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Abstract 9 

Assimilation of atmospheric composition retrievals presents computational challenges due to their high data volume and often 10 

sparse information density. Assimilation of compact phase space retrievals (CPSRs) meets those challenges and offers a 11 

promising alternative to assimilation of raw retrievals at reduced computational cost (Mizzi et al., 2016). This paper compares 12 

analysis and forecast results from assimilation of Terra/Measurement of Pollution in the Troposphere (MOPITT) carbon 13 

monoxide (CO) CPSRs with independent observations. We use MetOp-A/Infrared Atmospheric Sounding Interferometer 14 

(IASI) CO retrievals and Measurement of OZone, water vapor, carbon monoxide, and nitrogen oxides by in-service AIrbus 15 

airCraft (MOZAIC) in situ CO profiles for our independent observation comparisons. Generally, the results confirm that 16 

assimilation of MOPITT CPSRs improved the WRF-Chem/DART analysis fit and forecast skill at a reduced computational 17 

cost (~35% reduction) when compared to assimilation of raw or quasi-optimal retrievals (QORs). Comparison with the 18 

independent observations shows that assimilation of MOPITT CO generally improved the analysis fit and forecast skill in the 19 

lower troposphere but degraded it in the upper troposphere. We attribute that degradation to assimilation of MOPITT CO 20 

retrievals with a possible bias of ~14% above 300 hPa. To discard the biased retrievals, in this paper we also extend CPSRs to 21 

assimilation of truncated retrieval profiles (as opposed to assimilation of full retrieval profiles). Those results show that not 22 

assimilating the biased retrievals: (i) resolves the upper tropospheric analysis fit degradation issue, (ii) has commensurate 23 

reductions in assimilation computation cost, and (iii) reduces the impact of assimilating the remaining unbiased retrievals 24 

because the total information content and vertical sensitivities are changed. 25 
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1 Introduction 1 

Mizzi et al. (2016) introduced the assimilation of “compact phase space retrievals” (CPSRs) to address challenges associated 2 

with assimilating retrievals of atmospheric composition. They showed that assimilation of CPSRs reduced computation costs 3 

while maintaining or improving analysis fit and forecast skill. They reached that conclusion by comparing their results with 4 

assimilated observations. In the first part of this paper, we compare the results of assimilating CPSRs with independent 5 

observations. As in Mizzi et al. (2016), we assimilate conventional meteorological observations and Terra/Measurement of 6 

Pollution in the Troposphere (MOPITT) CO retrievals, but here we compare our analysis and forecast results with MetOp-7 

A/Infrared Atmospheric Sounding Interferometer (IASI) CO retrievals and Measurement of OZone, water vapor, carbon 8 

monoxide, and nitrogen oxides by in-service AIrbus airCraft (MOZAIC) in situ CO profiles. Those comparisons generally 9 

show improved analysis fit and forecast skill from assimilating MOPITT CO retrievals but in the upper troposphere there is 10 

degraded skill possibly due to assimilation of retrievals with a positive bias of ~14% (Deeter et al., 2013 and Martinez-Alonso 11 

et al., 2014). In the second part of this paper, we extend the CPSR algorithm to assimilate truncated retrieval profiles and 12 

discard (i.e., do not assimilate) the biased retrievals. The rest of this paper is organized as follows: In the next section – Section 13 

II, we describe the forecast/data assimilation system together with the assimilated meteorological and chemistry observations. 14 

Section III describes the independent IASI and MOZAIC observations. Section IV presents descriptions of our experiments, 15 

retrieval pre-processing methods, and extension of CPSRs to truncated retrieval profiles. Section V compares the results of 16 

assimilating MOPITT CO retrievals (full and truncated profiles) with the IASI and MOZAIC CO observations. Finally, Section 17 

VI presents a summary of our results and conclusions. 18 

2 WRF-Chem/DART Regional Forecasting Ensemble Data Assimilation System: Set-Up and Assimilated Observations 19 

For the experiments reported here, we use the WRF-Chem/DART regional chemical transport/ensemble Kalman filter data 20 

assimilation system introduced by Mizzi et al. (2016). WRF-Chem/DART is made up of the Weather Research and Forecasting 21 

(WRF) model with chemistry (WRF-Chem) (www2.acd.ucar.edu/wrf-chem) coupled to the ensemble Kalman filter data 22 

assimilation utility from the Data Assimilation Research Testbed (DART) (www.image.ucar.edu/DAReS/DART; Anderson et 23 

al., 2009). WRF-Chem is a regional model that predicts conventional weather together with the transport, mixing, and chemical 24 
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transformation of atmospheric trace gases and aerosols. DART is an ensemble data assimilation system that uses the ensemble 1 

adjustment Kalman filter of Anderson (2001, 2003) together with adaptive inflation and localization. 2 

  3 

We conduct continuous cycling experiments with 6-hr cycling (00, 06, 12, and 18 UTC) for the period 1 June 2008 00 UTC 4 

to 9 June 2008 18 UTC. To facilitate a large number of experiments, we use a reduced ensemble size of 20 members, a 5 

horizontal resolution of 100km (101 x 41 grid points), and an abbreviated 9-day study period (compared to the 30-day period 6 

used in Mizzi et al. (2016)). The reduced study period is not thought to negatively impact our results because the WRF-7 

Chem/DART spin-up occurs within the first 48 to 72 hours. The WRF-Chem domain extends from ~176 W to ~50 W and ~7 8 

N to ~54 N. We use 34 vertical levels with a model top at 10 hPa and ~15 levels below 500 hPa. We use DART adaptive prior 9 

covariance inflation with the recommended settings and DART three-dimensional Gaspari-Cohn localization with a 10 

localization radius half-width of ~300 km in the horizontal. (Anderson, 2008). Vertical localization is not used. These are the 11 

same settings as used by Mizzi et al. (2016). 12 

 13 

The WRF-Chem initial and boundary conditions are derived from the National Oceanic and Atmospheric 14 

Administration/National Center for Environmental Prediction (NOAA/NCEP) Global Forecast Model (GFS) 0.5º six-hour 15 

forecasts. The WRF Preprocessing System (WPS) interpolates the GFS forecasts to our domain and generates the deterministic 16 

boundary conditions. We use the WRF Data Assimilation System (WRFDA) 17 

(http://www2.mmm.ucar.edu/wrf/users/docs/user_guide/users_guide_chap6; Barker et al., 2012) to generate the initial 18 

meteorological ensemble. The chemistry initial and boundary conditions are derived from the Model for Ozone and Related 19 

Chemical Tracers: MOZART-4 (MOZART) forecasts, and WRF-Chem utilities are used to interpolate those forecasts to our 20 

domain and generate the deterministic chemistry boundary conditions. The emissions and initial chemistry ensembles are 21 

generated as described in Mizzi et al. (2016). The ensemble distributions are Gaussian with a specified mean and standard 22 

deviation. The tails of those distributions are truncated to include 95% of the distribution and exclude anomalous outliers. That 23 

strategy ensures that the emissions and initial chemistry variable concentrations are positive definite. We do not include 24 

horizontal correlations for the emission perturbations because they are not relevant to the focus of this paper.  25 
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 1 

At each cycle time depending on the experiment, we assimilate conventional meteorological and chemistry observations with 2 

DART and advance the analysis ensemble to the next cycle time with WRF-Chem. The resulting 6-hr forecast ensemble is 3 

then used as the first guess in the next assimilation step. Our conventional meteorological observations are NCEP automated 4 

data processing (ADP) upper air and surface observations (PREPBUFR observations), and our chemistry observations are 5 

