Reviewl

Authors’ Response: We thank the reviewer for their thorough review of the paper. We have
addressed every review point, to the improvement of the paper. Individual responses to
different review points follow:

Review: | have two main concerns with the paper: the first refers to the C3MP dataset used to
derive the emulator response functions, and the second refers to how these response functions
are going to be used. The C3MP dataset is a large set of 99 CTW sensitivity tests carried out by a
number of site-based crop models covering a range of different crops at a total of 1135 sites, of
which data from 575 sites are actually used in this study. The climate change signal used in
these sensitivity tests is completely synthetic since it consists of applying a temporally uniform
temperature offset or precipitation multiplier to a historical baseline weather timeseries.
However, in reality, climate change is not constant over time. For example, precipitation might
increase during part of the year, while decreasing during other times. | am not convinced that
the constant CTW perturbation experiments are equivalent to using a more realistic climate
timeseries, and | would suggest that the authors either show in the paper or at least point the
reader to other literature showing that this is a valid approach. Otherwise, the authors risk that
there is already a bias in the data used to train the emulator which would propagate to the
emulated yields.

Response: We have clarified that we are looking at climatological mean TW changes during the
growing season only, rather than changes to seasonality to our methods, as outlined in the two
peer-reviewed citations detailing C3MP and its use. Analysis within Ruane et al., 2014 showed
that the explicit modeling of future scenarios was quite consistent with aggregating the
seasonal changes (see figure comparing simulated vs. emulated yields). Changes in seasonality
will be reflected in the seasonal precipitation and temperature changes, but explicit action to
adjust growing seasons to match new seasonality would require adaptation. Autonomous
adaptation and technological gains are included in IAMs as part of the exogenous trend, so we
focus on the primary climatological pressure, recognizing that we are excluding the secondary
effects of seasonality. Climatological changes are considered here specifically because this is for
use in GCAM, which solves for an equilibrium on 5 year timesteps during which subannual
dynamics (such as the distribution of precipitation during the growing season) tend to average
out. A user could investigate the impacts of different growing seasons by processing the climate
data of interest from annual monthly to growing season average with an appropriate growing
season mask for their intent. We believe such investigations are outside the scope of this paper.
However, we have also included a subsection 2.1.1 explicitly addressing several known caveats
of the C3MP data set.

Review: My second concern is that response functions for some of the 25 production groups
are based on a very small number of sites, in the most extreme case only two sites. | cannot
help but wonder how representative these results really are, keeping in mind that each
production group represents one crop-irrigation-latitude combination, with latitudes only
distinguished into extended tropics and mid-latitudes. In addition, these sites are not only used
to derive a mean yield response, but also an estimate of response uncertainty. The high and
low response functions are supposed to represent site responses at the mean plus/minus one
standard deviation level but how meaningful are these estimates based on such a small sample



size? The emulator response functions are only derived for two regions (extended tropics and
mid-latitudes) but | wonder at what level of spatial detail they will be used later.

Response: We have included a new section 3.1.1 to directly address model performance in the
production groups with small sample size. We also have clarified language regarding spatial
scales throughout the paper. As a brief summary, we acknowledge that some crops and regions
are under-represented in the training data. However, for many crops and regions, there is no
comparable dataset available. In Section 3.1.1, we discuss validation that our modeling
framework does represent the underlying data well for the production groups with small
sample sizes. We also distinguish between the two-region response function and the degree of
spatial heterogeneity that still results when combined with gridded temperature and
precipitation change projections (throughout the text, but particularly in Section 2.1.1 Known
caveats of the C3MP data set).

Review: In Figure 8 and 9 of the paper, the authors take spatial patterns of climate change from
the HadGEM2-ES model and use their response functions to derive corresponding patterns of
yield change. These patterns are shown, but not evaluated in any way. | would suggest that the
authors compare their derived patterns of yield change to simulations of yield change from
global gridded crop models for the same climate data. After all, the intent of the emulator is to
replace simulations by global gridded crop models. Such crop yield simulations for the
HadGEM2-ES RCP8.5 scenario used in Figure 8 and 9 of the paper are, for example, available
from a number of crop models and for a number of different crops within the ISIMIP data
archive at https://esg.pik-potsdam.de/projects/isimip/ Such a comparison would help to
address both of my concerns voiced above.

Response: We thank the reviewer for this helpful insight. We have added an extensive new
section 4.1 directly comparing to the ISIMIP global gridded crop modeling results, as well as to
other modeling efforts.

Review: Page 2, IIl. 25 — 28: You state that previous emulators were restricted to emulating yield
change under RCP scenarios. | am aware of at least two other global crop yield change
emulators derived from crop model simulations that are applicable to any future climate
scenario: Oyebamiji et al. (2015) and Ostberg et al. (2018). It might be useful to contrast them
to the work presented in this paper.

Response: We apologize for this oversight and have added a discussion of these papers to our
Introduction (paragraph beginning on P3L3).

Review: Page 4, starting with line 11, and Figure 1: You outline three use cases for the
Persephone yield emulator, but none of this is actually done in this paper. So I’'m not sure if the
Methods section is the right place for this.

Response: We have streamlined this discussion of use cases and moved it from the Methods to
the Introduction, as the intended use in GCAM has motivated many of our modeling choices.



Review: Page 6, section 2.2: The Copernicus guidelines request that datasets should be cited
with a reference in the reference list. Is there a reference for the C3MP dataset?

Response: We have included language in Section 2.1 that the two peer-reviewed C3MP
publications (Ruane et al, McDermid et al) include data availability information. The relevant
data to this work is also included in the paper analysis archive.

Review: Page 6, Il. 8 — 14: This part does not refer to the setup of C3MP or to your processing of
the C3MP data. Instead, it refers to how climate data is pre-processed before use with the
finished emulator. It should probably be moved to section 4.

Response: This has been done.

Review: Page 7, Il. 7—9: Unless | am mistaken, the global gridded crop models within AgMIP
also conducted the 99 CTW sensitivity tests. They should offer a much better global coverage.
Would it be worthwhile adding some discussion of why this paper used the site-based results
instead of the global simulations?

Response: Unfortunately, the global gridded crop models did not participate in the 99 CTW
tests that create the C3MP archive. The global gridded crop models have conducted their own,
separate sensitivity tests and the data is not yet publicly available. Therefore, we developed this
emulator using data we that was publicly available, but with the aim of a sufficiently flexible
framework as to update to newer data sets (like the globally gridded crop models) if/when they
become available. We have added language to the introduction and discussion highlighting that
the Persephone framework described here can be updated in future versions, possibly with
different explanatory variables, to include such gridded simulations as they become available.
In the new section 4.1, comparing to the ISIMIP GGCM results, we now explicitly state that
these models did not participate in the C3MP exercise

Review: Page 8, Il. 19 — 20: Are the 8 different functional forms documented anywhere? Are
these the same as are used in the emulator?

