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Abstract 10 

Assimilation of atmospheric composition retrievals presents computational challenges due to their high data volume and often 11 

sparse information density. Assimilation of compact phase space retrievals (CPSRs) meets those challenges and offers a 12 

promising alternative to assimilation of raw retrievals at reduced computational cost (Mizzi et al., 2016). This paper compares 13 

analysis and forecast results from assimilation of Terra/Measurement of Pollution in the Troposphere (MOPITT) carbon 14 

monoxide (CO) CPSRs with independent observations. We use MetOp-A/Infrared Atmospheric Sounding Interferometer 15 

(IASI) CO retrievals and Measurement of OZone, water vapor, carbon monoxide, and nitrogen oxides by in-service AIrbus 16 

airCraft (MOZAIC) in situ CO profiles for our independent observation comparisons. Generally, the results confirm that 17 

assimilation of MOPITT CPSRs improves the WRF-Chem/DART analysis fit and forecast skill at a reduced computational 18 

cost compared to assimilation of raw retrievals. Comparison with the independent observations shows that assimilation of 19 

MOPITT CO generally improved the analysis fit and forecast skill in the lower troposphere but degraded it in the upper 20 

troposphere. We attribute that degradation to assimilation of MOPITT CO retrievals with a possible bias of ~14% above 21 

300 hPa. To discard the biased retrievals, in this paper we also extend CPSRs to assimilation of truncated retrieval profiles (as 22 

opposed to assimilation of full retrieval profiles). Those results show that not assimilating the biased retrievals: (i) resolves the 23 

upper tropospheric analysis fit degradation issue, and (ii) reduces the impact of assimilating the remaining unbiased retrievals 24 

because the total information content and vertical sensitivities are changed. 25 
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1 Introduction 1 

The adverse impacts of poor air quality on human health and welfare are well documented, e.g., Harvey (2016); Robichaud 2 

(2017).  Air quality analyses and forecasts, more generally chemical weather products, are used to help understand and pre-3 

empt poor air quality events. The accuracy of such chemical weather products depends in part on the application of chemical 4 

data assimilation to combine air quality observations with independent estimates of the air quality state to produce an “optimal” 5 

chemical weather analysis, Robichaud (2017). Air chemistry observations generally fall into two categories: in situ and remote. 6 

In situ observations come from direct observational platforms like samplers, and remote observation come from indirect 7 

observational platforms like satellites. Due to the spatial and temporal sparsity of in situ observations, air quality managers 8 

and researchers are increasingly relying on satellite observations.  Such observations generally come in the form of “retrievals,” 9 

and their use involves challenges that include: (i) low information density (the amount of information per retrieval is small), 10 

(ii) large volumes of data, (iii) incorporation of unobserved information from the retrieval prior, and (iv) correlated observation 11 

errors, Mizzi et al. (2016). In the chemical weather forecasting/data assimilation literature there have been several papers that 12 

have studied those challenges, see Joiner and Da Silva (1998), Migliorini et al., (2008), and Mizzi et al., (2016). Generally, 13 

other researchers have dealt with challenges (i) and (ii) by assimilating all the available retrievals, e.g., Jiang et al. (2015). 14 

They have dealt with challenge (iii) by assimilating the contribution from the retrieval priors, e.g., Jiang et al. (2015).  And 15 

they have dealt with challenge (iv) by ignoring the error correlations, e.g., Barre et al. (2015). As discussed in Mizzi et al. 16 

(2016), the problem with their approach for addressing challenges (i) and (ii) is that it is computationally expensive and 17 

inefficient to assimilate all the retrievals. Some researchers have tried to address this by discarding (not assimilating) some of 18 

the retrievals in the vertical profile, Arellano et al., (2007).  A similar strategy is used by some researchers to address biased 19 

retrievals i.e., they do not assimilate the biased retrievals, Barre et al. (2015). Some of the results in this paper suggest there 20 

are unexpected adverse impacts from discarding selected elements and assimilating the remaining elements of a retrieval 21 

profile. Mizzi et al. (2016) introduced the assimilation of “compact phase space retrievals” (CPSRs) to address challenges (i) 22 

and (ii) without discarding elements of the retrieval profile. In this paper, we extend the CPSR algorithm to truncated retrievals 23 

profiles (retrieval profiles where some of the elements of the profile are not assimilated). However, as discussed herein, the 24 

assimilation of truncated retrieval profile gives unexpected results due to role of the averaging kernel in the retrieval forward 25 
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operator. 1 

 2 

Joiner and Da Silva (1998) was the first paper to address challenge (iii) – not assimilating the retrieval prior contribution.   3 

They proposed three approaches.  In the first, they characterized the retrieval equation  4 

𝒚" = 	𝑨𝑦' + 𝑰 − 𝑨 𝒚+ + 𝜺          (1) 5 

where 𝒚" is the retrieval profile (column vector, dimension n – the number of observations in a full retrieval profile), 𝑰 is the 6 

identity matrix (square matrix, dimension n x n), 𝑨 is the averaging kernel (square matrix, dimension n x n, and rank k, where 7 

k < n), 𝒚+ is the retrieval prior profile (column vector, dimension n), 𝜺 is the measurement error in retrieval space (column 8 

vector, dimension n) with error covariance 𝑬. (square matrix, dimension n x n), and 𝒚' is the unknown true atmospheric 9 

profile (column vector, dimension n) as the sum of two linear transformations. The first transformation was a mapping of 𝒚' 10 

to retrieval space by 𝑨, and the second was a mapping of 𝒚+ to retrieval space by 𝑰 − 𝑨. Then they projected 𝒚" onto the 11 

trailing left singular vectors from a Singular Value Decomposition (SVD) of	𝑰 − 𝑨. In their second approach, they projected 12 

𝒚" onto the trailing left singular vectors from an SVD of the retrieval prior error as mapped by 𝑰 − 𝑨. Finally, their third 13 

approach proposed a revised retrieval process that eliminated the need for 𝒚+. Those approaches were generally successful and 14 

introduced the idea of assimilating phase space retrievals.  The second paper to address challenge (iii) was Migliorini et al. 15 

(2008).  They formed the “quasi-optimal retrieval” (QOR) equation by subtracting the (𝑰 − 𝑨) term in Eq, 1 from 𝒚"  (to 16 

remove the prior contribution). Then to address challenges (i), (ii), and (iv), they projected the result onto the leading left 17 

singular vectors from an SVD of 𝑬.  and discarded those modes whose ensemble variance was much smaller than the 18 

transformed observation error variance. Their approach was generally successful but did not address why the modes of the 19 

observation error covariance should be related to the modes of the QOR. Finally, Mizzi et al. (2018) used QORs to address 20 

challenge (iii) and two phase space transforms to address challenges (i), (ii), and (iv). The first was a compression transform 21 

based on the leading left singular vectors of 𝑨. This step enabled compression because 𝑨 is highly rank deficient.  Since those 22 

singular vectors span the range of	𝑨 and the QORs are in that range, their respective modes were mathematically related.  The 23 

second was a diagonalization transform to account for the observation error covariance during the assimilation.  Their approach 24 

was generally successful. The Mizzi et al. (2016) and Migliorini et al. (2008) algorithms are different. The Migliorini et al. 25 
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(2008) approach was motivated by rank deficiency of the observation error covariance and whether the phase space ensemble 1 

error variance was small relative to the transformed observation error variance.  The Mizzi et al. (2016) approach was motivated 2 

