of the response functions, relative to a global gridded crop model, is extremely imporant given that models

such as GCAM are designed to be run rapidly to trace the impacts of future scenarios (at most hours per scenario). The GCAM10

model development team prioritizes staying on this order of computation time, even for the planned experiments outlined in

Section 2.1, because it results in a nimble, flexible model that allows multiple iterations for probability, uncertainty, and process

understanding. In addition to the good quantitative agreement of our response functions with all C3MP crop-irrigation-latitude

ensembles, we further evaluated our mean response function heuristically, finding that the mean responds to changes in CTW
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as one would expect for comparisons across C3/C4 photosynthesis mechanisms, rainfed versus irrigated management, and

latitude zones. Finally, the range of V1.0 yield changes were evaluated against a variety of past global gridded crop modeling,

site specific crop modeling, and/or empirical studies for many of the production groups and found to be consistent.

As a result of the culling methods outlined in Section 2.2, 575 C3MP sites are used for training the Persephone functions.

These sites account for many major crops where they are typically grown, as well as a wider variety of crops than has been5

examined in past studies. One key observation is that, if one were only concerned with capturing the mean response, any of the

functional forms examined for µCTW (Equations (A1) - (A5)) in the Appendix would be excellent, with all five forms featuring

in-sample NRMS < 0.2 for all production groups (Table 1). The challenge is in defining a pair of response functions, µ and

σ, to characterize a range of uncertainty across C3MP site responses to each CTW change. It should also be noted that such a

range of uncertainty will capture only a portion of the uncertainty in response in national and multi-national GCAM units. The10

Persephone framework may be used with future more spatially dense data sets to characterize this uncertainty more fully.

The modeling choices made in this study introduce a variety of caveats. Foremost, it is likely that future versions of

Persephone response functions, trained on different data sets, will almost certainly result in different response functions.

Yet this work has shown that the Persephone framework is well-suited to this kind of problem, and that the V1.0 response

functions developed from the C3MP data emulate that data well. They also perform reasonably well on heuristic metrics and in15

comparison to other crop modeling efforts. Another important caveat is that GCAM operates on five year timesteps. Therefore,

the response functions in this work only characterize yield responses to long-term, local Earth system state changes. Capturing

interannual variability and responses to abrupt weather shocks is an area that may form future phases of this research. We note

that this is a more difficult task, given that year-to-year variability depends on many factors that tend to average out over longer

terms (e.g. intra-seasonal variability such as heat waves or dry spells). Additionally, this work did not account for differing20

nitrogen application rates across different C3MP sites. Nitrogen data is included in the C3MP archive, but the sites are heavily

biased to high nitrogen application (this is likely a function of the most commonly simulated sites also being systems with

higher input investment). There are also a number of sites with no recorded nitrogen information, which were kept for this

study. With so few sites featuring low nitrogen application rates, we considered examining the nitrogen dimension of yield

responses to be its own intellectual challenge reserved for future work, the methods of which will likely be determined by the25

desired use. Similarly, exploration of forming production groups based on different crop groups, different latitudinal zones,

Koppen-Geiger or temperature zones would require trivial changes, limited only by the number of sites available to sort into

different production groups. Finally, it is worth noting that any emulator is only as good as the data upon which it is trained. If

crop modeling studies that provide data to an emulator do not account for real-world behaviors, the emulator will not capture

such behaviors either.30

For clear analysis in this paper, we have presented results for the functional form combination that performed best at the

cross-validation experiments described in the Appendix for the most production groups. Therefore one remedy to the presence

of ensembles with poorer emulator performance on in-sample metrics (Table 1) would be to use different functional forms

for each production group to create a more globally optimal set of response functions. These are laid out for each production

group in Table A10, along with the in-sample performance of the group-specific optimal functional forms. Some analysis with35
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these production group-specific optimal models is included in Section 3.1.1 and Section 4.1. The data processing, emulator

fitting, and analysis techniques presented in this paper are agnostic of the actual functional forms used for µCTW and σCTW

as long as they are linear-in-parameters. Varying functional form by production group will only require different inputs to the

Persephone R functions, not refitting of any parameters.

