
Review1 
Authors’ Response: We thank the reviewer for their thorough review of the paper. We have 
addressed every review point, to the improvement of the paper. Individual responses to 
different review points follow: 
Review:  I have two main concerns with the paper: the first refers to the C3MP dataset used to 
derive the emulator response functions, and the second refers to how these response functions 
are going to be used. The C3MP dataset is a large set of 99 CTW sensitivity tests carried out by a 
number of site-based crop models covering a range of different crops at a total of 1135 sites, of 
which data from 575 sites are actually used in this study. The climate change signal used in 
these sensitivity tests is completely synthetic since it consists of applying a temporally uniform 
temperature offset or precipitation multiplier to a historical baseline weather timeseries. 
However, in reality, climate change is not constant over time. For example, precipitation might 
increase during part of the year, while decreasing during other times. I am not convinced that 
the constant CTW perturbation experiments are equivalent to using a more realistic climate 
timeseries, and I would suggest that the authors either show in the paper or at least point the 
reader to other literature showing that this is a valid approach. Otherwise, the authors risk that 
there is already a bias in the data used to train the emulator which would propagate to the 
emulated yields. 
Response: We have clarified that we are looking at climatological mean TW changes during the 
growing season only, rather than changes to seasonality to our methods, as outlined in the two 
peer-reviewed citations detailing C3MP and its use. Analysis within Ruane et al., 2014 showed 
that the explicit modeling of future scenarios was quite consistent with aggregating the 
seasonal changes (see figure comparing simulated vs. emulated yields). Changes in seasonality 
will be reflected in the seasonal precipitation and temperature changes, but explicit action to 
adjust growing seasons to match new seasonality would require adaptation. Autonomous 
adaptation and technological gains are included in IAMs as part of the exogenous trend, so we 
focus on the primary climatological pressure, recognizing that we are excluding the secondary 
effects of seasonality. Climatological changes are considered here specifically because this is for 
use in GCAM, which solves for an equilibrium on 5 year timesteps during which subannual 
dynamics (such as the distribution of precipitation during the growing season) tend to average 
out. A user could investigate the impacts of different growing seasons by processing the climate 
data of interest from annual monthly to growing season average with an appropriate growing 
season mask for their intent. We believe such investigations are outside the scope of this paper. 
However, we have also included a subsection 2.1.1 explicitly addressing several known caveats 
of the C3MP data set. 
 
Review: My second concern is that response functions for some of the 25 production groups 
are based on a very small number of sites, in the most extreme case only two sites. I cannot 
help but wonder how representative these results really are, keeping in mind that each 
production group represents one crop-irrigation-latitude combination, with latitudes only 
distinguished into extended tropics and mid-latitudes. In addition, these sites are not only used 
to derive a mean yield response, but also an estimate of response uncertainty. The high and 
low response functions are supposed to represent site responses at the mean plus/minus one 
standard deviation level but how meaningful are these estimates based on such a small sample 



size? The emulator response functions are only derived for two regions (extended tropics and 
mid-latitudes) but I wonder at what level of spatial detail they will be used later. 
Response: We have included a new section 3.1.1 to directly address model performance in the 
production groups with small sample size. We also have clarified language regarding spatial 
scales throughout the paper. As a brief summary, we acknowledge that some crops and regions 
are under-represented in the training data. However, for many crops and regions, there is no 
comparable dataset available. In Section 3.1.1, we discuss validation that our modeling 
framework does represent the underlying data well for the production groups with small 
sample sizes. We also distinguish between the two-region response function and the degree of 
spatial heterogeneity that still results when combined with gridded temperature and 
precipitation change projections (throughout the text, but particularly in Section 2.1.1 Known 
caveats of the C3MP data set). 
 
Review: In Figure 8 and 9 of the paper, the authors take spatial patterns of climate change from 
the HadGEM2-ES model and use their response functions to derive corresponding patterns of 
yield change. These patterns are shown, but not evaluated in any way. I would suggest that the 
authors compare their derived patterns of yield change to simulations of yield change from 
global gridded crop models for the same climate data. After all, the intent of the emulator is to 
replace simulations by global gridded crop models. Such crop yield simulations for the 
HadGEM2-ES RCP8.5 scenario used in Figure 8 and 9 of the paper are, for example, available 
from a number of crop models and for a number of different crops within the ISIMIP data 
archive at https://esg.pik-potsdam.de/projects/isimip/ Such a comparison would help to 
address both of my concerns voiced above. 
Response: We thank the reviewer for this helpful insight. We have added an extensive new 
section 4.1 directly comparing to the ISIMIP global gridded crop modeling results, as well as to 
other modeling efforts. 
 
Review: Page 2, ll. 25 – 28: You state that previous emulators were restricted to emulating yield 
change under RCP scenarios. I am aware of at least two other global crop yield change 
emulators derived from crop model simulations that are applicable to any future climate 
scenario: Oyebamiji et al. (2015) and Ostberg et al. (2018). It might be useful to contrast them 
to the work presented in this paper. 
Response: We apologize for this oversight and have added a discussion of these papers to our 
Introduction (paragraph beginning on P3L3). 
 
Review: Page 4, starting with line 11, and Figure 1: You outline three use cases for the 
Persephone yield emulator, but none of this is actually done in this paper. So I’m not sure if the 
Methods section is the right place for this. 
Response: We have streamlined this discussion of use cases and moved it from the Methods to 
the Introduction, as the intended use in GCAM has motivated many of our modeling choices. 
  



Review: Page 6, section 2.2: The Copernicus guidelines request that datasets should be cited 
with a reference in the reference list. Is there a reference for the C3MP dataset? 
Response: We have included language in Section 2.1 that the two peer-reviewed C3MP 
publications (Ruane et al, McDermid et al) include data availability information. The relevant 
data to this work is also included in the paper analysis archive. 
 
 
Review: Page 6, ll. 8 – 14: This part does not refer to the setup of C3MP or to your processing of 
the C3MP data. Instead, it refers to how climate data is pre-processed before use with the 
finished emulator. It should probably be moved to section 4.’ 
Response: This has been done. 
 
Review: Page 7, ll. 7 – 9: Unless I am mistaken, the global gridded crop models within AgMIP 
also conducted the 99 CTW sensitivity tests. They should offer a much better global coverage. 
Would it be worthwhile adding some discussion of why this paper used the site-based results 
instead of the global simulations? 
Response: Unfortunately, the global gridded crop models did not participate in the 99 CTW 
tests that create the C3MP archive. The global gridded crop models have conducted their own, 
separate sensitivity tests and the data is not yet publicly available. Therefore, we developed this 
emulator using data we that was publicly available, but with the aim of a sufficiently flexible 
framework as to update to newer data sets (like the globally gridded crop models) if/when they 
become available. We have added language to the introduction and discussion highlighting that 
the Persephone framework described here can be updated in future versions, possibly with 
different explanatory variables, to include such gridded simulations as they become available. 
In the new section 4.1, comparing to the ISIMIP GGCM results, we now explicitly state that 
these models did not participate in the C3MP exercise 
 
Review: Page 8, ll. 19 – 20: Are the 8 different functional forms documented anywhere? Are 
these the same as are used in the emulator? 
Response: Thank you for highlighting this oversight. The functional forms used to estimate site-
specific baseline Yields are now explicitly documented in the new Appendix B.  
 
Review: Page 11, ll. 9 – 10: Is the value of b0 constrained between -0.02 and 0.02 or is it 0.02%? 
The following sentence suggests that it is 0.02%. 
Response: We thank the reviewer for catching this typo. We have corrected this. 
 
Review: Given the very small sample sizes of about 1/3 of the production groups the 84.135th 
and 15.865th percentiles do not seem very meaningful’ 
Response: This is addressed with our new section 3.1.1 directly evaluating the performance of 
the three functional forms for small sample size production groups.  
 
Review: Section 3.2: It seems to me that this is rather a test whether the crop models used in 
training feature these important relationships. Or would you say it is possible that these 
relationships are present in the models, but missing in the emulator? Since the evaluation is 



positive I guess it means that the relationships are present in the models and retained in the 
emulator. 
Response: Yes, the relationships are present in the models and retained by the emulator. The 
final sentence is correct and we have clarified the text to reflect this point. 
 
Review: Page 20, l. 4 – page 21, l. 1: Climate change can affect both the start and the length of 
the growing season. Is this accounted for or is the same growing season used under climate 
change as during the reference period? 
Response: The same growing season was used by every model for their training runs. We have 
updated our methods and discussion to explicitly state this. We also note that we plan to use 
with GCAM and are focused on long term climatological changes, rather than specific changes 
to seasonality that may average out over 5 year timesteps.  

 
 
Review: Page 21, ll. 8 – 10: On the one hand you talk about passing CTW changes for regions 
into the emulator, on the other hand you mention a gridded map of yield changes. So are the 
yield changes at the same spatial resolution as the climate data or is there a difference between 
resolutions (region versus grid)? Please clarify 
Response: We have updated this language to be clearer (now occurs on P24). 
 
Review: Page 21, ll. 17 – 18, and Figure 9: Looking at Figure 9, it seems to me that most regions 
show a positive yield change under the high response function, not just “a few regions”. Also, I 
think that in the bottom row of Figure 9 the maps for mean and high response are swapped. 
The bottom right map (which should be the high response) looks identical to the map for Maize 
in Figure 8 (which shows the mean response). 
Response: Thank you for catching this mistake, we have corrected the error in figure 9. Rather 
than swapping the mean and high response maps for Maize in figure 9, we inadvertently 
included the Wheat mean response map with the Maize high and low maps in the original 
figure. We have corrected the rainfed Maize mean figure, and clarified the language discussing 
Figure 9. 
 
Review: Page 23, ll. 6 – 8: Here, you emphasize the rapid evaluation time of the response 
functions relative to a global gridded crop model, but I think you should really try to show that 
the emulator response is actually comparable to what you would get using a global gridded 
crop model. This step is missing in the paper. 
Response: Thank you for this suggestion, we have added section 4.1, comparing many of our 
results to some of the ISIMIP GGCM results. 
 
Review: Page 24, ll. 8 – 10: Given that the response functions are only derived for two 
latitudinal bands I would say that they cannot really be used to characterize the range of 
uncertainty within national or multi-national units (unless the respective unit is covered by 
C3MP sites). 
Response: We have clarified the language in this section of the Conclusions and discussion that 
the response functions are able to characterize the range of C3MP response sites, and that this 



is only a partial characterization of the response uncertainty within larger national land units. 
And that using more spatially complete data sets for training in the future will improve this 
characterization. 
 
Review: Page 24: In the paragraph on caveats, I would suggest to add discussion of potential 
biases arising out of way the CTW experiments are set up. Another source of uncertainty results 
from the fact that crop model simulations generally omit adaptation options such as changing 
sowing dates or switching to different cultivars. This is done for simplicity and comparability but 
is not realistic considering that agriculture is a highly managed system, and potentially creates 
another bias in the crop model simulations of yield change that are used to train the emulator. 
Response: We have added text to this effect. 
 
Review: The greyscale lines in Figure 6, 8 and 9 are hard to see at all, let alone distinguish the 
different shades of grey. 
Response: We have replaced the grayscale lines with black contours placed at values of 10%, 
20%, etc and included explicit labeling of the black contours on the plots. 
 
  



 
Review 2 
Review:  
The authors present a methodology, with an accompanying R package, to emulate changes in 
crop yield under global change scenarios. The functions produced by this framework can be 
introduced in other models such as GCAM, which can help to speedup different types of 
simulations. The manuscript is well written and presents important results that merit 
publication in GMD. However, I have one major comment to this work. Although I really liked 
the Bayesian approach proposed here, which is more robust than previous linear regression 
approaches, I had problems understanding the approach for modeling the standard deviation 
term. It seems that the approach yields negative values of σCTW , which is evident by the use of 
absolute values in equation 6. As far as I am concerned, standard deviation values can never be 
negative since theoretically they are the square root of the variance. The choice of prior 
distributions for modeling σCTW expressed in equation 5, explains the reason for the negative 
values. For the baseline case, b0 ∼ N(0, 0.001) yields a distribution of standard deviations 
centered around zero, which I find difficult to understand. Modeling prior distributions for the 
variance in Bayesian analysis is not trivial, and there are many analyses dealing with this 
problem (e.g. see papers by Andrew Gelman). Most controversies about this topic deal with the 
choice of the prior distribution for variance parameters and whether gamma, inverse gamma, 
or other distributions are appropriate choices. These distributions however, are always defined 
in the positive part of the real line R +. I suggest the authors to revise this part of the 
manuscript. If there is important information that I am missing regarding this issue, the authors 
should at least explain their choice of distribution and its interpretation. 
 
 
Response: 
We thank the reviewer for reading the work so closely. Indeed, the reviewer has correctly 
characterized our methodology, but highlighted that we did not communicate our methods 
clearly. We have clarified the text in our section on emulation, specifically addressing the 
reviewer’s comments.  
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Abstract. Future changes in Earth system state will impact agricultural yields and, through these changed yields, can have

profound impacts on the global economy. Global gridded crop models estimate the influence of these Earth system changes on

future crop yields, but are often too computationally intensive to dynamically couple into global multi-sector economic models,

such as GCAM and other similar-in-scale models. Yet, generalizing a faster site-specific crop model’s results to be used globally

will introduce inaccuracies, and the question of which model to use is unclear given the wide variation in yield response across5

crop models. To examine the feedback loop among socioeconomics, Earth system changes, and crop yield changes, rapidly

generated yield responses with some quantification of crop response uncertainty are desirable. The Persephone v1.0 response

functions presented in this work are based on the Agricultural Model Intercomparison and Improvement Project (AgMIP)

Coordinated Climate-Crop Modeling Project (C3MP) sensitivity test data set and are focused on providing the Global Change

Assessment Model (GCAM) and similar models with a tractable number of rapid to evaluate, dynamic yield response functions10

corresponding to a range of the yield response sensitivities seen in the C3MP data set. With the Persephone response functions,

a new variety of agricultural impact experiments will be open to GCAM and other economic models; for example, examining

the economic impacts of a multi-year drought in a key agricultural region and how economic changes in response to the drought

can, in turn, impact the drought.

Copyright statement. TEXT15

1 Introduction

Agricultural yields are susceptible to changes in temperature, precipitation, growing season length, CO2 concentrations, and

other Earth system factors. While both the nature of the future climate and its impact on agricultural yields are uncertain

(Rosenzweig et al., 2014; Pirttioja et al., 2015; Fronzek et al., 2018; Asseng et al., 2013, 2015; Martre et al., 2015; Lobell,

2013), it is clear that there is potential for identifying the important effects on agriculture and, in turn, the economic state of the20

world at large. The global multi-sector economic model Global Change Assessment Model (GCAM)1 (Kim et al., 2006; Clarke et al., 2007; Calvin et al., 2011; Kyle et al., 2011; Wise et al., 2014; Hartin et al., 2015)
1Model and documentation available at https://github.com/JGCRI/gcam-core, http://jgcri.github.io/gcam-doc/toc.html
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:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kyle et al., 2011; Wise et al., 2014; Calvin et al., 2019; Hartin et al., 2015) and other similar-in-scale models (Nelson et al.,

2014) are ideal for understanding the far reaching impacts of this climate-agriculture-economic cycle, but rely on external

projections of agricultural yields to quantify these effects
::::::
(Figure

::
1,

:::::
panel

::
A). This asynchronous process results in inconsistencies

between the economic and biophysical world, and overlooks feedbacks and unintended consequences as the future shifts (Ruane

et al., 2017).5

Several modeling groups, including the GCAM model development team, are interested in explicitly modeling and understanding

bidirectional feedbacks between the Earth and the human systems .
:::
(e.g.

::::::
Figure

::
1,

:::::
panel

::::
C). Agriculture is one important

pathway (of many) through which these systems directly interact. A prime example would be to study the impacts of a multi-

year drought in a key agricultural region. The drought would affect yields, which would affect the agricultural supply to the

global economic market. In a model like GCAM, this would lead to price changes and shifting land to more profitable crops.10

The new spatial distribution of agricultural land would change land related emissions, which will in turn affect climate and

therefore yields moving forward. Being able to model each component of this process and the interactions among them is key

to considering important questions like this one.

::::::::
Currently,

::::::
GCAM

:::::::
operates

:::
on

:
a
:::
five

::::
year

::::
time

::::
step

:::
and

::
is

::::::
coupled

::::
with

::
a

:::::::
physical

::::
Earth

::::::
system

::::::::
emulator,

::::::
Hector

:::::::::::::::::
(Hartin et al., 2015)

::
(as

::
in

::::::
Figure

::
1,

:::::
panels

::
A
::::
and

::
B),

::
to
:::::::
explore

:::::
global

::::::
change

::::::::
questions

::
in

:::::
rapid

::::::
enough

:::::::::
evaluation

:::::
times

:
to
:::::
allow

:::
for

::::
large

::::::::
numbers15

::
of

::::::::::
simulations

::
to

:::
be

::::::::
analyzed

::
as

::::
part

::
of

::
a
:::::
wide

:::::
range

::
of

:::::::::::
experiments.

:::::::
GCAM

::
is
::

a
::::::::
recursive

::::::::
dynamic

::::::
partial

::::::::::
equilibrium

:::::
model

::::
that

::
is

::::::::
calibrated

::
to
::

a
::::::::
historical

::::
base

::::
year

:::
of

::::
2010

::::
and

::::
used

::
to
::::::::

simulate
:::::::
forward

::
in

::::
time

:::
by

:::::::::::
incorporating

::::::::
changes

::
in

::::::::
quantities

::::
such

::
as
::::::::::

population,
:::::
GDP,

::::
and

:::::::::
technology

:::
to

:::::::
produce

::::::
outputs

::::
that

:::::::
include

::::
land,

::::::
water,

:::
and

:::::::
energy

:::
use

::
as

::::
well

:::
as

::::::::
emissions

:::
and

::::::::::
commodity

::::::
prices.

:::
For

::::::::::
agricultural

::::::::::
production

::
in

:::::::
GCAM,

::::
yield

:::::::
change

:::::
trends

:::::::::::
representing

::::::::
generally

:::::::
positive

::::::
change

::::::::::
assumptions

::::
over

::::
time

::::
due

::
to

::::::::::
non-climate

::::::
factors

::::::::
(changes

::
in

:::::::::::
management,

::::
new

::::
seed

::::::::
genetics,

:::
new

::::::::::::
technologies,

:::
use20

::
of

:::::::::::::::::
chemicals/fertilizers,

::::::::::
adaptation,

::::
etc.)