by rank deficiency of the averaging kernel and accounting for the observation error covariance. The spaces spanned by the 3 

respective transform vectors are different. The Migliorini et al. (2008) vectors spanned observation error covariance space, 4 

and the Mizzi et al. (2016) vectors spanned QOR space.  The Migliorini et al. (2008) compression was based on the relative 5 

magnitude of the transformed ensemble error and observation error variance, and the Mizzi et al. (2016) compression was 6 

based on the removal of redundant information for the QOR.  7 

 8 

One aspect of assimilating retrievals not addressed by Migliorini et al. (2008) or Mizzi et al. (2016) is how to apply their 9 

algorithms when the retrieval profile is truncated. Such an extension is necessary if one wants to assimilate only a portion of 10 

the retrieval profile.  Both methods can be extended so one goal of this paper is to document that extension for CPSRs and 11 

evaluate the results.   12 

 13 

Mizzi et al. (2016) demonstrated the utility of assimilating CPSRs by verifying the analysis and forecast results against the 14 

assimilated observations. In this paper, we compare our results against both the assimilated and independent observations. As 15 

in Mizzi et al. (2016), we assimilate conventional meteorological observations and Terra/Measurement of Pollution in the 16 

Troposphere (MOPITT) CO retrievals, but here we also compare our analysis and forecast results with MetOp-A/Infrared 17 

Atmospheric Sounding Interferometer (IASI) CO retrievals and Measurement of OZone, water vapor, carbon monoxide, and 18 

nitrogen oxides by in-service AIrbus airCraft (MOZAIC) in situ CO profiles. Those comparisons are necessary because they 19 

provide an independent assessment of the improved analysis fit and forecast skill. The remainder of this paper is organized as 20 

follows: Section 2 describes the forecast/data assimilation system together with the assimilated meteorological and chemistry 21 

observations. Section 3 describes the independent IASI and MOZAIC observations used in the verification analyses. Section 4 22 

presents descriptions of our experiments, retrieval pre-processing methods, and extension of CPSRs to truncated retrieval 23 

profiles. Section 5 compares the results of assimilating MOPITT CO retrievals (full and truncated profiles) with the IASI and 24 

MOZAIC CO observations. Finally, Section 6 presents a summary of our results and conclusions. 25 
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2 WRF-Chem/DART Regional Forecasting Ensemble Data Assimilation System: Set-Up and Assimilated Observations 1 

For the experiments reported here, we use the WRF-Chem/DART regional chemical transport/ensemble Kalman filter data 2 

assimilation system introduced by Mizzi et al. (2016). WRF-Chem/DART is made up of the Weather Research and Forecasting 3 

(WRF) model with chemistry (WRF-Chem) (www2.acd.ucar.edu/wrf-chem) coupled to the ensemble Kalman filter data 4 

assimilation from the Data Assimilation Research Testbed (DART) (www.image.ucar.edu/DAReS/DART; Anderson et al., 5 

2009). WRF-Chem is a regional model that predicts conventional weather together with the transport, mixing, and chemical 6 

transformation of atmospheric trace gases and aerosols. DART is an ensemble data assimilation system that uses the ensemble 7 

adjustment Kalman filter of Anderson (2001, 2003) together with adaptive inflation and localization. 8 

  9 

We conduct continuous cycling experiments with 6-hr cycling (00, 06, 12, and 18 UTC) for the period 1 June 2008 00 UTC 10 

to 9 June 2008 18 UTC. To facilitate a large number of experiments, we use a reduced ensemble size of 20 members, a 11 

horizontal resolution of 100km (101 x 41 grid points), and an abbreviated 9-day study period (compared to the 30-day period 12 

used in Mizzi et al. (2016)). The reduced study period is not thought to negatively impact our results because the WRF-13 

Chem/DART spin-up occurs within the first 48 to 72 hours. The WRF-Chem domain extends from ~176 W to ~50 W and 14 

~7 N to ~54 N. We use 34 vertical levels with a model top at 10 hPa and ~15 levels below 500 hPa. We use DART adaptive 15 

prior covariance inflation with the recommended settings and DART Gaspari-Cohn localization with a localization radius half-16 

width of ~300 km in the horizontal. (Anderson, 2008). Vertical localization is not used. These are the same settings as used by 17 

Mizzi et al. (2016). 18 

 19 

The WRF-Chem initial and boundary conditions are derived from the National Oceanic and Atmospheric 20 

Administration/National Center for Environmental Prediction (NOAA/NCEP) Global Forecast Model (GFS) 0.5º six-hour 21 

forecasts. The WRF Preprocessing System (WPS) interpolates the GFS forecasts to our domain and generates the deterministic 22 

boundary conditions. We use the WRF Data Assimilation System (WRFDA) 23 

(http://www2.mmm.ucar.edu/wrf/users/docs/user_guide/users_guide_chap6; Barker et al., 2012) to generate the initial 24 

meteorological ensemble. The chemistry initial and boundary conditions are derived from the Model for Ozone and Related 25 
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Chemical Tracers: MOZART-4 (MOZART) forecasts, and WRF-Chem utilities are used to interpolate those forecasts to our 1 

domain and generate the deterministic chemistry boundary conditions. The emissions and initial chemistry ensembles are 2 

generated as described in Mizzi et al. (2016). The ensemble distributions are Gaussian with a specified mean and standard 3 

deviation. The tails of those distributions are truncated to include 95% of the distribution and exclude outliers. That strategy 4 

ensures that the emissions and initial chemistry variable concentrations are positive definite. We do not include horizontal 5 

correlations for the emission perturbations because they are not relevant to the focus of this paper.  6 

 7 

At each cycle time depending on the experiment, we assimilate conventional meteorological and chemistry observations with 8 

DART and advance the analysis ensemble to the next cycle time with WRF-Chem. The resulting 6-hr forecast ensemble is 9 

then used as the first guess in the next assimilation step. Our conventional meteorological observations are NCEP automated 10 

data processing (ADP) upper air and surface observations (PREPBUFR observations), and our chemistry observations are 11 

MOPITT CO mixing ratio retrieval profiles. MOPITT is an instrument on the National Aeronautics and Space Administration’s 12 

(NASA’s) Earth Observing System Terra satellite. Its spatial resolution is 22 km at nadir over a swath width of 640 km. Its 13 

thermal infra-red (TIR) measurements are sensitive to CO in the middle and upper troposphere, while its near infra-red (NIR) 14 

measurements are sensitive to total column CO. MOPITT provides global coverage every three to four days. MOPITT CO is 15 

reported on ten vertical levels starting at a variable surface pressure level and then ranging from 900 hPa to 100 hPa every 16 

100 hPa. We assimilate the MOPITT V5 thermal-infrared/near-infrared (TIR/NIR) retrieval products described by Deeter et 17 

al. (2013). Validation results suggest that from 400 hPa to the surface the MOPITT CO retrievals are accurate to within 5%.  18 

Above 400 hPa, they may have a positive bias of ~14%, Deeter et al. (2013) and Martinez-Alonso et al. (2014), that has been 19 

addressed in subsequent MOPITT products, Deeter et al. (2014). 20 

 21 

The horizontal resolution of the MOPITT data is much greater than that at which we run WRF-Chem. That difference translates 22 

to representativeness errors due to the smaller spatial scales that are resolved by the satellite but not by the model. To address 23 

those errors, we construct super-observations as follows: (i) sort the retrievals, retrieval priors, averaging kernels, and retrieval 24 

error covariances into bins that are ~90 km square, (ii) calculate the bin-average for each of those variables, and (iii) assimilate 25 