The most immediate future work involving Persephone v1.0 will be to fully implement the feedback loop sketched in Figure5

1. Specifically, using GCAM to examine the broad impacts of a sustained drought, hypothetical or emergent from the feedback

loop sketched in Figure 1, would be an excellent application of this yield change emulator. Once the illustrated links have been

implemented and full runs of the loop have been timed, future development may take place. In addition to the exploration of the

nitrogen dimension of yield response and allowing response functional form to differ by production group, Persephone version

2 may incorporate other predictors as data is available, explore more dynamic feature selection algorithms for functional form10

selection for µCTW and σCTW such as L1-regularization (which favors sparse models), and/or be trained with data sets that

may be released in the future. Which of these is explored next will depend on the outcomes of the initial full feedback loop

studies with GCAM. This study represents the first vital, necessary step in better identifying a pathway in which society can

develop with balanced consideration of the natural environment and managed environments like agriculture through connecting

Persephone and GCAM.15

Code and data availability. Software implementing this technique is available as an R package released under the GNU General Public

License. Full source can be found in the project’s GitHub repository (https://github.com/JGCRI/persephone and https://doi.org/10.5281/zenodo.1415487).

Release version 1.0.0 of the package was used for all of the work in this paper.

The data and analysis code for the results presented in this paper are archived at https://doi.org/10.5281/zenodo.1414423.

Appendix A: Model selection and performance20

We fit the likelihood presented in Equation (1) with five different functional forms for µCTW (Equations (A1) - (A5)) and two

different functional forms for σCTW (Equations (A6) and (A7)), resulting in data from a total of 10 emulator models (each

with different likelihoods based on µCTW ,σCTW ) to compare to the C3MP data set.

The five functional forms for µ were selected intentionally. The first (Equation (A1)) is a second order Taylor polynomial

approximation of mean yield response. Equation (A2) is the functional form for mean response used in Ruane et al. (2014),25

differing from the second order Taylor polynomial by only one third-order CTW interaction term, a10. Equations (A3) and (A4)

continue to build up from the second order Taylor polynomial, examining the impacts of adding third order CTW interaction

terms and the impacts of adding pure third order CTW terms respectively. Finally, Equation (A5) is the full third order Taylor
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polynomial, a flexible approximation for many complicated functions. The two functional forms for σ (Equations (A6) and

(A7)) are simply the second and third order Taylor polynomial approximations of response spread across C3MP sites.

quadratic: µCTW = a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 + a7∆T∆W + a8∆T∆C + a9∆W∆C

(A1)

C3MP: µCTW = a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 + a7∆T∆W + a8∆T∆C + a9∆W∆C

+ a10∆T∆W∆C

(A2)

cross: µCTW = a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 + a7∆T∆W + a8∆T∆C + a9∆W∆C

+ a10∆T∆W∆C

+ a11(∆T )2∆W + a12(∆T )2∆C + a13∆T (∆W )2 + a14∆T (∆C)2 + a15(∆W )2∆C + a16∆W (∆C)2

(A3)5

pure: µCTW = a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 + a7∆T∆W + a8∆T∆C + a9∆W∆C

+ a10(∆T )3 + a11(∆W )3 + a12(∆C)3

(A4)

cubic: µCTW = a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 + a7∆T∆W + a8∆T∆C + a9∆W∆C

+ a10∆T∆W∆C

+ a11(∆T )2∆W + a12(∆T )2∆C + a13∆T (∆W )2 + a14∆T (∆C)2 + a15(∆W )2∆C + a16∆W (∆C)2

+ a17(∆T )3 + a18(∆W )3 + a19(∆C)3

(A5)

quadratic: σCTW = |b0 + b1∆T + b2(∆T )2 + b3∆W + b4(∆W )2 + b5∆C + b6(∆C)2

+ b7∆T∆W + b8∆T∆C + b9∆W∆C|
(A6)
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cubic: σCTW = |b0 + b1∆T + b2(∆T )2 + b3∆W + b4(∆W )2 + b5∆C + b6(∆C)2