MOPITT CO mixing ratio retrieval profiles. MOPITT is an instrument on the National Aeronautics and Space Administration’s 6 

(NASA’s) Earth Observing System Terra satellite. Its spatial resolution is 22 km at nadir over a swath width of 640 km. Its 7 

thermal infra-red (TIR) measurements are sensitive to CO in the middle and upper troposphere, while its near infra-red (NIR) 8 

measurements are sensitive to total column CO. We assimilate the MOPITT V5 thermal-infrared/near-infrared (TIR/NIR) 9 

retrieval products described by Deeter et al. (2013).  10 

 11 

The horizontal resolution of the MOPITT data is much greater than that at which we run WRF-Chem. That difference translates 12 

to representativeness errors due to the smaller spatial scales that are resolved in the satellite data and not in the model. To 13 

address those errors, we construct super-observations as follows, we: (i) sort the retrievals, retrieval priors, averaging kernels, 14 

and retrieval error covariances into bins that are ~90 km square, (ii) calculate the bin-average for each of those variables, and 15 

(iii) assimilate the bin-average retrievals. We use an arithmetic average (as opposed to error covariance weighted average) 16 

when calculating the super-observation and do not apply a correction to the retrieval error covariance super-observation 17 

because we are interested in the impact of the reported errors and can apply an error tuning factor to adjust the errors and 18 

balance the observation fit as needed, however, the results reported in this paper are not tuned. Other studies e.g., Eskes et al. 19 

(2003), Miyazki et al. (2012 a and b, 2015), and Barre et al. (2016) have used similar super-observation strategies. We do not 20 

expect that tuning the observation errors would significantly impact our results because diagnostic analyses showed that the 21 

CO total error and forecast root-mean square error (RMSE) were properly balanced. 22 

 23 

3 Independent Observations for Verification: MOZAIC in situ and IASI CO Retrieval Profiles 24 

In the first part of this paper, we compare the results of assimilating MOPITT CO with independent observations (IASI CO 25 
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retrievals and MOZAIC in situ CO profiles). IASI is an instrument on the EUMETSAT (European Organization for the 1 

Exploitation of Meteorological Satellites) polar orbiting MetOp-A satellite. Clerbaux et al. (2009). It measures temperature, 2 

water vapor, fractional cloud cover, cloud top temperature, ozone, carbon monoxide, and methane. IASI has been operating 3 

from 2006 to the present. Its mission is to provide observational support for numerical weather prediction. IASI measures CO 4 

radiances under cloud-free conditions with a horizontal resolution of 25 km over a swath width of ~2,200 km. The IASI 5 

measurements are sensitive to CO in the mid- to lower troposphere. For more information see www.eumetsat.int. 6 

 7 

MOZAIC was a European Research Infrastructure (ERI) project that collected long-term, global-scale measurements of 8 

atmospheric composition on international commercial airline flights from August 1994 to November 2014. Marenco et al. 9 

(1998). MOZAIC collected in-situ measurement of ozone, water vapor, carbon monoxide, and total nitrogen oxides. The 10 

available data products are geo-located (come with longitude, latitude, and pressure coordinates) and include simultaneous 11 

meteorological observations. During MOZAIC data acquisition was automatically performed on the ascent, descent, and cruise 12 

phases of round-trip international flights between Europe and America, Africa, the Middle East, and Asia. For more 13 

information see www.iagos.fr. 14 

4 Experimental Design 15 

We conduct WRF-Chem/DART forecast/assimilation cycling experiments that are similar to those of Mizzi et al. (2016). The 16 

primary differences are the: (i) use of super-observations, (ii) extension of CPSRs to truncated retrieval profiles, and (iii) use 17 

of localization to preclude the assimilated MOPITT CO observations from impacting any state variable other than CO. We 18 

performed a control experiment where we assimilated only conventional meteorological observations (the MET experiment), 19 

and we performed a series of chemical data assimilation experiments. In those experiments, we studied assimilation results 20 

from four types of retrieval pre-processing strategies: (i) Volume Mixing Ratio retrievals (VMRRs, the associated experiment 21 

is called the VMRR experiment), (ii) Log10(VMRR) retrievals (L10VMRRs, called the L10VMRR experiment), (iii) Compact 22 

Phase Space Retrievals (CPSRs, called the CPSR experiment), and (iv) Quasi-Optimal Retrievals (QORs, called the QOR 23 

experiment). The CPSR and QOR experiments (as applied to assimilation of retrieval full profiles) were studied by Mizzi et 24 
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al. (2016). The VMRR experiment and the L10VMRR and CPSR experiments as applied to assimilation of truncated retrieval 1 

profiles are new. We include the L10VMR and QOR experiments as applied to retrieval full profiles because, as discussed in 2 

the Introduction, our comparison of those experiments with independent observations (discussed below in Section V.A) 3 

suggests that it may be beneficial to not assimilate MOPITT CO retrievals in the upper troposphere due to their possible bias. 4 

That concern motivates application of the L10VRR and CPSR experiments to the assimilation of truncated retrieval profiles 5 

(retrieval profiles obtained after discarding the potentially biased retrievals). The rest of this section describes those 6 

experiments. It should be noted that the different retrieval pre-processing methods (making up the different experiments) are 7 

applied after the customary quality assurance/quality control (QA/QC) checks that might discard entire retrieval profiles. Those 8 

forecast/assimilation experiments are summarized in Table 1. 9 

4.1 The VMRR and L10VMRR Experiments 10 

The MOPITT CO retrieval, averaging kernel, and error covariance products are reported in units of log10(VMR). The IASI CO 11 

products are in VMR. For ease of comparison and interpretation, it is convenient to convert the MOPITT data to VMR. While 12 

it is possible to convert the retrievals and error covariance, it is not possible to convert the averaging kernels. Consequently, 13 

the DART forward operator for MOPITT CO in VMR converts the state space CO profile from VMR to log10(VMR), applies 14 

the averaging kernel, and then converts the resulting expected observation (the expected retrieval profile) to VMR. 15 

Conceptually, we expect little difference between results from assimilating VMRRs and L10VMRRs due to an underlying 16 

assumption that the L10VMRRs have a Gaussian distribution (Deeter et al., 2007). However, non-linearity of the base-ten 17 

exponential operator that relates the L10VMRRs to the VMRRs and the extent to which the VMRR distributions are non-18 

Gaussian may introduce differences. So, one goal of the related experiments is to determine whether those differences are 19 

significant. Another reason is to include pre-processing methods that enable us to not assimilate selected retrievals so we can 20 

compare the assimilation/forecast results with those from applying CPSRs to truncated retrieval profiles.  21 

4.2 The QOR Experiment 22 

The assimilation of QORs was discussed in Mizzi et al. (2016). We include QOR assimilation/forecast experiments for 23 

completeness and to provide a reference against which to compare the other retrieval pre-processing experiments. In addition 24 
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(although not discussed herein), QOR pre-processing can be applied to truncated retrieval profiles using the extension 1 

discussed in the next section on the CPSR experiment. 2 

 3 

QORs are phase space retrievals introduced by Migliorini et al. (2008). They are derived by writing the retrieval equation as 4 