 
 

7 

the bin-average retrievals. We use an arithmetic average (as opposed to an error covariance weighted average) when calculating 1 

the super-observations. We do not apply corrections to the retrieval error covariance super-observations because we are 2 

interested in the assimilation impact of the reported errors and can apply tuning to those errors and balance the root-mean 3 

square error (RMSE)/total spread fit as needed. Other studies e.g., Eskes et al. (2003), Miyazki et al. (2012 a and b, 2015), and 4 

Barre et al. (2016) have used similar super-observation strategies. We do not expect that tuning the observation errors would 5 

significantly impact our results because our diagnostic analyses showed that the RMSE and total spread were properly 6 

balanced. 7 

 8 

3 Independent Observations for Verification: MOZAIC in situ and IASI CO Retrieval Profiles 9 

In the first part of this paper, we compare the analysis and forecast results from assimilating MOPITT CO with independent 10 

observations (IASI CO retrievals and MOZAIC in situ CO profiles). IASI is an instrument on the EUMETSAT (European 11 

Organization for the Exploitation of Meteorological Satellites) polar orbiting MetOp-A satellite. Clerbaux et al. (2009). It 12 

measures temperature, water vapor, fractional cloud cover, cloud top temperature, ozone, carbon monoxide, and methane. IASI 13 

has been operating from 2006 to the present. Its mission is to provide observational support for numerical weather prediction. 14 

IASI measures CO radiances under cloud-free conditions with a horizontal resolution of 25 km over a swath width of ~2,200 15 

km. IASI measurements are sensitive to CO in the mid- to lower troposphere. IASI provides global coverage every two days. 16 

IASI CO is reported on 19 altitude levels ranging from the surface to 18 km every 1 km. Validation results suggest that the 17 

CO retrievals are accurate to within 13%. For more information see www.eumetsat.int. 18 

 19 

MOZAIC was a European Research Infrastructure (ERI) project that collected long-term, global-scale measurements of 20 

atmospheric composition on international commercial airline flights from August 1994 to November 2014. Marenco et al. 21 

(1998). MOZAIC collected in-situ measurement of ozone, water vapor, carbon monoxide, and total nitrogen oxides. The 22 

available data products are geo-located (come with longitude, latitude, and pressure coordinates) and include simultaneous 23 

meteorological observations. During MOZAIC, data acquisition was automatically performed on the ascent, descent, and 24 

cruise phases of round-trip international flights between Europe and America, Africa, the Middle East, and Asia. For more 25 
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information see www.iagos.fr. 1 

4 Experimental Design 2 

We conduct WRF-Chem/DART forecast/assimilation cycling experiments that are similar to those of Mizzi et al. (2016). The 3 

primary differences are the: (i) use of super-observations, (ii) extension of CPSRs to truncated retrieval profiles, and (iii) use 4 

of localization to preclude the assimilated MOPITT CO observations from impacting any state variable other than CO. We 5 

performed a control experiment where we assimilated only conventional meteorological observations (the MET experiment), 6 

and we performed a series of chemical data assimilation experiments. In those experiments, we studied assimilation results 7 

from four types of retrieval pre-processing strategies: (i) Volume Mixing Ratio retrievals (VMRRs, the associated experiment 8 

is called the VMRR experiment), (ii) Log10(VMRR) retrievals (L10VMRRs, the L10VMRR experiment), (iii) Compact Phase 9 

Space Retrievals (CPSRs, the CPSR experiment), and (iv) Quasi-Optimal Retrievals (QORs, the QOR experiment). The CPSR 10 

and QOR experiments (as applied to assimilation of full retrieval profiles) were studied by Mizzi et al. (2016). The VMRR 11 

experiment and the L10VMRR and CPSR experiments as applied to assimilation of truncated retrieval profiles are new. We 12 

include the L10VMR and QOR experiments as applied to retrieval full profiles because, as discussed in the Introduction, our 13 

comparison of those experiments with independent observations (discussed below in Section 5.1) suggests that it may be 14 

beneficial to not assimilate MOPITT CO retrievals in the upper troposphere due to their possible bias. That concern motivates 15 

application of the L10VRR and CPSR experiments to the assimilation of truncated retrieval profiles. The rest of this section 16 

describes those experiments. It should be noted that the different retrieval pre-processing methods (making up the different 17 

experiments) are applied after the customary quality assurance/quality control (QA/QC) checks that might discard entire 18 

retrieval profiles. Those forecast/assimilation experiments are summarized in Table 1. 19 

4.1 The VMRR and L10VMRR Experiments 20 

The MOPITT CO retrieval, averaging kernel, and error covariance products are reported in units of log10(VMR). The IASI CO 21 

products are in VMR. For ease of comparison and interpretation, it is convenient to convert the MOPITT data from L10VMRR 22 

to VMRR. While it is possible to convert the retrievals and error covariance, it is not possible to convert the averaging kernels. 23 

Consequently, for the VMRR experiment the DART forward operator for MOPITT CO converts the state space CO profile 24 
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from VMRRs to L10VMRRs, applies the averaging kernel, and then converts the resulting expected observation (the expected 1 

retrieval profile) to VMR. For the L10VMRR experiment a conversion is not necessary because the state space CO profile is 2 

in log10(VMR). Conceptually, we expect little difference between the VMRR and L10VMRR experiments due to an underlying 3 

assumption that L10VMRRs have a Gaussian distribution and the VMRRs have a lognormal distribution (Deeter et al., 2007). 4 

However, non-linearity of the base-ten exponential operator that relates the L10VMRRs to the VMRRs and the extent to which 5 

the VMRR distributions are non-Gaussian may introduce differences. So, one goal of the related experiments is to determine 6 

whether those differences are significant. Another reason is to include pre-processing methods that enable us to not assimilate 7 

selected retrievals so we can compare the assimilation/forecast results with those from applying CPSRs to truncated retrieval 8 

profiles.  9 

4.2 The QOR Experiment 10 

The assimilation of QORs was discussed in Mizzi et al. (2016). We include QOR assimilation/forecast experiments for 11 

completeness and to provide a reference against which to compare the other retrieval pre-processing experiments. In addition 12 

(although not discussed herein), QOR pre-processing can be applied to truncated retrieval profiles using the extension 13 

discussed in the next section on the CPSR experiment. 14 

 15 

QORs are retrieval residuals introduced by Migliorini et al. (2008). They are derived by writing the retrieval equation as 16 

𝒚" − 𝑰 − 𝑨 𝒚+ − 𝜺 = 𝑨𝑦'.          (2) 17 

and transforming Eq. (2) with the left singular vectors from the SVD of 𝑬. divided by the square root of the associated singular 18 

value. If the SVD of 𝑬. is 𝑬. = 𝝓𝝈𝜑4, then the QOR profile is defined as  19 

𝝈5𝟏/𝟐𝝓𝑻(𝒚" − 𝑰 − 𝑨 𝒚+ − 𝜺) = 𝝈5𝟏/𝟐𝝓𝑻𝑨𝑦'         (3) 20 

and the transformed 𝑬. is the identity matrix. That transform is similar to the CPSR diagonalization transform described in 21 

the next section except Migliorini et al. (2008) applied the QOR transform to the raw averaging kernel and the raw error 22 

covariance while Mizzi et al. (2016) applied it to the compressed averaging kernel and the compressed error covariance. In 23 

our application of QORs, there is no filtering of the dominate modes. Also, in general the QOR transform has no zero singular 24 

values because 𝑬. is not singular. 25 
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4.3 The CPSR Experiment and the Extension of CPSRs to Assimilation of Truncated Retrieval Profiles 1 