+ b7∆T∆W + b8∆T∆C + b9∆W∆C + b10∆T∆W∆C

+ b11(∆T )2∆W + b12(∆T )2∆C + b13∆T (∆W )2 + b14∆T (∆C)2

+ b15(∆W )2∆C + b16∆W (∆C)2 + b17(∆T )3 + b18(∆W )3 + b19(∆C)3|

(A7)

We selected the model presented in the paper from the 10 combinations above based on leave-one (CTW test)-out cross-

validation experiments to estimate out-of-sample prediction error for each production group. We do also include the in-sample

performance metric defined in Section 3.1 for a more complete picture of model performance for all 10 functional form

combinations for all 25 production groups (Tables A1-A9).5

First, to test each model’s validity and robustness at predicting yield changes for CTW values not included in the training

data for each group, we ran leave-one-out cross-validation experiments (Gelman et al., 2014) to analyze the performance of

each model for each production group. For each group separately, one CTW test data was withheld and the model was fit

on the remaining 98 CTW tests. Then the mean, high, and low response functions resulting from the model were evaluated

on the C3MP site data for the withheld test. This process was repeated withholding each CTW test, and the results were10

averaged resulting in an RMSE measure of performance for each of the mean, high, and low response functions. Leave-on-out

cross validation used in this way answers the question: For a particular production group and model, on average, how do the

emulated [mean, high, low] yield changes compare against the C3MP [mean, high, low] yield changes for CTW values not in

the training set?

The Latin Hypercube design of the C3MP sensitivity tests lends confidence to this leave-one-out exercise because the cross-15

validation has covered the full space of CTW combinations. The results are summarized in Figure A1: each row represents

the average leave-one-out cross-validation RMSE measures for each functional form across all production groups for the high,

low, or mean response function, and then the average across all three (total, bottom row Figure A1). We find that cubic µCTW ,

quadratic σCTW performs the best at this cross validation experiment for the highest number of ensembles across the three

response functions we defined in Equation (8) (that is, the high, low, and mean response functions). We repeat these calculations20

for each production group separately (rather than averaging across production groups) to determine the group-specific optimal

functional form, listed in Table A10 for each group.

Because cubic µCTW , quadratic σCTW performs the best at out-of-sample error measurements for the highest number

of ensembles across mean, low, and high response functions, and is quite good (though not the best) at in-sample error

measurements (Table 1), this is the form used throughtout the body of the paper as the most broadly optimal functional form25

combination. We particularly value performance on the cross-validation (out-of-sample error) experiments because most CTW

changes that may arise in application are likely to differ from the 99 C3MP tests.

We also repeat the in-sample measurement of error presented in Section 3.1 for all functional form combinations. These

results are summarized in Tables A1 to A9, and we find that, purely based on the in-sample measurements, cubic µCTW ,

cubic σCTW (Table A9) is the best functional form for the most production groups. Specifically, it only performs poorly for30

36



one crop, rainfed wheat in the mid-latitudes. However, it is very poor for that important ensemble. The in-sample performance

information from these tables is included in Table A10 for each production-group specific optimal functional form combination.

Figure A1. Comparison of leave-one-out cross-validation average RMSE measures for each functional form across all ensembles. Each

functional form is labeled as µCTW , σCTW . Note the broken scales to capture the performance of quadratic µCTW , cubic sigmaCTW .
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Table A1. Persephone v1.0 response function performance for all production groups, for quadratic µCTW (Equation (A1)), quadratic σCTW