:::
are

::::
used

:::
to

::::::::
calculate

:::
the

::::::::::
profitability

::
of

::
a
::::::::::::::::::::
crop-irrigation-fertilizer

::::::::::
combination

:::
in

::::
each

::
of

::::
384

::::::
GCAM

::::
land

:::::
units

::
at

::::
each

::::
time

::::
step

:::::
based

:::
on

:::
the

::::::
global

::::
crop

:::::
price.

::::
This

::::::::::
profitability

::::::::::
determines

::::
land

::::::::
allocated

::
to

::::
each

::::
crop,

::::
and

:::
the

:::::::::::
combination

::
of

:::::::::
exogenous

:::::
yields

::::
and

::::
land

::::::::
allocation

:::::
gives

:::::::::
production

:::
of

::::
each

::::::::::::::::::::
crop-irrigation-fertilizer

::::::::::
combination

::::
such

::::
that

:::::
global

::::::
supply

::::
and

:::::
global

:::::::
demand

:::
are

::::
met

::
on

:::::
each

:::::::
timestep.

::::
The

::::::
details

::
of

::::
this

::::::::
allocation

:::
are

::::::::
provided

::
in

::::::::::::::::::::::::::::::::::::::::::::::
Kyle et al. (2011); Wise et al. (2014); Calvin et al. (2019)

:
.
::::::
Shifting

::::
land

:::::::::
allocation

::::::
among

:::::::
different

::::::::::::::::::::
crop-irrigation-fertilizer25

:::::::::::
combinations

::::
leads

::
to
::
a
::::::
degree

::
of

::::::::::
endogenous

::::
yield

::::::::::::
intensification

::::::
within

:::::::
GCAM.

Past agricultural impacts studies using GCAM (Calvin et al., 2013)
:::::::::::::::::::::::::::
(Calvin and Fisher-Vanden, 2017) have focused on using

outputs of global gridded crop model (GGCM) studies (e.g., Rosenzweig et al., 2014; Elliott et al., 2014; Müller et al., 2017)

in a strictly feed-forward way (Figure 1, panel A). Direct coupling of a GGCM to GCAM is prohibitively expensive in the

computational resources required to run the
:::::
would

:::::
result

:::
in

:
a
::::::::::::::
computationally

::::::::
expensive

:::::::::
modeling

::::::::::
framework,

:::::::
limiting

:::
the30

::::::
number

::
of

::::::::::
simulations

::::
that

:::::
could

::
be

::::::::::
performed.

:::
Yet,

:
large ensembles of simulations

:::
are necessary to explore and understand

future response options, so there is great need for a computationally efficient model that could explore the uncertainty space.

While GCAM is already coupled to a simple climate model, Hector (Hartin et al., 2015), this coupling is one-way: emissions are

passed to the climate model, but to date dynamic , bidirectional feedbacks between climate and humans on
:
at
:
each timestep are

missing. In this paper, we describe the first version of Persephone (v1.0), a simple representation of mean agricultural response35

2



and uncertainty to future climate that can be incorporated into GCAM and similar models. Further detail of the desired studies

this yield change emulator would be used for are given in Section 2.1 and discussed at length in Ruane et al. (2017).

An ideal solution to the computational expense of coupling a GGCM to GCAM is a yield response emulator, which uses past

crop yield model runs to predict what the model would have done under different conditions, had it been run. However, previous

work in this area has been restricted to either emulating GGCM results under
::::
crop

:::::
model

::::::
results

:::::
under

::::
fixed [

::::
CO2]

::::::::::
-temperature5

::::::::
pathways

::::
such

::
as the various RCPs (Blanc, 2017)

::::::::::::::::::::::::::::::::::::::::::::::::
(Oyebamiji et al., 2015; Blanc, 2017; Ostberg et al., 2018) or building statistical

models from empirical and historical data (Lobell, 2013; Moore et al., 2017; Mistry, 2017; Mistry et al., 2017), neither of which

span a wide range
:
.
::::::
While

::
an

::::::::
emulator

::::::
trained

:::
on

::::::::::
RCP-driven

::::::::
scenarios

:::
can

:::
be

::::
used

::
to

::::::::
estimate

::::
yield

:::::::
change

::
in

:::
any

::::::
future

::::::
climate,

:::
the

:::::
RCPs

::::
only

::::
span

::
a
:::::
subset

:
of possible future climate. These approaches then

::::::::
climates.

::
In

::::::::
particular,

::::::
should

:::
one

:::::
want

::
to

:::::::
consider

:::
the

:::::::
impacts

::
of

:
[
::::
CO2]

::::::::::
-temperature

::::::::
pathways

::::
that

:::::::::::
substantially

:::::
differ

::::
from

:::
the

::::::
RCPs,

:::::
these

::::::::
emulators

::::::
would face10

the difficult problem of extrapolating into the future,
:::
task

::
of

:::::::::
predicting

::::
yield

:::::::
changes

:::::::
outside

::
of

:::
the

:::::::::
conditions

::
of

:::
the

:::::::
training

::::
data.

::::::::
Statistical

:::::::
models

::
of

::::::::
empirical

::::
and

::::::::
historical

::::
data

:::
also

:::::
must

::::::
predict

:::::
yield

:::::::
changes

::
in

:::::::
response

:::
to

:::::
future

::::::
climate

:
outside

of the conditions of the training data, to serve the
::::::::
especially

:::
in

:::::::
response

::
to

:::::
large [

::::
CO2]

::::::::
increases.

:::::::::
Substantial

::::::::
departure

:::::
from

::
the

:::::
RCPs

::::
and

::::::::
historical

:::::
values

::
of

:
[
:::
CO2]

::
is

::::
very

:::::::
possible

::
in

:::
the

::::::::::
bidirectional

:
coupled human-earth system applications outlined

above
:::
and

:::
an

:::::::
emulator

::::::::
equipped

::
to
::::::

handle
::::
that

::
is

::::::::
desirable. Finally, many of these past studies have lacked a way to capture15

aspects of uncertainty that would be useful for the GCAM bidirectional feedback experiments described in Section 2.1.

The Agricultural Model Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al., 2013) took steps to begin

addressing these issues with the Coordinated Climate-Crop Modeling Project (C3MP), a modeling study specifically designed

to, among other things, provide the data necessary to develop a flexible and dynamic crop yield emulator (Ruane et al.,

2014; McDermid et al., 2015). C3MP invited point-based crop modelers from across the AgMIP community to simulate20

their calibrated agricultural system’s response to 99 sensitivity tests in which 1980-2009 baseline climate data were modified to

synthesize changes in mean carbon dioxide concentration ([CO2]), temperature, and precipitation. The 99 Carbon-Temperature-

Precipitation (denoted CTW, W for Water rather than P for Precipitation) tests that make up the C3MP protocol were selected

using a Latin hypercube to ensure that future scenarios through the end of the 21st centure
::::::
century, including all RCPs, fall

within the training model simulation data over the vast marjority
:::::::
majority of agricultural lands (Ruane et al., 2014). The25

full space of CTW changes that these 99 tests represent is: 330-900 ppm global [CO2], -1�C to +8�C from local baseline

temperature, and -50% to +50% from local baseline precipitation (applied as a multiplicative factor). A particular CTW

perturbation could be associated with a specific time slice, for example the 2050s climate changes from a given Earth System

Model (ESM) RCP4.5 projection, or from a climate condition generated within GCAM as a result of interactions between

socioeconomic development and the natural environment. Finally, the C3MP study featured broad spatial coverage (albeit not30

uniform) of a wider variety of crop models, crops, and management practices than has been incorporated into past GGCM or

emulator work. More than 50 participating crop modelers helped C3MP record yield response simulation results from a total

of 1135 sites, differing by location, crop species, cultivars, crop model, farm management, etc.

The Persephone response functions
:::::::::
framework presented in this work are designed to

:
is
::::::::
designed

::
to

:::::::
develop

::::
yield

::::::::
response

:::::::
functions

::
to
:::::
CTW

:::::::
changes

::::
from

::
a

::::
given

::::
data

:::
set.

::::
The

:::::::::
Persephone

:::::
V1.0

:::::::
response

:::::::::
functions,

:::::
based

:::
on

:::
the

:::::
C3MP

::::
data

:::
set,

:
provide35
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a computationally inexpensive estimate of the change in agricultural yield due to a change in the Earth system, and make use of

the promising data relating yield changes to CTW changes collected in C3MP. Specifically, we present biologically reasonable

response functions that are rapid-to-evaluate and more dynamic than past options for incorporating crop responses into models

like GCAM. The response functions also represent the large uncertainty in yield response across crop models to a given change

in local Earth system state. We strictly considered responses to long term Earth system changes. The C3MP results
::
or

:::::
other5

:::::::::
appropriate

::::
data

::::
sets could be further used to examine the effect of inter-annual variability on yields in the future

:::::::::
Persephone

::::
V2.0

:::
and

:::::::
beyond, although this would require additional complexities in seasonal yield variations that are largely averaged out

in long-term trends.

2 Methods

1.1 GCAM background and experimental goals10

The Persephone yield response functions are developed for use with models that couple energy, economy, agriculture and

land-use, such as GCAM. GCAM operates on a five year time step and is coupled with a physical Earth system emulator,

Hector (as in Figure 1, panels A and B), to explore global change questions in rapid enough evaluation times to allow for large

numbers of simulations to be analyzed as part of a wide range of experiments.

GCAM is a recursive dynamic partial equlibrium model that is calibrated to a historical base year of 2010 and used to15

simulate forward in time by incorporating changes in quantities such as population, GDP, and technology to produce outputs

that include land, water, and energy use as well as emissions and commodity prices. For agricultural production in GCAM,

yield change trends representing (generally positive) change assumptions over time due to non-climate factors (changes in

management, new seed genetics, new technologies, use of chemicals/fertilizers, adaptation, etc.) are used to calculate the

profitability of a crop-irrigation-fertilizer combination in each of 384 GCAM land units at each time step based on the20

global crop price. This profitability determines land allocated to each crop, and the combination of exogenous yields and land

allocation gives production of each crop-irrigation-fertilizer combination such that global supply and global demand are met

on each timestep. The details of this allocation are provided in Kyle et al. (2011); Wise et al. (2014). Shifting land allocation

among different crop-irrigation-fertilizer combinations leads to a degree of endogenous yield intensification within GCAM2.

To date, the only method for using GCAM to explore the far reaching impacts of agricultural yield changes due to future25

climate has been to draw predetermined scenarios undertaken by the GGCMs, such as crop yield under select emissions

pathways and ESM combinations, from public archives. These predetermined crop yield data sets are converted to exogneous

multipliers which are applied to GCAM’s exogenous technological yield change assumptions. Using this new yield change

assumption set, GCAM is re-run (Figure 1, panel A).
2Note that this is a new feature from GCAM 5.0 and onward.

4



The Persephone yield response functions were developed
:::
The

::::::::
response

::::::::
functions

::::
also

::::::::
represent

:::
the

::::::::::
uncertainty

::
in

:::::
yield

:::::::
response

::::::
across

::::
crop

::::::
models

::
in

:::
the

::::::
C3MP

::::
data

::
set

:::
to

:
a
:::::
given

::::::
change

::
in

:::::
local

::::
Earth

:::::::
system

::::
state,

:
for use in three new types of

agricultural impacts studies with GCAM:

1. A partially coupled, feed forward study (Figure 1, Panel B) similar to methodology in Ruane et al. (2018). A future

climate time series of interest (a non-traditional RCP, climate stabilization level, or hypothetical drought, for instance) is5

input to the yield response functions, returning yield changes. These yield changes are applied as multipliers to GCAM

input files and GCAM is run forward for the entire time period of interest in order to trace the broad impacts on energy,

water, and land use of the future climate time series. In this type of study, we only capture the implications of climate for

human systems.

2. A fully coupled feedback loop that updates on every model timestep to understand how societal pressures drive environmental10

impacts which in turn create or reduce societal pressures (Figure 1, Panel C). In this case, the yield changes must be

calculated very quickly in order to evaluate on each step and interact with GCAM. In this type of study, we can capture

the effects of humans on climate and climate on humans, simultaneously.

3. Joint climate-crop uncertainty studies of the above two experiments. For tractability, the GCAM development team

specifically seeks a mean response function as well as two additional response functions that represent a range of yield15

response uncertainty. Persephone also stores the full predictive distributions of yield changes for any given CTW change

that these three response functions span. If a user desires a different representation of uncertainty, the distribution may

be sampled.

5



Figure 1. The current method for incorporating agricultural impacts into GCAM and two experimental designs for using Persephone v1.0

with GCAM. Panel A: The current method for incorporating yield changes from a global gridded crop model into GCAM. Panel B: A

partially coupled, feed forward study incorporating yield changes from a predetermined climate scenario into GCAM. Panel C: A fully

coupled feedback loop that iteratively updates agricultural yield impacts.
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2
:::::::
Methods

2.1 C3MP dataset

Full details of the C3MP protocols, design, and
:::
the

:::::::
location output archive can be found in Ruane et al. (2014); McDermid

et al. (2015). Here, we highlight some of the key features of the data set and outline our processing of C3MP data for use in

training response functions
::::
using

:::
the

::::::::::
Persephone

:::::::::
framework

::
to

::::
train

:::::
V1.0

:::::::
response

::::::::
functions

::::
with

:::
the

::::::::::
Persephone

:::::::::
framework.5

C3MP recorded yield response simulation results from a total of 1135 sites (differing by location, crops, crop model,

management, etc) for each of 99 CTW sensitivity tests designed to cover a range of CTW changes that most future climates

would fall into. For each site, each CTW test is applied to change a local timeseries
::::
time

:::::
series of weather data from 1980-2009

and then the crop model is run to produce 30 years of impacted yields for the CTW test, which are then averaged. In a typical

RCP 8.5 scenario, there are sometimes a few grid cells with local precipitation changes that are out of sample. We convert10

these out of sample points to the extreme of our sample so that we avoid extrapolation (eg a 74% local increase in precipitation

gets the response of 50% increase in precipitation - the maximum response to increased precipitation). Note that many of

these large percentage changes in precipitation are actually the symptoms of ESM biases or small precipitation changes in arid

regions that are unlikely to have agriculture. Holding to 50% precipitation change likely improves the fidelity of these estimates

(Ruane et al., 2014).15

The C3MP design resulted in a wider range of crops than had been previously sampled in a coordinated agricultural modeling

study. We separate the C3MP data into 25 different production groups for this analysis
::::::
training

::
in

:::
the

::::::::::
Persephone

:::::::::
framework

::
to

:::::
create

::::
V1.0

::::::::
response

::::::::
functions. Twenty-four of the 25 groups for this paper are collections of sites corresponding to different

crop-irrigation-latitude combinations: irrigated and rainfed versions of six key crops (Maize, Rice, Wheat, Soybeans
::::::
maize,

:::
rice,

::::::
wheat,

::::::::
soybeans, a C3-photosynthesis average, and a C4-photosynthesis average ), based on sites at the extended tropics20

(30�S to 30�N) and the mid-latitudes (30- 70�S, 30- 70�N) . The choice of breaking up groups by latitude zone was a rough

way to account for baseline local temperature (which is important in addition to the change from local temperature)without

having to eliminate the many valid C3MP sites that could not report local weather data due to data gaps or local government

restrictions
:::
(see

:::::::
Section

::::
2.1.1

:::
for

:::::
more

:::::
details

:::
on

:::::
spatial

::::::
scales). It is also noteworthy that the majority of C3MP sites had high

rates of fertilizer application, even in the extended tropics. These six crop groups were chosen because most IAMs already have25

experience incorporating such impacts from previous AgMIP exercises (e.g., Ruane et al. (2017); Calvin and Fisher-Vanden

(2017); Nelson et al. (2014); Wiebe et al. (2015); Ruane et al. (2018)), they cover the major agricultural commodities globally,

and they offer additional benchmarks for evaluating emulator success. In particular, the C3-photosynthesis production groups

represent an average response of a very wide range of C3 crops, including Wheat, Rice, and Soybeans
:::::
wheat,

::::
rice,

::::
and

:::::::
soybeans.

The C4-photosynthesis average is similarly defined, with sugarcane considered separately. The 25th production group is rainfed30

sugarcane in the extended tropics: no sugarcane sites outside of 30�S to 30�N were submitted to C3MP and only one irrigated

sugarcane site was submitted.

We cull the 1135 contributed C3MP output datasets according to a range of criteria:
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1. Sites simulated with notably older versions of crop models are eliminated. We thus eliminated uses of the DSSAT crop

model v3 (and prior), given that important updates in crop physiology were added in version 4 (Jones et al., 2003).

2. Site simulations that exclude CO2 fertilization responses, a fundamental variable examined here, were eliminated. We

thus eliminated the SarraH-Hv32 crop model (primarily millet and sorghum sites in West Africa).

3. When C3MP modelers provided simulation sets that were identical other than the use of local weather data or AgMERRA5

climate forcing data (Ruane et al., 2015)), we used only the local dataset to avoid double counting. AgMERRA was

provided for all datasets given frequent data gaps and governmental restrictions (Ruane et al., 2014).

These steps together eliminate more than 550 of the C3MP sites. Finally, for each production group, outliers are statistically

identified and eliminated (Davies and Gather, 1993; Bond-Lamberty et al., 2014), in addition to those previously identified

by the C3MP steering team. A total of 575 unique sites remain after culling, maps of which are included in Figure 2. These10

remaining sites cover 43 countries, 85 models, and 17 crop species. More than half of the C3MP sites have been eliminated,

but this still results in a larger number of diverse sites, models, and crop species performing coordinated sensitivity tests than

in any previous study (Asseng et al., 2013; Pirttioja et al., 2015; Fronzek et al., 2018). Since C3MP
:
, the AgMIP-Wheat team

has conducted an extensive analysis of temperature response at 30 wheat sites with 30 models (Asseng et al., 2015), but this

only captures one of the CTW dimensions. While15

2.1.1
::::::
Known

:::::::
caveats

::
of

:::
the

::::::
C3MP

:::::
data

::
set

:::::::::
Additional

::::::::
discussion

::
of
:::
the

:
C3MP

:::
data

:::
set

::
in

::
the

:::::::
context

::
of

::::
other

:::::::
AgMIP

::::::::
modeling

::::::
efforts

:
is
::::::::
presented

::
in
::::::::::::::::
Ruane et al. (2017)

:
.