Response: Thank you for highlighting this oversight. The functional forms used to estimate site-
specific baseline Yields are now explicitly documented in the new Appendix B.

Review: Page 11, Il. 9 — 10: Is the value of b0 constrained between -0.02 and 0.02 or is it 0.02%?
The following sentence suggests that it is 0.02%.
Response: We thank the reviewer for catching this typo. We have corrected this.

Review: Given the very small sample sizes of about 1/3 of the production groups the 84.135th
and 15.865th percentiles do not seem very meaningful’

Response: This is addressed with our new section 3.1.1 directly evaluating the performance of
the three functional forms for small sample size production groups.

Review: Section 3.2: It seems to me that this is rather a test whether the crop models used in
training feature these important relationships. Or would you say it is possible that these
relationships are present in the models, but missing in the emulator? Since the evaluation is



positive | guess it means that the relationships are present in the models and retained in the
emulator.

Response: Yes, the relationships are present in the models and retained by the emulator. The
final sentence is correct and we have clarified the text to reflect this point.

Review: Page 20, I. 4 — page 21, |. 1: Climate change can affect both the start and the length of
the growing season. Is this accounted for or is the same growing season used under climate
change as during the reference period?

Response: The same growing season was used by every model for their training runs. We have
updated our methods and discussion to explicitly state this. We also note that we plan to use
with GCAM and are focused on long term climatological changes, rather than specific changes
to seasonality that may average out over 5 year timesteps.

Review: Page 21, Il. 8 — 10: On the one hand you talk about passing CTW changes for regions
into the emulator, on the other hand you mention a gridded map of yield changes. So are the
yield changes at the same spatial resolution as the climate data or is there a difference between
resolutions (region versus grid)? Please clarify

Response: We have updated this language to be clearer (now occurs on P24).

Review: Page 21, Il. 17 — 18, and Figure 9: Looking at Figure 9, it seems to me that most regions
show a positive yield change under the high response function, not just “a few regions”. Also, |
think that in the bottom row of Figure 9 the maps for mean and high response are swapped.
The bottom right map (which should be the high response) looks identical to the map for Maize
in Figure 8 (which shows the mean response).

Response: Thank you for catching this mistake, we have corrected the error in figure 9. Rather
than swapping the mean and high response maps for Maize in figure 9, we inadvertently
included the Wheat mean response map with the Maize high and low maps in the original
figure. We have corrected the rainfed Maize mean figure, and clarified the language discussing
Figure 9.

Review: Page 23, Il. 6 — 8: Here, you emphasize the rapid evaluation time of the response
functions relative to a global gridded crop model, but | think you should really try to show that
the emulator response is actually comparable to what you would get using a global gridded
crop model. This step is missing in the paper.

Response: Thank you for this suggestion, we have added section 4.1, comparing many of our
results to some of the ISIMIP GGCM results.

Review: Page 24, IIl. 8 — 10: Given that the response functions are only derived for two
latitudinal bands | would say that they cannot really be used to characterize the range of
uncertainty within national or multi-national units (unless the respective unit is covered by
C3MP sites).

Response: We have clarified the language in this section of the Conclusions and discussion that
the response functions are able to characterize the range of C3MP response sites, and that this



is only a partial characterization of the response uncertainty within larger national land units.
And that using more spatially complete data sets for training in the future will improve this
characterization.

Review: Page 24: In the paragraph on caveats, | would suggest to add discussion of potential
biases arising out of way the CTW experiments are set up. Another source of uncertainty results
from the fact that crop model simulations generally omit adaptation options such as changing
sowing dates or switching to different cultivars. This is done for simplicity and comparability but
is not realistic considering that agriculture is a highly managed system, and potentially creates
another bias in the crop model simulations of yield change that are used to train the emulator.
Response: We have added text to this effect.

Review: The greyscale lines in Figure 6, 8 and 9 are hard to see at all, let alone distinguish the
different shades of grey.

Response: We have replaced the grayscale lines with black contours placed at values of 10%,
20%, etc and included explicit labeling of the black contours on the plots.



Review 2

Review:

The authors present a methodology, with an accompanying R package, to emulate changes in
crop yield under global change scenarios. The functions produced by this framework can be
introduced in other models such as GCAM, which can help to speedup different types of
simulations. The manuscript is well written and presents important results that merit
publication in GMD. However, | have one major comment to this work. Although | really liked
the Bayesian approach proposed here, which is more robust than previous linear regression
approaches, | had problems understanding the approach for modeling the standard deviation
term. It seems that the approach yields negative values of 6CTW , which is evident by the use of
absolute values in equation 6. As far as | am concerned, standard deviation values can never be
negative since theoretically they are the square root of the variance. The choice of prior
distributions for modeling cCTW expressed in equation 5, explains the reason for the negative
values. For the baseline case, bO ~ N(0, 0.001) yields a distribution of standard deviations
centered around zero, which | find difficult to understand. Modeling prior distributions for the
variance in Bayesian analysis is not trivial, and there are many analyses dealing with this
problem (e.g. see papers by Andrew Gelman). Most controversies about this topic deal with the
choice of the prior distribution for variance parameters and whether gamma, inverse gamma,
or other distributions are appropriate choices. These distributions however, are always defined
in the positive part of the real line R +. | suggest the authors to revise this part of the
manuscript. If there is important information that | am missing regarding this issue, the authors
should at least explain their choice of distribution and its interpretation.

Response:

We thank the reviewer for reading the work so closely. Indeed, the reviewer has correctly
characterized our methodology, but highlighted that we did not communicate our methods
clearly. We have clarified the text in our section on emulation, specifically addressing the
reviewer’s comments.
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A crop yield change emulator for use in GCAM and similar models:
Persephone v1.0

Abigail Snyder', Katherine V. Calvin'!, Meridel Phillips>?, and Alex C. Ruane?

1Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740
2Columbia University Earth Institute Center for Climate Systems Research, New York, NY, USA
3NASA Goddard Institute for Space Studies, New York, NY, USA

Correspondence: Abigail Snyder (abigail.snyder@pnnl.gov)

Abstract. Future changes in Earth system state will impact agricultural yields and, through these changed yields, can have
profound impacts on the global economy. Global gridded crop models estimate the influence of these Earth system changes on
future crop yields, but are often too computationally intensive to dynamically couple into global multi-sector economic models,
such as GCAM and other similar-in-scale models. Yet, generalizing a faster site-specific crop model’s results to be used globally
will introduce inaccuracies, and the question of which model to use is unclear given the wide variation in yield response across
crop models. To examine the feedback loop among socioeconomics, Earth system changes, and crop yield changes, rapidly
generated yield responses with some quantification of crop response uncertainty are desirable. The Persephone v1.0 response
functions presented in this work are based on the Agricultural Model Intercomparison and Improvement Project (AgMIP)
Coordinated Climate-Crop Modeling Project (C3MP) sensitivity test data set and are focused on providing the Global Change
Assessment Model (GCAM) and similar models with a tractable number of rapid to evaluate, dynamic yield response functions
corresponding to a range of the yield response sensitivities seen in the C3MP data set. With the Persephone response functions,
a new variety of agricultural impact experiments will be open to GCAM and other economic models; for example, examining
the economic impacts of a multi-year drought in a key agricultural region and how economic changes in response to the drought

can, in turn, impact the drought.