𝒚" − (𝑰 − 𝑨)𝒚( − 𝜺 = 𝑨𝑦,  (1) 5 

where 𝒚" is the retrieval profile (column vector, dimension n – the number of observations in a full retrieval profile), 𝑰 is the 6 

identity matrix (square matrix, dimension n x n), 𝑨 is the averaging kernel (square matrix, dimension n x n, and rank k, where 7 

k < n), 𝒚( is the retrieval prior profile (column vector, dimension n), 𝜺 is the measurement error in retrieval space (column 8 

vector, dimension n) with error covariance 𝑬. (square matrix, dimension n x n), and 𝒚, is the unknown true atmospheric 9 

profile (column vector, dimension n). In this paper we transform Eq. (1) with the left singular vectors from a Singular Value 10 

Decomposition (SVD) of 𝑬.. If a SVD of 𝑬. is 𝑬. = 𝝓𝝈𝜑2 , then the QOR profile is defined as  11 

𝝈3𝟏/𝟐𝝓𝑻(𝒚" − (𝑰 − 𝑨)𝒚( − 𝜺) = 𝝈3𝟏/𝟐𝝓𝑻𝑨𝑦,   (2) 12 

and the transformed 𝑬. is the identity matrix. That diagonalization transform is similar to the CPSR diagonalization transform 13 

described in the next section except the QOR transform is applied to the raw averaging kernel and error covariance while the 14 

CPSR diagonalization transform is applied to the compressed averaging kernel and error covariance.  15 

4.3 The CPSR Experiment and the Extension of CPSRs to Assimilation of Truncated Retrieval Profiles 16 

The derivation and assimilation of CPSRs was first introduced by Mizzi et al. (2016). They derived CPSRs by applying two 17 

transforms to Eq. 1: (i) a compression transform based on the SVD of 𝑨, and (ii) a diagonalization transform based on the SVD 18 

of the compressed 𝑬.. Their application can be characterized as CPSRs applied to full retrieval profiles (because none of the 19 

elements in the retrieval profile were discarded) or to square systems (because 𝑨 is a square matrix). If we discard one or more 20 

elements of 𝒚", then we must also discard the corresponding rows of 𝑨 (call the modified forms 𝒚8" and 𝑨9 respectively). The 21 

resulting 𝑨9 is not a square matrix. Note that we must also discard the corresponding rows and columns of 𝑬., so it remains 22 

square but its dimension is reduced. This application can be characterized as CPSRs applied to truncated retrieval profiles 23 

(because some of the elements of the retrieval profile have been discarded) or to rectangular systems (because 𝑨9 is a non-24 

square rectangular matrix). The mathematical formalism for CPSRs applied to rectangular systems is the same as that for 25 
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square systems because Mizzi et al. (2016) used a SVD (as opposed to an eigenvalue decomposition) in their CPSR derivation. 1 

In the remainder of this section, we extend the derivation of CPSRs from Mizzi et al. (2016) to rectangular systems.  2 

 3 

We begin by conceptually discarding q elements of 𝒚". Generally, we discard the elements of the full retrieval profile 𝒚" that 4 

are known to be systematically bad observations. If we discard multiple elements, they need not be sequential. The resulting 5 

truncated retrieval profile is denoted 𝒚8" and its dimension is 𝑛; = 𝑛 − 𝑞. We must also discard: (i) the corresponding elements 6 

of 𝜺 to get 𝜺; with dimension 𝑛;, (ii) the corresponding rows of 𝑨 to get 𝑨9 with dimension 𝑛; 	× 	𝑛, and (iii) the corresponding 7 

rows and columns of 𝑬. to get 𝑬9. with dimension 𝑛; 	×	𝑛;. Without loss of generality, we can drop the 	 ̂notation for the 8 

remainder of this paper and let 𝒚" , 𝜺, 𝑨, and 𝑬. represent their respective terms before and after discarding the retrieval 9 

elements that will not be assimilated. The rest of the derivation is the same as in Mizzi et al. (2016).  10 

 11 

First, we apply a compression transform based on the leading left singular vectors of 𝑨 . If 𝑨 = 𝑼𝑺𝑽𝑻  is a SVD and 12 

𝐴D = 𝑈D𝑆D𝑉D2  is the truncated SVD where the trailing singular vectors (those whose singular values are less than an ad hoc 13 

threshold of 1.0	 ×	103K) are replaced with zero vectors and the trailing singular values are set to zero, then the compressed 14 

form of Eq. 1 is 15 

𝑼D
2(𝒚" − (𝑰 − 𝑨)𝒚( − 𝜺) = 𝑺D𝑽D2𝒚,  (3) 16 

and the compressed error covariance is  17 

𝑼D
2𝑬.𝑼D.  (4) 18 

 19 

Next, we apply a diagonalization transform. If the SVD of the compressed error covariance in (4) is 𝑼D
2𝑬.𝑼D = 𝚽𝚺𝚿2, then 20 

the diagonalized and conditioned form of Eq. 3 is 21 

𝚺3O/P𝚽2𝑼D2(𝒚" − (𝑰 − 𝑨)𝒚( − 𝜺) = 𝚺3O/P𝚽2𝑺D𝑽D2𝒚,  (5) 22 

and that of (4) is the identity matrix. Eqs. 3 – 5 and the fully transformed error covariance are the same as in Mizzi et al. (2016) 23 

except that unwanted retrieval elements have been discarded. 24 

 25 
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Finally, we note that the rank of 𝐀 and the rank of 𝐀9 are the same provided the difference between the dimension of 𝐀 and the 1 

rank of 𝑨 is greater than or equal to the number of discarded elements from the retrieval profile i.e., 𝑛 − 𝑘	 ≥ 𝑞. We also note 2 

that the 𝚺3O/P𝚽2𝑺D𝑽D2 on the right side of Eq. 5 is the transformed averaging kernel. It represents the sensitivity of changes in 3 

the phase space observations (the CPSR) to changes in the true CO concentrations at each vertical level. Unlike the raw 4 

averaging kernel, which included sensitivities to the null space contributions to the retrieval (the linearly dependent 5 

contributions from the right side of Eq. 1), the transformed averaging kernel contains only sensitivities for the measurement 6 

contributions to the retrieval (the linearly independent contributions from the right side of Eq. 1).  7 

5 Results 8 

5.1 Assimilation of Full Retrieval Profiles 9 

In this section, we look at assimilation/forecast results from the experiments described in Section 4. The reader should note 10 

that the CPSR and QOR experiments are the same as the MOP CPSR and MOP QOR experiments from Mizzi et al. (2016) 11 

except: (i) the study period is shorter (nine days as opposed to one month), and (ii) we assimilate MOPITT super-observations.  12 

 13 

The upper panels of Fig. 1 show forecast verification statistics (RMSE and Bias) for the different experiments when compared 14 

against MOPITT CO retrievals on the left and IASI CO retrievals on the right. For the MOPITT comparison, the MOPITT CO 15 

forward operator has been applied to the WRF-Chem results so the comparison is made in MOPITT CO retrieval space.  16 

Similarly, for the IASI comparison the IASI CO forward operator has been applied so the comparison is made in IASI CO 17 

retrieval space.  The left panel can be compared with Fig. 8 from Mizzi et al. (2016). Qualitatively that comparison shows that 18 

the two figures are similar. The MET experiment yields the higher RMSE and bias while the CPSR and QOR experiments 19 

yield the lower RMSE and bias. Similar results are seen in the IASI CO comparison. It is interesting that for both comparisons: 20 