The derivation and assimilation of CPSRs was introduced by Mizzi et al. (2016). They derived CPSRs by applying two 2 

transforms to Eq. 2: (i) a compression transform based on the SVD of 𝑨, and (ii) a diagonalization transform based on the SVD 3 

of the compressed 𝑬.. Their application can be characterized as CPSRs applied to full retrieval profiles (because none of the 4 

elements in the retrieval profile were discarded) or to square systems (because 𝑨 is a square matrix). If we discard one or more 5 

elements of 𝒚", then we must also discard the corresponding rows of 𝑨 (call the modified forms 𝒚" and 𝑨 respectively). The 6 

resulting 𝑨 is not a square matrix. Note that we must also discard the corresponding rows and columns of 𝑬., so it remains 7 

square but its dimension is reduced. This application can be characterized as CPSRs applied to truncated retrieval profiles 8 

(because some of the elements of the retrieval profile have been discarded) or to rectangular systems (because 𝑨 is a non-9 

square rectangular matrix). The mathematical formalism for CPSRs applied to rectangular systems is the same as that for 10 

square systems because Mizzi et al. (2016) used a SVD (as opposed to an eigenvalue decomposition) in their derivation. In the 11 

remainder of this section, we extend the derivation of CPSRs from Mizzi et al. (2016) to rectangular systems.  12 

 13 

We begin by conceptually discarding q elements of 𝒚". Generally, we discard the elements of the full retrieval profile 𝒚" that 14 

are known to be systematically bad observations. If we discard multiple elements, they need not be sequential. The resulting 15 

truncated retrieval profile is denoted 𝒚" and its dimension is 𝑛 = 𝑛 − 𝑞. We must also discard: (i) the corresponding elements 16 

of 𝜺 to get 𝜺 with dimension 𝑛, (ii) the corresponding rows of 𝑨 to get 𝑨 with dimension 𝑛	×	𝑛, and (iii) the corresponding 17 

rows and columns of 𝑬.  to get 𝑬.  with dimension 𝑛	×	𝑛. Without loss of generality, we can drop the 	 notation for the 18 

remainder of this paper and let 𝒚" , 𝜺, 𝑨, and 𝑬.  represent their respective terms before and after discarding the retrieval 19 

elements that will not be assimilated. The rest of the derivation is the same as in Mizzi et al. (2016).  20 

 21 

First, we apply the compression transform based on the leading left singular vectors of 𝑨. If 𝑨 = 𝑼𝑺𝑽𝑻 is the SVD and 22 

𝐴A = 𝑈A𝑆A𝑉A4 is the truncated SVD where the trailing singular vectors (those whose singular values are less than an ad hoc 23 

threshold of 1.0	×	105H) are replaced with zero vectors and the trailing singular values are set to zero, then the compressed 24 

form of Eq. 2 is 25 
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𝑼A4 𝒚" − 𝑰 − 𝑨 𝒚+ − 𝜺 = 𝑺A𝑽A4𝒚'         (4) 1 

and the compressed error covariance is  2 

𝑼A4𝑬.𝑼A.            (5) 3 

In that step, there is no filtering of the dominate modes. Next, we apply the diagonalization transform. If the SVD of the 4 

compressed error covariance in (5) is 𝑼A4𝑬.𝑼A = 𝚽𝚺𝚿4, then the diagonalized and conditioned form of Eq. 4 is 5 

𝚺5L/M𝚽4𝑼A4 𝒚" − 𝑰 − 𝑨 𝒚+ − 𝜺 = 𝚺5L/M𝚽4𝑺A𝑽A4𝒚'       (6) 6 

and that of (5) is the identity matrix. Eqs. 4 – 6 and the fully transformed error covariance are the same as in Mizzi et al. (2016) 7 

except that unwanted retrieval elements have been discarded. 8 

 9 

Finally, we note that the rank of 𝐀 and the rank of 𝐀 are generally the same provided the difference between the dimension of 10 

𝐀 and the rank of 𝑨 is greater than or equal to the number of discarded elements from the retrieval profile i.e., 𝑛 − 𝑘	 ≥ 𝑞. 11 

That statement is not necessarily true, but given the rank deficiency of 𝐀 it is usually true.  We also note that the 𝚺5L/M𝚽4𝑺A𝑽A4 12 

on the right side of Eq. 6 is the transformed averaging kernel. It represents the sensitivity of the phase space retrievals (the 13 

CPSRs) to the true CO concentrations at each vertical level. Unlike the raw averaging kernel, which included sensitivities to 14 

the null space contributions to the retrieval (the linearly dependent contributions from the right side of Eq. 2), the transformed 15 

averaging kernel contains only sensitivities for the measurement contributions to the retrieval (the linearly independent 16 

contributions from the right side of Eq. 2).  17 

5 Results 18 

5.1 Assimilation of Full Retrieval Profiles 19 

In this section, we look at assimilation/forecast results from the experiments described in Section 4. The reader should note 20 

that the CPSR and QOR experiments are the same as the MOP CPSR and MOP QOR experiments from Mizzi et al. (2016) 21 

except: (i) the study period is shorter (nine days as opposed to one month), (ii) we assimilate MOPITT super-observations, and 22 

(iii) we use localization to preclude the assimilated MOPITT CO observations from impacting any state variable other than 23 

CO.  24 
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 1 

Figure 1 show forecast verification statistics (RMSE and Bias) for the different experiments when compared against the 2 

assimilated MOPITT CO retrievals on the left and the independent IASI CO retrievals on the right. For the MOPITT 3 

comparison, the MOPITT CO forward operator has been applied to the WRF-Chem results so the comparison is made in 4 

MOPITT CO retrieval space.  Similarly, for the IASI comparison the IASI CO forward operator has been applied so the 5 

comparison is made in IASI CO retrieval space.  The left panel can be compared with Fig. 8 from Mizzi et al. (2016). 6 

Qualitatively, that comparison shows that the two figures are similar. The MET experiment yields the highest RMSE and bias 7 

while the CPSR and QOR experiments yield lower RMSE and bias. Similar results are seen in the IASI CO comparison. It is 8 

interesting that for both comparisons: (i) The VMRR experiment shows a slight degradation when compared to the MET 9 

experiment, and (ii) the VMRR and L10VMRR experiments are similar to the MET experiment. We suspect that result (i) is 10 

a consequence of the non-linearity of the base-ten log function and the non-Gaussianity of the VMRR distributions, and 11 

result (ii) is a consequence of the magnitude of the observation errors used in the VMRR and L10VMRR experiments 12 

(discarding the observation error cross-covariance produced observation error variances that are large compared to those 13 

produced by the CPSR diagonalization transform) and the length of the study period. We believe the CPSR observation errors 14 

are smaller due to the compression step of the CPSR transform.  They cannot be smaller due to the diagonalization step because 15 

that is a variance maximizing rotation.  So, if the compression had no filtering effect on the errors, the variance resulting from 16 

the diagonalization step would no smaller than that from the compression step. One consequence of relatively large observation 17 

errors is that it takes more cycles for the assimilation to show an impact. We have run similar experiments with a longer study 18 

period and found assimilation impacts. We do not view that as a deficiency in the experimental design. We are interested in 19 

the assimilation of CPSRs. If they show an impact during a shorter study period but more conventional methods that do not 20 

account for redundant information or error correlations fail to show an impact, then that failure identifies deficiencies in the 21 

conventional methods.  22 

 23 

Figure 1 generally shows increasing improvement when moving from the MET to L10VMRR to CPSR and QOR experiments. 24 