:::
One

:::::::
relevant

:::::
point

:
to
::::
this

::::
work

::
is

::::
that,

:::::
while

:::::
C3MP

:
spatial coverage is not uniform

:::::::
spatially

:::::::
uniform

::
or

:::::::::::::::::
production-weighted for

any of the crops under consideration,
::::
sites

::
for

:
many of the major production regions are represented for each crop .

::::::
(Figure

:::
2).

:
A
::::::
major

::::::::
advantage

::
of

:::::
using

::::::::::
site-specific

::::
crop

::::::
models

::::
run

:::::::::
voluntarily

::
by

:::::::
experts

:
is
::::
that

:::
the

::::::::
individual

:::::::
baseline

::::
runs

::
at
::::
each

::::
site20

::::
have

::::
been

:::::::::
configured

::::::
against

:::::
local

::::::::::
information

::
in

:::
the

::::::::
historical

::::::
period.

::::::::
However,

:::
the

::::::::::
application

::
of

::::
crop

:::::
yield

:::::::
response

:::::
from

::::
these

::::
sites

::
to

:::::::
estimate

::::::::
response

::
in

:::
any

:::::
given

:::
grid

::::
cell

::::
with

::::::::::
temperature

:::
and

::::::::::
precipitation

::::
data

::
is

::::::::
imperfect

:::
by

::
its

:::::::::::::
methodological

:::::
nature.

::::
Yet

:::
this

:::::::::
extension

::
is

::::::::
necessary

:::
for

:::
use

::::
with

::::::::
GCAM:

::::::
gridded

:::::
yield

:::::::
changes

:::
for

:
a
::::::

subset
::
of

:::::
crops

:::::
must

::
be

::::::::::
aggregated

:::
and

::::::::
converted

:::
to

::::
yield

::::::
impact

::::::::::
multipliers

:::
for

::::
each

:::::::
GCAM

:::::::::
commodity

:::
in

::::
each

::::
land

::::
unit,

:::::::
defined

::
as

:::::
water

::::::
basins

::
in

:::::::
GCAM

::::::::::::::::
(Calvin et al., 2019)

:
.25

:::::
Given

:::
the

::::
size

:::
and

::::::
details

:::
of

:::
the

::::::
C3MP

::::
data

:::
set,

::::::::::
production

::::::
groups

:::::
were

::::::
formed

:::::
based

:::
on

::::
two

::::::
latitude

::::::
zones

::
as

::
a
::::
way

::
to

:::::::
account

:::
for

:::::::
baseline

:::::
local

::::::::::
temperature

:::::::
(which

::
is

::::::::
important

:::
in

:::::::
addition

:::
to

:::
the

::::::
change

:::::
from

:::::
local

:::::::::::
temperature)

:::::::
without

:::::
having

:::
to

::::::::
eliminate

:::
the

:::::
many

::::
valid

::::::
C3MP

::::
sites

::::
that

:::::
could

:::
not

:::::
report

::::
local

:::::::
weather

::::
data

::::
due

::
to

::::
data

::::
gaps

::
or

:::::
local

::::::::::
government

:::::::::
restrictions.

:::
As

::::
this

:::::::::
breakdown

:::::::
already

::::::
results

::
in

:::::
some

:::::::::
production

::::::
groups

::::
with

:::::
small

:::::::
sample

::::
sizes

::::
(see

:::::
Table

::
1

:::
and

:::::::
Section

:::::
3.1.1),

::::::
further

::::::
spatial

::::::::::::
disaggregation

::
of

::::::::::
production

:::::
group

::
is

:::::::::
unjustified

::
in

:::
this

::::
data

:::
set.

::::::
While

:::
this

::::::
means

::::
there

::::
will

:::
be

::::::
limited30

:::::
spatial

:::::::::
granularity

::
in
:::::
yield

:::::::
response

::::::::
functions

:
,
::::
there

:::
can

::::
still

::
be

::::::::::
appreciable

:::::
spatial

::::::::::
granularity

::
in

::::
yield

:::::::
changes

:::
due

::
to

::::::::
variation

::
in

::
the

:::::::
gridded

:::::
fields

::
of

::::::::::
temperature

:::
and

:::::::::::
precipitation

:::::::
changes.

::::::
Future

::::
data

:::
sets

::::
with

:::::
more

::::::::::::
comprehensive

::::::
spatial

::::::::
coverage

::::
than

::
the

::::::
C3MP

::::
data

::::
may

::
be

::::
used

::::::
rather

::
to

:::::
create

::::
V2.0

::::::::
response

::::::::
functions.

:
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The site-specific percent change in yield from the 1980-2009 baseline yield is the dependent variable used to train our

emulator (next section). While the output yields reported to the C3MP archive
::
see

:::::::
Section

::::
2.2).

:::::::
Baseline

::::::
yields differ widely

across sites for any given CTW combination, the
:::::
C3MP

:::::::
archive

:::
due

::
to

:::::::
regional

::::
and

::::::
system

::::::::::
differences,

:::::::
however

:::
the

:
percent

change in yield from baseline is more consistent across sites for each CTW. Further, by training on change in yield rather than

yield, we are able to introduce additional, scientifically grounded constraints to the functional forms we fit (Equations (4) -5

(6)). However, no baseline simulation was requested under the C3MP protocols. Therefore, for each individual set of output

yields corresponding to each of the 575 simulation sites, we estimate baseline yield so that we may calculate change in yield for

training the emulator. For each simulation site, we perform ordinary least squares estimation for 8
::::::::
regression

:::
for

::::
eight

:
different

functional forms relating the
::::::::::
site-specific output yield to the input CTW values . The form with the smallest root mean square

error across the 99 tests for the site is the one used to provide a best estimate of baseline yield . This best estimate of baseline10

yield is used to convert
:::
and

:::::
select

:::
the

::::
best

:::::::::
performing

:::::::::
regression

::
to

:::::::
estimate

:::::::
baseline

:::::
yield

::::::
(details

::
in
:::::::::
Appendix

::
B,

:::::::::
Equations

:::::::::
(B1)-(B8)).

:

:
It
::

is
::::

also
::::::

worth
::::::
noting

:::
that

:
the C3MP output yields at the site to percent changes in yield from baseline for emulator

training
:::::::::::
experimental

:::::::
protocols

::::::::::::::::::::::::::::::::::::
(Ruane et al., 2014; McDermid et al., 2015)

::
do

:::
not

:::::::
account

:::
for

:::::::
changing

:::::::
growing

:::::::
seasons,

:::::
either

::::::
through

:::::::
changes

::
of

::::::
within

::::::
season

::::::::::
distribution

::
of

::::::::::
temperature

:::
and

::::::
rainfall

:::
or

::
in

:::
the

:::::::
possible

::::::::::
autonomous

:::::::::
adaptation

::
of

:::::::
farmers15

::
to

::::
shift

:::::::
planting

::::
and

:::::::
harvest

:::::
dates.

:::::::::::::::::
Ruane et al. (2014)

::::::
showed

::::
that

:::::
within

:::::::
season

::::::::::
distribution

:::::::
changes

::::
had

:
a
:::::

small
::::::

effect

:::
and

:::
the

:::::::
possible

:::::
shift

::
in

:::::::
planting

::::
and

:::::::
harvest

::::
dates

::::
are

:
a
:::::

topic
::
of

::::::::::
adaptation.

:::::::::
Modeling

::::::::::
autonomous

:::::::::
adaptation

:::::::::
behaviors

:
is
::

a
::::::::::
challenging

::::
area

:::
for

:::::::::::
coordinated

::::::::::
agricultural

::::::
efforts

:::
and

::
is
:::::

only
::::::::
beginning

:::
to

:::
be

::::::::
addressed

:::
in

::::::::::
coordinated

:::::::::
sensitivity

:::::::::::::
intercomparison

::::::
studies

::
as

::
a

:::::::
scenario

::::::
option,

::::
with

::
no

:::::::
publicly

::::::::
available

::::
data

:::
sets

::
at
::::
this

::::
time.
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Figure 2. Maps of the C3MP data set culled sites. Each site represents a site-specific model of a single crop, with differing management

practices. The sites are overlaid on Monfreda et al. (2008) harvested area data, except for the C3 and C4 averages.
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2.2 Emulation

The majority of past agricultural yield emulator work has used ordinary least squares regression to estimate coefficients of

functional forms. Given a set of predictors, x, and given a particular value of the predictors xi with corresponding training data

yi, an emulator would be some linear-in-parameters function f(x) that returns an emulated value f(xi) for comparison with

yi. Ordinary least squares regression requires that residuals ri = yi�f(xi)⇠N(0,�2) for all i (e.g., Williams and Rasmussen,5

2006, Section 2.1.1). A key requirement is that � is a constant value across all i.

Figure 3 displays the spread of yield responses across sites for each CTW test for one production group, rainfed soybeans

between 30- 70�S, 30- 70�N (the mid-latitudes). A successful emulator will produce the mean response (Figure 3, black dots)

across sites for eah
:::
each

:
CTW. Therefore examining the spread of the individual site yield changes about the mean yield gives

some sense of the behavior of residuals in the most successful emulation case.The spread of yield change across sites relative to10

the mean response is different for each CTW test and appears to change in a systematic way - larger magnitude changes in yield

are correlated with greater spread across sites. In light of this, a classic, ordinary least squares regression is not an appropriate

approach for this emulator. We also desire more than just the mean response: we desire a measure of how this variation

of site responses changes with CTW. With these considerations in mind, we take a slightly different approach to creating the

Persephone response functions
::::
V1.0

::::::::
response

::::::::
functions,

:::::::
working

::::
from

::::
texts

:::::
such

::
as

:::::::::::::::::::::::::::::::::::::::::::::::::::::
Gelman et al. (2013); Sivia and Skilling (2006); McElreath (2016)15

.
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Figure 3. A plot of the percent yield change at each Rainfed Soybeans
:::::
rainfed

:::::::
soybeans

:
in the mid-latitudes site (blue points) for each CTW

test (each horizontal line of points is a different test). The black dot for each test represents the mean response across the sites for that test.

We create the Persephone
::::
V1.0 response functions to emulate the mean yield response and two additional yield response

scenarios spanning a range of individual site responsesfor use in GCAM. For a given production group (crop - irrigation -

latitude zone combination), we collect the data for the 99 CTW tests for each of K C3MP simulation sets drawn from the

culled-down archive. In other words, for each of 99 CTW combinations, there exist K 30-year average yield percent changes

from the baseline (no changes in CTW) for a group. This ensemble of 99K yield changes is used to calculate the posterior5

densities for every parameter of µCTW and �CTW in the model defined by Equations (1) - (7) according to Bayes’ theorem

(posterior / likelihood⇥ prior). From the posteriors, the maximum a posteriori (MAP) estimates of parameters, the most

plausible value for each parameter given both the model being used and the training data, is returned.

We define our likelihood as
:
a
::::::
normal

::::::::::
distribution

::::
with

:::::
mean

::::::
µCTW :::

and
::::::::
variance

::::::
�2
CTW :

:

�Y emulated
CTW ⇠N(µCTW ,⌃�2

::CTW ) (1)10

For a production group with site-specific yield responses that are normally distributed for each CTW value, µCTW is the

mean response across sites for that CTW value (the black points in Figure 3), and ⌃CTW ::::::
�2
CTW is a measure of agreement

(or disagreement) of responses across sites for that CTW value. We present results for our most broadly optimal µCTW and

⌃CTW :::::
mean

:::
and

:::::::
variance

:
functional form combination in this paper, and present the details of our selection criteria among

the different functional forms in the Appendixl
::::::::
Appendix.15
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To have unitless coefficients in our emulator, all predictor variables are standardized. Defining the collection of 99 T changes

sampled by C3MP as TC3MP , the collection of precipitation changes as WC3MP , and the collection of CO2 concentrations as

CC3MP , we have:

�T =
T �Tbaseline

sd(TC3MP )

�W =
W �Wbaseline

sd(WC3MP )

�C =
C �Cbaseline

sd(CC3MP )

(2)

Tbaseline is a change of 0� C from baseline, Wbaseline is a 0% change in precipitation from baseline, and Cbaseline is 360ppm.5

Plugging these baseline values into Equation (2) returns �Tbaseline =�Wbaseline =�Cbaseline = 0, as one would expect.

We exploit the fact that we are emulating change in yield (and not yield) and the fact that �Tbaseline =�Wbaseline =

�Cbaseline = 0 in constructing Equations (4)-(7), which relate the mean and standard deviation of the likelihood in Equation

(1) to our unitless predictor values �C,�T,�W . By definition, percentage change in yield in response to no change in CTW is

0% at baseline for every individual C3MP site. This implies that µbaseline = ⌃baseline = 0
:::
both

:::::
mean

::::
and

:::::::
variance

::
at

:::::::
baseline10

::
are

::
0 for all production groups, and we must construct the Persephone response funtions

::::::::
functions to reflect this, independent

of the estimated baseline yield at each site. :
:

µbaseline = 0

�2
baseline = 0

(3)

This
:::::::::::
Implementing

::::
this

::::::::
constraint

:::
for

:::
the

:::::
mean

::
is

::::::::::::::
straightforward.

::::
Any functional form representation of µCTW :::

that
:

does

not include a constant parameter a0 and so at baseline,
:::
will

::::
force

:
µbaseline = 0% yield change , as desired.

:::::::
precisely

:::::::
because15

::::::::::::::::::::::::::::::::::::
�Tbaseline =�Wbaseline =�Cbaseline = 0.

:

⌃CTW = |�CTW | where

µCTW = a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2 + a7�T�W + a8�T�C + a9�W�C

+ a10�T�W�C + a11(�T )2�W + a12(�T )2�C + a13�T (�W )2 + a14�T (�C)2 + a15(�W )2�C

+ a16�W (�C)2 + a17(�T )3 + a18(�W )3 + a19(�C)3
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(4)

::::::::::
Constraining

::::
the

:::::::
variance

::
to

:::
be

::
0

::
at

:::::::
baseline

:::
as

::
in

::::::::
Equation

:::
(3)

::::::
should

:::
be

::::::
equally

:::::
easy

:::
by

::::::
simply

:::
not

::::::::::
considering

::::
any

::::::::
functional

::::
form

::::
that

:::::::
includes

:
a
::::::::
constant

:::::::::
parameter.

::::::::
However,

:::
this

::::::::
approach

::::
leads

::
to
:::::::::
numerical

:::::::
stability

:::::
issues

:::::
when

:::::::::
estimating20

:::::::::
parameters.

:::::::::
Therefore,

:::
we

:::::::
estimate

:::
the

:::::::
variance

:::::
using

:::
the

::::::::
following

:::::::::
functional

:::::
form:

�2
CTW =

⇣
b0 + b1�T + b2(�T )2 + b3�W + b4(�W )2 + b5�C + b6(�C)2 + b7�T�W + b8�T�C + b9�W�C

⌘2
(5)

13



::::
This

:::::
results

::
in

:::
the

:::::::::
following

::::::::
functional

:::::
form

:::::::::::
representation

:::
for

:::
the

:::::::
standard

:::::::::
deviation:

�CTW =+
q
�2
CTW

= |b0 + b1�T + b2(�T )2 + b3�W + b4(�W )2 + b5�C + b6(�C)2 + b7�T�W + b8�T�C + b9�W�C|
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6)

::::
This

::::::::
functional

:::::
form

::::::::
estimates

::::::::::
parameters

::::
that

::::
may

:::::::::::
individually

::
be

::::::::
negative

:::
but

::::::
which

:::::::
together

:::::
result

:::
in

::
a

:::::::::::
non-negative

:::::::
standard

::::::::
deviation

:::
for

:::
any

:::::
CTW

:::::
value

:::::
being

::::::::::
considered.

:
At baseline, this functional form representation has �baseline = b0

:::::::
standard

::::::::
deviation

:::::::::::::
�baseline = |b0| as opposed to the required �baseline = 0

::
in

::::::::
Equation

::
(3). This is done for numerical reasons5

and is addresed
::::::::
addressed

:
with the prior for b0 ⇠N(0,0.01)

::::::::::::::
b0 ⇠N(0,0.012). This constrains the value of b0 to be between

-0.02
::
% and 0.02

::
%

:
with 95.45% probability, reflecting that b0 should be as close to 0 as possible without causing numerical

solver issues. We consider it acceptable even if a scenario results in �Y emulated
baseline = 0.02% because such a �Y will be

incorporated
:::
This

::::::
results

:::
in

:::::::
�baseline::::::

values
::::::::
between

:::
0%

::::
and

:::::
0.02%

::::
and

::::::::
therefore

::::::::::::::::::::::::
0%�Y emulated

baseline  0.02%,
::::::
which

:::
we

::::
judge

:::::::::
acceptable

:::
for

:::::::::::
incorporating

:
into GCAM as a multipler

::::::::
multiplier. All other parameters have very broad priors:10

b0 ⇠N(0,0.012)

ai, bi ⇠ Uniform(�300,300) 8ai, bi, i 6= 0
(7)

The functional form for µCTW is equivalent to estimating the coefficients of a third order Taylor polynomial, which can

approximate a wide variety of functions fairly well. Similarly, the functional form for �CTW is equivalent
::::::::::
conceptually

::::::
related

to estimating the coefficients of a second order Taylor polynomial. Because of the C3MP experiemental
::::::::::
experimental

:
design,

emulating yield changes throughout the 21st century using Equations (1)-(7) does not require extending beyond the range15

of mean growing season CTW values used to train the Persephone
::::
V1.0

:
response functions. These functional forms are an

evolution from C3MP’s hybrid polynomial (Ruane et al., 2014).
::
An

::::::::::
exploration

::
of

:::::
other

::::::::
functional

::::::
forms

::
to

::::::
address

::::::::
potential

::::::::
overfitting

::
is

:::::::
included

::
in
:::::::::
Appendix

::
A.