Copyright statement. TEXT

1 Introduction

Agricultural yields are susceptible to changes in temperature, precipitation, growing season length, CO» concentrations, and
other Earth system factors. While both the nature of the future climate and its impact on agricultural yields are uncertain
(Rosenzweig et al., 2014; Pirttioja et al., 2015; Fronzek et al., 2018; Asseng et al., 2013, 2015; Martre et al., 2015; Lobell,

2013), it is clear that there is potential for identifying the important effects on agriculture and, in turn, the economic state of the

world at large. The global multi-sector economic model Global Change Assessment Model (GCAM)' Kim-et-al2006:Clarkeet-al; 2007

'Model and documentation available at https://github.com/JGCRI/gcam-core, http:/jgcri.github.io/gcam-doc/toc.html
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Kyle et al., 2011; Wise et al., 2014; Calvin et al., 2019; Hartin et al., 2015) and other similar-in-scale models (Nelson et al.,

2014) are ideal for understanding the far reaching impacts of this climate-agriculture-economic cycle, but rely on external
projections of agricultural yields to quantify these effects (Figure 1, panel A). This asynchronous process results in inconsistencies
between the economic and biophysical world, and overlooks feedbacks and unintended consequences as the future shifts (Ruane
et al., 2017).

Several modeling groups, including the GCAM model development team, are interested in explicitly modeling and understanding
bidirectional feedbacks between the Earth and the human systems —(e.g. Figure 1, panel C). Agriculture is one important
pathway (of many) through which these systems directly interact. A prime example would be to study the impacts of a multi-
year drought in a key agricultural region. The drought would affect yields, which would affect the agricultural supply to the
global economic market. In a model like GCAM, this would lead to price changes and shifting land to more profitable crops.
The new spatial distribution of agricultural land would change land related emissions, which will in turn affect climate and
therefore yields moving forward. Being able to model each component of this process and the interactions among them is key
to considering important questions like this one.

Currently, GCAM operates on a five year time step and is coupled with a physical Earth system emulator, Hector (Hartin et al., 2015)

(asin Figure 1, panels A and B), to explore global change questions in rapid enough evaluation times to allow for large numbers
of simulations to be analyzed as part of a wide range of experiments. GCAM is a recursive dynamic partial equilibrium
model that is calibrated to a historical base year of 2010 and used to simulate forward in time by incorporating changes in
quantities such as population, GDP, and technology to produce outputs that include land, water, and energy use as well as
emissions and commodity prices. For agricultural production in GCAM, yield change trends representing generally positive
change assumptions over time due to non-climate factors (changes in management, new seed genetics, new technologies, use

of chemicals/fertilizers, adaptation, etc.) are used to calculate the profitability of a crop-irrigation-fertilizer combination in

each of 384 GCAM land units at each time step based on the global crop price. This profitability determines land allocated
to each crop, and the combination of exogenous yields and land allocation gives production of each crop-irrigation-fertilizer

combination such that global supply and global demand are met on each timestep. The details of this allocation are provided
2011); Wise et al. (2014);

3

combinations leads to a degree of endogenous yield intensification within GCAM.

Past agricultural impacts studies using GCAM i 5 Calvin and Fisher-Vanden, 2017) have focused on using
outputs of global gridded crop model (GGCM) studies (e.g., Rosenzweig et al., 2014; Elliott et al., 2014; Miiller et al., 2017)

in a strictly feed-forward way (Figure 1, panel A). Direct coupling of a GGCM to GCAM is-prohibitively—expensive-in-the

computational-resources-required-to-run—the-would result in a computationally expensive modeling framework, limiting the
number of simulations that could be performed. Yet, large ensembles of simulations are necessary to explore and understand

in Kyle et al. Calvin et al. (2019). Shifting land allocation among different crop-irrigation-fertilizer

future response options, so there is great need for a computationally efficient model that could explore the uncertainty space.
While GCAM is already coupled to a simple climate model, Hector (Hartin et al., 2015), this coupling is one-way: emissions are
passed to the climate model, but to date dynamic ;-bidireetional-feedbacks between climate and humans en-at each timestep are

missing. In this paper, we describe the first version of Persephone (v1.0), a simple representation of mean agricultural response
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and uncertainty to future climate that can be incorporated into GCAM and similar models. Further detail of the desired studies
this yield change emulator would be used for are given in Section 2.1 and discussed at length in Ruane et al. (2017).

An ideal solution to the computational expense of coupling a GGCM to GCAM is a yield response emulator, which uses past
crop yield model runs to predict what the model would have done under different conditions, had it been run. However, previous
work in this area has been restricted to either emulating GGEM-results-under-crop model results under fixed [CO, ]-temperature
pathways such as the various RCPs (Blane;2647)«(Oyebamiji et al., 2015; Blanc, 2017; Ostberg et al., 2018) or building statistical
models from empirical and historical data (Lobell, 2013; Moore et al., 2017; Mistry, 2017; Mistry et al., 2017 );neither-of-which
span-a-wide range~. While an emulator trained on RCP-driven scenarios can be used to estimate yield change in any future
climate, the RCPs only span a subset of possible future elimate-These-approaches-thenclimates. In particular, should one want
to_consider the impacts of [COz]-temperature pathways that substantially differ from the RCPs, these emulators would face
data Statistical models of empirical and historical data also must predict yield changes in response to future climate outside

of the conditions of the training data, to-serve-the-especially in response to large [CO,] increases. Substantial departure from
the RCPs and historical values of [CO5] is very possible in the bidirectional coupled human-earth system applications outlined

above and an emulator equipped to handle that is desirable. Finally, many of these past studies have lacked a way to capture
aspects of uncertainty that would be useful for the GCAM bidirectional feedback experiments described in Section 2.1.