(Equation (A6))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.043 0.445 0.279 Good

c3 IRR tropic 0.074 0.270 0.188 Good

c3 RFD mid 0.044 0.301 0.280 Good

c3 RFD tropic 0.046 0.178 0.170 Excellent

c4 IRR mid 0.028 0.137 0.125 Excellent

c4 IRR tropic 0.041 1.662 0.440 Poor

c4 RFD mid 0.049 0.295 0.258 Good

c4 RFD tropic 0.094 0.280 0.209 Good

Maize IRR mid 0.028 0.150 0.130 Excellent

Maize IRR tropic 0.102 0.755 0.331 Adequate

Maize RFD mid 0.045 0.266 0.251 Good

Maize RFD tropic 0.108 0.318 0.188 Good

Rice IRR mid 0.069 0.259 0.181 Good

Rice IRR tropic 0.095 0.296 0.203 Good

Rice RFD mid 0.180 1.429 1.601 Poor

Rice RFD tropic 0.047 0.116 0.144 Excellent

Soybeans IRR mid 0.080 0.245 0.192 Excellent

Soybeans IRR tropic 0.068 0.119 0.175 Excellent

Soybeans RFD mid 0.069 0.139 0.178 Excellent

Soybeans RFD tropic 0.101 0.183 0.179 Excellent

Sugarcane RFD tropic 0.125 0.448 0.479 Good

Wheat IRR mid 0.069 0.408 0.351 Good

Wheat IRR tropic 0.085 0.309 0.267 Good

Wheat RFD mid 0.041 0.298 0.286 Good

Wheat RFD tropic 0.199 0.807 0.833 Adequate

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70◦S, 30- 70◦N), “tropic" = 30◦S to 30◦N. 2. Note that the

mean response function performs “excellent" for all production groups.38



Table A2. Persephone v1.0 response function performance for all production groups, for quadratic µCTW (Equation (A1)), cubic σCTW

(Equation (A7))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.036 0.142 0.110 Excellent

c3 IRR tropic 0.074 0.661 0.525 Adequate

c3 RFD mid 0.044 0.899 0.706 Adequate

c3 RFD tropic 0.052 0.817 0.571 Adequate

c4 IRR mid 0.028 2.169 0.863 Poor

c4 IRR tropic 0.035 0.300 0.063 Good

c4 RFD mid 0.042 0.125 0.080 Excellent

c4 RFD tropic 0.084 1.022 0.511 Poor

Maize IRR mid 0.035 0.763 0.471 Adequate

Maize IRR tropic 0.083 0.193 0.066 Excellent

Maize RFD mid 0.039 0.112 0.075 Excellent

Maize RFD tropic 0.086 0.390 0.147 Good

Rice IRR mid 0.064 0.159 0.098 Excellent

Rice IRR tropic 0.095 1.029 0.672 Poor

Rice RFD mid 0.153 0.166 0.187 Excellent

Rice RFD tropic 0.047 0.077 0.063 Excellent

Soybeans IRR mid 0.073 0.123 0.088 Excellent

Soybeans IRR tropic 0.057 0.078 0.089 Excellent

Soybeans RFD mid 0.075 1.137 0.893 Poor

Soybeans RFD tropic 0.084 0.355 0.303 Excellent

Sugarcane RFD tropic 0.114 2.163 1.469 Poor

Wheat IRR mid 0.060 0.149 0.197 Excellent

Wheat IRR tropic 0.082 0.206 0.204 Excellent

Wheat RFD mid 0.038 0.117 0.102 Excellent

Wheat RFD tropic 0.175 0.769 0.587 Adequate

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70◦S, 30- 70◦N), “tropic" = 30◦S to 30◦N. 2. Note that the

mean response function performs “excellent" for all production groups.39



Table A3. Persephone v1.0 response function performance for all production groups, for C3MP µCTW (Equation (A2)), quadratic σCTW

(Equation (A6))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.037 1.039 0.7 Poor