:
Ruane et al. (2014) also reviews previous emulator forms across the literature, including

discussion of the potential to look at non-linear terms such as killing degree days used in Schlenker and Roberts (2009), for

example.20

From the model defined by Equations (1)-(7), we construct the three Persephone v1.0 response functions for each production

group, for use in GCAM and similar models:

Mean response: �Y emulated
CTW = µCTW ;�Y emulated

baseline = µbaseline = 0%

High response: �Y emulated
CTW = µCTW + |�CTW |;�Y emulated

baseline 2 (�0.02%,0.02%)with 95.45%probability

Low response: �Y emulated
CTW = µCTW � |�CTW |�Y emulated

baseline 2 (�0.02%,0.02%)with 95.45%probability

(8)

The default high and low responses are at one standard deviation of the production group yield responses (as opposed to two

or three) because we are interested in scenarios that capture a range of the simulated site responses, but not the most extreme25

simulated site response. This does not affect how µ and � are fit in Persephone v1.0, only how they are used. The Persephone

v1.0 code is written flexibly enough that a user more interested in capturing the most extreme simulated site response could

certainly add a multiplicative factor (e.g. µ+2|�|) when using µ and � without having to spend the computational time refitting.
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3 Evaluation

We primarily present figures and analysis using the model and response functions defined by Equations (1)-(8) because we

found these functional forms to be the most broadly optimal of those considered. We
::
To

:::::::::
investigate

::::::::::
overfitting,

:::
we

:
also

examined nine other possible functional form combinations of µCTW and �CTW for each production group, defined in

Equations (A1)-(A7). Details of the cross-validation experiments used as a method of functional form selection are in the5

Appendix. Briefly, because we are interested in the ability of any given response function to accurately predict yield changes

in response to CTW values not used for training, we perform leave-one (CTW test)-out cross-validation experiments for each

production group. The best performing functional form at the cross-validation experiments is then the selected functional form.

This can be done to find the most broadly optimal functional form (using the same functional form for all production groups,

Figure A1) or to find the best functional form for each production group (if a user wishes to vary the functional form for each10

production group, Table A10). This choice does not introduce additional fitting, or computational time. It is changed only by

the calls to each function in the Persephone R package by the user.

Here, we quantitatively evaluate the performance of the Persephone
::::
V1.0 response functions (Equation (8)) trained on the full

span of CTW values that the 99 tests represent for each production group (Section 3.1). We also present heuristic evaluations

of mean response function performance (Section 3.2).15

Files with the point estimate, as well as the standard deviation of the posterior distribution, for each coefficient in µ and � for

all 10 functional form combinations for all production groups are available (archived at https://doi.org/10.5281/zenodo.1414423)

and as part of the Persephone v1.0 R package (https://github.com/JGCRI/persephone).

3.1 Quantitative

We categorize the performance of the Persephone
::::
V1.0 response functions trained on the full span of CTW values (mean,20

high, and low response, Equation (8)) for each production group based on comparing the 99 emulated yields output from the

response functions to the 99 corresponding values from the C3MP simulation data: the in sample measurement of error. These

are the actual response functions an end user would have and it is important to have a performance measure for them, although

this is not the performance measure used to select functional forms.

The categorization is based on the normalized root mean square error (NRMS) and the comparison for each response function25

is as follows:

– The 99 emulated yields returned by the mean response function are compared to the mean yield response across the

production group C3MP sites for each of the 99 senstivity
:::::::::
sensitivity tests (what we call the simualted

::::::::
simulated mean

yields).

– The 99 emulated yields returned by the high response function are compared to the 84.135th percentile of yield responses30

across C3MP sites for each of the 99 senstivity
::::::::
sensitivity

:
tests (what we call the simulated high yields). This corresponds

to matching C3MP site responses at the mean plus one standard deviation level for each of the 99 sensitivity tests when

the production group C3MP site responses were normally distributed for each sensitivity test.

15



– The 99 emulated yields returned by the low response function are compared to the 15.865th percentile of yield responses

across C3MP sites for each of the 99 senstivity tests (what we call the simulated low yields). This corresponds to

matching C3MP site responses at the mean minus one standard deviation level for each of the 99 sensitivity tests when

the production group C3MP site responses were normally distributed for each sensitivity test.

As noted in Willmott (1984); Legates and McCabe (1999); Snyder et al. (2017), NRMS < 1 is one benchmark for adequate5

model performance, NRMS< 0.5 is a benchmark for good model performance, and NRMS = RMSE = 0 is perfect model

performance. We further subdivide these categories and define excellent in-sample performance as NRMS 0.25 for all three

response functions; good performance to be 0.25<NRMS  0.5 for at least one response function and NRMS 0.25 for

at least one response function; adequate performance to be all three response functions having NRMS < 1 but at least one

response function with 0.5<NRMS < 1; and finally poor performance occurs when any one of the three response functions10

has NRMS � 1.

The mean response function performs excellently for all of our production groups. Non-excellent in-sample performance is

driven by
:
,
:::::::
although

:
the performance of the high and low response functions

:::::
differs. These measures are presented in Table

1 for the response functions defined using cubic µCTW (Equation (4)) and quadratic �CTW (Equation (6)) for all production

groups. The excellent performance of the mean response function holds across all functional form combinations explored15

(Table A1-A9). In the event that a user is only concerned with a mean response scenario, a shared functional form for all

production groups is acceptable. A user interested in the high and low response functions may wish to use the production

group specific functional form combinations listed in Tabel
:::::
Table A10, which includes the in-sample performance metric for

the optimal functional form for each production group. The majority of production groups (17/25) feature excellent in-sample

performance while the remaining 8 production groups feature good overall performance. For more detail than the summary20

tables presented here, files of results for the leave-one-out cross validation exercises for all functional form combinations for

all production groups are available in the paper analysis archive.

We also present a dashboard of quantitative evaluation plots for four of our 25 production groups in Figures 5 and 4 to

provide a visual interpretation of the four in-sample performance categories. Each dashboard is organized to address the

following questions:25

– Top Left: For a given group, do the three representative responses span the range of sites? In this plot, individual site

yield changes for each test (blue dots), are overlaid with the emulated mean, high, and low response functions evaluated

for each test (black dots). Each horizontal line of points represents one of the 99 CTW sensitivity tests.

– Top Right: For a given group, how does the emulated mean for each of the 99 tests compare to the simulated mean for

each test?30

– Bottom Left: For a given group, how does the emulated high response for each of the 99 tests compare to the simulated

high yield for each test?

16



Table 1. Persephone v1.0 response function performance for all production groups, for cubic µCTW (Equation (4)), quadratic �CTW

(Equation (6))

Production group1 Num. C3MP sites NRMS mean2 NRMS high NRMS low In-sample Performance

c4 IRR mid 47 0.010 0.148 0.112 Excellent

Maize IRR mid 45 0.010 0.164 0.116 Excellent

Rice RFD mid 4 0.044 0.150 0.195 Excellent

Rice RFD tropic 41 0.020 0.199 0.146 Excellent

Soybeans IRR mid 32 0.017 0.230 0.176 Excellent

Soybeans IRR tropic 2 0.039 0.150 0.170 Excellent

Soybeans RFD mid 35 0.016 0.151 0.145 Excellent

Soybeans RFD tropic 9 0.043 0.198 0.160 Excellent

c3 RFD mid 165 0.010 0.316 0.270 Good

c4 RFD mid 74 0.016 0.319 0.241 Good

c4 RFD tropic 25 0.019 0.365 0.177 Good

Maize IRR tropic 7 0.012 0.345 0.118 Good

Maize RFD mid 66 0.018 0.293 0.230 Good

Maize RFD tropic 20 0.022 0.407 0.170 Good

Rice IRR tropic 53 0.088 0.339 0.261 Good

Wheat IRR mid 61 0.024 0.372 0.380 Good

Wheat IRR tropic 8 0.076 0.382 0.329 Good

Wheat RFD mid 103 0.021 0.302 0.280 Good

Wheat RFD tropic 4 0.093 0.364 0.311 Good

c3 RFD tropic 63 0.024 0.757 0.546 Adequate

c4 IRR tropic 14 0.012 0.998 0.214 Adequate

Rice IRR mid 6 0.029 0.656 0.427 Adequate

c3 IRR mid 103 0.012 1.038 0.701 Poor

c3 IRR tropic 67 0.072 1.662 0.790 Poor

Sugarcane RFD tropic 12 0.047 1.382 1.162 Poor

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70�S, 30- 70�N), “tropic" = 30�S to 30�N. 2. Note that the mean response function

performs “excellent" for all production groups. 17



– Bottom Right: For a given group, how does the emulated low response for each of the 99 tests compare to the simulated

low yield for each test?

Figure 4 displays one performance dashboard from each in-sample performance category for the broadly optimal, shared

functional form cubic µCTW and quadratic �CTW (Equations (4)-(6)), to aid interpretation of Table 1 (and Tables A1-A9).

As indicated in Table A10, any production group can be fit to result in response functions with an in-sample performance of5

good or excellent, if a user is willing to vary the functional forms used for each production group. Figure 5, left, presents the

dashboard for one of the production groups that featured poor performance when the common functional form cubic µCTW

and quadratic �CTW (Equations (4)-(6)) was used for all production groups: rainfed sugarcane in the extended tropics. Figure

5, right, presents the dashboard when the response functions are based on the production group specific functional forms

selected by cross-validation (Table A10): C3MP µCTW (Equation (A2)) and cubic �CTW (Equation (A7)). The high and10

low response functions perform better in the latter case, though it is at the cost of a slightly worse (but still excellent) mean

response function performance. Examination of the sugarcane entry in Tables 1, A1-A9 indicates that a cubic description of

�CTW (Equation (A7)) leads to better high and low response function performance than a quadratic representation (Equation

(A6)), regardless of functional form used for µCTW (Equations (A1)-(A5)). In other words, the uncertainty across C3MP site

responses for each CTW test requires a more detailed Taylor series approximation to describe. This is also generally the case15

for the other production groups that rated adequate or poor in-sample performance in Table 1: sometimes the C3MP individual

site yield responses are distributed in such a way for each CTW test that a more flexible fit for �CTW is necessary. Perhaps

unsurprisingly, this usually occurs for either very broad production groups (such as those based on C3-photosynthesis), or

for production groups with very few C3MP site outputs (irrigated rice in the mid-latitudes) rather than due to a discernible

biophysical trend or requirement.20
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Figure 4. Top left: Rainfed Soybeans
:::::::
soybeans

:
in the Mid-latitudes

::::::::::
mid-latitudes, an example of the excellent in-sample performance

category. Top right: Irrigated Wheat
::::
wheat

:
in the mid-latitudes, an example of the good in-sample performance category. Bottom left:

Irrigated Rice
:::
rice in the mid-latitudes, an example of the adequate in-sample performance category. Bottom right: Rainfed Sugarcane

:::::::
sugarcane

:
in the extended tropics, an example of the poor in-sample performance category (also seen in Figure 5, left). Vertical error bars

indicate 95% credible interval for each of mean, high, low emulated responses.19



Figure 5. Rainfed Sugarcane
:::::::
sugarcane in the extended tropics. Left: The performance dashboard for the most broadly optimal functional

form representations (i.e. if we want to use the same functional form combination for all production groups), and for which the high and low

response functions poorly reproduce the simulated high and low yields for each of the 99 tests. Right: The performance dashboard for the

production group specific functional forms (i.e. if we want the functional form to vary by production group). Vertical error bars indicate 95%

credible interval for each of mean, high, low emulated responses.

3.1.1
::::::::::
Production

::::::
groups

::::
with

:::::
small

:::::::
sample

:::
size

3.2 Heuristic

:
It
::
is
:::::
worth

::::::
noting

::::
that

:
7
:::

of
:::
the

::
25

::::::::::
production

::::::
groups

:::::::::
considered

::::
here

:::
are

::::::::::::
characterized

::
by

:::::
fewer

::::
than

:::
10

::::::
C3MP

::::
sites

::::::
(Table

::
1).

::::
For

::
all

::
of

:::::
these

:::::::
groups,

:
it
::

is
::::::::
possible

::
to

::
fit

::::
high

::::
and

:::
low

::::::::
response

::::::::
functions

::::
that

::::::
capture

:::
the

::::::
spread

::
of

:::
the

:::::::
group’s

::::::
C3MP

:::
site

::::::::
responses

::::
well

::::::::
(Figures

:
6
::::
and

:::
7).

:::
For

:::::
many

::
of

:::::
these

:::::::
groups,

:::
the

::::::
spread

::
in

::::::::
response

:
is
:::::::::

relatively
:::::
small.

::::
The

::::::::::
Persephone5

:::::::::
framework

::::
does

:::
not

:::
fail,

:::::
rather

:::
the

::::
data

::::
upon

::::::
which

:::
the

::::
V1.0

:::::::
response

::::::::
functions

:::
are

::::::
trained

::
is

::::::::
imperfect

:::
and

:::::
would

:::
be

::::::::
improved

::
by

::::::
greater

:::::::
density

::
in

::::::
spatial

::::::::
sampling.

:::::
Had

:::
the

::::::
spatial

::::::::::::
disaggregation

::::
used

:::
in

:::::::
forming

:::::::::
production

::::::
groups

:::::::
resulted

:::
in

:::::
small

::::::
sample

:::
size

::::::
groups

:::::
with

::::
more

:::::::::
significant

::::::
spread

::
in

::::
site

::::::::
response,

:::
the

::::::::::
Persephone

:::::::::
framework

::
is

:::::::
unlikely

::
to

::::::::
represent

:::
the

::::
full

:::::
spread

::
of

:::
the

:::::::
sample.

:::
As

:::
this

::
is

:::
not

:::
the

::::
case,

::
it
::
is

:::
left

::
to

::
an

::::::::
eventual

:::
user

:::
to

::::
judge

:::::::
whether

:::::
such

::::::::
responses

:::::
serve

::::
their

:::::::
purpose.

:
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:::::
Figure

::
6

::::::::
highlights

::::
this

:::
fact

:::
for

:::
the

:::::::::
production

:::::
group

:::::
with

:::::::
smallest

::::::
sample

::::
size,

:::::::
irrigated

::::::::
soybeans

::
in

:::
the

::::::::
Extended

:::::::
tropics.

:::
The

::::::
spread

::
of

::::::
C3MP

::::
sites

:::
as

::::
well

::
as

:::
the

:::::::::::
performance

::::::::::
dashboards

:::
for

:::
the

::::::
shared

::::::
optimal

:::::::::
functional

:::::
form

:::
(as

::::
from

:::::
Table

:::
1)

:::
and

:::
for

:::
the

::::::::::::
group-specific

:::::::
optimal

:::::::::
functional

:::::
form

::::::
(Table

:::::
A10).

:::::
While

::::
the

::::::
shared

:::::::
optimal

::::::::
functional

:::::
form

:::::::
(middle

::::::
panel)

:::::::::::
overestimates

:::
the

:::::
small

:::::
spread

::::::::
between

:::
the

:::
two

::::::
C3MP

::::
sites,

:::
the

::::::::::::
group-specific

:::::::
optimal

:::::::::
functional

::::
form

:::::
(right

::::::
panel)

:::::::
captures

::
the

::::::
spread

:::::
well.5

Figure 6.
::::::
Left:The

:::::
spread

::
of
::::
yield

::::::::
responses

::
for

:::
the

:::
two

:::::
C3MP

:::
sites

::::::
making

::::::
forming

:::
the

::::::
irrigated

:::::::
soybeans

::
in

::
the

:::::::
extended

::::::
tropics

::::::::
production

:::::
group.

::::::
Middle:

:::
The

:::::::::
performance

::::::::
dashboard

::
of

::
the

::::::
shared

:::::
optimal

::::::::
functional

::::
from

:::::
(Table

::
1)

::
for

:::
this

::::::::
production

:::::
group.

:::::
Right:

:::
The

::::::::::
performance

:::::::
dashboard

::
of
:::
the

:::::::::::
group-specific

::::::
optimal

:::::::
functional

::::
form

:::::
(Table

:::::
A10)

::
for

:::
this

::::::::
production

:::::
group.

:

:::::
Figure

::
7
::::::
repeats

::::
this

:::::::
analysis

:::
for

:::
the

::::
next

::::
three

::::::::
smallest

::::::
sample

::::
size

::::::
groups:

:::::::
rainfed

:::::
wheat

::
in

:::
the

::::::::
extended

::::::
tropics

::::::
(Top),

::::::
rainfed

:::
rice

::
in

:::
the

:::::::::::
mid-latitudes

:::::::::
(Middle),

:::
and

:::::::
irrigated

:::
ice

::
in

:::
the

:::::::::::
mid-latitudes

:::::::::
(Bottom).

::
In

::
all

:::::
three

:::::
cases

:::
the

::::::::::::
group-specific

::::::
optimal

:::::::::
functional

::::
form

:::::::::
represents

:::
the

::::::
spread

::
of

:::
the

::::
data

::::
well.

:::::
This

:
is
::::

also
:::
the

::::
case

:::
for

:::
the

::::
two

::::::::
remaining

::::::::::
production

::::::
groups

::::
with

:::::
fewer

::::
than

::
10

::::::
C3MP

:::::::
training

:::::
sites:

:::::::
irrigated

:::::
wheat

::
in
:::
the

::::::::
extended

::::::
tropics

::::
and

::::::
rainfed

::::::::
soybeans

::
in

:::
the

::::::::
extended

::::::
tropics

:::
(not

:::::::
shown).

:
10
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Figure 7.
:::
The

::::
same

::::::::::
arrangement

::
of

:::::
figures

:::
as

::
in

:::::
Figure

::
6,

:::
for

:::
the

:::::
rainfed

:::::
wheat

:::
in

::
the

::::::::
extended

:::::
tropics

::::
(Top

:::::
row),

:::::
rainfed

::::
rice

::
in

:::
the

::::::::::
mid-latitudes

::::::
(Second

:::::
row),

:::::::
irrigated

:::
rice

::
in
:::

the
:::::::::::

mid-latitudes
:::::
(Third

:::::
row),

:::
and

:::::::
irrigated

:::::
maize

::
in

:::
the

:::::::
extended

::::::
tropics

:::::::
(bottom

::::
row)

::::::::
production

::::::
groups.
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3.2
:::::::::

Qualitative

One motivation for the 25 production groups based on [Corn, Wheat, Rice, Soybeans
::::::
maize,

::::::
wheat,

::::
rice,

::::::::
soybeans, C3, C4

(minus sugarcane), and sugarcane] X [irrgated
:::::::
irrigated or rainfed] X [extended tropics or mid-latitudes] is to evaluate emulator

performance beyond the quantitative. Given that some GCAM users will only be interested in the mean response functions, it

is particularly important to validate that these functions capture key biological features of each crop, beyond the quantitative5

agreement for the 99 C3MP tests measured by the in-sample performance metric in Section 3.1.
::
In

:::::::::
particular,

::::
these

:::
are

:::::::
features

::::::::
motivated

::
by

::::::::::
biophysical

:::::::
intuition

::::
and

::::::
present

::
in

:::::
most

::
of

:::
the

::::::
C3MP

::::
sites.