The Agricultural Model Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al., 2013) took steps to begin
addressing these issues with the Coordinated Climate-Crop Modeling Project (C3MP), a modeling study specifically designed
to, among other things, provide the data necessary to develop a flexible and dynamic crop yield emulator (Ruane et al.,
2014; McDermid et al., 2015). C3MP invited point-based crop modelers from across the AgMIP community to simulate
their calibrated agricultural system’s response to 99 sensitivity tests in which 1980-2009 baseline climate data were modified to
synthesize changes in mean carbon dioxide concentration ([CO-]), temperature, and precipitation. The 99 Carbon-Temperature-
Precipitation (denoted CTW, W for Water rather than P for Precipitation) tests that make up the C3MP protocol were selected
using a Latin hypercube to ensure that future scenarios through the end of the 21st eenturecentury, including all RCPs, fall
within the training model simulation data over the vast marjority-majority of agricultural lands (Ruane et al., 2014). The
full space of CTW changes that these 99 tests represent is: 330-900 ppm global [CO-], -1°C to +8°C from local baseline
temperature, and -50% to +50% from local baseline precipitation (applied as a multiplicative factor). A particular CTW
perturbation could be associated with a specific time slice, for example the 2050s climate changes from a given Earth System
Model (ESM) RCP4.5 projection, or from a climate condition generated within GCAM as a result of interactions between
socioeconomic development and the natural environment. Finally, the C3MP study featured broad spatial coverage (albeit not
uniform) of a wider variety of crop models, crops, and management practices than has been incorporated into past GGCM or
emulator work. More than 50 participating crop modelers helped C3MP record yield response simulation results from a total

of 1135 sites, differing by location, crop species, cultivars, crop model, farm management, etc.
The Persephone response-funetions-framework presented in this work are-destgned-to-is designed to develop yield response
functions to CTW changes from a given data set. The Persephone V1.0 response functions, based on the C3MP data set, provide
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a computationally inexpensive estimate of the change in agricultural yield due to a change in the Earth system, and make use of
the promising data relating yield changes to CTW changes collected in C3MP. Specifically, we present biologically reasonable
response functions that are rapid-to-evaluate and more dynamic than past options for incorporating crop responses into models
like GCAM.
in-toeal-Earth-system-state—We strictly considered responses to long term Earth system changes. The C3MP results or other
appropriate data sets could be further used to examine the effect of inter-annual variability on yields in the-futarePersephone

V2.0 and beyond, although this would require additional complexities in seasonal yield variations that are largely averaged out

in long-term trends.

2 Methods




ThePersephone—yield-responsefunctions—were-developed-The response functions also represent the uncertainty in yield

response across crop models in the C3MP data set to a given change in local Earth system state, for use in three new-types of
agricultural impacts studies with GCAM:

1. A partially coupled, feed forward study (Figure 1, Panel B) similar to methodology in Ruane et al. (2018). A future
climate time series of interest (a non-traditional RCP, climate stabilization level, or hypothetical drought, for instance) is
input to the yield response functions, returning yield changes. These yield changes are applied as multipliers to GCAM
input files and GCAM is run forward for the entire time period of interest in order to trace the broad impacts on energy,
water, and land use of the future climate time series. In this type of study, we only capture the implications of climate for

human systems.

2. A fully coupled feedback loop that updates on every model timestep to understand how societal pressures drive environmental
impacts which in turn create or reduce societal pressures (Figure 1, Panel C). In this case, the yield changes must be
calculated very quickly in order to evaluate on each step and interact with GCAM. In this type of study, we can capture

the effects of humans on climate and climate on humans, simultaneously.

3. Joint climate-crop uncertainty studies of the above two experiments. For tractability, the GCAM development team
specifically seeks a mean response function as well as two additional response functions that represent a range of yield
response uncertainty. Persephone also stores the full predictive distributions of yield changes for any given CTW change
that these three response functions span. If a user desires a different representation of uncertainty, the distribution may

be sampled.
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Figure 1. The current method for incorporating agricultural impacts into GCAM and two experimental designs for using Persephone v1.0
with GCAM. Panel A: The current method for incorporating yield changes from a global gridded crop model into GCAM. Panel B: A
partially coupled, feed forward study incorporating yield changes from a predetermined climate scenario into GCAM. Panel C: A fully

coupled feedback loop that iteratively updates agricultural yield impacts.
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2 Methods
2.1 C3MP dataset

Full details of the C3MP protocols, design, and the location output archive can be found in Ruane et al. (2014); McDermid
et al. (2015). Here, we highlight some of the key features of the data set and outline our processing of C3MP data for use-in
training response funetions using the Persephone framework to train V1.0 response functions with the Persephone framework.

C3MP recorded yield response simulation results from a total of 1135 sites (differing by location, crops, crop model,
management, etc) for each of 99 CTW sensitivity tests designed to cover a range of CTW changes that most future climates
would fall into. For each site, each CTW test is applied to change a local timeseries-time series of weather data from 1980-2009

and then the crop model is run to produce 30 years of impacted yields for the CTW test, which are then averaged. fn-a-typical

The C3MP design resulted in a wider range of crops than had been previously sampled in a coordinated agricultural modeling

study. We separate the C3MP data into 25 different production groups for this-analysistraining in the Persephone framework to
create V1.0 response functions. Twenty-four of the 25 groups for this paper are collections of sites corresponding to different
crop-irrigation-latitude combinations: irrigated and rainfed versions of six key crops (Maize; Rice;-Wheat,-Soybeansmaize,
rice, wheat, soybeans, a C3-photosynthesis average, and a C4-photosynthesis average ), based on sites at the extended tropics
(30°S to 30°N) and the mid-latitudes (30- 70°S, 30- 70°N) —The-choice-of breakingup-groups-by latitadezone-was-arough

restrictions(see Section 2.1.1 for more details on spatial scales). It is also noteworthy that the majority of C3MP sites had high

rates of fertilizer application, even in the extended tropics. These six crop groups were chosen because most IAMs already have

experience incorporating such impacts from previous AgMIP exercises (e.g., Ruane et al. (2017); Calvin and Fisher-Vanden
(2017); Nelson et al. (2014); Wiebe et al. (2015); Ruane et al. (2018)), they cover the major agricultural commodities globally,
and they offer additional benchmarks for evaluating emulator success. In particular, the C3-photosynthesis production groups
represent an average response of a very wide range of C3 crops, including Wheat;Rice-and-Soybeanswheat, rice, and soybeans.
The C4-photosynthesis average is similarly defined, with sugarcane considered separately. The 25th production group is rainfed
sugarcane in the extended tropics: no sugarcane sites outside of 30°S to 30°N were submitted to C3MP and only one irrigated
sugarcane site was submitted.

We cull the 1135 contributed C3MP output datasets according to a range of criteria:
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1. Sites simulated with notably older versions of crop models are eliminated. We thus eliminated uses of the DSSAT crop

model v3 (and prior), given that important updates in crop physiology were added in version 4 (Jones et al., 2003).

2. Site simulations that exclude CO4 fertilization responses, a fundamental variable examined here, were eliminated. We

thus eliminated the SarraH-Hv32 crop model (primarily millet and sorghum sites in West Africa).