c3 IRR tropic 0.074 1.675 0.792 Poor

c3 RFD mid 0.046 0.303 0.276 Good

c3 RFD tropic 0.057 1.116 0.78 Poor

c4 IRR mid 0.027 0.139 0.123 Excellent

c4 IRR tropic 0.049 0.894 0.224 Adequate

c4 RFD mid 0.046 0.303 0.248 Good

c4 RFD tropic 0.093 0.3 0.199 Good

Maize IRR mid 0.027 0.152 0.129 Excellent

Maize IRR tropic 0.111 1.091 0.273 Poor

Maize RFD mid 0.042 0.272 0.242 Good

Maize RFD tropic 0.106 0.341 0.182 Good

Rice IRR mid 0.081 0.725 0.402 Adequate

Rice IRR tropic 0.093 0.287 0.209 Good

Rice RFD mid 0.115 1.055 1.08 Poor

Rice RFD tropic 0.047 0.18 0.164 Excellent

Soybeans IRR mid 0.08 0.248 0.191 Excellent

Soybeans IRR tropic 0.11 0.726 0.724 Adequate

Soybeans RFD mid 0.066 0.149 0.157 Excellent

Soybeans RFD tropic 0.084 0.444 0.354 Good

Sugarcane RFD tropic 0.144 2.42 2.066 Poor

Wheat IRR mid 0.061 0.391 0.365 Good

Wheat IRR tropic 0.082 0.72 0.548 Adequate

Wheat RFD mid 0.041 0.298 0.287 Good

Wheat RFD tropic 0.147 0.297 0.376 Good

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70◦S, 30- 70◦N), “tropic" = 30◦S to 30◦N. 2. Note that the mean

response function performs “excellent" for all production groups.40



Table A4. Persephone v1.0 response function performance for all production groups, for C3MP µCTW (Equation (A2)), cubic σCTW

(Equation (A7))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.032 0.356 0.240 Good

c3 IRR tropic 0.073 0.113 0.113 Excellent

c3 RFD mid 0.039 0.121 0.094 Excellent

c3 RFD tropic 0.041 0.087 0.057 Excellent

c4 IRR mid 0.026 0.166 0.108 Excellent

c4 IRR tropic 0.037 0.296 0.064 Good

c4 RFD mid 0.038 0.449 0.358 Good

c4 RFD tropic 0.073 0.335 0.168 Good

Maize IRR mid 0.025 0.073 0.044 Excellent

Maize IRR tropic 0.082 0.244 0.082 Good

Maize RFD mid 0.036 0.109 0.076 Excellent

Maize RFD tropic 0.096 0.729 0.272 Adequate

Rice IRR mid 0.064 0.282 0.175 Good

Rice IRR tropic 0.094 0.120 0.143 Excellent

Rice RFD mid 0.134 0.175 0.178 Excellent

Rice RFD tropic 0.046 0.079 0.060 Excellent

Soybeans IRR mid 0.073 0.123 0.088 Excellent

Soybeans IRR tropic 0.075 0.213 0.194 Excellent

Soybeans RFD mid 0.060 0.080 0.068 Excellent

Soybeans RFD tropic 0.086 0.145 0.169 Excellent

Sugarcane RFD tropic 0.111 0.175 0.100 Excellent

Wheat IRR mid 0.061 0.961 1.039 Poor

Wheat IRR tropic 0.088 2.522 1.231 Poor

Wheat RFD mid 0.058 7.604 2.233 Poor

Wheat RFD tropic 0.164 0.934 0.924 Adequate

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70◦S, 30- 70◦N), “tropic" = 30◦S to 30◦N. 2. Note that the

mean response function performs “excellent" for all production groups.41



Table A5. Persephone v1.0 response function performance for all production groups, for cross µCTW (Equation (A3)), quadratic σCTW

(Equation (A6))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.022 1.038 0.701 Poor