(i) The VMRR experiment shows a slight degradation when compared to the MET experiment, and (ii) the L10VMRR 21 

experiment is similar to the MET experiment and shows a small improvement when compared to the VMRR experiment. We 22 

suspect that result (i) is a consequence of the non-linearity of the base-ten log function and the non-Gaussianity of the VMRR 23 

distributions, and result (ii) is a consequence of the magnitude of the MOPITT observation errors used in the L10VMRR 24 
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experiment (discarding the observation error cross-covariance produced observation error variance that is large compared to 1 

that produced by the CPSR diagonalization transform). 2 

 3 

Both upper panels of Fig. 1 generally show increasing improvement when moving from the MET è VMRR è L10VMRR 4 

è CPSR and QOR experiments. We hypothesize that the improvement of the CPSR and QOR experiments over the VMRR 5 

and L10VMRR experiments is due to the phase space transforms which truncate and reduce the effective phase space 6 

observation errors resulting in the improved analysis fit and forecast skill. The similarity of the CPSR and QOR results was 7 

not found in Mizzi et al. (2016). We have investigated our results and conclude they are correct. There are two explanations 8 

for this discrepancy. First, as explained in Mizzi et al. (2016), we use the retrieval error covariance in retrieval space (𝑬𝒓) as 9 

the observation error covariance for assimilation purposes to account for other unquantified error sources, and 𝑬𝒓 = (𝑰 − 𝑨)𝑬𝒂 10 

where 𝑬𝒂 is the retrieval a priori error covariance. If the singular vectors of 𝑬𝒓 are equivalent to those of 𝑨, we would get 11 

similar results from the CPSR and QOR experiments. However, 𝑬𝒂 is specified in the retrieval algorithm as a covariance 12 

matrix, and generally there is no reason to suspect that it is such that the singular vectors of 𝑬𝒓 are equivalent to those of 𝑨 13 

(for MOPITT CO they are not equivalent because their respective singular vectors are not orthogonal). Second, in the QOR 14 

experiment the diagonalization transform rotates the QOR equation so that the observation error cross-covariance contributions 15 

for each mode are included in their corresponding observation error variance. However, those modes are linearly dependent in 16 

the domain space defined by the rotated averaging kernel because the rotated averaging kernel is still singular. When those 17 

linearly dependent modes are assimilated, there is very little adjustment to the analysis. Consequently, the CPSR and QOR 18 

experiments yield similar results because: (i) the QOR experiment apportions the error and assimilates the linearly dependent 19 

modes (which have little or no impact), while (ii) the CPSR experiment apportions the error and does not assimilate the linearly 20 

dependent modes. Those results differ from the VMRR and L10VMRR experiments because the observation error variance 21 

used in the retrieval space experiments does not account for the error cross-covariance contributions, and the linearly 22 

independent portion of that error is different from that in the CPSR and QOR experiments. 23 

 24 

In the lower panel of Fig. 1, we compare the chemical data assimilation experiments (the VMRR, L10VMRR, CPSR, and 25 
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QOR experiments) with the MET experiment and the MOZAIC ascent and descent sounding observations for Dallas, TX on 1 

4 and 7 June 2008; Portland, OR on 3 June 2008; and Philadelphia, PA on 6 June 2008 (no other MOZAIC data were available 2 

for our study period and domain). We linearly interpolated the WRF-Chem forecasts to the MOZAIC observation locations 3 

and then composited the results. We did not plot the composited MOZAIC profile below 550 hPa because those data were 4 

more representative of the lower troposphere over urban areas than were our model grid and MOPITT super-observations.  5 

The MOZAIC comparison results are similar to those from the upper row of Fig. 1. They show that for the VMRR and 6 

L10VMRR experiments there is little improvement over the MET experiment when compared to MOZAIC. As mentioned 7 

earlier we suspect that occurs because the observation errors are too large. We ran similar experiments with reduced 8 

observation errors (not shown here) and found improved agreement. Results for the CPSR and QOR experiments show that: 9 

(i) for both experiments assimilation of phase space retrievals improves the 6-hr forecast skill in the mid- and lower troposphere 10 

compared to the MET experiment, (ii) the improvement is nearly the same for the CPSR and QOR experiments for the reasons 11 

discussed earlier, and (iii) there is little or no improvement near the surface. The upper tropospheric degradation in result (i) 12 

may be related to the bias of MOPITT CO retrievals in the upper troposphere discussed earlier (Deeter et al., 2013 and Martine-13 

Alonso et al., 2014). Result (iii) is somewhat unexpected because MOPITT retrievals are documented to have sensitivity to 14 

CO in the upper and lower troposphere (Deeter et. al. 2007). We suspect result (iii) occurs because MOPITT’s upper 15 

tropospheric sensitivities dominate its lower tropospheric sensitivities.  16 

 17 

To test that hypothesis, we plot a histogram of the MOPITT degrees of freedom for signal (DOFS) for all terrestrial profiles 18 

in our domain during our study period in Fig. 2. The MOPITT DOFS is a measure of the amount of independent observed 19 

information in a retrieval profile. If a profile has independent information for the upper and lower troposphere, its DOFS must 20 

be ~2.0 or greater. The central histogram of Fig. 2 shows that the mean, median, and mode DOFS during this period are ~1.5 21 

and that DOFS of ~2.0 or greater are relatively rare (< 5%). To gain a better understanding of the vertical structure of the 22 

MOPITT retrieval information content, we present a composite analysis for averaging kernel profiles in the neighborhood of 23 

different DOFS values in the lower row of Fig. 2 where panel (a) is the composite averaging kernels for all DOFS, (b) is for 24 

(0.9 <	DOFS	<	1.1,	~10%),	(c)	is	for	(1.4	<	DOFS	<	1.6,	~26%),	and	(d)	is	for	(1.9	<	DOFS	<	2.1,	~4%).	Those	panels	show	25 
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that	 the	 dominant	 sensitivity	 appears	 to	 be	 to	 the	 upper	 troposphere	 and	 that	 as	 the	 DOFS	 approaches	 2.0	 the	1 

sensitivity	to	the	lower	troposphere	increases.	That	DOFS	sensitivity	distribution	could	explain	the	improvement	drop	2 

off	for	the	lower	troposphere	in	Fig.	1	because	retrievals	with	sensitivity	to	the	lower	troposphere	are	relatively	rare.	3 

However,	linear	dependencies	in	the	composite	averaging	kernels	of	Fig.	2	can	mask	the	significance	of	the	sensitivities	4 

in	the	lower	troposphere	in	the	more	common	DOFS	categories.		5 

	6 

To	unmask	those	sensitivities,	Fig.	3	presents	a	composite	analysis	of	the	different	DOFS	sensitivities	based	on	the	CPSR	7 

compression	and	diagonalization	transforms.	The	upper	row	of	Fig.	3	shows	composite	vertical	profiles	of	the	leading	8 

left	singular	vectors	of	the	averaging	kernel.	Those	singular	vectors:	(i)	span	the	range	of	the	averaging	kernel	(QOR	9 

space),	(ii)	are	ranked	such	that	the	first	singular	vector	explains	the	greatest	amount	of	vertical	variability	in	the	QOR	10 

profile,	the	second	singular	vector	explains	the	next	greatest	amount	of	variability,	and	so	forth,	and	(iii)	the	sign	is	11 

arbitrary,	so	we	chose	the	sign	that	appears	to	have	physical	meaning,	a	scaling	of	–1.0	(that	scaling	has	been	included	12 

in	Fig.	3).	Note	too	that	the	number	of	leading	singular	vectors	depends	on	the	DOFS.		For	DOFs	£	1.0	there	is	at	most	13 