As discussed previously the VMRR and L10VMRR experiments show little to no improvement over the MET experiment. In 25 
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Fig. 1 the CPSR and QOR experiments show comparable skill. That result can also be seen in Mizzi et al. (2016) by comparing 1 

Figs. 3 and 7. There are two potential explanations. First, we use the retrieval space retrieval error covariance (𝑬𝒓) as the 2 

observation error covariance to account for other unquantified error sources, and 𝑬𝒓 = 𝑰 − 𝑨 𝑬𝒂 where 𝑬𝒂 is the retrieval a 3 

priori error covariance. If the singular vectors of 𝑬𝒓 are equivalent to those of 𝑨, we would get similar results from the CPSR 4 

and QOR experiments. However, 𝑬𝒂 is specified in the retrieval algorithm as a covariance matrix, and generally there is no 5 

reason to suspect that the singular vectors of 𝑬𝒓 are equivalent to those of 𝑨 (for MOPITT CO they are not equivalent because 6 

their respective singular vectors are not orthogonal). Second, in the QOR experiment the diagonalization transform rotates the 7 

QOR equation so that the observation error cross-covariance contributions for each mode are included in their corresponding 8 

observation error variance. However, those modes are linearly dependent in the space defined by the rotated averaging kernel 9 

because the rotated averaging kernel is still singular. When those linearly dependent modes are assimilated, there is very little 10 

adjustment to the analysis. Consequently, the CPSR and QOR experiments yield similar results because: (i) the QOR 11 

experiment apportions the error and assimilates the linearly dependent modes (which have little or no impact), while (ii) the 12 

CPSR experiment apportions the error and does not assimilate the linearly dependent modes. Those results differ from the 13 

VMRR and L10VMRR experiments because the observation error variance used in the retrieval space experiments does not 14 

account for the error cross-covariance contributions, and the linearly independent portion of that error is different from that in 15 

the CPSR and QOR experiments. 16 

 17 

In Fig. 2, we compare results from the CPSR and MET experiments with the MOZAIC ascent and descent soundings for 18 

Dallas, TX (two soundings composited), Portland, OR (four soundings composited), and Philadelphia, PA (two soundings 19 

composited). The MOZAIC soundings from 1 June 2008 (Dallas, TX) were discarded because they were observed during our 20 

spin-up period.  Otherwise, out MOZAIC comparisons were not impacted by forecast/assimilation system spin-up. No other 21 

MOZAIC soundings were available for our study period and domain.  The MOZAIC soundings used in Fig. 2 were generally 22 

not spatially (within several hundred kilometres) or temporally (within three hours) coincident with the MOPITT observations. 23 

We linearly interpolated the WRF-Chem forecasts to the MOZAIC observation times and locations and then composited the 24 

results. We did not plot the composited MOZAIC profile below 750 hPa because those data are more representative of the 25 
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lower troposphere over urban areas than are our model grid and assimilated super-observations.  The MOZAIC comparison 1 

results are qualitatively similar to those from Fig. 1. The CPSR experiment shows that: (i) assimilation of phase space 2 

retrievals improves the 6-hr forecast skill in the middle and lower troposphere when compared to the MET experiment for 3 

Dallas, TX  and Portland, OR but degrades the skill in the upper troposphere, (ii) assimilation generally degrades skill 4 

throughout the troposphere for Philadelphia, PA, (iii) none of the assimilation impacts are significant based on the ensemble 5 

variability, and (iv) assimilation provides little or no change near the surface.  The upper tropospheric degradation in results (i) 6 

and (ii) is related to the positive bias in upper tropospheric MOPITT retrievals discussed earlier. Result (iii) is likely a result 7 

of the small sample size, but given the magnitude of the skill differences in the middle and upper troposphere and the “near-8 

significance” suggested by some of the error bars, we think there is value in presenting these results. Result (iv) is somewhat 9 

unexpected because MOPITT retrievals are documented to have sensitivity to CO in the upper and lower troposphere (Deeter 10 

et. al. 2007). Also, other chemical data assimilation researchers, e.g. Jiang	 et	 al.	 (2013)	 and	Barre	 et	 al.	 (2015),	 have	11 

reported	near-surface	improvements	due	to	assimilation	of	MOPITT	CO	multi-spectral	retrievals.	We suspect result (iv) 12 

occurs because MOPITT’s upper tropospheric sensitivities dominate its lower tropospheric sensitivities in the transformed 13 

system.  14 

 15 

To test that hypothesis, we plot a histogram of the MOPITT degrees of freedom for signal (DOFS) for all terrestrial profiles 16 

in our domain during the study period in Fig. 3. The MOPITT DOFS is a measure of the amount of independent observed 17 

information in a retrieval profile. If a profile contains independent information from the upper and lower troposphere, its DOFS 18 

must be ~2.0. The central histogram of Fig. 3 shows that the mean, median, and mode of DOFSs during this period are ~1.5 19 

and that DOFSs greater than ~2.0 are relatively rare (< 5%). To gain a better understanding of the vertical structure of the 20 

MOPITT retrieval information content, we present a composite analysis for averaging kernel profiles in the neighborhood of 21 

different DOFS values in the lower row of Fig. 3 where panel (a) is the composite averaging kernels for all DOFS, (b) is for 22 

(0.9 <	DOFS	<	1.1,	~10%	of	the	histogram	probability	mass),	(c)	is	for	(1.4	<	DOFS	<	1.6,	~26%),	and	(d)	is	for	(1.9	<	23 

DOFS	<	2.1,	~4%).	Those	panels	show	that	the	dominant	sensitivity	appears	to	be	to	the	upper	troposphere	and	that	as	24 

the	DOFS	approaches	2.0	the	sensitivity	to	the	lower	troposphere	increases.	That	sensitivity	distribution	could	explain	25 
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the	improvement	drop	off	in	the	lower	troposphere	for	the	MOZAIC	comparisons	because	retrievals	with	sensitivity	to	1 

the	lower	troposphere	are	relatively	rare.	However,	linear	dependencies	in	the	composite	averaging	kernels	of	Fig.	3	2 

can	mask	the	significance	of	the	sensitivities	to	the	lower	troposphere	in	the	more	common	DOFS	categories.		3 

	4 

To	unmask	those	sensitivities,	Fig.	4	presents	a	composite	analysis	of	the	different	DOFS	sensitivities	based	on	the	CPSR	5 

compression	and	diagonalization	transforms,	and	Table	2	presents	the	total	and	modal	information	content	associated	6 

with	Fig.	4.	The	upper	row	of	Fig.	4	shows	composite	vertical	profiles	of	the	leading	left	singular	vectors	of	the	averaging	7 

kernel.	Those	singular	vectors:	(i)	span	the	range	of	the	averaging	kernel	(the	QOR	space),	(ii)	are	ranked	such	that	the	8 

first	singular	vector	explains	the	greatest	amount	of	vertical	variability	in	the	QOR	profile,	the	second	singular	vector	9 

explains	the	next	greatest	amount	of	variability,	and	so	forth,	and	(iii)	have	arbitrary	sign,	so	we	chose	the	sign	that	has	10 

the	greatest	physical	meaning,	i.e.,	we	apply	a	-1.0	scaling	to	the	first	and	second	rows	of	Fig.	4.	Table	2	shows	that	for	11 