c3 IRR tropic 0.073 1.671 0.792 Poor

c3 RFD mid 0.021 0.314 0.272 Good

c3 RFD tropic 0.030 1.201 0.634 Poor

c4 IRR mid 0.024 0.140 0.121 Excellent

c4 IRR tropic 0.041 0.928 0.220 Poor

c4 RFD mid 0.033 0.312 0.247 Good

c4 RFD tropic 0.069 0.340 0.187 Good

Maize IRR mid 0.025 0.152 0.128 Excellent

Maize IRR tropic 0.107 1.926 0.450 Poor

Maize RFD mid 0.030 0.286 0.236 Good

Maize RFD tropic 0.083 0.379 0.175 Good

Rice IRR mid 0.070 0.627 0.445 Poor

Rice IRR tropic 0.092 0.347 0.258 Good

Rice RFD mid 0.092 0.306 0.342 Good

Rice RFD tropic 0.020 0.210 0.141 Excellent

Soybeans IRR mid 0.090 1.595 1.103 Poor

Soybeans IRR tropic 0.051 0.203 0.161 Excellent

Soybeans RFD mid 0.036 0.150 0.148 Excellent

Soybeans RFD tropic 0.081 0.318 0.219 Good

Sugarcane RFD tropic 0.147 5.574 3.954 Poor

Wheat IRR mid 0.056 0.392 0.364 Good

Wheat IRR tropic 0.078 1.256 0.815 Poor

Wheat RFD mid 0.034 0.306 0.279 Good

Wheat RFD tropic 0.114 0.332 0.347 Good

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70◦S, 30- 70◦N), “tropic" = 30◦S to 30◦N. 2. Note that the

mean response function performs “excellent" for all production groups.42



Table A6. Persephone v1.0 response function performance for all production groups, for cross µCTW (Equation (A3)), cubic σCTW

(Equation (A7))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.019 0.303 0.196 Good

c3 IRR tropic 0.071 0.112 0.111 Excellent

c3 RFD mid 0.022 0.674 0.602 Adequate

c3 RFD tropic 0.025 0.071 0.056 Excellent

c4 IRR mid 0.024 0.168 0.114 Excellent

c4 IRR tropic 0.032 0.303 0.076 Good

c4 RFD mid 0.037 1.544 0.623 Poor

c4 RFD tropic 0.062 0.156 0.060 Excellent

Maize IRR mid 0.022 0.071 0.044 Excellent

Maize IRR tropic 0.074 0.179 0.063 Excellent

Maize RFD mid 0.028 0.097 0.081 Excellent

Maize RFD tropic 0.073 0.305 0.129 Good

Rice IRR mid 0.063 0.278 0.176 Good

Rice IRR tropic 0.092 0.120 0.141 Excellent

Rice RFD mid 0.096 0.237 0.219 Good

Rice RFD tropic 0.019 0.057 0.051 Excellent

Soybeans IRR mid 0.058 0.120 0.073 Excellent

Soybeans IRR tropic 0.063 0.120 0.212 Excellent

Soybeans RFD mid 0.034 0.054 0.054 Excellent

Soybeans RFD tropic 0.053 0.111 0.094 Excellent

Sugarcane RFD tropic 0.078 0.241 0.229 Excellent

Wheat IRR mid 0.044 0.721 0.748 Adequate

Wheat IRR tropic 0.084 0.185 0.219 Excellent

Wheat RFD mid 0.050 3.658 2.116 Poor

Wheat RFD tropic 0.111 0.212 0.179 Excellent

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70◦S, 30- 70◦N), “tropic" = 30◦S to 30◦N. 2. Note that the

mean response function performs “excellent" for all production groups.43



Table A7. Persephone v1.0 response function performance for all production groups, for pure µCTW (Equation (A4)), quadratic σCTW

(Equation (A6))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.031 1.045 0.697 Poor

c3 IRR tropic 0.071 1.660 0.791 Poor

c3 RFD mid 0.039 0.301 0.280 Good

c3 RFD tropic 0.052 0.662 0.498 Poor

c4 IRR mid 0.012 0.149 0.111 Excellent

c4 IRR tropic 0.018 0.985 0.216 Poor

c4 RFD mid 0.035 0.307 0.248 Good

c4 RFD tropic 0.045 0.334 0.189 Good

Maize IRR mid 0.012 0.165 0.117 Excellent

Maize IRR tropic 0.016 1.039 0.340 Poor

Maize RFD mid 0.035 0.277 0.242 Good

Maize RFD tropic 0.044 0.376 0.179 Good

Rice IRR mid 0.038 0.346 0.197 Good

Rice IRR tropic 0.091 0.343 0.260 Good

Rice RFD mid 0.124 0.123 0.275 Good

Rice RFD tropic 0.053 0.161 0.171 Excellent

Soybeans IRR mid 0.033 0.221 0.185 Excellent

Soybeans IRR tropic 0.066 0.072 0.172 Excellent

Soybeans RFD mid 0.056 0.137 0.170 Excellent

Soybeans RFD tropic 0.083 0.171 0.173 Excellent

Sugarcane RFD tropic 0.085 1.504 1.307 Poor

Wheat IRR mid 0.045 0.378 0.377 Good

Wheat IRR tropic 0.080 0.710 0.550 Good

Wheat RFD mid 0.034 0.294 0.289 Good

Wheat RFD tropic 0.175 0.371 0.341 Good

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70◦S, 30- 70◦N), “tropic" = 30◦S to 30◦N. 2. Note that the