one	leading	singular	vector,	for	1.0	>	DOFS	£	2.0	there	are	at	most	two	leading	singular	vectors,	and	for	DOFS	>	3	there	14 

are	at	most	three	leading	singular	vectors.	The	third	vector	is	associated	with	a	fractional	DOFS	and	is	an	artifice	of	the	15 

retrieval	process	since	the	MOPITT	instrument	collects	only	two	independent	observations.		In	the	analysis	for	Fig.	3,	16 

we	retained	three	singular	vectors	for	completeness,	but	it	should	be	remembered	the	third	vector	(and	sometimes	the	17 

second	vector)	maps	information	to	the	null	space	of	the	averaging	kernel.	The	middle	row	of	Fig.	3	shows	composite	18 

vertical	profiles	for	the	compressed	averaging	kernels.	These	profiles	show	the	sensitivity	of	compressed	QORs	to	the	19 

true	atmospheric	state.	The	bottom	row	shows	the	composite	vertical	profiles	of	the	compressed	and	rotated	averaging	20 

kernels	 (the	 profiles	 after	 the	 full	 CPSR	 transformation).	 These	 profiles	 show	 the	 sensitivity	 of	 CPSRs	 to	 the	 true	21 

atmospheric	state.		22 

	23 

Figure	3	shows	some	very	interesting	results.	The	upper	row	of	Fig.	3	shows	that	for	DOFS	≈	1.0	the	first	leading	singular	24 

vector	has	positive	variability	near	the	surface	and	negative	variability	in	the	upper	troposphere	(remember	that	the	25 
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second	and	third	leading	vectors	map	to	the	null	space	for	DOFS	≈	1.0).	As	the	DOFS	increases	to	1.5,	the	first	and	second	1 

leading	vectors	have	positive	variability	near	the	surface	and	weakly	negative	variability	in	the	upper	troposphere,	and	2 

for	DOFS	of	2.0,	the	first	leading	vectors	has	positive	variability	throughout	the	troposphere	while	the	second	leading	3 

vectors	has	positive	variability	near	the	surface	and	negative	variability	in	the	upper	troposphere.		4 

	5 

Those	DOFS-dependent	variability	profiles	impact	the	sensitivities	of	the	compressed	averaging	kernels	in	the	second	6 

row	of	Fig.	2.	These	panels	show	that	for	all	DOFS	(the	left	most	panel	in	column	(a))	the	first	leading	mode	has	its	7 

greatest	 sensitivity	 near	 the	 surface	 and	 the	 sensitivity	 decreases	 to	 a	 positive	minimum	 near	 zero	 in	 the	 upper	8 

troposphere.	 	Similarly	the	second	leading	mode	has	it	greatest	positive	sensitivity	near	the	surface	but	has	strong	9 

negative	sensitivity	in	the	upper	troposphere.		The	right	three	panels	of	the	middle	row	in	Fig.	3	(columns	(b)	–(d))	10 

show	the	DOFS	dependent	changes	of	the	compressed	QORs.	As	seen	with	the	singular	vectors	in	the	upper	row,	as	the	11 

DOFS	increases	the	sensitivity	changes	from	weak	positive	sensitivity	near	the	surface	and	strong	negative	sensitivity	12 

in	 the	upper	 troposphere	 to	strong	positive	sensitivity	 throughout	 the	 troposphere	 for	 the	 first	 leading	mode	and	13 

positive	sensitivity	near	the	surface	and	strong	negative	sensitivity	in	the	upper	troposphere	for	the	second	leading	14 

mode.	Those	results	 suggest	 that	 the	MOPITT	retrievals	 should	be	most	 sensitive	 to	CO	 in	 the	 lower	 troposphere.	15 

However,	an	interesting	thing	happens	when	we	account	for	the	observation	error	covariance	contributions.	The	lower	16 

row	of	Fig.	3	shows	the	compressed	and	rotated	averaging	kernel	profiles.	Here	the	negative	scaling	cancels	each	other	17 

because	the	SVD	has	been	applied	twice.	The	results	show	that	when	the	error	covariance	is	considered	the	significance	18 

of	the	leading	modes	become	reversed	due	to	scaling	by	the	inverse	square	root	of	the	compressed	and	rotated	error	19 

variance.	This	does	not	mean	 that	 the	 third	 leading	mode	 from	 first	 two	rows	of	Fig.	3	becomes	a	dominant	mode	20 

because	it	is	still	mapping	to	the	null	space.		It	means	that	the	second	leading	mode	from	rows	one	and	two	effectively	21 

becomes	the	first	 leading	mode	in	row	three	(similarly	the	first	 leading	mode	from	rows	one	and	two	becomes	the	22 

second	leading	mode	in	row	three).		The	results	in	row	three	of	Fig.	3	show	that	after	removing	the	linear	dependencies	23 

and	accounting	for	the	observation	errors,	the	compressed	and	rotated	averaging	kernel	has	its	greatest	sensitivity	in	24 

the	upper	troposphere	for	DOFS	<	2.0	and	weak	sensitivity	near	the	surface	for	DOFS	»	2.0.		This	analysis	explains	why	25 
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our	comparison	of	the	CPSR	assimilation	results	with	the	MOZAIC	in	situ	observations	in	the	lower	row	of	Fig.	1	showed	1 

assimilation	impacts	throughout	the	troposphere	except	near	the	surface.	 	Other	researchers	who	have	assimilated	2 

MOPITT	CO	have	not	found	this	result	because	they	do	not	adjust	for	the	averaging	kernel	linear	dependencies	or	for	3 

the	observation	error	covariance.	4 

 5 

Figures 4 and 5 show contour maps comparing the MET and CPSR experiments for 9 June 2008 18 UTC (Fig. 4) as well as 6 

the assimilated MOPITT CO retrievals and the corresponding independent IASI CO retrievals (Fig. 5). Examination of the 7 

forecast maps in the upper panel and the forecast difference map (CPSR experiment minus MET experiment) in the lower left 8 

panel of Fig. 4 shows that assimilation of MOPITT CO retrievals increased the CO concentrations over some areas (southern 9 

California, southern Baja, and northern Atlantic east of New England) and decreased the concentrations over broader areas 10 

(mid- to northeastern United States, southeastern United States, and southern Gulf of Mexico). Comparison of the MOPITT 11 

CO retrievals in the upper panels of Fig. 5 (the assimilated retrievals) with Fig. 4 shows that the analysis and forecast impacts 12 

are generally consistent with the observations. One area of difference is increased CO in the central United States, over Kansas 13 

and Nebraska (highlighted by the analysis increment map in the lower right panel of Fig. 4) that does not appear in the CPSR 14 

experiment forecast map (upper right panel of Fig. 4). We suspect that difference is due to: (i) the forecast advection of low 15 