3. When C3MP modelers provided simulation sets that were identical other than the use of local weather data or AgMERRA
climate forcing data (Ruane et al., 2015)), we used only the local dataset to avoid double counting. AGMERRA was

provided for all datasets given frequent data gaps and governmental restrictions (Ruane et al., 2014).

These steps together eliminate more than 550 of the C3MP sites. Finally, for each production group, outliers are statistically
identified and eliminated (Davies and Gather, 1993; Bond-Lamberty et al., 2014), in addition to those previously identified
by the C3MP steering team. A total of 575 unique sites remain after culling, maps of which are included in Figure 2. These
remaining sites cover 43 countries, 85 models, and 17 crop species. More than half of the C3MP sites have been eliminated,
but this still results in a larger number of diverse sites, models, and crop species performing coordinated sensitivity tests than
in any previous study (Asseng et al., 2013; Pirttioja et al., 2015; Fronzek et al., 2018). Since C3MP, the AgMIP-Wheat team
has conducted an extensive analysis of temperature response at 30 wheat sites with 30 models (Asseng et al., 2015), but this

only captures one of the CTW dimensions. While-

2.1.1 Known caveats of the C3MP data set

Additional discussion of the C3MP data set in the context of other AgMIP modeling efforts is presented in Ruane et al. (2017).
One relevant point to this work is that, while C3MP spatial coverage is not #aifers-spatially uniform or production-weighted for
any of the crops under consideration, sites for many of the major production regions are represented for each crop —(Figure 2).
A major advantage of using site-specific crop models run voluntarily by experts is that the individual baseline runs at each site
have been configured against local information in the historical period. However, the application of crop yield response from
these sites to estimate response in any given grid cell with temperature and precipitation data is imperfect by its methodological
nature. Yet this extension is necessary for use with GCAM.: gridded yield changes for a subset of crops must be aggregated
and converted to yield impact multipliers for each GCAM commodity in each land unit, defined as water basins in GCAM
(Calvin et al,, 2019).

Given the size and details of the C3IMP data set, production groups were formed based on two latitude zones as a way.
to account for baseline local temperature (which is important in addition to the change from local temperature) without
having to eliminate the many valid C3MP sites that could not report local weather data due to data gaps or local government
restrictions. As this breakdown already results in some production groups with small sample sizes (see Table 1 and Section

regation of production group is unjustified in this data set. While this means there will be limited

further spatial disa.

in the gridded fields of temperature and precipitation changes. Future data sets with more comprehensive spatial coverage than
the C3MP data may be used rather to create V2.0 response functions.
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The site-specific percent change in yield from the 1980-2009 baseline yield is the dependent variable used to train our

emulator (rextseetion)—While-the-eutputyieldsreperted-to-the-C3MP-archive-see Section 2.2). Baseline yields differ widely
across sites-for-any-given-CTW-combination;-the C3MP archive due to regional and system differences, however the percent

change in yield from baseline is more consistent across sites for each CTW. Further, by training on change in yield rather than
yield, we are able to introduce additional, scientifically grounded constraints to the functional forms we fit (Equations (4) -
(6)). However, no baseline simulation was requested under the C3MP protocols. Therefore, for each individual set of output
yields corresponding to each of the 575 simulation sites, we esti

training-the-emulator-For-each-simulation-site;-we-perform ordinary least squares estimation-for-8-regression for eight different
functional forms relating the m output yield to the 1nput CTW values 4he—fefm4vwﬂ+fheﬂaﬂest—me{»mezm—sqﬂafe

yieldis-used-to-eonvert-and select the best performing regression to estimate baseline yield (details in Appendix B, Equations

BD-(B3)).

It is_also worth noting that the C3MP outpt
trainingexperimental protocols (Ruane et al., 2014; McDermid et al., 2015) do not account for changing growing seasons, either
through changes of within season distribution of temperature and rainfall or in the possible autonomous adaptation of farmers
to_shift planting and harvest dates. Ruane et al. (2014) showed that within season distribution changes had a small effect
and the possible shift in planting and harvest dates are a topic of adaptation. Modeling autonomous adaptation behaviors
is a challenging area for coordinated agricultural efforts and is only beginning to be addressed in coordinated sensitivity.
intercomparison studies as a scenario option, with no publicly available data sets at this time.




Monfreda 2000 harvested area,
hectares per grid cell
[T T

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 2. Maps of the C3MP data set culled sites. Each site represents a site-specific model of a single crop, with differing management

practices. The sites are overlaid on Monfreda et al. (2008) harvested area data, except for the C3 and C4 averages.

10
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2.2 Emulation

The majority of past agricultural yield emulator work has used ordinary least squares regression to estimate coefficients of
functional forms. Given a set of predictors, x, and given a particular value of the predictors x; with corresponding training data
s, an emulator would be some linear-in-parameters function f(x) that returns an emulated value f(x;) for comparison with
y;. Ordinary least squares regression requires that residuals r; = y; — f(x;) ~ N(0,02) for all i (e.g., Williams and Rasmussen,
2006, Section 2.1.1). A key requirement is that o is a constant value across all i.

Figure 3 displays the spread of yield responses across sites for each CTW test for one production group, rainfed soybeans
between 30- 70°S, 30- 70°N (the mid-latitudes). A successful emulator will produce the mean response (Figure 3, black dots)
across sites for eah-each CTW. Therefore examining the spread of the individual site yield changes about the mean yield gives
some sense of the behavior of residuals in the most successful emulation case.The spread of yield change across sites relative to
the mean response is different for each CTW test and appears to change in a systematic way - larger magnitude changes in yield
are correlated with greater spread across sites. In light of this, a classic, ordinary least squares regression is not an appropriate
approach for this emulator. We also desire more than just the mean response: we desire a measure of how this variation
of site responses changes with CTW. With these considerations in mind, we take a slightly different approach to creating the

Persephone respoense-funetionsV 1.0 response functions, working from texts such as Gelman et al. (2013

11

; Sivia and Skilling (2006

: McElr
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Rainfed Soybeans in the midlatitudes

CTW test

-1‘00 —5‘0 0 5‘0 160 15;0
Percent change in yield from baseline

Figure 3. A plot of the percent yield change at each Rainfed-Seybeansrainfed soybeans in the mid-latitudes site (blue points) for each CTW

test (each horizontal line of points is a different test). The black dot for each test represents the mean response across the sites for that test.

We create the Persephone V1.0 response functions to emulate the mean yield response and two additional yield response
scenarios spanning a range of individual site responsesfor-use-in-GEAM. For a given production group (crop - irrigation -
latitude zone combination), we collect the data for the 99 CTW tests for each of K C3MP simulation sets drawn from the
culled-down archive. In other words, for each of 99 CTW combinations, there exist K 30-year average yield percent changes
from the baseline (no changes in CTW) for a group. This ensemble of 99K yield changes is used to calculate the posterior
densities for every parameter of uorw and oorw in the model defined by Equations (1) - (7) according to Bayes’ theorem
(posterior  likelihood x prior). From the posteriors, the maximum a posteriori (MAP) estimates of parameters, the most

plausible value for each parameter given both the model being used and the training data, is returned.