mean response function performs “excellent" for all production groups.44



Table A8. Persephone v1.0 response function performance for all production groups, for pure µCTW (Equation (A4)), cubic σCTW

(Equation (A7))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.030 0.766 0.524 Adequate

c3 IRR tropic 0.071 0.115 0.110 Excellent

c3 RFD mid 0.035 0.117 0.095 Excellent

c3 RFD tropic 0.040 0.082 0.061 Excellent

c4 IRR mid 0.012 0.153 0.116 Excellent

c4 IRR tropic 0.013 0.249 0.072 Excellent

c4 RFD mid 0.038 2.286 0.778 Poor

c4 RFD tropic 0.040 0.120 0.061 Excellent

Maize IRR mid 0.012 0.061 0.046 Excellent

Maize IRR tropic 0.016 0.162 0.073 Excellent

Maize RFD mid 0.031 0.104 0.077 Excellent

Maize RFD tropic 0.041 0.126 0.060 Excellent

Rice IRR mid 0.038 0.109 0.076 Excellent

Rice IRR tropic 0.092 0.123 0.139 Excellent

Rice RFD mid 0.122 0.178 0.213 Excellent

Rice RFD tropic 0.043 0.213 0.149 Excellent

Soybeans IRR mid 0.029 0.091 0.071 Excellent

Soybeans IRR tropic 0.065 0.125 0.141 Excellent

Soybeans RFD mid 0.052 0.072 0.061 Excellent

Soybeans RFD tropic 0.066 0.112 0.105 Excellent

Sugarcane RFD tropic 0.066 0.260 0.177 Good

Wheat IRR mid 0.033 0.691 0.705 Adequate

Wheat IRR tropic 0.078 0.185 0.215 Excellent

Wheat RFD mid 0.037 5.732 2.313 Poor

Wheat RFD tropic 0.173 0.368 0.204 Good

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70◦S, 30- 70◦N), “tropic" = 30◦S to 30◦N. 2. Note that the

mean response function performs “excellent" for all production groups.45



Table A9. Persephone v1.0 response function performance for all production groups, for cubic µCTW (Equation (A5)), cubic σCTW

(Equation (A7))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.013 0.488 0.326 Good

c3 IRR tropic 0.069 0.113 0.109 Excellent

c3 RFD mid 0.009 0.106 0.095 Excellent

c3 RFD tropic 0.021 0.065 0.058 Excellent

c4 IRR mid 0.010 0.152 0.116 Excellent

c4 IRR tropic 0.010 0.313 0.092 Good

c4 RFD mid 0.016 0.705 0.370 Adequate

c4 RFD tropic 0.018 0.102 0.058 Excellent

Maize IRR mid 0.010 0.062 0.044 Excellent

Maize IRR tropic 0.011 0.116 0.066 Excellent

Maize RFD mid 0.016 0.091 0.079 Excellent

Maize RFD tropic 0.021 0.109 0.056 Excellent

Rice IRR mid 0.029 0.104 0.073 Excellent

Rice IRR tropic 0.089 0.123 0.137 Excellent

Rice RFD mid 0.043 0.098 0.123 Excellent

Rice RFD tropic 0.018 0.060 0.048 Excellent

Soybeans IRR mid 0.015 0.087 0.068 Excellent

Soybeans IRR tropic 0.034 0.063 0.085 Excellent

Soybeans RFD mid 0.015 0.042 0.046 Excellent

Soybeans RFD tropic 0.035 0.100 0.089 Excellent

Sugarcane RFD tropic 0.042 0.209 0.171 Excellent

Wheat IRR mid 0.022 0.681 0.675 Adequate

Wheat IRR tropic 0.078 0.171 0.221 Excellent

Wheat RFD mid 0.042 5.268 1.905 Poor

Wheat RFD tropic 0.091 0.196 0.165 Excellent

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70◦S, 30- 70◦N), “tropic" = 30◦S to 30◦N. 2. Note that the

mean response function performs “excellent" for all production groups.46



Table A10. The best performing functional form combination for each production group at the task of leave-one-out cross-validation(out of

sample performance) and the corresponding In-sample Performance measure.