:::::::::
Therefore

::
we

::::::
verify

:::
that

:::::
these

:::::::
features

:::
are

:::::::
retained

::
in

:::
the

::::::::
emulator.

:

We use impact response surfaces to visualize these features, examples of which are given in Figures 8 and 9. The three-

dimensional CTW space is most easily examined by looking at cross sections where one of the CTW dimensions is kept10

constant while the other two vary. The brown to blue colorbar
::::
color

:::
bar

:
in each of these figures depicts contours for the value

of the mean yield response (µCTW ) while the overlaid grayscale
::::::
labeled

::::
black

:
lines depict contours representing uncertainty

(�CTW , used to create the high and low response functions).

We first identify three important relationships we would expect a successful emulation of C3MP mean responses (brown to

blue colorbar
::::
color

:::
bar) to obey:15

– C3 crops respond strongly and positively to increases in global CO2 concentrations; C4 crops have noticeably less benefit

from CO2 increases.

– Agriculture in the tropics tends to response more negatively/less positively to changes in temperature than agriculture in

the higher latitudes as the extended tropics correspond to a higher baseline temperature.

– Irrigated crops have almost no response to changes in precipitation, whereas rainfed crops do.20

These benchmarks are met: Figure 8 features impact response surfaces that highlight the C3-photosynthesis and C4-photosynthesis

difference, the rainfed and irrigated difference, and the latitude difference. The full collection of impact response surfaces for

all production groups are included in the paper analysis archive. These benchmarks for the mean response are met in those

as well. When there are exceptions, we have investigated to find that the mean response function is faithfully representing

the underlying C3MP data and that it is the sampling of C3MP sites making up the production group responsible for the25

discrepancy. Note that, in Figure 8, uncertainty is greatest in the CO2-precipitation and CO2-temperature slices, and increases

with larger changes from the baseline condition. This follows with current practices for the process-based crop models forming

the C3MP data set: CO2 is clearly related to yields but the details of this relationship are highly uncertain and implemented

differently across process-based, site specific crop models.
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Figure 8. Select impact response surfaces - a collection of 2-parameter slices of our 3-parameter space (not a visualization of the full space).

The color represents the yield change for a given local CTW perturbation as a % of baseline yields (1980-2009 planting year average, position

shown as red square). The grayscale lines
::::::
Labeled

::::
black

:::::::
contours

:
are uncertainty across the submitted site specific crop models.

The pattern of yield response to CTW changes appears to be more qualitatively consistent across C3MP sites than the

quantitative differences across sites (for example, Figure 3). Figure 9 displays this pattern for one cross-section of CTW space

for 12 of 66 rainfed maize sites in the mid-latitudes, and for the emulated mean response. While the actual numerical values

of the response surfaces differ at each site, the pattern of response seen at most sites (increasing yield with high CO2 and low

temperature changes in the upper left, decreasing yields elsewhere) is consistent and shared by the emulated mean response.5

The high and low response functions are able to capture much of the quantitative spread in site responses, though, as noted in

Section 2.3, not the most extreme sites. We specifically included the sites at Ames, IA, Naousa, Greece, and Lublin Poland

because they feature the most qualitatively different patterns. The pattern at the 54 sites not displayed closely resemble the

other 9 sites in Figure 9. This pattern is seen in the broader impact response surfaces literature (Ruane et al., 2014; Pirttioja

et al., 2015; Fronzek et al., 2018) as well, further improving confidence in the emulated mean response. All individual site10

impact response surfaces are included in the paper analysis archive.
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Figure 9. Yield responses to changes in temperature and precipitation with fixed [CO2] = 360 ppm for 12 (of 66 total) rainfed Maize
:::::
maize

sites located in the mid-latitudes, as well as the emulated mean response for use in GCAM.

4 Applications

Figure 10 demonstrates the basic procedure followed in using Persephone within GCAM (using the average of 2071-2100

HadGEM2-ES RCP 8.5 projections as an example). The first requirement is a global gridded file of local precipitation and

local temperature drawn from climate projections, along with a global CO2 concentration level. Temperature and precipitation
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changes should be
::
are

:
calculated only for the relevant local growing season months in comparison to a 1980-2009 baseline

value. The different maps of local temperature and precipitation changes on the left side of Figure 10 reflect that there are

differences in the dates of the local growing season for rainfed maize and wheat. Note that this includes a global CO2

concentration of 812 ppm, compared to the baseline level of 360 ppm. The CO2 change alone leads to increased yields for

rainfed wheat mid-latitude even in the absence of changes in temperature and precipitation. Indeed, the higher CO2 elevates5

yields (compared to the baseline) across all but the most extreme hot and dry conditions. Conversely, the yield response for

rainfed tropical maize is barely helped by elevated CO2.

::
In

:
a
::::::
typical

::::
RCP

::::
8.5

:::::::
scenario,

:::::
there

:::
are

:::::::::
sometimes

:
a
::::
few

::::
grid

::::
cells

::::
with

::::
local

:::::::::::
precipitation

:::::::
changes

::::
that

:::
are

:::
out

::
of

:::::::
sample.

:::
We

::::::
convert

:::::
these

:::
out

::
of

:::::::
sample

:::::
points

::
to

:::
the

:::::::
extreme

:::
of

:::
our

::::::
sample

:::
so

:::
that

:::
we

:::::
avoid

:::::::::::
extrapolation

:::
(eg

::
a
::::
74%

:::::
local

:::::::
increase

::
in

::::::::::
precipitation

::::
gets

:::
the

::::::::
response

::
of

::::
50%

:::::::
increase

:::
in

::::::::::
precipitation

::
-
:::
the

::::::::
maximum

::::::::
response

::
to

::::::::
increased

::::::::::::
precipitation).

:::::
Note10

:::
that

:::::
many

::
of

:::::
these

:::::
large

:::::::::
percentage

:::::::
changes

::
in

:::::::::::
precipitation

:::
are

:::::::
actually

:::
the

::::::::
symptoms

:::
of

::::
ESM

::::::
biases

::
or

:::::
small

:::::::::::
precipitation

::::::
changes

:::
in

:::
arid

:::::::
regions

:::
that

:::
are

:::::::
unlikely

::
to

:::::
have

:::::::::
agriculture.

:::::::
Holding

::
to
:::::
50%

::::::::::
precipitation

:::::::
change

:::::
likely

::::::::
improves

:::
the

::::::
fidelity

::
of

::::
these

::::::::
estimates

:::::::::::::::::
(Ruane et al., 2014).

:

The second step in using Persephone for GCAM is that CTW changes for each agricultural region
:::
grid

::::
cell

::::
with

::::::
climate

::::
data

are passed into the Persephone
::::
V1.0 response functions (depending on species/management/latitude zone) to create the desired15

global gridded map of yield changes that would represent the likely agricultural response. The abrupt change in behavior across

30�N and 30�S (particularly noticeable for wheat in Southern Asia) are due to our division of training data into mid-latitudes

and extended tropics production groups. Those abrupt changes will soften as these impacts are aggregated to the larger GCAM

land region level before being applied as multipliers in the experiments detailed in Section 2.1.
:::::::
outlined

::
in

::::::
Figure

::
1.

Figure 11 presents the rainfed maize impact response surfaces and yield change maps for the
:::::::::::
bias-corrected

:::::::
ISIMIP

:::::
entry20

::
of HadGEM2-ES RCP 8.5

:::::::::::::::::::::
(Warszawski et al., 2014) 2071-2100 average CTW changes (displayed in Figure 10) for the low

(left), mean (center) and high (right) response functions. The high and low response surfaces result from adding or subtracting

the gray uncertainty contours to the brown-blue mean yield response contours in the mean response surfaces (Equation (8)).

Note that under the high response function, there are a few regions that experience increased yields due to large increases in

precipitation offsetting temperature increases. The differences in these three response functions will allow the boundaries of25

crop response uncertainty to be run through GCAM, resulting in a spread of socioeconomic and environmental impacts in

response to a particular future climate.
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Figure 10. Tracing the path from gridded local growing season temperature and precipitation changes and global CO2 = 812 ppm

concentration under HadGEM2-ES RCP 8.5 for 2071-2100 compared to 1980-2009, through the relevant yield response functions

(represented here as Impact Response Surfaces
:::::
impact

::::::
response

:::::::
surfaces) to generate mean yield change maps for Rainfed Maize

::::
maize (top)

and Rainfed Wheat
:::::
rainfed

:::::
wheat (bottom). The open red square is placed at no change in temperature and precipitation for each Impact

Response Surfaces
::::

impact
:::::::
response

::::::
surface. For plotting clarity, we use a harvested area mask of grid cell harvested area > 10 hectares in the

SPAM 2010
::::
2005 data set (You et al., 2014)
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Figure 11. Low, mean, and high response surfaces for the mid-latitudes (top row) and extended tropics (middle row) for Rainfed Maize
:::::
rainfed

::::
maize, as well as the resulting maps of yield changes under the same HadGEM2-ES RCP 8.5 2071-2100 CTW changes as Figure 10.

4.1
::::::::::

Comparison
::
to

:::::
other

:::::
crop

::::::::
modeling

::::::
results

:::
We

:::::
further

::::::::
examine

::
the

::::::::::
Persephone

::::
V1.0

::::::::
response

::::::::
functions

:::::
driven

::
by

:::::::::::::
HadGEM2-ES

::::
RCP

:::
8.5

::::
CTW

:::::::
changes

:::
by

:::::::::
comparing

:::
our

:::::
results

::::
with

:::::::
previous

:::::::
AgMIP

:::::
global

:::::::
gridded

::::
crop

:::::
model

::::::::
(GGCM)

::::
yield

::::::
change

::::
data

:::::::
released

:::::
under

::::::
ISIMIP

:::::::::::::::::::::::::::::::::::::::::
(Rosenzweig et al., 2014; Warszawski et al., 2014)

:
.
::
In

:::::
order

::
to

:::::::
compare

::::
the

:::
best

::::::::
possible

::::::::
emulation

:::
of

:::
the

::::::
C3MP

::::
data

:::
set

::
to

:::
the

:::::
range

::
of

::::::::::::::
AgMIP/ISIMIP

::::::
GGCM

:::::::
results,

:::
the

:::::::::
production

::::::::::::
group-specific

::::::
optimal

:::::::::
functional

:::::
forms

::::::::
provided

::
in

:::::
Table

::::
A10

:::
are

::::
used

::::
here.

:::
To

::::
have

:::
the

:::::
most

:::::
direct

::::::::::
comparison5

:::::::
possible,

:::
the

:::::::
ISIMIP

::::::
GGCM

:::::
yield

::::
time

::::::
series

::::
were

:::::::::
converted

::::
from

::::::
actual

::::
yield

::::::
values

::
to

:::::::
percent

:::::::
changes

::::
from

::::::::::
1980-2009

:::::::
baseline

:::::
yields.

::
It

::
is

::::::::
important

::
to

::::
note

:::
that

:::
the

:::::::
GGCMs

:::::
were

:::::
driven

::
by

::::::::
historical

:::::::
climate

:::
data

:::::
from

:::::::::
1980-2004.

:::::::::
2005-2009

:::::
yield

:::
data

:::
for

:::::
each

::::::
GGCM

::::
was

::::::
driven

::
by

:::::::::::::
HadGEM2-ES

::::
RCP

::::
8.5,

::::
given

::::
that

::::
this

:::
was

::::::::::
considered

:
a
:::::::
“future"

:::::::::
simulation

:::::::::
according

::
to

:::
the

:::::
GCM

:::::::::
projections

:::::
from

::::
2005

::::::::
forward.

::::
The

:::::
results

:::::
from

:::
the

:::::::
GGCMs

::::::
which

::::::
include

:::::::::::::
model-specific [

::::
CO2]

:::::
effects

:::::
were
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::::
used.

:::::
Both

:::::::::
Persephone

:::::
V1.0

:::
and

:::
the

:::::::
ISIMIP

::::::
GGCM

:::::
yield

::::::
change

::::
data

:::
are

::::::::
compared

::::
only

:::
on

::::
grid

::::
cells

::::
with

::::::::
harvested

::::
area

::
>

::
10

:::::::
hectares

::
in

:::
the

::::::
SPAM

::::
2005

::::
data

:::
set

::::::::::::::
(You et al., 2014)

:
.

::
As

:::
the

:::::::
ISIMIP

::::::::
GGCMs

:::
did

:::
not

:::::::
directly

:::::::::
participate

::
in
::::

the
:::::
C3MP

::::::::
exercise,

:::
no

::::::
version

:::
of

:::::
these

:::::::
GGCMs

::::
was

::::
used

:::
in

:::
the

::::::
training

::::
data

::::
that

::::::::
produced

:::
the

:::::::::
Persephone

:::::
V1.0

::::::::
response

::::::::
functions,

:::
and

:::::
there

::
is

::
no

::
a
:::::
priori

:::::
reason

::
to

::::::
expect

:::
the

::::::::::
Persephone

::::
V1.0

:::::
range

:::
of

:::::
yield

:::::::
changes

::
to

::::::
match

:::
the

:::::::
ISIMIP

::::::
range.

::::
The

::::::::::
site-specific

::::::::::
simulations

:::::
using

:::::::
various

:::::::
versions

:::
of

:::::::
DSSAT5

::::::::
submitted

::
to

:::
the

:::::
C3MP

:::::::
exercise

::::::
feature

::::::::
different

:::::::::::
configurations

::::
and

:::::
model

:::::::
versions

::::
than

:::
the

::::::
ISIMIP

:::::::
GGCM

:::::::
pDSSAT

::
(a

::::::
global

::::::
gridded

:::::::::::::
implementation

::
of

::::::::
DSSAT).

:::::
Given

::::
this

::::
fact,

:::
and

:::
that

:::
the

::::::
C3MP

::::::
archive

:::::::
includes

::::::
results

::::
from

:::::::::::
non-DSSAT

::::::::::
site-specific

::::
crop

:::::::
models,

::::
there

::
is
:::::
again

:::
no

::::::::::
expectation

::
of

::::::::::
replicating

:::::::
pDSSAT

::::::
results

:::::
even

::::::
though

:::
the

:::::::::::
fundamental

::::
crop

:::::::::
responses

:::
are

::::::
similar.

::::::
Finally,

::
it
::
is

::::
also

:::::
worth

:::::
noting

::
is

:::
that

:::
the

:::::::::
1980-2009

:::::::::::::::
historical/RCP8.5

::::::::::::
HadGEM2-ES

:::::::::
simulation

::
is
:::
not

:::
the

:::::
same

::
as

:::
the

::::::::
historical,

:::
site

:::::::
specific

::::
and

::::::::::
AgMERRA

::::
data

::::
used

:::
by

:::::::
modelers

::::::::::
submitting

::
to

::::::
C3MP.

::::
This

:::::::::::
combination

::
of

:::::::
different

:::::::::
responses10

:::
and

:::::::
different

::::::::
baselines

::::::
across

::::::
C3MP

:::
and

::::
the

::::::
ISIMIP

::::::::
GGCMs

:::::
means

:::::
there

:::::
could

:::
be

::::::::::
considerable

::::::::::
differences

::
in

::::::::::
interannual

::::::::
variability

::::
and

:::::
mean

:::::
yields,

::::::
which

::::
may

:::
be

:
a
::::::
reason

:::
that

:::
the

::::::::::
Persephone

:::::
V1.0

:::::::
response

::::::::
functions

:::::
may

::::::
predict

:::::::
different

:::::
yield

::::::
changes

:::::
from

:::
the

::::::
ISIMIP

:::::
range

:::
for

:::::
some

:::::
crops.

:

::::::::
However,

::
it

::
is

::::
still

:::::
worth

:::::::::
evaluating

::::
our

::::::
results

::::::
against

:::
the

:::::::
GGCM

:::::
data.

::::::
Figure

:::
12

::::::::
compares

:::
the

::::::
range

::
of

::::::::::
aggregated

::::::::::::::::::::::::::::::::::::::::::::
(via MIRCA2000 harvested area Portmann et al., 2010)

:
,
::::
time

:::::::
averaged

:::::::::
2071-2100

:::::
yield

:::::::
changes

::::
from

::::::::::
Persephone

::::
V1.0

:::::::
response15

:::::::
functions

:::
to

:::
the

:::::
range

::
of

:::::::
ISIMIP

:::::
yield

:::::::
changes

::
at

:::
the

::::::
global

::::
level

:::::
(top),

::
in
:::

the
::::::::

extended
::::::

tropics
:::::::

latitude
:::::
band

:::::::
(bottom

::::
left)

:::
and

::
in

:::
the

:::::::::::
mid-latitudes

:::::
band

:::::::
(bottom

:::::
right)

:::
for

::::
both

:::::::
irrigated

::::
and

::::::
rainfed

::::::
maize,

::::
rice,

:::::::::
soybeans,

:::
and

::::::
wheat.

::::
For

:::::::
context,

::
in

::
the

:::::
time

::::
since

:::
the

::::::::::::::
AgMIP/ISIMIP

::::::
results

::::
were

:::::::::
published,

:::
the

::::::::::::::
IMAGE-LEITAP

::::::
model

:::
has

:::::
been

::::::
largely

::::::::::
abandoned.

:::::::
Further,

::::::::::::::
IMAGE-LEITAP,

:::::::::::
LPJ-GUESS,

:::
and

:::::::
LPJmL

::::::
feature

:::::::
relatively

::::::::
unlimited

:::::::
nutrient

::::::::::
constraints,

:::::::
resulting

::
in

:::::::
frequent

::::
yield

::::::::
increases

::::
given

:::
an

::::::::::::
unconstrained

::::
CO2

::::::::
response.

::::
For

:::::
many

::
of

:::
the

:::::::::
production

:::::::
groups,

:::
the

:::::
range

::
of

::::::::::
Persephone

:::::
V1.0

::::
yield

:::::::
changes

::::
lies20

:
at
:::::

least
:::::::
partially

::::::
within

:::
the

::::::
ISIMIP

::::::
range,

:::::::::
suggesting

::::
that

:::
the

::::::::
response

::::::::
functions

:::
for

::::
those

::::::::::
production

::::::
groups

:::::
result

::
in

:::::
yield

::::::
changes

:::::::::
consistent

::::
with

:::::::
ISIMIP.