CO into the regions of high CO in the analysis, and (ii) a low-bias in CO emissions used during the forecast that cannot support 16 

the high CO in the analysis.  The assimilation of MOPITT retrievals increases CO in the analysis but during the forecast the 17 

advection of low CO or a low-bias in the CO emissions cannot support those CO increases so the forecast shows relatively 18 

low CO. Comparison of the analysis increments, the assimilated MOPITT CO retrievals, and the independent IASI CO 19 

retrievals (lower panels of Fig. 4) confirms that the assimilation of MOPITT retrievals generally improved the analysis and 20 

forecast agreement with the IASI retrievals compared to the MET experiment. 21 

 22 

Figure 6 shows horizontal domain average vertical profiles for the MET and CPSR experiments compared against horizontal 23 

domain average profiles for MOPITT and IASI. The WRF-Chem profiles are plotted in retrieval space (after accounting for 24 

the averaging kernel and assimilation prior) and state space (without accounting for the averaging kernel and assimilation prior 25 
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– in physical space). Comparison of the model and MOPITT profiles (left two panels of Fig. 6) shows that the CPSR experiment 1 

generally draws the forecast and analysis retrieval space profiles closer to MOPITT than does the MET experiment. The same 2 

comparisons with the IASI profiles (right two panels of Fig. 6) shows a different result: (i) in the upper (pressure (p) < 300 3 

hPa) and upper-mid (300 hPa < p ≤	500	hPa)	the	MET experiment draws the forecast and analysis profiles closer to IASI than 4 

does the CPSR experiment, and (ii) in the lower-mid (500 hPa ≤ p < 600 hPa) and lower troposphere (600 hPa) the 5 

CPSR experiment draws the profiles closer to IASI. Those results highlight the previously discussed problem with assimilating 6 

potentially biased MOPITT CO retrievals in the upper troposphere (above 300 hPa). To address that problem, we propose to 7 

discard the biased retrievals and assimilate the unbiased truncated retrieval profiles with the extended CPSR method described 8 

in Section IV. 9 

 10 

In summary, this section shows that assimilation of MOPITT CO retrievals improves analysis fit and forecast skill when 11 

compared to MOPITT as well as when compared to the independent (not assimilated) IASI and MOZAIC observations. It 12 

shows that: (i) assimilation of phase space retrievals (CPSR and QOR) improves analysis fit and forecast skill when compared 13 

to assimilation of raw retrievals (VMRR and L10VMRR) because the phase space transformation reduces the phase space 14 

observation errors, and (ii) the CPSR and QOR experiments yield similar results because they account for the observation error 15 

cross-covariance contribution in the same way (the diagonalization transform) and because the linearly dependent portion of 16 

the transformed retrievals do not contribute to the analysis increment (explicitly with CPSRs and implicitly through the 17 

assimilation algorithm for compressed QORs). It also shows that CPSR and QOR experiments did not improve the skill in the 18 

lower troposphere near the surface because: (i) MOPITT CO profiles with sufficient DOFS to resolve the lower tropospheric 19 

CO signal are relatively rare (for this domain and study period), and (ii) an analysis of the impact of the CPSR compression 20 

and diagonalization transforms shows that the upper tropospheric CO signal dominates the MOPITT CO sensitivities. Finally, 21 

this section shows that in the upper troposphere assimilation of potentially biased MOPITT observations introduced analysis 22 

and forecast error relative to the IASI observations. 23 
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5.2 Assimilation of Truncated Retrieval Profiles 1 

In this section, we test two methods for assimilating truncated retrieval profiles: (i) assimilate L10VMRR retrievals after 2 

discarding the biased retrievals (the L10VMRR-RJ3 experiment) and (ii) assimilate CPSRs extended to truncated retrieval 3 

profiles as described in Section V.C (the CPSR-RJ3 experiment). The L10VMRR-RJ3 experiment uses a retrieval space 4 

assimilation algorithm that provides a control against which we compare the CPSR-RJ3 experiment. The L10VMRR-RJ3 5 

experiment is included only for comparison purposes.  If the L10VMRR-RJ3 and CPSR-RJ3 experiments give similar results 6 

then the CPSR-RJ3 approach is preferred because it is computationally less expensive, removes linear dependencies, and 7 

accounts for the observation error covariance. 8 

 9 

Figure 7 shows vertical profiles for the L10VMRR-RJ3 and CPSR-RJ3 experiments with results from the full retrieval profile 10 

assimilation experiments included for reference. For these experiments, we are assuming that in the upper troposphere the 11 

MOPITT CO retrievals are positively biased (as discussed earlier) and that the IASI CO retrieval more accurately reflect the 12 

true concentrations.  Comparisons against the assimilated MOPITT observations in the upper panels show that discarding the 13 

biased observations had the desired effect – in the upper troposphere the analysis profile is drawn closer to that of the MET 14 

experiment for the L10VMRR-RJ3 experiment than for the L10VMRR experiment. Similar results are seen for comparison of 15 

the CPSR-RJ3 and CPSR experiments in the last two panels of the upper row. Unexpectedly for both experiments not 16 

assimilating observations in the upper troposphere there was a negative impact in the lower troposphere for the upper row of 17 

Fig. 7. Comparison with IASI CO retrievals in the lower row of Fig. 7 shows similar results: (i) the L10VMRR-RJ3 and CPSR-18 

RJ3 retrieval space profiles are drawn closer to the IASI profile than the L10VMRR and CPSR profiles in the upper 19 

troposphere, and (ii) the agreement of the CPSR-RJ3 profiles with IASI is degraded in the middle and lower troposphere. We 20 

investigate the cause of those lower tropospheric results later in this section, but next we discuss the horizontal impacts of the 21 

truncated retrieval assimilation experiments. 22 

 23 

Figures 8 and 9 show contour maps from the CPSR and CPSR-RJ3 experiments. Figure 8 shows the near surface impacts of 24 

not assimilating the biased retrievals. The CO 6-hr forecast contour maps in the upper row of Fig. 8 suggest that the lower 25 
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tropospheric impacts of not assimilating CO retrievals above 300 hPa are small. However, the forecast difference maps in the 1 

lower row highlight the changes. The CPSR-RJ3 experiment has small large-scale decreases in CO over the oceans and eastern 2 

United States. Also, the magnitude of positive forecast differences over CO hot spots over Southern California, Baja, and the 3 

northeastern United State has decreased. Those lower tropospheric difference maps highlight the temporally integrated impacts 4 

of these experiments. The upper tropospheric impacts are shown in Fig. 9 where we see similar results except that the CO hot 5 

spot reductions are over the southeastern United States.  That was the goal of CPSR-RJ3 experiment (to remove the impact of 6 

assimilation potentially biased MOPITT CO retrievals in the upper troposphere). 7 

 8 

A verification analysis for the L10VMRR-RJ3 and CPSR-RJ3 experiments is presented in the upper panel of Fig. 1. The 9 

L10VMRR-RJ3 and CPSR-RJ3 experiments have degraded forecast skill compared to the full profile assimilation experiments 10 

(the VMRR, L10VMRR, CPSR, and QOR experiments), but the CPSR-RJ3 experiment has improved skill compared to the 11 

L10VMRR-RJ3 experiment. The CPSR-RJ3 experiment skill improvement (compared to the L10VMRR-RJ3 experiment) is 12 

likely due to the observation error covariance reduction resulting from the CPSR transforms discussed earlier.  13 

 14 

In summary, not assimilating the biased observations had positive impacts in the upper troposphere and negative impacts in 15 

the lower troposphere. We suspect the middle to lower tropospheric result occurs for two reasons. Discarding selected 16 

retrievals: (i) reduces the total information content of the assimilated retrievals; and (ii) reduces the sensitivity of the 17 

transformed averaging kernel. Those reductions combine to reduce the ensemble state variable correlations. To test that 18 

explanation (i) we compare the trace of the raw averaging kernel for the CPSR experiment with that for the CPSR-RJ3 19 

experiment. The results are shown in the first two rows of Table 2 where “Full Profile” is from the CPSR experiment, and 20 

“Reject Top Three” is from the CPSR-RJ3 experiment. Comparison of those results shows a 25% reduction in the trace 21 

indicating that the total information content of the assimilated retrievals for the CPSR-RJ3 experiment is less than that for the 22 