Production group µCTW σCTW In-sample Performance

c3 IRR mid quadratic quadratic Good

c3 IRR tropic cubic cubic Excellent

c3 RFD mid c3mp cubic Excellent

c3 RFD tropic cubic cubic Excellent

c4 IRR mid cubic cubic Excellent

c4 IRR tropic cubic cubic Good

c4 RFD mid cubic quadratic Good

c4 RFD tropic pure quadratic Good

Maize IRR mid cubic cubic Excellent

Maize IRR tropic cubic cubic Excellent

Maize RFD mid cubic cubic Excellent

Maize RFD tropic cubic quadratic Good

Rice IRR mid cubic cubic Excellent

Rice IRR tropic quadratic quadratic Good

Rice RFD mid cubic cubic Excellent

Rice RFD tropic cubic cubic Excellent

Soybeans IRR mid cubic cubic Excellent

Soybeans IRR tropic quadratic cubic Excellent

Soybeans RFD mid cubic cubic Excellent

Soybeans RFD tropic cubic cubic Excellent

Sugarcane RFD tropic c3mp cubic Excellent

Wheat IRR mid quadratic cubic Excellent

Wheat IRR tropic quadratic quadratic Good

Wheat RFD mid cubic quadratic Good

Wheat RFD tropic cubic cubic Excellent
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Appendix B: C3MP baseline yield estimate functional forms

As mentioned in Section 2.1.1, the 8 different functional forms used to relate site-specific output yield in response to input

CTW values are presented here in Equations (B1)-(B8). Each functional form was used with each specific C3MP site’s data

in order to provide a best estimate of baseline yield for that site. The form with the smallest root mean square error across the

99 tests for the site is the one used to provide a best estimate of baseline yield. This best estimate of baseline yield is used to5

convert the C3MP output yields at the site to percent changes in yield from baseline for emulator training.

Y site
CTW = a0 + a1∆T + a2∆W + a3∆C (B1)

Y site
CTW = a0 + a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 (B2)

Y site
CTW = a0 + a1∆T + a2∆W + a3∆C + a4∆T∆W + a5∆T∆C + a6∆W∆C (B3)

Y site
CTW = a0 + a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 + a7∆T∆W + a8∆T∆C + a9∆W∆C

(B4)10

Y site
CTW = a0 + a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 + a7∆T∆W + a8∆T∆C + a9∆W∆C

+ a10∆T∆W∆C
(B5)

Y site
CTW = a0 + a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 + a7∆T∆W + a8∆T∆C + a9∆W∆C

+ a10∆T∆W∆C

+ a11(∆T )2∆W + a12(∆T )2∆C + a13∆T (∆W )2 + a14∆T (∆C)2 + a15(∆W )2∆C + a16∆W (∆C)2

(B6)

Y site
CTW = a0 + a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 + a7∆T∆W + a8∆T∆C + a9∆W∆C

+ a10(∆T )3 + a11(∆W )3 + a12(∆C)3
(B7)

Y site
CTW = a0 + a1∆T + a2(∆T )2 + a3∆W + a4(∆W )2 + a5∆C + a6(∆C)2 + a7∆T∆W + a8∆T∆C + a9∆W∆C

+ a10∆T∆W∆C

+ a11(∆T )2∆W + a12(∆T )2∆C + a13∆T (∆W )2 + a14∆T (∆C)2 + a15(∆W )2∆C + a16∆W (∆C)2

+ a17(∆T )3 + a18(∆W )3 + a19(∆C)3

(B8)
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