::::::
Those

:::::::::
production

:::::::
groups

:::
that

:::::
differ

:::::::::::
substantially

:::::
from

:::
the

:::::::
ISIMIP

:::::
yield

:::::
range

:::
are

:::
due

:::
to

:::::::::
underlying

:::::::::
differences

::
in

:::
the

::::::
C3MP

::::
data

:::
set

:::::
versus

:::::
those

::::::::
produced

:::::
from

:::
the

::::::
ISIMIP

::::::::
GGCMs.

::::
That

:::
is,

:::::
while

:::
the

::::::::::
Persephone

:::::::::
framework

:::::::
emulates

:::
the

::::::
C3MP

::::
data

::::
well,

::::::::
response

::::::::
functions

:::::
based

::
on

::
a
:::::::
different

::::
data

:::
set

::::
may

::::::
behave

:::::
more

::::::::::
consistently

::::
with

::
the

:::::::
ISIMIP

::::::::
GGCMs

:::::
given

:::::::::
differences

:::::::
between

::::
the

:::::
model

::::::::
selection

::::
and

::::
local

:::::
farm

::::::
system

::::::::::::
configurations

::
of

:::
the

::::::
C3MP

::::
and25

::::::
GGCM

::::::::::
ensembles.

:

::
Of

:::
the

::::::::::
production

::::::
groups

::::
with

:::::
yield

:::::
ranges

::::::
much

::::::
smaller

::::
than

:::
the

::::::
range

::
of

:::::::
ISIMIP

::::
yield

::::::::
changes,

::::::
several

::::::::
(irrigated

::::
and

::::::
rainfed

:::::::
soybeans

::
in
:::
the

::::::::
extended

::::::
tropics

:::
and

:::::::
irrigated

::::
and

::::::
rainfed

:::
rice

::
in
:::
the

::::::::::::
mid-latitudes)

:::
are

:::::
small

::::::
sample

:::
size

::::::
groups

::::::
(Table

::
1,

::::::
Section

::::::
3.1.1).

::::::
Future

::::::::::
coordinated

::::::::
sensitivity

::::::
studies

:::
of

::::::::::
site-specific

::::
crop

::::::
models

::::::
would

::::::
ideally

::::::
include

:::::
more

:::::::::::
participation

::
in

:
a
:::::::
broader

:::::
range

::
of

:::::::
regions,

:::
but

:::
this

::
is
::
a

::::::
current

::::::::
limitation

::
of
:::

the
::::::::::

Persephone
:::::
V1.0

:::::::
response

:::::::::
functions.

::::
This

::::
adds

:::::::::
additional30

::::::
support

::
to

:::
the

::::
call

::
for

::
a
::::::::
designed

:::::::
network

::
of

::::::::
site-based

:::::
crop

::::::
models,

::::::::
intended

::
to

:::::
cover

::
all

:::::::
regions

:::
and

::::::::
systems,

::
to

:::::::::
participate

::
in

:::::::::
coordinated

:::::::::
sensitivity

::::::
studies

::::::
raised

::
in

:::::::::::::::
Ruane et al. (2017)

:
.
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Figure 12.
:::::::::
Aggregated

:::
(via

::::::::::
MIRCA2000

::::::::
harvested

:::
area

:::::::::::::::::
(Portmann et al., 2010)

::
),

:::
time

:::::::
averaged

:::::::::
2071-2100

::::
yield

::::::
changes

:::
for

:::::::::
Persephone

::::
V1.0

::::::
response

::::::::
functions

:::
and

::
the

::::::
ISIMIP

::::::
GGCM

:::::
range

::
of

:::::
results

:::
for

::::::
multiple

:::::::::
production

:::::
groups.

::::
Top:

:::::::::
Comparison

:::
of

:::::
global

::::::
average

::::
yield

::::::
changes.

::::::
Bottom

:::
left:

:::::::::
Comparison

::
of
::::::
average

::::
yield

::::::
changes

::
in

:::
the

:::::::
extended

:::::
latitude

:::::
band.

:::::
Bottom

:::::
right:

:::::::::
Comparison

::
of

::::::
average

::::
yield

::::::
changes

:
in
:::
the

::::::::::
mid-latitude

:::::
band.

:::
The

::::::::::
Persephone

:::::
V1.0

:::::
range

::
of

:::::
yield

:::::::
changes

:::
for

:::::::
irrigated

::::::
maize

::::
also

:::::::::
noticeably

::::::
departs

:::::
from

:::
the

:::::::
ISIMIP

:::::
range

::
of

:::::
yield

::::::
changes

:::
in

:::
the

:::::::::::
mid-latitudes

::::::
(Figure

::::
12,

::::::
bottom

:::::
right),

::::::
which

::
in

::::
turn

:::::
drives

::::
the

:::::::::::
disagreement

::
at

:::
the

::::::
global

::::
level

:::::::
(Figure

:::
12,

::::
top).

::::
This

::
is

:::
not

::::
due

::
to

:::
an

::::
error

::
in
:::::::::

emulation
::
or
::::

due
::
to

:::::
small

:::::::
sample

::::
sizes

::::::
(Table

::
1,

::::::
Figure

::
7,

::::::::
bottom),

:::
but

:::::
rather

::::
due

::
to

::
a

::::::::::
fundamental

:::::::::::
disagreement

:::
in

:::
the

::::::::
predicted

::::::
maize

:::::::
response

:::::::
among

:::
the

::::::::::
site-specific

::::
crop

:::::::
models

::
of

::::::
C3MP

::::
and

:::
the

:::::::
ISIMIP
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:::::::
GGCMs.

::
It
::
is
::::::

worth
::::::
noting

:::
that

:::::
yield

:::::::
changes

::::::::
predicted

:::
by

::::::::::
Persephone

:::::
V1.0

:::::::
response

:::::::::
functions

:::
are

:::::::::
consistent

::::
with

:::::
work

::::::::
examining

::::::
maize

:::
site

:::::
data.

:::::::
Namely,

:
a
:::::

2014
::::::::::
site-specific

::::::
model

::::::::::
comparison

:::::
study

::
by

:::
the

:::::::::::::
AgMIP-Maize

::::
team

:::::
found

::::::::
irrigated

:::
and

::::::
rainfed

::::::
maize

:::::
yield

:::::::
changes

::
in

::::::::
response

::
to

::
a
::::
local

:::::::::::
temperature

:::::
+6�C

::
of

:::::::
similar

:::::
values

:::
to

:::
the

::::::::::
Persephone

:::::
V1.0

:::::
range

::
of

::::::::
responses

:::::::::::::::::::::::::::::
(see Figure 3 of Bassu et al., 2014).

::::
The

:::::::::::::
HadGEM2-ES

::::
RCP

:::
8.5

:::::
local

:::::::
growing

::::::
season

::::::::::
temperature

::::::::::
2071-2100

::::::
change

::::
map

:::
for

:::::::
irrigated

:::::
maize

:::::
used

::
to

:::::
drive

:::
the

::::::::::
Persephone

::::
V1.0

::::::::
response

::::::::
functions

::
is

::::::
shown

::
in

::::::
Figure

::
13

::::
and

:
it
::

is
::::::

worth5

:::::
noting

::::
that

:::::
many

::::::
major

::::::::
producers

:::
of

:::::
maize

:::
see

:::::::::::
temperature

::::::::
increases

::
of

:::
at

::::
least

::::::
+6�C.

:::::::
Further,

:::::
recent

::::::::
analysis

::
of

::::::
FACE

::::::::::
experiments

:::
and

:::::
crop

:::::
model

::::::
results

:::::::
suggest

::::
that

:::::
maize

::::::::
primarily

:::::::
benefits

:::::
from

::::
high

:
[
:::
CO2]

:::::
during

:::::::
drought,

:::::::::
indicating

::::
that

::::::
models

::
of

:::
the

::::::
effects

::
of

:
[
::::
CO2]

:::::::::
fertilization

:::
on

:::::::
irrigated

::::::
maize

::::
(and

::::::
rainfed

:::::
maize

::::::
during

:::::::::::
non-drought

:::::::
periods)

::::
may

::
be

::::::
overly

::::::::
beneficial

:::::::::::::::::
(Durand et al., 2018)

:
.
::::
This

:::::::
suggests

:::
that

:::
the

:::::
more

:::::::::
pessimistic

::::::::
irrigated

:::::
maize

:::::
yield

:::::::
changes

:::::::
predicted

:::
by

:::
the

::::::
C3MP

::::
sites

:::
and

::::::::
therefore

::::::::::
Persephone

::::
V1.0

:::
are

:::::
more

:::::::::
consistent

::::
with

::::::::::
site-specific

::::
crop

::::::
models

::::
and

:::::
FACE

:::::::::::
experiments

::::
than

::::
they

:::
are10

::::
with

:::
the

::::::
ISIMIP

:::::::
GGCM

:::::
range

::
of

::::::
results.

:::::
While

::
it
::::::
would

::
be

::::
ideal

::
to
:::::
have

::::::
GGCM

::::::
results

::::
from

:::::
more

:::::::
GGCMs

::::
and

::::
more

::::::
recent

:::::
model

:::::::
versions

:::
for

:::::::::::
comparison,

:::::
such

:::::
results

::::
are

:::
not

:::
yet

::::::
public.

:::::
This

::::::::::
discrepancy

:::::::
between

::::
the

::::::
results

::
of

::::::::::
site-specific

:::::
crop

::::::
models

:::
and

::::::
FACE

::::::::::
experiments

:::::
versus

::::::::
GGGMs

:::::::
supports

:::
the

:::
call

::
in
:::::::::::::::::
Leakey et al. (2012)

:::
for

::::::
further

::::::::::
investigation

::
to
::::::::::
understand

:::::::
regional

:::
and

:::::::::::::
system-specific

:::::::
variation

::
in
:
[
:::
CO2]

::::::::
response.

Figure 13.
::::::
Gridded

::::
local

:::::::
growing

:::::
season

:::::::::
temperature

::::
and

::::::::::
precipitation

::::::
changes

:::
for

:::::::
irrigated

:::::
maize

::::
under

::::::::::::
HadGEM2-ES

::::
RCP

:::
8.5

:::
for

::::::::
2071-2100

:::::::
compared

::
to

:::::::::
1980-2009,

:::::
global

::::
CO2 :

=
:::
812

::::
ppm

:::::::::::
concentration.

:::::
Figure

:::
14

:::::::
includes

::
a
::::::
spatial

::::::::::
comparison

::
of

::::
the

::::::::::
Persephone

::::
V1.0

::::
low,

::::::
mean,

:::
and

:::::
high

::::
yield

::::::::
changes

:::
for

:::::::
irrigated

::::::
maize15

:::::::::
(analogous

::
to

::::::
Figure

:::
11)

::::
with

:::
the

:::::
range

:::
of

::::::
ISIMIP

:::::::::
responses

::
in

::::
each

::::
grid

::::
cell.

:::::::::::
Specifically,

::::
maps

:::
of

:::
the

:::::::::
minimum,

:::::::
median,

:::
and

:::::::::
maximum

:::::::
irrigated

::::::
maize

::::
yield

:::::::
change

:::::
across

:::
the

:::::::
ISIMIP

::::::::
GGCMs

:::
are

::::::
plotted

::
in

:::::
each

:::
grid

:::::
cell;

::
no

:::::::::
individual

:::::::
GGCM

:::::
would

:::::::
produce

:::
any

:::
of

::::
these

::::::
maps.

::
As

:::::
noted

::::::
above,

:::
the

::::::::::
Persephone

:::::
range

::
of

:::::
yield

:::::::
changes

::
in

::::
each

::::
grid

:::
cell

::
is

::::::::
generally

:::::
more

:::::::::
pessimistic

::::
than

:::
the

:::::::
ISIMIP

::::::
range,

:::
but

::::
there

:::::
does

::::::
appear

::
to

:::
be

::::::
spatial

::::::::::
consistency

::
in

:::::
terms

::
of

::::::::
response

:::::::
strength

::
in
:::::::

several

::::::
regions

:::::::
between

:::
the

::::::::::
Persephone

:::::
V1.0

:::::
range

::::
and

:::
the

:::::::
ISIMIP

:::::
range.

::::::
C3MP,

::::
and

::::::::
therefore

:::
the

::::::::::
Persephone

:::::
V1.0

::::::::::
projections,20

::::::
capture

::
a

:::::
strong

:::::::::::
temperature

::::::::::
dependence

::::
and

:
a
::::::

lesser
:::::::
response

:::
to

:::::::::::
precipitation

::::::::::
(particularly

:::
for

::::::::
irrigated

::::::
crops).

::::::::
Because
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::::::
warmer

:::::::::::
temperatures

:::
are

::::::
nearly

::::::::
universal

:::
in

:::
the

::::::::::::
HadGEM2-ES

:::::
RCP

:::
8.5

:::::::::
projection

:::::::
(Figure

::::
13),

:::::
there

::
is

::::::
limited

::::::::
irrigated

::::
crop

:::::::
response

::
to

:::::::::::
precipitation

::::::::
changes,

:::
and

:
[
::::
CO2]

:::::::
response

:::
for

::::::
maize

::
is

:::::
small

::::::
among

:::
the

::::::::::
mechanistic

::::::
models

::::
that

:::
are

:::::
more

::::::::
prominent

::
in

::::::
C3MP

::::
than

::
in

:::
the

:::::::
GGCMs,

:::::
there

::
is

::::::
nothing

:::
but

:::::
yield

::::::::
decreases

::
in

:::
the

:::::::::
Persephone

:::::::::
projection.

::
In
:::
the

:::::::
ISIMIP

:::::
range

::
of

::::::::
GGCMs,

::::
there

:::
are

:::::::
models

:::
that

:::
are

:::::
more

::::::::
positively

::::::::::
responsive

::
to

::::::::::
precipitation

::::
and

:
[
::::
CO2]

::
in

:::
the

:::::::::::::::
C4-photosynthesis

::::::
maize

::::
crop,

::
so

::::::
wetter

::::::::
conditions

::::::
and/or

:::::
higher

:
[
::::
CO2]

::
are

:::::
much

:::::
more

::::::::
beneficial

::
in

:::
the

::::::
ISIMIP

:::::::::
maximum

:::
map

:::::::::::::::::::::
(Rosenzweig et al., 2014)5

:
.

Figure 14.
:::

Top:
:::
grid

:::
cell

:::::::
specific

:::::::
minimum

:::::
(Left),

::::::
median

::::::::
(Middle),

:::
and

::::::::
maximum

::::::
(Right)

::::
yield

:::::
change

::::::
across

::
the

::::::
ISIMIP

:::::::
GGCMs

:::
for

::::::
irrigated

:::::
maize.

:::::::
Bottom:

::
the

::::
low,

:::::
mean,

:::
and

:::
high

:::::::::
Persephone

::::
V1.0

::::
yield

::::::
changes

::
in

::::
each

:::
grid

:::
cell

:::
for

::::::
irrigated

::::::
maize.

:::::
Figure

:::
15

:::::::
presents

:::
the

::::
same

:::::::
analysis

:::
for

:
a
::::::::::
production

:::::
group

:::
that

::::::::::
Persephone

::::
V1.0

:::::::
matches

:::
the

:::::::
ISIMIP

:::::
global

:::::::
average

:::::
range

::::
well:

::::::
rainfed

::::::
wheat.

:::
For

:::::::::
reference,

:::
the

::::::::::::
HadGEM2-ES

::::
RCP

:::
8.5

::::
local

::::::::
growing

:::::
season

::::::::::
temperature

::::
and

::::::::::
precipitation

::::::::::
projections

::
for

::::::
rainfed

::::::
wheat

:::
are

:::::::
included

::
in

::::::
Figure

:::
10,

::::::
bottom.

::::::
Again,

::::
there

::
is
:::::::::
noticeable

::::::
spatial

:::::::::
consistency

::
in

::::::::
response

:::::::
strength

:::::::
between

::
the

::::::::::
Persephone

:::::
V1.0

::::
range

::::
and

:::
the

::::::
ISIMIP

::::::
range.

:::
For

::::::
wheat,

::
the

::::::
C3MP

::::::
models

::::
and

:::::::
therefore

:::
the

::::::::::
Persephone

::::
V1.0

::::::::::
projections10

::
are

::
in
::::::
closer

::::::::
agreement

::::
with

:::
the

:::::::
ISIMIP

:::::::
GGCMs

:::
on

:::::::::::::::
C3-photosynthesis [

::::
CO2]

:::::::
response

:::
and

:::::
water

:::::::::
limitations

::
in

:::::
many

:::::::
regions.

::::::::::
Additionally,

::::
the

::::::::
harvested

::::
area

:::::
mask

::::
used

:::
for

:::::::
rainfed

:::::
wheat

:::::::
include

:::::
many

:::::
more

::::::
regions

::::
that

:::
are

:::::::
limited

::
by

::::
cool

::::::::
baseline

::::::::::
temperatures

::::
and

:::
thus

:::::
stand

::
to

::::
gain

::::
from

:::::::
warmer

:::::::::
conditions

::::
than

::
the

:::::::
regions

:::::::::
considered

:::
for

:::::::
irrigated

::::::
maize.

:::
Put

:::::::
together,

:::::
these

::::::::::
observations

:::::::
indicate

:::
that

:::::
both

:::::::::
Persephone

:::::
V1.0

:::
and

:::::::
ISIMIP

:::
are

::::::
capable

:::
of

:::
the

::::
large

:::::
gains

::
in

:::
the

:::::::::
optimistic

::::::::
maximum

::::::
model
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:::::::
response

::::::::
scenario.

:::::::
Together

::::
with

::::::
Figure

:::
14,

:::
this

::::::::
suggests

:::
that

:::
the

::::::::::
Persephone

::::
V1.0

::::::::
response

::::::::
functions

:::
are

:::::::
spatially

:::::::::
consistent

::::
with

::
the

:::::::
ISIMIP

:::::
range

::
of

:::::
yield

:::::::
changes

::::
even

:::::
when

:::
the

:::::
global

:::::::
average

:::::
ranges

::::
may

::::::::
disagree.

Figure 15.
:::

Top:
:::
grid

:::
cell

:::::::
specific

:::::::
minimum

:::::
(Left),

::::::
median

::::::::
(Middle),

:::
and

::::::::
maximum

::::::
(Right)

::::
yield

:::::
change

::::::
across

::
the

::::::
ISIMIP

:::::::
GGCMs

:::
for

:::::
rainfed

:::::
wheat.