CPSR experiment. For comparison purposes, Table 2 also shows trace reductions from not assimilating retrievals in the mid-23 

troposphere (23%) and lower troposphere (9%). Those results suggest that most of the information in the MOPITT CO 24 

retrievals is from the upper troposphere, the second greatest amount is from the middle troposphere, and the smallest amount 25 
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is from the lower troposphere. To test explanation (ii) we plot the rows of the compressed and fully transformed averaging 1 

kernels in Fig. 10 where column (a) is for the CPSR experiment and column (b) is for the CPSR-RJ3 experiment. Figure 10 is 2 

similar to the last two rows of Fig. 3. Recall that the first row represents the sensitivity of changes in the compressed QORs to 3 

changes in the true CO concentrations, and the second row represents the sensitivity of changes in the CPSRs to changes in 4 

the true CO concentrations. Comparison of columns (a) and (b) shows that the CPSR-RJ3 experiment leading mode 5 

sensitivities are significantly reduced when compared to the CPSR experiment. The state variable correlations are proportional 6 

to the sensitivities so the reduced correlations result in analysis increment reductions. For comparison purposes columns (c) 7 

and (d) of Fig. 10 show results from experiments that discard retrievals in the middle and lower troposphere. Those profiles in 8 

combination with Table 2 show that most of the information and sensitivity is associated with the upper and mid-tropospheric 9 

retrievals. Discarding upper tropospheric retrievals alters the sensitivity magnitudes while discarding middle tropospheric 10 

retrievals alters the magnitudes and vertical structure. One interesting result is that most of the sensitivity loss in column (c) - 11 

the “Reject Middle Three” experiment - appears to be associated with the CPSR diagonalization transform. That suggests that 12 

the sensitivity loss is dependent on specification of the retrieval a priori error covariance.  13 

 14 

Those changes occur because as different rows of the averaging kernel are discarded: (i) the amount of observed information 15 

in the modified averaging kernel changes, and (ii) the vertical structure of the bases for the range and domain of the modified 16 

averaging kernel changes. The impact of changes in the information content in (i) were discussed earlier. The impact of changes 17 

to the bases in (ii) has important consequences. The non-zero left singular vectors of the modified averaging kernel span the 18 

range of the modified averaging kernel but their dimension and vertical structure change when retrievals are discarded. That 19 

means the phase space observations change because the basis vectors used in the compression transform are different, and 20 

their sensitivity to the truncated retrieval profile vector is different. Similarly, the non-zero right singular vectors of the 21 

modified averaging kernel span the domain of the modified averaging kernel but their vertical structure changes when retrievals 22 

are discarded. Those changes occur solely because the information content of the modified averaging kernel is reduced (since 23 

the dimension of its domain – the space where the true CO profiles reside – is unchanged). Those changes are significant 24 

because they alter the elements (or levels) of the true profile to which the modified averaging kernel is sensitive. To summarize 25 
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not assimilating elements of the full retrieval profile alters the levels of the retrieval profile to which the phase space 1 

observations are sensitive. Discarding those elements also alters the levels of the true CO profile to which the modified 2 

averaging kernel is sensitive. Those sensitivity changes occur regardless of whether the assimilation is done in phase space as 3 

in the CPSR–RJ3 experiment or in retrieval space as in L10VMRR–RJ3 experiment. Consequently, results from the 4 

L10VMRR-RJ3 and CPSR-RJ3 experiments are similar. 5 

 6 

This section shows that CPSRs can be extended to the assimilation of truncated retrieval profiles but that discarding upper 7 

tropospheric observations for MOPITT significantly reduces the total information content of the assimilated observations and 8 

the vertical sensitivities of the transformed averaging kernel profiles. Those reductions likely translate to reductions in the state 9 

variable correlations and commensurate reductions in the analysis increments. We are studying modification of the CSPR 10 

extension to truncated retrieval profiles to address the non-local impacts. 11 

6 Summary and Conclusions 12 

This paper had two goals: (i) compare the results of assimilating CPSRs with independent observations (we used MOZAIC in 13 

situ observations and IASI CO retrievals as the independent observations), and (ii) extend CPSRs to the assimilation of 14 

truncated retrieval profiles. The comparison against independent observations showed that: (i) assimilation of raw retrievals 15 

(VMRRs and L10VMRRs) had little impact on the analysis fit and forecast skill due to the magnitude of the observation errors, 16 

and (ii) the assimilation of phase space retrievals (CPSRs and QORs) improved both fit and skill. Conceptually, we expect the 17 

assimilation of raw retrievals and phase space retrievals to yield similar results. However, phase space transformation of the 18 

observation error covariance truncated the observation errors so that the CPSR and QOR experiments produced closer 19 

agreement with the assimilated and independent observations.  20 

 21 

Comparison with the MOZAIC in situ CO observations for the CPSR and QOR experiments showed improved agreement with 22 

the MOZAIC observations in the upper and middle troposphere when compared to the MET experiment.  There was little 23 

improvement near the surface.  The lack of a near surface improvement was unexpected but our DOFS analysis in the 24 
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discussion of Figs. 2 and 3 showed that assimilation of MOPITT CO CPSRs and QORs does impact the near surface CO 1 

because after accounting for the MOPITT CO retrieval observation error covariance, the compressed and rotated averaging 2 

kernels have very little sensitivity to the CO near the surface.  3 

 4 

Comparison with IASI CO retrievals also showed degraded skill in the upper troposphere due to assimilation of biased 5 

retrievals illustrating the need to extend CPSRs to assimilation of truncated retrieval profiles. Section 4.3 explained the 6 

extension, and Section 5.2 compared the L10VMRR-RJ3 (assimilation of raw truncated retrieval profiles) and CPSR-RJ3 7 

(assimilation of phase space truncated retrieval profiles) experiments where we did not assimilate MOPITT CO retrievals 8 

above 300 hPa. That comparison showed that the L10VMRR-RJ3 and CPSR-RJ3 experiments produced similar results 9 

confirming the extension of CPSRs to truncated retrieval profiles. 10 

 11 

Comparison of the L10VMRR-RJ3 and CPSR-RJ3 experiments highlighted an important characteristic of assimilating mixing 12 

ratio retrieval profiles. Not assimilating observations can significantly alter the: (i) information content of the assimilated 13 

observations; and (ii) the amplitude of the averaging kernel sensitivities. Those reductions combine to reduce the state variable 14 

correlations and the corresponding analysis increments.  We are researching modifications of the CPSR extension to truncated 15 

retrieval profiles to address the remote impacts from not assimilating retrievals from selected levels. 16 