0.9	£	DOFS	£	1.0	most	of	the	information	is	in	the	first	mode,	for	1.4	£	DOFS	£	1.5	two-thirds	of	the	information	is	in	the	12 

first	mode	and	one-third	is	in	the	second	mode,	and	for	1.9	£	DOFS	£	2.1	one-half	of	the	information	is	in	the	first	mode	13 

and	one-half	 is	 in	 the	second	mode.	 In	Fig.	4,	we	retained	three	singular	vectors	 for	completeness,	but	 it	should	be	14 

remembered	 the	 third	 vector	 (and	 sometimes	 the	 second	 vector)	 may	 map	 information	 to	 the	 null	 space	 of	 the	15 

transformed	averaging	kernel.	The	second	row	of	Fig.	4	shows	composite	vertical	profiles	for	the	compressed	averaging	16 

kernels.	These	profiles	show	the	vertical	sensitivity	of	compressed	QORs	to	the	true	atmospheric	state.	The	bottom	row	17 

shows	the	composite	vertical	profiles	for	the	compressed	and	rotated	averaging	kernels	(the	profiles	after	the	full	CPSR	18 

transformation).	These	profiles	show	the	vertical	sensitivity	of	CPSRs	to	the	true	atmospheric	state.		19 

	20 

Figure	4	shows	some	interesting	results.	The	upper	row	of	Fig.	4	shows	that	for	DOFS	≈	1.0	(column	(b))	the	first	leading	21 

singular	vector	has	positive	sensitivity	near	the	surface	and	negative	sensitivity	in	the	middle	to	upper	troposphere	22 

(remember	that	the	second	and	third	leading	vectors	may	map	to	the	null	space	for	DOFS	≈	1.0).	As	the	DOFS	increases	23 

to	1.5,	the	first	and	second	leading	vectors	have	positive	sensitivity	near	the	surface	and	weakly	negative	sensitivity	in	24 

the	middle	to	upper	troposphere,	and	for	DOFS	of	2.0,	the	first	leading	vectors	has	positive	sensitivity	throughout	the	25 
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troposphere	while	the	second	leading	vectors	has	positive	sensitivity	near	the	surface	and	negative	sensitivity	in	the	1 

middle	to	upper	troposphere.		2 

	3 

After	applying	the	CPSR	diagonalization	transform,	the	DOFS-dependent	sensitivity	patterns	in	the	second	row	of	Fig.	4	4 

change,	and	the	final	patterns	(those	of	the	compressed	averaging	kernels)	are	shown	in	the	bottom	row.	These	profiles	5 

show	that	for	all	DOFS	(column	(a))	the	first	leading	mode	has	its	greatest	sensitivity	near	the	surface	and	the	sensitivity	6 

decreases	to	a	near-zero	positive	minimum	in	the	upper	troposphere.		Similarly,	the	second	leading	mode	has	it	greatest	7 

positive	 sensitivity	 near	 the	 surface	but	 has	 strong	 negative	 sensitivity	 in	 the	upper	 troposphere.	 	 The	 right	 three	8 

columns	of	the	second	row	in	Fig.	4	show	the	dependency	of	the	vertical	sensitivity	on	the	DOFS	for	the	compressed	9 

QORs.	As	seen	with	the	singular	vectors,	as	the	DOFS	increases	the	sensitivity	changes	from	weak	positive	sensitivity	10 

near	the	surface	and	strong	negative	sensitivity	in	the	upper	troposphere	to	strong	positive	sensitivity	throughout	the	11 

troposphere	for	the	first	leading	mode	and	positive	sensitivity	near	the	surface	and	strong	negative	sensitivity	in	the	12 

upper	troposphere	for	the	second	leading	mode.	Those	results	suggest	that	the	MOPITT	retrievals	(and	therefore	the	13 

results	in	Fig.	2)	should	be	sensitive	to	CO	in	the	lower	troposphere/near	the	surface.	However,	an	interesting	thing	14 

happens	when	we	account	for	the	reported	retrieval	error	covariance.	The	lower	row	of	Fig.	4	shows	the	compressed	15 

and	rotated	averaging	kernel	profiles,	which	account	for	that	error	covariance.	Here	the	negative	scaling	cancels	each	16 

other	because	 the	 SVD	has	been	 applied	 twice.	These	 results	 show	 first	 that	 the	 significance	of	 the	 leading	modes	17 

becomes	 reversed	due	 to	diagonalization	 transform	and	 scaling	by	 the	 inverse	 square	 root	of	 the	 compressed	and	18 

rotated	error	variance.	This	does	not	mean	that	the	third	leading	mode	from	the	first	two	rows	of	Fig.	4	becomes	a	19 

dominant	mode	because	it	may	still	be	mapping	to	the	null	space,	i.e.,	the	leading	CPSR	modes	(those	with	the	smaller	20 

observational	 error	 variance)	may	be	mapping	 to	 the	 null	 space,	 and	 the	 trailing	CPSR	modes	 are	mapping	 to	 the	21 

domain	of	the	transformed	averaging	kernel.	That	suggests	that	there	may	be	benefit	to	not	assimilating	some	of	the	22 

leading	CPSR	modes	which	would	be	similar	to	not	assimilating	the	phase	space	modes	with	small	observational	error	23 

as	was	done	by	Migliorini	et	al.	(2008).	The	bottom	row	of	Fig.	4	shows	that	after	removing	the	linear	dependencies	24 

and	accounting	for	the	observation	errors,	the	compressed	and	rotated	averaging	kernel	has	its	greatest	sensitivity	in	25 
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the	upper	troposphere	for	DOFS	<	2.0	and	weakest	sensitivity	near	the	surface	for	DOFS	»	2.0.		That	explains	why	our	1 

comparison	of	the	CPSR	experiment	with	the	MOZAIC	observations	in	Fig.	2	did	not	show	assimilation	impacts	near	the	2 

surface.	 	Other	researchers	who	have	assimilated	MOPITT	CO	could	not	have	found	this	result	because	they	did	not	3 

adjust	for	the	averaging	kernel	linear	dependencies	or	for	the	observation	error	covariance.		See	e.g.,	Jiang	et	al.	(2013)	4 

and	Barre	et	al.	(2015).	5 

 6 

Figures 5 and 6 show contour maps comparing the MET and CPSR experiments for 9 June 2008 18 UTC (Fig. 5) as well as 7 

the assimilated MOPITT and independent IASI CO retrievals (Fig. 6). Examination of the forecast maps in the upper panel 8 

and the forecast difference map (CPSR experiment minus MET experiment) in the lower left panel of Fig. 5 (defined as CPSR 9 

EX CO Del-Fcst) shows that assimilation of MOPITT CO retrievals increased the CO concentrations over some areas (southern 10 

California, southern Baja, and northern Atlantic east of New England) and decreased the concentrations over broader areas 11 

(mid- to northeastern United States, southeastern United States, and southern Gulf of Mexico). Comparison of the MOPITT 12 