:::::::
Bottom:

::
the

::::
low,

:::::
mean,

:::
and

:::
high

:::::::::
Persephone

::::
V1.0

::::
yield

::::::
changes

::
in

::::
each

:::
grid

:::
cell

:::
for

:::::
rainfed

::::::
wheat.

5 Conclusions and discussion

We have presented an
::
the

::::::::::
Persephone emulator framework that results in the three Persephone v1

::::
three

:::
V1.0 response functions

to emulate a range of crop yield changes in response to future CTW changes
:::
for

::
25

:::::::::
production

::::::
groups. The response functions5

are inexpensive to evaluate, open doors to new feedback loops between society and the natural environment (Figure 1), and

represent multiple models and farming systems. The Persephone
::::
V1.0

:
response functions agree well with the underlying C3MP

training data and are rapid to evaluate, with in-sample performance metrics being particularly strong for the mean response in

each production group. The rapid evaluation time of the response functions, relative to a global gridded crop model, is extremely

important
:::::::
imporant

:
given that models such as GCAM are designed to be run rapidly to trace the impacts of future scenarios (at10

most hours per scenario). The GCAM model development team prioritizes staying on this order of computation time, even for

the planned experiments outlined in Section 2.1, because it results in a nimble, flexible model that allows multiple iterations for

probability, uncertainty, and process understanding. In addition to the good quantitative agreement of our response functions

with all C3MP crop-irrigation-latitude ensembles, we further evaluated our mean response function heuristically, finding that
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the mean responds to changes in CTW as one would expect for comparisons across C3/C4 photosynthesis mechanisms, rainfed

versus irrigated management, and latitude zones.
::::::
Finally,

:::
the

:::::
range

::
of

:::::
V1.0

::::
yield

:::::::
changes

:::::
were

::::::::
evaluated

::::::
against

:
a
::::::
variety

:::
of

:::
past

::::::
global

::::::
gridded

::::
crop

:::::::::
modeling,

:::
site

:::::::
specific

::::
crop

::::::::
modeling,

::::::
and/or

::::::::
empirical

::::::
studies

::
for

:::::
many

::
of

:::
the

:::::::::
production

::::::
groups

::::
and

:::::
found

::
to

::
be

:::::::::
consistent.

:

As a result of the culling methods outlined in Section 2.2, 575 C3MP sites are used for training the Persephone functions.5

These sites account for many major crops where they are typically grown, as well as a wider variety of crops than has been

examined in past studies. One key observation is that, if one were only concerned with capturing the mean response, any of the

functional forms examined for µCTW (Equations (A1) - (A5)) in the Appendix would be excellent, with all five forms featuring

in-sample NRMS < 0.2 for all production groups (Table 1). The challenge is in defining a pair of response functions, µ and �,

to characterize a range of uncertainty across C3MP site responses to each CTW changefor use in
:
.
:
It
::::::
should

::::
also

::
be

:::::
noted

::::
that10

::::
such

:
a
:::::
range

:::
of

:::::::::
uncertainty

::::
will

::::::
capture

:::::
only

:
a
:::::::
portion

::
of

:::
the

::::::::::
uncertainty

::
in

:::::::
response

:::
in national and multi-national GCAM

units.
:::
The

::::::::::
Persephone

:::::::::
framework

::::
may

::
be

::::
used

::::
with

::::::
future

::::
more

::::::::
spatially

:::::
dense

::::
data

:::
sets

::
to

::::::::::
characterize

::::
this

:::::::::
uncertainty

:::::
more

::::
fully.

:

The modeling choices made in this study introduce a variety of caveats. GCAM, and many similar models, operates on

5-10
::::::::
Foremost,

::
it
::
is
:::::
likely

::::
that

:::::
future

::::::::
versions

::
of

::::::::::
Persephone

::::::::
response

::::::::
functions,

:::::::
trained

::
on

::::::::
different

::::
data

::::
sets,

::::
will

::::::
almost15

:::::::
certainly

:::::
result

::
in

::::::::
different

:::::::
response

:::::::::
functions.

:::
Yet

:::
this

:::::
work

:::
has

::::::
shown

::::
that

:::
the

:::::::::
Persephone

::::::::::
framework

::
is

:::::::::
well-suited

::
to

::::
this

::::
kind

::
of

::::::::
problem,

::::
and

:::
that

::::
the

::::
V1.0

::::::::
response

::::::::
functions

:::::::::
developed

:::::
from

:::
the

::::::
C3MP

::::
data

:::::::
emulate

::::
that

::::
data

:::::
well.

:::::
They

::::
also

::::::
perform

::::::::::
reasonably

::::
well

::
on

::::::::
heuristic

::::::
metrics

::::
and

::
in

::::::::::
comparison

::
to

:::::
other

::::
crop

::::::::
modeling

:::::::
efforts.

:::::::
Another

::::::::
important

::::::
caveat

::
is

:::
that

:::::::
GCAM

:::::::
operates

::
on

::::
five year timesteps. Therefore, the response functions in this work only characterize yield responses

to long-term, local Earth system state changes. Capturing interannual variability and responses to abrupt weather shocks is20

an area will
:::
that

::::
may

:
form future phases of this research. We note that this is a more difficult task, given that year-to-year

variability depends on many more factors that tend to average out over longer terms (e.g. intra-seasonal variability such as heat

waves or dry spells). Using GCAM to examine the broad impacts of a sustained drought, hypothetical or emergent from the

feedback loop sketched in Figure 1, would be an excellent application of this yield change emulator. Additionally, this work

did not account for differing nitrogen application rates across different C3MP sites. Nitrogen data is included in the C3MP25

archive, but the sites are heavily biased to high nitrogen application (this is likely a function of the most commonly simulated

sites also being systems with higher input investment). There are also a number of sites with no recorded nitrogen information,

which were kept for this study. With so few sites featuring low nitrogen application rates, we considered examining the nitrogen

dimension of yield responses to be its own intellectual challenge reserved for future work, the methods of which will likely be

determined by the desired use. Simiarly
::::::::
Similarly, exploration of forming production groups based on different crop groups,30

different latitudinal zones, Koppen-Geiger or temperature zones would require trivial changes, limited only by the number of

sites available to sort into different production groups.
::::::
Finally,

::
it

::
is

:::::
worth

:::::
noting

::::
that

:::
any

::::::::
emulator

::
is

::::
only

::
as

:::::
good

::
as

:::
the

::::
data

::::
upon

:::::
which

::
it
::
is

::::::
trained.

::
If
::::
crop

::::::::
modeling

::::::
studies

::::
that

::::::
provide

::::
data

::
to

:::
an

:::::::
emulator

:::
do

:::
not

::::::
account

:::
for

:::::::::
real-world

:::::::::
behaviors,

:::
the

:::::::
emulator

::::
will

:::
not

::::::
capture

::::
such

:::::::::
behaviors

:::::
either.

:
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For clear analysis in this paper, we have presented results for the functional form combination that performed best at the

cross-validation experiements
:::::::::
experiments

:
described in the Appendix for the most production groups. Therefore one remedy

to the presence of ensembles with poorer emulator performance on in-sample metrics (Table 1) would be to use different

functional forms for each production group to create a more globally optimal set of response functions. These are laid out for

each production group in Table A10, along with the in-sample performance of the group-specific optimal functional forms.5

:::::
Some

:::::::
analysis

::::
with

:::::
these

:::::::::
production

::::::::::::
group-specific

:::::::
optimal

:::::::
models

::
is

:::::::
included

::
in
:::::::

Section
:::::
3.1.1

:::
and

:::::::
Section

::::
4.1.

:
The data

processing, emulator fitting, and analysis techniques presented in this paper are agnostic of the actual functional forms used

for µCTW and �CTW as long as they are linear-in-parameters. Varying functional form by production group will only require

different inputs to the Persephone R functions, not refitting of any parameters.

The most immediate future work involving Persephone v1.0 will be to fully implement the feedback loop sketched in Figure10

1.
::::::::::
Specifically,

:::::
using

::::::
GCAM

::
to

:::::::
examine

:::
the

:::::
broad

:::::::
impacts

::
of

:
a
::::::::
sustained

:::::::
drought,

:::::::::::
hypothetical

::
or

::::::::
emergent

::::
from

:::
the

::::::::
feedback

::::
loop

:::::::
sketched

::
in

::::::
Figure

::
1,

:::::
would

::
be

:::
an

:::::::
excellent

::::::::::
application

::
of

:::
this

:::::
yield

::::::
change

::::::::
emulator. Once the illustrated links have been

implemented and full runs of the loop have been timed, future development may take place. In addition to the exploration of the

nitrogen dimension of yield response and allowing response functional form to differ by production group, Persephone version

2 may incorporate other predictors as data is availableand
:
, explore more dynamic feature selection algorithms for functional15

form selection for µCTW and �CTW such as L1-regularization (which favors sparse models),
::::::
and/or

::
be

::::::
trained

::::
with

::::
data

::::
sets

:::
that

::::
may

::
be

:::::::
released

::
in

:::
the

:::::
future. Which of these is explored next will depend on the outcomes of the initial full feedback loop

studies with GCAM. This study represents the first vital, necessary step in better identifying a pathway in which society can

develop with balanced consideration of the natural environment and managed environments like agriculture through connecting

Persephone and GCAM.20

Code and data availability. Software implementing this technique is available as an R package released under the GNU General Public

License. Full source can be found in the project’s GitHub repository (https://github.com/JGCRI/persephone and https://doi.org/10.5281/zenodo.1415487).

Release version 1.0.0 of the package was used for all of the work in this paper.

The data and analysis code for the results presented in this paper are archived at https://doi.org/10.5281/zenodo.1414423.

Appendix A: Model selection and performance25

We fit the likelihood presented in Equation (1) with five different functional forms for µCTW (Equations (A1) - (A5)) and two

different functional forms for �CTW (Equations (A6) and (A7)), resulting in data from a total of 10 emulator models (each

with different likelihoods based on µCTW ,�CTW ) to compare to the C3MP data set.

The five functional forms for µ were selected intentionally. The first (Equation (A1)) is a second order Taylor polynomial

approximation of mean yield response. Equation (A2) is the functional form for mean response used in Ruane et al. (2014),30

differing from the second order Taylor polynomial by only one third-order CTW interaction term, a10. Equations (A3) and (A4)
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continue to build up from the second order Taylor polynomial, examining the impacts of adding third order CTW interaction

terms and the impacts of adding pure third order CTW terms respsectively
:::::::::
respectively. Finally, Equation (A5) is the full third

order Taylor polynomial, a flexible approximation for many complicated functions. The two functional forms for � (Equations

(A6) and (A7)) are simply the second and third order Taylor polynomial approximations of response spread across C3MP sites.

quadratic: µCTW = a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2 + a7�T�W + a8�T�C + a9�W�C

(A1)5

C3MP: µCTW = a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2 + a7�T�W + a8�T�C + a9�W�C

+ a10�T�W�C

(A2)

cross: µCTW = a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2 + a7�T�W + a8�T�C + a9�W�C

+ a10�T�W�C

+ a11(�T )2�W + a12(�T )2�C + a13�T (�W )2 + a14�T (�C)2 + a15(�W )2�C + a16�W (�C)2

(A3)

pure: µCTW = a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2 + a7�T�W + a8�T�C + a9�W�C

+ a10(�T )3 + a11(�W )3 + a12(�C)3

(A4)

cubic: µCTW = a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2 + a7�T�W + a8�T�C + a9�W�C

+ a10�T�W�C

+ a11(�T )2�W + a12(�T )2�C + a13�T (�W )2 + a14�T (�C)2 + a15(�W )2�C + a16�W (�C)2

+ a17(�T )3 + a18(�W )3 + a19(�C)3

(A5)

quadratic: �CTW = |b0 + b1�T + b2(�T )2 + b3�W + b4(�W )2 + b5�C + b6(�C)2

+ b7�T�W + b8�T�C + b9�W�C|
(A6)10
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cubic: �CTW = |b0 + b1�T + b2(�T )2 + b3�W + b4(�W )2 + b5�C + b6(�C)2

+ b7�T�W + b8�T�C + b9�W�C + b10�T�W�C

+ b11(�T )2�W + b12(�T )2�C + b13�T (�W )2 + b14�T (�C)2

+ b15(�W )2�C + b16�W (�C)2 + b17(�T )3 + b18(�W )3 + b19(�C)3|

(A7)

We selected the model presented in the paper from the 10 combinations above based on leave-one (CTW test)-out cross-

validation experiments to estimate out-of-sample prediction error for each production group. We do also include the in-sample

performance metric defined in Section 3.1 for a more complete picture of model performance for all 10 functional form

combinations for all 25 production groups (Tables A1-A9).5

First, to test each model’s validity and robustness at predicting yield changes for CTW values not included in the training

data for each group, we ran leave-one-out cross-validation experiments (Gelman et al., 2014) to analyze the performance of

each model for each production group. For each group separately, one CTW test data was withheld and the model was fit

on the remaining 98 CTW tests. Then the mean, high, and low response functions resulting from the model were evaluated

on the C3MP site data for the withheld test. This process was repeated withholding each CTW test, and the results were10

averaged resulting in an RMSE measure of performance for each of the mean, high, and low response functions. Leave-on-out

cross validation used in this way answers the question: For a particular production group and model, on average, how do the

emulated [mean, high, low] yield changes compare against the C3MP [mean, high, low] yield changes for CTW values not in

the training set?

The Latin Hypercube design of the C3MP sensitivity tests lends confidence to this leave-one-out exercise because the cross-15

validation has covered the full space of CTW combinations. The results are summarized in Figure A1: each row represents

the average leave-one-out cross-validation RMSE measures for each functional form across all production groups for the high,

low, or mean response function, and then the average across all three (total, bottom row Figure A1). We find that cubic µCTW ,

quadratic �CTW performs the best at this cross validation experiment for the highest number of ensembles across the three

response functions we defined in Equation (8) (that is, the high, low, and mean response functions). We repeat these calculations20

for each production group separately (rather than averaging across production groups) to determine the group-specific optimal

functional form, listed in Table A10 for each group.

Because cubic µCTW , quadratic �CTW performs the best at out-of-sample error measurements for the highest number

of ensembles across mean, low, and high response functions, and is quite good (though not the best) at in-sample error

measurements (Table 1), this is the form used throughtout the body of the paper as the most broadly optimal functional form25

combination. We particularly value performance on the cross-validation (out-of-sample error) experiments because most CTW

changes that may arise in application are likely to differ from the 99 C3MP tests.

We also repeat the in-sample measurement of error presented in Section 3.1 for all functional form combinations. These

results are summarized in Tables A1 to A9, and we find that, purely based on the in-sample measurements, cubic µCTW , cubic

�CTW (Table A9) is the best functional form for the most production groups. Specifically, it only performs poorly for one crop,30
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rainfed Wheat
:::::
wheat

:
in the mid-latitudes. However, it is very poor for that important ensemble. The in-sample performance

information from these tables is included in Table A10 for each production-group specific optimal functional form combination.

Figure A1. Comparison of leave-one-out cross-validation average RMSE measures for each functional form across all ensembles. Each

functional form is labeled as µCTW , �CTW . Note the broken scales to capture the performance of quadratic µCTW , cubic sigmaCTW .
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Table A1. Persephone v1.0 response function performance for all production groups, for quadratic µCTW (Equation (A1)), quadratic �CTW

(Equation (A6))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.043 0.445 0.279 Good

c3 IRR tropic 0.074 0.270 0.188 Good

c3 RFD mid 0.044 0.301 0.280 Good

c3 RFD tropic 0.046 0.178 0.170 Excellent

c4 IRR mid 0.028 0.137 0.125 Excellent

c4 IRR tropic 0.041 1.662 0.440 Poor

c4 RFD mid 0.049 0.295 0.258 Good

c4 RFD tropic 0.094 0.280 0.209 Good

Maize IRR mid 0.028 0.150 0.130 Excellent

Maize IRR tropic 0.102 0.755 0.331 Adequate

Maize RFD mid 0.045 0.266 0.251 Good

Maize RFD tropic 0.108 0.318 0.188 Good

Rice IRR mid 0.069 0.259 0.181 Good

Rice IRR tropic 0.095 0.296 0.203 Good

Rice RFD mid 0.180 1.429 1.601 Poor

Rice RFD tropic 0.047 0.116 0.144 Excellent

Soybeans IRR mid 0.080 0.245 0.192 Excellent

Soybeans IRR tropic 0.068 0.119 0.175 Excellent

Soybeans RFD mid 0.069 0.139 0.178 Excellent

Soybeans RFD tropic 0.101 0.183 0.179 Excellent

Sugarcane RFD tropic 0.125 0.448 0.479 Good

Wheat IRR mid 0.069 0.408 0.351 Good

Wheat IRR tropic 0.085 0.309 0.267 Good

Wheat RFD mid 0.041 0.298 0.286 Good

Wheat RFD tropic 0.199 0.807 0.833 Adequate

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70�S, 30- 70�N), “tropic" = 30�S to 30�N. 2. Note that the

mean response function performs “excellent" for all production groups.39



Table A2. Persephone v1.0 response function performance for all production groups, for quadratic µCTW (Equation (A1)), cubic �CTW

(Equation (A7))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.036 0.142 0.110 Excellent

c3 IRR tropic 0.074 0.661 0.525 Adequate

c3 RFD mid 0.044 0.899 0.706 Adequate

c3 RFD tropic 0.052 0.817 0.571 Adequate

c4 IRR mid 0.028 2.169 0.863 Poor

c4 IRR tropic 0.035 0.300 0.063 Good

c4 RFD mid 0.042 0.125 0.080 Excellent

c4 RFD tropic 0.084 1.022 0.511 Poor

Maize IRR mid 0.035 0.763 0.471 Adequate

Maize IRR tropic 0.083 0.193 0.066 Excellent

Maize RFD mid 0.039 0.112 0.075 Excellent

Maize RFD tropic 0.086 0.390 0.147 Good

Rice IRR mid 0.064 0.159 0.098 Excellent

Rice IRR tropic 0.095 1.029 0.672 Poor

Rice RFD mid 0.153 0.166 0.187 Excellent

Rice RFD tropic 0.047 0.077 0.063 Excellent

Soybeans IRR mid 0.073 0.123 0.088 Excellent

Soybeans IRR tropic 0.057 0.078 0.089 Excellent

Soybeans RFD mid 0.075 1.137 0.893 Poor

Soybeans RFD tropic 0.084 0.355 0.303 Excellent

Sugarcane RFD tropic 0.114 2.163 1.469 Poor

Wheat IRR mid 0.060 0.149 0.197 Excellent

Wheat IRR tropic 0.082 0.206 0.204 Excellent

Wheat RFD mid 0.038 0.117 0.102 Excellent

Wheat RFD tropic 0.175 0.769 0.587 Adequate

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70�S, 30- 70�N), “tropic" = 30�S to 30�N. 2. Note that the

mean response function performs “excellent" for all production groups.40



Table A3. Persephone v1.0 response function performance for all production groups, for C3MP µCTW (Equation (A2)), quadratic �CTW