‘We define our likelihood as a normal distribution with mean and variance o2 :
AYSERG? ~ N(porw, 20> crw) (1)

For a production group with site-specific yield responses that are normally distributed for each CTW value, porw is the
mean response across sites for that CTW value (the black points in Figure 3), and Scr1—02. 1y, is @ measure of agreement
(or disagreement) of responses across sites for that CTW value. We present results for our most broadly optimal ttory—and
>corw-mean and variance functional form combination in this paper, and present the details of our selection criteria among

the different functional forms in the AppendixlAppendix.

12
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To have unitless coefficients in our emulator, all predictor variables are standardized. Defining the collection of 99 T changes
sampled by C3MP as Tosrp, the collection of precipitation changes as W3asp, and the collection of CO2 concentrations as

Ccsmp, We have:

_ T— Tbaseline

AT =———"—7—
sd(Tesmp)
W — Wbaseline
AW = ——M— 2
sd(Wesnp) @
C— Cbaseline
AC = = bascline
sd(Ccsnmp)

Thaseline 18 a change of 0° C from baseline, Wygserine is @ 0% change in precipitation from baseline, and Chgserine is 360ppm.

Plugging these baseline values into Equation (2) returns ATy serine = AWhasetine = ACpaserine = 0, as one would expect.
We exploit the fact that we are emulating change in yield (and not yield) and the fact that ATpqscrine = AWhasetine =

AChgseline = 0 in constructing Equations (4)-(7), which relate the mean and standard deviation of the likelihood in Equation

(1) to our unitless predictor values AC, AT, AW . By definition, percentage change in yield in response to no change in CTW is

0% at baseline for every individual C3MP site. This implies that #raserme—="aserrme—"0-both mean and variance at baseline
are 0 for all production groups, and we must construct the Persephone response funtions-functions to reflect this, independent

of the estimated baseline yield at each site—;_

Hbaseline = 0 (3)
; =0
Obaseline =

Fhis-Implementing this constraint for the mean is straightforward. Any functional form representation of pc7w that does
not include a constant parameter ag and-se-at-basehineswill force fipaseiine = 0% yield change sas-desired—precisely because

werw = a1 AT 4 as (AT)2 +asAW + a4(AW)2 +as AC + ag(AO)Q + a7 ATAW + asATAC + ag AW AC
+ a1 ATAWAC + a1 (AT)QAW + a12(AT)2AC + (thT(AW)Q + a14AT(AC)2 + a15(AW)2AC “4)
+ a16 AW (AC)? + a17(AT)? + a15(AW)? + a19(AC)3

Constraining the variance to be O at baseline as in Equation (3) should be equally easy by simply not considering an

functional form that includes a constant parameter. However, this approach leads to numerical stability issues when estimatin
arameters. Therefore, we estimate the variance using the following functional form:

2
o2y = (bo DI AT + bay(AT)? + by AW + by (AW)? + bsAC + be(AC)? + by ATAW + bs ATAC + bgAWAC) )

13



This results in the following functional form representation for the standard deviation:

agCcTw = +\/ U%TW
(6)

= |bo + b AT + by (AT)? + bs AW + by(AW)2 4+ b5 AC + b (AC)? + by ATAW + bgATAC + by AW AC)

This functional form estimates parameters that may individually be negative but which together result in a non-negative

standard deviation for any CTW value being considered. At baseline, this functional form representation has eygserime="bov

standard deviation ¢ ine = |bo| as opposed to the required opqseiine = 0 in Equation (3). This is done for numerical reasons
and is addresed-addressed with the prior for by~N{6:6-64}by ~ N (0,0.012). This constrains the value of by to be between

-0.02% and 0.02% with 95.45% probability, reflecting that by should be as close to 0 as possible without causing numerical

emulated __
baseline

ineorporated-This results in opqecrine values between 0% and 0.02% and therefore 0% < AY,emulated < () 02%. which we

solver issues. We—constder— eptable—even—if-a-scenario—results—in-A

10 judge acceptable for incorporating into GCAM as a multiplermultiplier. All other parameters have very broad priors:

15

20

25

bo ~ N(0,0.01%)
@)

a;,b; ~ Uniform(—300,300) Va;,b;,i #0

The functional form for ucrw is equivalent to estimating the coefficients of a third order Taylor polynomial, which can
approximate a wide variety of functions fairly well. Similarly, the functional form for oo is equivatent-conceptually related
to estimating the coefficients of a second order Taylor polynomial. Because of the C3MP experiemental-experimental design,
emulating yield changes throughout the 21st century using Equations (1)-(7) does not require extending beyond the range
of mean growing season CTW values used to train the Persephone V1.0 response functions. These functional forms are an
evolution from C3MP’s hybrid polynomial (Ruane et al., 2014). An exploration of other functional forms to address potential
overfitting is included in Appendix A. Ruane et al. (2014) also reviews previous emulator forms across the literature, including
discussion of the potential to look at non-linear terms such as killing degree days used in Schlenker and Roberts (2009), for
example.

From the model defined by Equations (1)-(7), we construct the three Persephone v1.0 response functions for each production

group;feruse-in-GCAM-and-similar-medels:

Mean response: AYSmalated — oy Ayemulated — ) tine = 0%
High response: AYEFU ! = oy + |ocrw|; AYEmutated ¢ (—0.02%,0.02%) with 95.45%probability ®)

Low response: AYgmulated — oy — |oorw | AY,emulated ¢ (—0.02%,0.02%) with 95.45%probability

baseline
The default high and low responses are at one standard deviation of the production group yield responses (as opposed to two
or three) because we are interested in scenarios that capture a range of the simulated site responses, but not the most extreme
simulated site response. This does not affect how . and o are fit in Persephone v1.0, only how they are used. The Persephone
v1.0 code is written flexibly enough that a user more interested in capturing the most extreme simulated site response could

certainly add a multiplicative factor (e.g. u+2|o|) when using p and o without having to spend the computational time refitting.

14
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3 Evaluation

We primarily present figures and analysis using the model and response functions defined by Equations (1)-(8) because we
found these functional forms to be the most broadly optimal of those considered. We-To investigate overfitting, we also
examined nine other possible functional form combinations of ucrw and ooy for each production group, defined in
Equations (A1)-(A7). Details of the cross-validation experiments used as a method of functional form selection are in the
Appendix. Briefly, because we are interested in the ability of any given response function to accurately predict yield changes
in response to CTW values not used for training, we perform leave-one (CTW test)-out cross-validation experiments for each
production group. The best performing functional form at the cross-validation experiments is then the selected functional form.
This can be done to find the most broadly optimal functional form (using the same functional form for all production groups,
Figure A1) or to find the best functional form for each production group (if a user wishes to vary the functional form for each
production group, Table A10). This choice does not introduce additional fitting, or computational time. It is changed only by
the calls to each function in the Persephone R package by the user.