CO retrievals in the upper panels of Fig. 6 (the assimilated retrievals) with Fig. 5 shows that the analysis and forecast impacts 13 

are generally consistent with the observations. Over southern Baja the MOPITT observations in Fig. 6 report CO on the order 14 

of 50 ppb while the forecast in Fig, 5 (the assimilation prior) reports CO on the order of 100 ppb.  The assimilation increment 15 

shows a CO reduction (consistent with the MOPITT observations) on the order of 50 ppb.  Similarly, the increased CO in the 16 

central United States, over Kansas and Nebraska and in the southeastern United States near Georgia, South Carolina, and 17 

Virginia (highlighted by the analysis increment map in the lower right panel of Fig. 5) is consistent with relatively low CO in 18 

the prior when compared to the MOPITT observations. Comparison of the analysis increments, the assimilated MOPITT CO 19 

retrievals, and the independent IASI CO retrievals (lower panels of Fig. 5 and Fig. 6) confirms that the assimilation of MOPITT 20 

retrievals generally improved the analysis and forecast agreement with the IASI retrievals compared to the MET experiment.  21 

Over Baja MOPITT and to a lesser extend IASI in Fig. 6 report CO on the order of 50 ppb to 75 ppb.  The assimilation prior 22 

(the CO forecast) in Fig. 5 has CO on the order of 125 ppb to 150 ppb.  The corresponding increment is a CO reduction on the 23 

order of 50 ppb.  The IASI CO map in Fig. 5 also confirm adjustments over Oklahoma, Kansas, and Nebraska, and to a lesser 24 

extent to the east of Georgia, South Carolina, and Virginia.   25 
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 1 

Figure 7 shows horizontal domain average vertical profiles for the MET and CPSR experiments compared against horizontal 2 

domain average profiles for MOPITT and IASI. The WRF-Chem profiles are plotted in retrieval space (after accounting for 3 

the averaging kernel and assimilation prior). Comparison of the model and MOPITT profiles (left two panels of Fig. 7) shows 4 

that the CPSR experiment generally draws the forecast and analysis profiles closer to MOPITT than does the MET experiment. 5 

The error bars are based on the ensemble uncertainty and suggest that those improvements are significant throughout the 6 

troposphere. The same comparisons with the IASI profiles (right two panels of Fig. 7) shows a different result: (i) in the upper 7 

(pressure (p) < 250 hPa)	the	MET experiment draws the forecast and analysis profiles closer to IASI than does the CPSR 8 

experiment, and (ii) for p > 250 hPa) the CPSR experiment draws the profiles closer to IASI. Here again, the error bars suggest 9 

that those changes are significant throughout the troposphere. The results from the comparison with IASI highlight the 10 

problem, previously discussed for the MOZAIC comparisons in Fig. 2, with assimilating the potentially biased MOPITT CO 11 

retrievals. To address that problem, we propose to discard the biased retrievals and assimilate the unbiased truncated retrieval 12 

profiles with the extended CPSR method described in Section 4. 13 

 14 

In summary, this section shows that assimilation of MOPITT CO retrievals improves analysis fit and forecast skill when 15 

compared to MOPITT as well as when compared to the independent (not assimilated) IASI and MOZAIC observations. It 16 

shows that: (i) the CPSR experiment improves the skill when compared to assimilation of raw retrievals (VMRR and 17 

L10VMRR) because the phase space transformation reduces the phase space observation errors, and (ii) the CPSR and QOR 18 

experiments yield similar results because they account for the observation error cross-covariance contribution in the same way 19 

(the diagonalization transform) and because the linearly dependent portion of the transformed retrievals do not contribute to 20 

the analysis increment (explicitly with CPSRs and implicitly through the assimilation algorithm for compressed QORs). It also 21 

shows that the CPSR experiment did not improve the skill in the lower troposphere near the surface because: (i) MOPITT CO 22 

profiles with sufficient DOFS to resolve the lower tropospheric CO signal are relatively rare (for this domain and study period), 23 

and (ii) an analysis of the impact of the CPSR compression and diagonalization transforms shows that the upper tropospheric 24 

CO signal dominates the MOPITT CO sensitivities. Finally, this section shows that in the upper troposphere assimilation of 25 
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biased MOPITT observations introduced analysis and forecast error relative to the IASI observations. 1 

5.2 Assimilation of Truncated Retrieval Profiles 2 

In this section, we test two methods for assimilating truncated retrieval profiles: (i) assimilate L10VMRR retrievals after 3 

discarding the biased retrievals (the L10VMRR-RJ3 experiment where the RJ3 indicates that we do not assimilate retrievals 4 

above 300 hPa – the upper three levels of the MOPITT CO retrieval profile) and (ii) assimilate CPSRs with the extension to 5 

truncated retrieval profiles as described in Section 4.3 (the CPSR-RJ3 experiment). The L10VMRR-RJ3 experiment is 6 

included only for comparison purposes. If the L10VMRR-RJ3 and CPSR-RJ3 experiments give similar results then the CPSR-7 

RJ3 approach is preferred because it is computationally less expensive, removes linear dependencies, and accounts for the 8 

observation error covariance. 9 

 10 

Figure 8 shows vertical profiles for the L10VMRR-RJ3 and CPSR-RJ3 experiments with results from the full retrieval profile 11 

assimilation experiments included for reference. In these experiments, we are assuming that: the MOPITT retrievals are 12 

positively biased in the upper troposphere and the IASI CO retrievals more accurately reflect the true atmospheric state.  13 

Comparisons against the assimilated MOPITT observations in the upper panels show that discarding the biased observations 14 

had the desired effect – in the upper troposphere the L10VMRR-RJ3 experiment removes the bias and the analysis profile is 15 

drawn closer to that of the MET experiment than in the L10VMRR experiment. Similar results are seen for the CPSR-RJ3 16 

experiment in the last two columns of the upper row. Unexpectedly, for both experiments, not assimilating observations in the 17 

upper troposphere had a negative impact in the lower troposphere. A comparison with IASI CO retrievals in the lower row of 18 

Fig. 8 shows similar results: (i) the L10VMRR-RJ3 and CPSR-RJ3 retrieval space profiles are drawn closer to the IASI profile 19 

than the L10VMRR and CPSR profiles in the upper troposphere, and (ii) the skill is degraded in the middle and lower 20 

troposphere. We investigate the cause of those lower tropospheric results later in this section, but first we review the horizontal 21 

impacts of the truncated retrieval assimilation experiments. 22 

 23 

Figures 9 and 10 show contour maps for the CPSR-RJ3 experiment. Figure 9 shows the near-surface impacts, and Fig. 10 24 



 
 

20 

shows the upper tropospheric impacts. The CO 6-hr forecast contour maps in the upper row of Fig. 9 confirm that not 1 

assimilating the biased retrievals negatively impacted the lower troposphere because the assimilation impacts are small. The 2 

forecast difference maps in the lower row show the impacts in the lower troposphere from assimilating MOPITT CO in the 3 

upper troposphere.  The CPSR-RJ3 experiment does not have those impacts. It has small large-scale CO decreases over the 4 

oceans and eastern United States similar to but weaker than in the CPSR experiment. Also, the magnitude of positive forecast 5 

differences at CO hot spots over Southern California, Baja, and the northeastern United State has decreased. Figure 10 shows 6 

fewer large scale changes for the CPSR-RJ3 experiment except for the reductions over the southeastern United States and Gulf 7 

of Mexico. Here the CPSR-RJ3 experiment has large reductions in the CO adjustments (reducing the bias). Figure 10 provides 8 

additional demonstration that discarding the biased retrievals reduces the model’s upper tropospheric bias.  Unfortunately, we 9 

obtain that result at the expense of reduced improvements in the lower troposphere.   10 