(Equation (A6))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.037 1.039 0.7 Poor

c3 IRR tropic 0.074 1.675 0.792 Poor

c3 RFD mid 0.046 0.303 0.276 Good

c3 RFD tropic 0.057 1.116 0.78 Poor

c4 IRR mid 0.027 0.139 0.123 Excellent

c4 IRR tropic 0.049 0.894 0.224 Adequate

c4 RFD mid 0.046 0.303 0.248 Good

c4 RFD tropic 0.093 0.3 0.199 Good

Maize IRR mid 0.027 0.152 0.129 Excellent

Maize IRR tropic 0.111 1.091 0.273 Poor

Maize RFD mid 0.042 0.272 0.242 Good

Maize RFD tropic 0.106 0.341 0.182 Good

Rice IRR mid 0.081 0.725 0.402 Adequate

Rice IRR tropic 0.093 0.287 0.209 Good

Rice RFD mid 0.115 1.055 1.08 Poor

Rice RFD tropic 0.047 0.18 0.164 Excellent

Soybeans IRR mid 0.08 0.248 0.191 Excellent

Soybeans IRR tropic 0.11 0.726 0.724 Adequate

Soybeans RFD mid 0.066 0.149 0.157 Excellent

Soybeans RFD tropic 0.084 0.444 0.354 Good

Sugarcane RFD tropic 0.144 2.42 2.066 Poor

Wheat IRR mid 0.061 0.391 0.365 Good

Wheat IRR tropic 0.082 0.72 0.548 Adequate

Wheat RFD mid 0.041 0.298 0.287 Good

Wheat RFD tropic 0.147 0.297 0.376 Good

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70�S, 30- 70�N), “tropic" = 30�S to 30�N. 2. Note that the mean

response function performs “excellent" for all production groups.41



Table A4. Persephone v1.0 response function performance for all production groups, for C3MP µCTW (Equation (A2)), cubic �CTW

(Equation (A7))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.032 0.356 0.240 Good

c3 IRR tropic 0.073 0.113 0.113 Excellent

c3 RFD mid 0.039 0.121 0.094 Excellent

c3 RFD tropic 0.041 0.087 0.057 Excellent

c4 IRR mid 0.026 0.166 0.108 Excellent

c4 IRR tropic 0.037 0.296 0.064 Good

c4 RFD mid 0.038 0.449 0.358 Good

c4 RFD tropic 0.073 0.335 0.168 Good

Maize IRR mid 0.025 0.073 0.044 Excellent

Maize IRR tropic 0.082 0.244 0.082 Good

Maize RFD mid 0.036 0.109 0.076 Excellent

Maize RFD tropic 0.096 0.729 0.272 Adequate

Rice IRR mid 0.064 0.282 0.175 Good

Rice IRR tropic 0.094 0.120 0.143 Excellent

Rice RFD mid 0.134 0.175 0.178 Excellent

Rice RFD tropic 0.046 0.079 0.060 Excellent

Soybeans IRR mid 0.073 0.123 0.088 Excellent

Soybeans IRR tropic 0.075 0.213 0.194 Excellent

Soybeans RFD mid 0.060 0.080 0.068 Excellent

Soybeans RFD tropic 0.086 0.145 0.169 Excellent

Sugarcane RFD tropic 0.111 0.175 0.100 Excellent

Wheat IRR mid 0.061 0.961 1.039 Poor

Wheat IRR tropic 0.088 2.522 1.231 Poor

Wheat RFD mid 0.058 7.604 2.233 Poor

Wheat RFD tropic 0.164 0.934 0.924 Adequate

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70�S, 30- 70�N), “tropic" = 30�S to 30�N. 2. Note that the

mean response function performs “excellent" for all production groups.42



Table A5. Persephone v1.0 response function performance for all production groups, for cross µCTW (Equation (A3)), quadratic �CTW

(Equation (A6))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.022 1.038 0.701 Poor

c3 IRR tropic 0.073 1.671 0.792 Poor

c3 RFD mid 0.021 0.314 0.272 Good

c3 RFD tropic 0.030 1.201 0.634 Poor

c4 IRR mid 0.024 0.140 0.121 Excellent

c4 IRR tropic 0.041 0.928 0.220 Poor

c4 RFD mid 0.033 0.312 0.247 Good

c4 RFD tropic 0.069 0.340 0.187 Good

Maize IRR mid 0.025 0.152 0.128 Excellent

Maize IRR tropic 0.107 1.926 0.450 Poor

Maize RFD mid 0.030 0.286 0.236 Good

Maize RFD tropic 0.083 0.379 0.175 Good

Rice IRR mid 0.070 0.627 0.445 Poor

Rice IRR tropic 0.092 0.347 0.258 Good

Rice RFD mid 0.092 0.306 0.342 Good

Rice RFD tropic 0.020 0.210 0.141 Excellent

Soybeans IRR mid 0.090 1.595 1.103 Poor

Soybeans IRR tropic 0.051 0.203 0.161 Excellent

Soybeans RFD mid 0.036 0.150 0.148 Excellent

Soybeans RFD tropic 0.081 0.318 0.219 Good

Sugarcane RFD tropic 0.147 5.574 3.954 Poor

Wheat IRR mid 0.056 0.392 0.364 Good

Wheat IRR tropic 0.078 1.256 0.815 Poor

Wheat RFD mid 0.034 0.306 0.279 Good

Wheat RFD tropic 0.114 0.332 0.347 Good

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70�S, 30- 70�N), “tropic" = 30�S to 30�N. 2. Note that the

mean response function performs “excellent" for all production groups.43



Table A6. Persephone v1.0 response function performance for all production groups, for cross µCTW (Equation (A3)), cubic �CTW

(Equation (A7))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.019 0.303 0.196 Good

c3 IRR tropic 0.071 0.112 0.111 Excellent

c3 RFD mid 0.022 0.674 0.602 Adequate

c3 RFD tropic 0.025 0.071 0.056 Excellent

c4 IRR mid 0.024 0.168 0.114 Excellent

c4 IRR tropic 0.032 0.303 0.076 Good

c4 RFD mid 0.037 1.544 0.623 Poor

c4 RFD tropic 0.062 0.156 0.060 Excellent

Maize IRR mid 0.022 0.071 0.044 Excellent

Maize IRR tropic 0.074 0.179 0.063 Excellent

Maize RFD mid 0.028 0.097 0.081 Excellent

Maize RFD tropic 0.073 0.305 0.129 Good

Rice IRR mid 0.063 0.278 0.176 Good

Rice IRR tropic 0.092 0.120 0.141 Excellent

Rice RFD mid 0.096 0.237 0.219 Good

Rice RFD tropic 0.019 0.057 0.051 Excellent

Soybeans IRR mid 0.058 0.120 0.073 Excellent

Soybeans IRR tropic 0.063 0.120 0.212 Excellent

Soybeans RFD mid 0.034 0.054 0.054 Excellent

Soybeans RFD tropic 0.053 0.111 0.094 Excellent

Sugarcane RFD tropic 0.078 0.241 0.229 Excellent

Wheat IRR mid 0.044 0.721 0.748 Adequate

Wheat IRR tropic 0.084 0.185 0.219 Excellent

Wheat RFD mid 0.050 3.658 2.116 Poor

Wheat RFD tropic 0.111 0.212 0.179 Excellent

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70�S, 30- 70�N), “tropic" = 30�S to 30�N. 2. Note that the

mean response function performs “excellent" for all production groups.44



Table A7. Persephone v1.0 response function performance for all production groups, for pure µCTW (Equation (A4)), quadratic �CTW

(Equation (A6))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.031 1.045 0.697 Poor

c3 IRR tropic 0.071 1.660 0.791 Poor

c3 RFD mid 0.039 0.301 0.280 Good

c3 RFD tropic 0.052 0.662 0.498 Poor

c4 IRR mid 0.012 0.149 0.111 Excellent

c4 IRR tropic 0.018 0.985 0.216 Poor

c4 RFD mid 0.035 0.307 0.248 Good

c4 RFD tropic 0.045 0.334 0.189 Good

Maize IRR mid 0.012 0.165 0.117 Excellent

Maize IRR tropic 0.016 1.039 0.340 Poor

Maize RFD mid 0.035 0.277 0.242 Good

Maize RFD tropic 0.044 0.376 0.179 Good

Rice IRR mid 0.038 0.346 0.197 Good

Rice IRR tropic 0.091 0.343 0.260 Good

Rice RFD mid 0.124 0.123 0.275 Good

Rice RFD tropic 0.053 0.161 0.171 Excellent

Soybeans IRR mid 0.033 0.221 0.185 Excellent

Soybeans IRR tropic 0.066 0.072 0.172 Excellent

Soybeans RFD mid 0.056 0.137 0.170 Excellent

Soybeans RFD tropic 0.083 0.171 0.173 Excellent

Sugarcane RFD tropic 0.085 1.504 1.307 Poor

Wheat IRR mid 0.045 0.378 0.377 Good

Wheat IRR tropic 0.080 0.710 0.550 Good

Wheat RFD mid 0.034 0.294 0.289 Good

Wheat RFD tropic 0.175 0.371 0.341 Good

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70�S, 30- 70�N), “tropic" = 30�S to 30�N. 2. Note that the

mean response function performs “excellent" for all production groups.45



Table A8. Persephone v1.0 response function performance for all production groups, for pure µCTW (Equation (A4)), cubic �CTW

(Equation (A7))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.030 0.766 0.524 Adequate

c3 IRR tropic 0.071 0.115 0.110 Excellent

c3 RFD mid 0.035 0.117 0.095 Excellent

c3 RFD tropic 0.040 0.082 0.061 Excellent

c4 IRR mid 0.012 0.153 0.116 Excellent

c4 IRR tropic 0.013 0.249 0.072 Excellent

c4 RFD mid 0.038 2.286 0.778 Poor

c4 RFD tropic 0.040 0.120 0.061 Excellent

Maize IRR mid 0.012 0.061 0.046 Excellent

Maize IRR tropic 0.016 0.162 0.073 Excellent

Maize RFD mid 0.031 0.104 0.077 Excellent

Maize RFD tropic 0.041 0.126 0.060 Excellent

Rice IRR mid 0.038 0.109 0.076 Excellent

Rice IRR tropic 0.092 0.123 0.139 Excellent

Rice RFD mid 0.122 0.178 0.213 Excellent

Rice RFD tropic 0.043 0.213 0.149 Excellent

Soybeans IRR mid 0.029 0.091 0.071 Excellent

Soybeans IRR tropic 0.065 0.125 0.141 Excellent

Soybeans RFD mid 0.052 0.072 0.061 Excellent

Soybeans RFD tropic 0.066 0.112 0.105 Excellent

Sugarcane RFD tropic 0.066 0.260 0.177 Good

Wheat IRR mid 0.033 0.691 0.705 Adequate

Wheat IRR tropic 0.078 0.185 0.215 Excellent

Wheat RFD mid 0.037 5.732 2.313 Poor

Wheat RFD tropic 0.173 0.368 0.204 Good

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70�S, 30- 70�N), “tropic" = 30�S to 30�N. 2. Note that the

mean response function performs “excellent" for all production groups.46



Table A9. Persephone v1.0 response function performance for all production groups, for cubic µCTW (Equation (A5)), cubic �CTW

(Equation (A7))

Production group1 NRMS mean2 NRMS high NRMS low In-sample Performance

c3 IRR mid 0.013 0.488 0.326 Good

c3 IRR tropic 0.069 0.113 0.109 Excellent

c3 RFD mid 0.009 0.106 0.095 Excellent

c3 RFD tropic 0.021 0.065 0.058 Excellent

c4 IRR mid 0.010 0.152 0.116 Excellent

c4 IRR tropic 0.010 0.313 0.092 Good

c4 RFD mid 0.016 0.705 0.370 Adequate

c4 RFD tropic 0.018 0.102 0.058 Excellent

Maize IRR mid 0.010 0.062 0.044 Excellent

Maize IRR tropic 0.011 0.116 0.066 Excellent

Maize RFD mid 0.016 0.091 0.079 Excellent

Maize RFD tropic 0.021 0.109 0.056 Excellent

Rice IRR mid 0.029 0.104 0.073 Excellent

Rice IRR tropic 0.089 0.123 0.137 Excellent

Rice RFD mid 0.043 0.098 0.123 Excellent

Rice RFD tropic 0.018 0.060 0.048 Excellent

Soybeans IRR mid 0.015 0.087 0.068 Excellent

Soybeans IRR tropic 0.034 0.063 0.085 Excellent

Soybeans RFD mid 0.015 0.042 0.046 Excellent

Soybeans RFD tropic 0.035 0.100 0.089 Excellent

Sugarcane RFD tropic 0.042 0.209 0.171 Excellent

Wheat IRR mid 0.022 0.681 0.675 Adequate

Wheat IRR tropic 0.078 0.171 0.221 Excellent

Wheat RFD mid 0.042 5.268 1.905 Poor

Wheat RFD tropic 0.091 0.196 0.165 Excellent

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70�S, 30- 70�N), “tropic" = 30�S to 30�N. 2. Note that the

mean response function performs “excellent" for all production groups.47



Table A10. The best performing functional form combination for each production group at the task of leave-one-out cross-validation(out of

sample performance) and the corresponding In-sample Performance measure.

Production group µCTW �CTW In-sample Performance

c3 IRR mid quadratic quadratic Good

c3 IRR tropic cubic cubic Excellent

c3 RFD mid c3mp cubic Excellent

c3 RFD tropic cubic cubic Excellent

c4 IRR mid cubic cubic Excellent

c4 IRR tropic cubic cubic Good

c4 RFD mid cubic quadratic Good

c4 RFD tropic pure quadratic Good

Maize IRR mid cubic cubic Excellent

Maize IRR tropic cubic cubic Excellent

Maize RFD mid cubic cubic Excellent

Maize RFD tropic cubic quadratic Good

Rice IRR mid cubic cubic Excellent

Rice IRR tropic quadratic quadratic Good

Rice RFD mid cubic cubic Excellent

Rice RFD tropic cubic cubic Excellent

Soybeans IRR mid cubic cubic Excellent

Soybeans IRR tropic quadratic cubic Excellent

Soybeans RFD mid cubic cubic Excellent

Soybeans RFD tropic cubic cubic Excellent

Sugarcane RFD tropic c3mp cubic Excellent

Wheat IRR mid quadratic cubic Excellent

Wheat IRR tropic quadratic quadratic Good

Wheat RFD mid cubic quadratic Good

Wheat RFD tropic cubic cubic Excellent
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Appendix B:
:::::
C3MP

::::::::
baseline

::::
yield

::::::::
estimate

:::::::::
functional

::::::
forms

::
As

:::::::::
mentioned

:::
in

::::::
Section

:::::
2.1.1,

:::
the

::
8
::::::::
different

::::::::
functional

::::::
forms

::::
used

::
to

:::::
relate

::::::::::
site-specific

::::::
output

:::::
yield

::
in

::::::::
response

::
to

:::::
input

::::
CTW

::::::
values

:::
are

::::::::
presented

::::
here

:::
in

::::::::
Equations

:::::::::
(B1)-(B8).

:::::
Each

:::::::::
functional

::::
form

::::
was

::::
used

::::
with

:::::
each

::::::
specific

::::::
C3MP

:::::
site’s

::::
data

::
in

::::
order

::
to
:::::::
provide

:
a
::::
best

:::::::
estimate

:::
of

:::::::
baseline

::::
yield

:::
for

::::
that

:::
site.

::::
The

::::
form

::::
with

:::
the

:::::::
smallest

::::
root

:::::
mean

::::::
square

::::
error

::::::
across

:::
the

::
99

::::
tests

:::
for

:::
the

:::
site

::
is
:::
the

::::
one

::::
used

::
to

:::::::
provide

:
a
::::
best

:::::::
estimate

::
of

:::::::
baseline

:::::
yield.

:::::
This

:::
best

::::::::
estimate

::
of

:::::::
baseline

::::
yield

::
is
:::::
used

::
to5

::::::
convert

:::
the

::::::
C3MP

:::::
output

:::::
yields

::
at
:::
the

::::
site

::
to

::::::
percent

:::::::
changes

::
in

:::::
yield

::::
from

:::::::
baseline

:::
for

:::::::
emulator

::::::::
training.

Y site
CTW = a0 + a1�T + a2�W + a3�C

::::::::::::::::::::::::::::::::::

(B1)

Y site
CTW = a0 + a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B2)

Y site
CTW = a0 + a1�T + a2�W + a3�C + a4�T�W + a5�T�C + a6�W�C

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B3)

Y site
CTW = a0 + a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2 + a7�T�W + a8�T�C + a9�W�C

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B4)10

Y site
CTW = a0 + a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2 + a7�T�W + a8�T�C + a9�W�C

+ a10�T�W�C
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B5)

Y site
CTW = a0 + a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2 + a7�T�W + a8�T�C + a9�W�C

+ a10�T�W�C

+ a11(�T )2�W + a12(�T )2�C + a13�T (�W )2 + a14�T (�C)2 + a15(�W )2�C + a16�W (�C)2
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B6)

Y site
CTW = a0 + a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2 + a7�T�W + a8�T�C + a9�W�C

+ a10(�T )3 + a11(�W )3 + a12(�C)3
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B7)
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Y site
CTW = a0 + a1�T + a2(�T )2 + a3�W + a4(�W )2 + a5�C + a6(�C)2 + a7�T�W + a8�T�C + a9�W�C

+ a10�T�W�C

+ a11(�T )2�W + a12(�T )2�C + a13�T (�W )2 + a14�T (�C)2 + a15(�W )2�C + a16�W (�C)2

+ a17(�T )3 + a18(�W )3 + a19(�C)3
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B8)
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