Here, we quantitatively evaluate the performance of the Persephone V1.0 response functions (Equation (8)) trained on the full
span of CTW values that the 99 tests represent for each production group (Section 3.1). We also present heuristic evaluations
of mean response function performance (Section 3.2).

Files with the point estimate, as well as the standard deviation of the posterior distribution, for each coefficient in ¢ and o for
all 10 functional form combinations for all production groups are available (archived at https://doi.org/10.5281/zenodo.1414423)
and as part of the Persephone v1.0 R package (https://github.com/JGCRI/persephone).

3.1 Quantitative

We categorize the performance of the Persephone V1.0 response functions trained on the full span of CTW values (mean,
high, and low response, Equation (8)) for each production group based on comparing the 99 emulated yields output from the
response functions to the 99 corresponding values from the C3MP simulation data: the in sample measurement of error. These
are the actual response functions an end user would have and it is important to have a performance measure for them, although
this is not the performance measure used to select functional forms.

The categorization is based on the normalized root mean square error (NRMS) and the comparison for each response function

is as follows:

— The 99 emulated yields returned by the mean response function are compared to the mean yield response across the
production group C3MP sites for each of the 99 senstivity-sensitivity tests (what we call the simualted-simulated mean
yields).

— The 99 emulated yields returned by the high response function are compared to the 84.135" percentile of yield responses
across C3MP sites for each of the 99 senstivity-sensitivity tests (what we call the simulated high yields). This corresponds
to matching C3MP site responses at the mean plus one standard deviation level for each of the 99 sensitivity tests when

the production group C3MP site responses were normally distributed for each sensitivity test.
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— The 99 emulated yields returned by the low response function are compared to the 15.865%" percentile of yield responses
across C3MP sites for each of the 99 senstivity tests (what we call the simulated low yields). This corresponds to
matching C3MP site responses at the mean minus one standard deviation level for each of the 99 sensitivity tests when

the production group C3MP site responses were normally distributed for each sensitivity test.

As noted in Willmott (1984); Legates and McCabe (1999); Snyder et al. (2017), NRMS < 1 is one benchmark for adequate
model performance, NRMS< 0.5 is a benchmark for good model performance, and NRMS = RMSE = 0 is perfect model
performance. We further subdivide these categories and define excellent in-sample performance as NRMS< 0.25 for all three
response functions; good performance to be 0.25 < NRM .S < 0.5 for at least one response function and NRMS< 0.25 for
at least one response function; adequate performance to be all three response functions having N RM .S < 1 but at least one
response function with 0.5 < NRM S < 1; and finally poor performance occurs when any one of the three response functions
has NRMS > 1.

The mean response function performs excellently for all of our production groups-—Nen-excellentin-sample-performanee-is
driven-by-, although the performance of the high and low response functions differs. These measures are presented in Table
1 for the response functions defined using cubic pcrw (Equation (4)) and quadratic oorw (Equation (6)) for all production
groups. The excellent performance of the mean response function holds across all functional form combinations explored
(Table A1-A9). In the event that a user is only concerned with a mean response scenario, a shared functional form for all
production groups is acceptable. A user interested in the high and low response functions may wish to use the production
group specific functional form combinations listed in Fabel-Table A10, which includes the in-sample performance metric for
the optimal functional form for each production group. The majority of production groups (17/25) feature excellent in-sample
performance while the remaining 8 production groups feature good overall performance. For more detail than the summary
tables presented here, files of results for the leave-one-out cross validation exercises for all functional form combinations for
all production groups are available in the paper analysis archive.

We also present a dashboard of quantitative evaluation plots for four of our 25 production groups in Figures 5 and 4 to
provide a visual interpretation of the four in-sample performance categories. Each dashboard is organized to address the

following questions:

— Top Left: For a given group, do the three representative responses span the range of sites? In this plot, individual site
yield changes for each test (blue dots), are overlaid with the emulated mean, high, and low response functions evaluated

for each test (black dots). Each horizontal line of points represents one of the 99 CTW sensitivity tests.

— Top Right: For a given group, how does the emulated mean for each of the 99 tests compare to the simulated mean for

each test?

— Bottom Left: For a given group, how does the emulated high response for each of the 99 tests compare to the simulated

high yield for each test?

16



Table 1. Persephone v1.0 response function performance for all production groups, for cubic ucrw (Equation (4)), quadratic ccrw

(Equation (6))

Production group’ Num. C3MP sites NRMS mean® NRMS high NRMS low In-sample Performance
c4 IRR mid 47 0.010 0.148 0.112 Excellent
Maize IRR mid 45 0.010 0.164 0.116 Excellent
Rice RFD mid 4 0.044 0.150 0.195 Excellent
Rice RFD tropic 41 0.020 0.199 0.146 Excellent
Soybeans IRR mid 32 0.017 0.230 0.176 Excellent
Soybeans IRR tropic 2 0.039 0.150 0.170 Excellent
Soybeans RFD mid 35 0.016 0.151 0.145 Excellent
Soybeans RFD tropic 9 0.043 0.198 0.160 Excellent
¢3 RFD mid 165 0.010 0.316 0.270 Good
c4 RFD mid 74 0.016 0.319 0.241 Good
c4 RFD tropic 25 0.019 0.365 0.177 Good
Maize IRR tropic 7 0.012 0.345 0.118 Good
Maize RFD mid 66 0.018 0.293 0.230 Good
Maize RFD tropic 20 0.022 0.407 0.170 Good
Rice IRR tropic 53 0.088 0.339 0.261 Good
Wheat IRR mid 61 0.024 0.372 0.380 Good
Wheat IRR tropic 8 0.076 0.382 0.329 Good
Wheat RFD mid 103 0.021 0.302 0.280 Good
Wheat RFD tropic 4 0.093 0.364 0.311 Good
¢3 RFD tropic 63 0.024 0.757 0.546 Adequate
c4 IRR tropic 14 0.012 0.998 0.214 Adequate
Rice IRR mid 6 0.029 0.656 0.427 Adequate
c3 IRR mid 103 0.012 1.038 0.701 Poor
c3 IRR tropic 67 0.072 1.662 0.790 Poor
Sugarcane RFD tropic 12 0.047 1.382 1.162 Poor

1. “IRR" = irrigated, “RFD" = rainfed, “mid" = mid-latitudes (30- 70°S, 30-17%°N), “tropic” = 30°S to 30°N. 2. Note that the mean response function

performs “excellent" for all production groups.
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— Bottom Right: For a given group, how does the emulated low response for each of the 99 tests compare to the simulated

low yield for each test?