 17 

Code and Data Availability 18 

The current versions of the WRF-Chem, WRF, WRFVAR, and WPS codes are available from the WRF download site at 19 

http://www2.mmm.ucar.edu/wrf/users/download/get_sources.html.  The current version of the DART code is at available at 20 

https://www.image.ucar.edu/DAReS/DART/DART2_Starting.php#download, and the current version of WRF-Chem/DART 21 

branch is available at https://www.image.ucar.edu/DAReS/DART/DART2_Starting.php#download.  The WRF-Chem/DART 22 

branch is same as the DART code except for inclusion of the WRF-Chem/DART system.   There is no need to down load both 23 

codes.  Presently, there is no users guide available for WRF-Chem/DART.  However, the authors have prepared a slide 24 

presentation that describes much of the chemical data assimilation script function, variables, and organization.  Interested 25 
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readers should contact the authors for a copy of that presentation and assistance with using WRF-Chem/DART. The large 1 

scale models forecast and observational data used to run the ensemble forecast/data assimilation cycling experiments descried 2 

in the paper are generally available from the respective data distribution sites.  That data set has not been posted to a public 3 

site due to its size but is available from the authors upon request. 4 

  5 
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 1 

 2 

Experiment 

Assimilate 

meteorology 

observations 

Assimilate 

MOPITT CO raw 

retrievals 

Assimilate 

MOPITT CO 

CPSRs 

Assimilate 

MOPITT CO 

QORs 

Assimilate 

retrieval full 

profiles 

Assimilate 

truncated 

retrieval 

profiles 

MET X - - - - - 

VMRR X X - - X - 

L10VMRR X X - - X - 

CPSR X - X - X - 

QOR X - - X X - 

L10VMRR-RJ3 X X - - - X 

CPSR-RJ3 X - X - - X 

 3 

Table 1. Summary of the WRF-Chem/DART Forecast/Data Assimilation Experiments.  An X indicates that an experiment 4 

(denoted by different rows) assimilated a particular type of observation (denoted by different column).  An – indicates that it 5 

did not assimilate that type of observation.  6 
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 CompAK 1 CompAK 2 CompAK 3 Trace 

Full Profile .6890 .3058 .0161 1.441 

Reject Top 

Three 
.7530 .2439 .0096 1.076 

Reject Middle 

Three 
.6796 .3153 .0157 1.106 

Reject Bottom 

Three 
.7274 .2685 .0127 1.311 

 1 

Table 2. Average total and fractional information content for each mode of the averaging kernel for the entire study period. 2 
CompAK 1 denotes the average fractional information in mode 1, CompAK 2 is for mode 2, and so forth. Trace denotes the 3 
total information content. “Full Profile” means all retrievals were assimilated (i.e., none were discarded). “Reject Top Three” 4 
means that retrievals at pressure levels < 300 hPa were discarded. “Reject Middle Three” means that retrievals between 300 hPa 5 
and 600 hPa were discarded. “Reject Bottom Three” means that retrievals below 700 hPa were discarded.  6 
  7 
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 1 
  2 

 3 

  4 

 5 
 6 
Figure 1. Forecast (assimilation prior) verification statistics for all experiments in MOPITT retrieval space on the upper left 7 
and IASI retrieval space on the upper right. For those panels the red curve is root mean square error (RMSE), and the blue 8 
curve is bias (model – observation). The experiments are described in the text and summarized in Table 1. The lower panel 9 
shows comparisons against the IAGOS/MOZAIC in situ CO profiles in ppb composited for 1 June 2008 00 UTC to 9 June 10 
2008 18 UTC in state space. In the lower legend, the Chem EX refers to the VMRR, L10VMRR, CPSR, or QOR experiments 11 
depending on the panel. 12 
  13 
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 1 

 2 

 3 

 4 
Figure 2. Histogram of MOPITT CO “degrees of freedom of signal” (DOFS) with blow-up histograms for selected DOFS 5 
ranges in the upper panels. The lower panels show composite MOPITT CO averaging kernel profiles for: (a) all DOFS, (b) 6 
(0.9 ≤	DOFS	≤ 1.1), (c) (1.4 ≤	DOFS	≤ 1.6), and (d) (1.9 ≤	DOFS	≤ 2.1). The averaging kernel identifiers are V-xxx where xxx 7 
is the approximate pressure level mid-point in hPa for the associated averaging kernel profile. 8 
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 1 

 2 
Figure 3. Composite vertical profiles for the: (i) leading left singular vectors of the MOPITT CO averaging kernels in the upper 3 
row, (ii) compressed averaging kernels in the middle row, and (iii) rotated and compressed averaging kernels in the lower row. 4 
The DOFS ranges are the same as defined for Fig. 2. For the profile labels “SingVec x” refers to ranked singular vectors where 5 
x = 1 is the first leading singular vectors, x = 2 is the second leading singular vector, and so forth. “Trans Ak x” refers to the 6 
compressed or rotated and compressed averaging kernel profile associated with the QOR and CPSR mode x respectively. 7 
 8 
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    1 

 2 
Figure 4. Shaded contours of CO in ppb for the MET and CPSR experiment 6-hr forecasts valid at this cycle time in the left 3 
and right upper panels respectively. The lower row presents the difference between the CPSR and MET forecasts (the CPSR 4 
experiment 6-hr forecast minus the MET experiment 6-hr forecast) in the left panel and the assimilation increment for analysis 5 
at this cycle time in the right panel. All figures are for ~950 hPa and the 9 June 2008 18 UTC cycle. The curved rectangle 6 
represents the WRF-Chem domain.  7 
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 1 

 2 
Figure 5. The assimilated MOPITT CO retrievals in the upper panels and the corresponding IASI CO retrievals (not 3 
assimilated) in the lower panels. The left figures are for ~950 hPa, and the right figures are for ~850 hPa. All figures are for 4 
the 9 June 2008 18 UTC cycle. The retrievals are in ppb.  5 
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 1 

    2 

 3 

    4 

 5 
Figure 6. Vertical profiles of the time/horizontal domain average CO in ppb from the CPSR and MET experiments for 6 
9 June 2008 18 UTC. The “RS” denotes results in retrieval space and the “SS” denotes results in state space. “Forecast” is the 7 
assimilation prior, and “Analysis” is the assimilation posterior. The left two panels compare the forecast/assimilation results 8 
against MOPITT CO retrievals (assimilated), and the right two panels compare those results against IASI CO retrievals (not 9 
assimilated). In the legends, Chem EX refers to the CPSR experiment.   10 
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    2 

 3 

   4 

 5 

  6 

 7 

 8 
Figure 7. Same as Fig. 6 except this figure compares the L10VMRR, L10VMRR-RJ3, CPSR, and CPSR-RJ3 experiments. 9 
The upper panels compare the forecast/assimilation results against MOPITT CO retrievals (assimilated) and the lower panels 10 
compare those results against IASI CO retrievals (not assimilated). In the legends, Chem EX is a placeholder for the 11 
L10VMRR-RJ3, L10VMRR, CPSR, and CPSR-RJ3 experiments depending on the panel. 12 
  13 
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 1 

 2 
Figure 8. Shaded contours of CO in ppb for the CPSR and CPSR-RJ3 experiment assimilation priors in the left and right upper 3 
panels respectively and for the CPSR and MET experiment difference (the CPSR – MET experiment) and the CPSR-RJ3 and 4 
MET experiment difference (the CPSR-RJ3 – MET experiment) assimilation priors in the left and right lower panels 5 
respectively. The CPSR experiments maps in this figure are the same as in Fig. 4 and included for reference. All figures are 6 
for ~950 hPA at 9 June 2008 18 UTC.  7 
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 2 

 3 
Figure 9. Same as Fig. 8 except for ~300 hPa. 4 

  5 
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  1 

 2 
Figure 10. Same as the lower two rows of Fig. 3 except this figure is for the retrieval discard experiments. Column (a) is for 3 
the full retrieval profile assimilation experiment and is the same as column (a) in Fig. 3. Column (b) is for the “Reject Top 4 
Three” experiment in Table 2. Column (c) is for the “Reject Middle Three” experiment.  Column (d) is for the “Reject Bottom 5 
Three” experiment. Notice that the range of the abscissa is reduced from column (a) to columns (b) – (d).  6 
 7 
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