Figure 4 displays one performance dashboard from each in-sample performance category for the broadly optimal, shared
functional form cubic porw and quadratic ooy (Equations (4)-(6)), to aid interpretation of Table 1 (and Tables A1-A9).

As indicated in Table A10, any production group can be fit to result in response functions with an in-sample performance of
good or excellent, if a user is willing to vary the functional forms used for each production group. Figure 5, left, presents the
dashboard for one of the production groups that featured poor performance when the common functional form cubic ucrw
and quadratic ooy (Equations (4)-(6)) was used for all production groups: rainfed sugarcane in the extended tropics. Figure
5, right, presents the dashboard when the response functions are based on the production group specific functional forms
selected by cross-validation (Table A10): C3MP pcorw (Equation (A2)) and cubic oorw (Equation (A7)). The high and
low response functions perform better in the latter case, though it is at the cost of a slightly worse (but still excellent) mean
response function performance. Examination of the sugarcane entry in Tables 1, A1-A9 indicates that a cubic description of
ocrw (Equation (A7)) leads to better high and low response function performance than a quadratic representation (Equation
(A6)), regardless of functional form used for pucrw (Equations (A1)-(AS)). In other words, the uncertainty across C3MP site
responses for each CTW test requires a more detailed Taylor series approximation to describe. This is also generally the case
for the other production groups that rated adequate or poor in-sample performance in Table 1: sometimes the C3MP individual
site yield responses are distributed in such a way for each CTW test that a more flexible fit for ooy is necessary. Perhaps
unsurprisingly, this usually occurs for either very broad production groups (such as those based on C3-photosynthesis), or
for production groups with very few C3MP site outputs (irrigated rice in the mid-latitudes) rather than due to a discernible

biophysical trend or requirement.
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Figure 4. Top left: Rainfed Seybeans—soybeans in the Mid-tatitudesmid-latitudes, an example of the excellent in-sample performance
category. Top right: Irrigated Wheat-wheat in the mid-latitudes, an example of the good in-sample performance category. Bottom left:
Irrigated Riee-rice in the mid-latitudes, an example of the adequate in-sample performance category. Bottom right: Rainfed Sugarcane
sugarcane in the extended tropics, an example of the poor in-sample performance category (also seen in Figure 5, left). Vertical error bars

indicate 95% credible interval for each of mean, high, low emulated gayponses.
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Figure 5. Rainfed Sugareane-sugarcane in the extended tropics. Left: The performance dashboard for the most broadly optimal functional
form representations (i.e. if we want to use the same functional form combination for all production groups), and for which the high and low
response functions poorly reproduce the simulated high and low yields for each of the 99 tests. Right: The performance dashboard for the
production group specific functional forms (i.e. if we want the functional form to vary by production group). Vertical error bars indicate 95%

credible interval for each of mean, high, low emulated responses.

3.1.1 Production groups with small sample size

3.2 Heuristie

It is worth noting that 7 of the 25 production groups considered here are characterized by fewer than 10 C3MP sites (Table
1). For all of these groups, it is possible to fit high and low response functions that capture the spread of the group’s C3MP.
site responses well (Figures 6 and 7). For many of these groups, the spread in response is relatively small. The Persephone
framework does not fail, rather the data upon which the V1.0 response functions are trained is imperfect and would be improved
by greater density in spatial sampling. Had the spatial disaggregation used in forming production groups resulted in small
sample size groups with more significant spread in site response, the Persephone framework is unlikely to represent the full
spread of the sample. As this is not the case, it is left to an eventual user to judge whether such responses serve their purpose.
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Figure 6 highlights this fact for the production group with smallest sample size, irrigated soybeans in the Extended tropics.
The spread of C3MP sites as well as the performance dashboards for the shared optimal functional form (as from Table 1)
overestimates the small spread between the two C3MP sites, the group-specific optimal functional form (right panel) captures

5 the spread well,
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Figure 6. Left: The spread of yield responses for the two C3MP sites making forming the irrigated soybeans in the extended tropics production

roup. Middle: The performance dashboard of the shared optimal functional from (Table 1) for this production group. Right: The performance

dashboard of the group-specific optimal functional form (Table A10) for this production group.

Figure 7 repeats this analysis for the next three smallest sample size groups: rainfed wheat in the extended tropics (Top)

rainfed rice in the mid-latitudes (Middle), and irrigated ice in the mid-latitudes (Bottom). In all three cases the group-specific

optimal functional form represents the spread of the data well. This is also the case for the two remaining production groups

with fewer than 10 C3MP training sites: irrigated wheat in the extended tropics and rainfed soybeans in the extended tropics

10 (not shown). .
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32 Qualitative

One motivation for the 25 production groups based on [Corn;—Wheat; Rice;-Seybeansmaize, wheat, rice, soybeans, C3, C4
(minus sugarcane), and sugarcane] X [irrgated-irrigated or rainfed] X [extended tropics or mid-latitudes] is to evaluate emulator
performance beyond the quantitative. Given that some GCAM users will only be interested in the mean response functions, it
is particularly important to validate that these functions capture key biological features of each crop, beyond the quantitative
agreement for the 99 C3MP tests measured by the in-sample performance metric in Section 3.1. In particular, these are features
motivated by biophysical intuition and present in most of the C3MP sites. Therefore we verify that these features are retained
in the emulator.

We use impact response surfaces to visualize these features, examples of which are given in Figures 8 and 9. The three-
dimensional CTW space is most easily examined by looking at cross sections where one of the CTW dimensions is kept
constant while the other two vary. The brown to blue eelerbar-color bar in each of these figures depicts contours for the value
of the mean yield response (p.crw) while the overlaid grayseale-labeled black lines depict contours representing uncertainty
(corw, used to create the high and low response functions).

We first identify three important relationships we would expect a successful emulation of C3MP mean responses (brown to

blue eolorbarcolor bar) to obey:

— C3 crops respond strongly and positively to increases in global CO5 concentrations; C4 crops have noticeably less benefit

from COs increases.

— Agriculture in the tropics tends to response more negatively/less positively to changes in temperature than agriculture in

the higher latitudes as the extended tropics correspond to a higher baseline temperature.

— Irrigated crops have almost no response to changes in precipitation, whereas rainfed crops do.

These benchmarks are met: Figure 8 features impact response surfaces that highlight the C3-photosynthesis and C4-photosynthesis

difference, the rainfed and irrigated difference, and the latitude difference. The full collection of impact response surfaces for
all production groups are included in the paper analysis archive. These benchmarks for the mean response are met in those
as well. When there are exceptions, we have investigated to find that the mean response function is faithfully representing
the underlying C3MP data and that it is 