 11 

A verification analysis for the L10VMRR-RJ3 and CPSR-RJ3 experiments is presented in Fig. 1. The L10VMRR-RJ3 and 12 

CPSR-RJ3 experiments have degraded forecast skill compared to the full profile assimilation experiments (the CPSR and QOR 13 

experiments), but the CPSR-RJ3 experiment has slightly improved skill compared to the L10VMRR-RJ3 experiment. That 14 

small improvement is likely due to observation error covariance reductions from the CPSR transform as discussed earlier.  15 

 16 

In summary, not assimilating the biased observations had positive impacts in the upper troposphere and negative impacts in 17 

the middle to lower troposphere. We suspect the negative results occurred for two reasons. Discarding retrievals and their 18 

averaging kernels: (i) reduces the total information content of the assimilated retrievals so that the assimilation adjustments 19 

are small; and (ii) reduces the sensitivity of the transformed averaging kernel so that the expected retrievals are less sensitive 20 

to the true atmospheric profile. Those reductions combine to reduce the ensemble state variable correlations and consequently 21 

the assimilation impacts. To test explanation (i) we compare the trace of the composited raw averaging kernel for the CPSR 22 

experiment with that for the CPSR-RJ3 experiment. The results are shown in the first two rows of Table 3 where “Full Profile” 23 

is from the CPSR experiment, and “Reject Top Three” is from the CPSR-RJ3 experiment. Comparison of those results shows 24 

a 25% reduction in the trace indicating that the total information content of the assimilated retrievals for the CPSR-RJ3 25 
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experiment is 25% less than that for the CPSR experiment. For comparison purposes, Table 3 also shows trace reductions from 1 

not assimilating retrievals in the middle troposphere (23% reduction) and lower troposphere (9% reduction). Those results 2 

suggest that most of the information in the MOPITT CO retrievals is from the upper troposphere, the second greatest amount 3 

is from the middle troposphere, and the smallest amount is from the lower troposphere. To test explanation (ii) we plot the 4 

compressed and fully transformed averaging kernels in Fig. 11 where column (a) is for the CPSR experiment and column (b) 5 

is for the CPSR-RJ3 experiment. Figure 11 is similar to the last two rows of Fig. 4. Recall that the first row represents the 6 

sensitivity of the compressed QORs to the true CO concentrations, and the second row represents the sensitivity of the CPSRs 7 

to the true CO concentrations. Comparison of columns (a) and (b) shows that for the CPSR-RJ3 experiment, the leading mode 8 

sensitivities are reduced when compared to the CPSR experiment. The state variable correlations are proportional to those 9 

sensitivities, so the reduced correlations result in analysis increment reductions. For comparison purposes columns (c) and (d) 10 

of Fig. 11 show results from experiments that discard retrievals in the middle and lower troposphere. Those profiles, in 11 

combination with Table 2, show that most of the information and sensitivity is associated with the upper and mid-tropospheric 12 

retrievals. Discarding upper tropospheric retrievals alters the sensitivity magnitudes while discarding middle tropospheric 13 

retrievals alters the magnitudes and vertical structure. One interesting result is that most of the sensitivity loss in column (c) - 14 

the “Reject Middle Three” experiment - appears to be associated with the CPSR diagonalization transform. That suggests that 15 

the sensitivity loss is dependent on specification of the retrieval a priori error covariance.  16 

 17 

Those changes occur because as different rows of the averaging kernel are discarded: (i) the amount of observed information 18 

in the modified averaging kernel changes, and (ii) the vertical structure of the bases for the range and domain of the modified 19 

averaging kernel changes. The impact of changes in the information content in point (i) were discussed earlier. The impact of 20 

changes to the bases in point (ii) has important consequences. The leading left singular vectors of the transformed averaging 21 

kernel span the range of the transformed averaging kernel but their vertical structure and possibly their dimension change when 22 

retrievals are discarded. That means the phase space observations change because the basis vectors used in the compression 23 

transform are different, and their sensitivity to the truncated retrieval profile vector is different. Similarly, the leading right 24 

singular vectors of the transformed averaging kernel span the domain of the transformed averaging kernel, but their vertical 25 
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structure changes when retrievals are discarded. Those changes occur solely because the information content of the transformed 1 

averaging kernel is reduced (since the dimension of its domain – the space where the true CO profiles reside – is unchanged). 2 

Those changes are significant because they alter the elements (or levels) of the true profile to which the transformed averaging 3 

kernel is sensitive. To summarize not assimilating elements of the full retrieval profile alters the levels of the retrieval profile 4 

to which the phase space observations are sensitive. Discarding those elements also alters the levels of the true CO profile to 5 

which the transformed averaging kernel is sensitive. Those sensitivity changes occur regardless of whether the assimilation is 6 

done in phase space as in the CPSR–RJ3 experiment or in retrieval space as in L10VMRR–RJ3 experiment. Consequently, 7 

results from the L10VMRR-RJ3 and CPSR-RJ3 experiments are similar. 8 

 9 

This section shows that CPSRs can be extended to the assimilation of truncated retrieval profiles but that discarding upper 10 

tropospheric observations for MOPITT significantly reduces the total information content of the assimilated observations and 11 

the vertical sensitivity of the transformed averaging kernel profiles. Those reductions translate to reductions in the state variable 12 

correlations and commensurate reductions in the analysis increments. We are studying modification of the CSPR extension to 13 

truncated retrieval profiles to address the non-local impacts. 14 

6 Summary and Conclusions 15 

This paper had two goals: (i) compare the results from assimilating CPSRs with independent observations (we used MOZAIC 16 

in situ observations and IASI CO retrievals as the independent observations), and (ii) extend CPSRs to the assimilation of 17 

truncated retrieval profiles. The comparison with independent observations showed that: (i) assimilation of raw retrievals 18 

(VMRRs and L10VMRRs) had little impact on the analysis fit and forecast skill due to the magnitude of the observation errors 19 

and the length of the study period, and (ii) the assimilation of phase space retrievals (CPSRs and QORs) improved both fit and 20 

skill. Conceptually, we expect the assimilation of raw retrievals and phase space retrievals to yield similar results. However, 21 

phase space transformation of the observation error covariance truncated the observation errors so that the CPSR and QOR 22 

experiments produced closer agreement with the assimilated and independent observations. This does not mean that the 23 

assimilation of raw retrievals is incorrect.  It means only that the reported observations errors may be too large because they 24 
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account for errors associated with the retrieval prior and consequently they require a longer study period to show an 1 

assimilation impact compared to CPSRs. 2 

 3 

Comparison of the CPSR experiments with IASI CO retrievals and MOZAIC in situ CO observations generally showed 4 

improved agreement in the middle and lower troposphere compared to the MET experiment.  For the IASI comparison, the 5 

improvements were significant and extended from 250 hPa to the surface. For the MOZAIC comparison, two (Dallas, TX and 6 

Portland, OR) of the three (no improvement for Philadelphia, PA) urban areas studied showed improvements between 500 hPa 7 

and 800 hPa. Below 800 hPa, there was little to no improvement. Although the assimilation impacts when compared to 8 

MOZAIC were not significant, the lack of a near-surface improvement was unexpected. However, the DOFS analysis in the 9 

discussion of Figs. 3 and 4 showed that there were no near-surface impacts because after accounting for the observation error 10 

covariance, the transformed averaging kernel had very little sensitivity to the near-surface CO. Other researchers have not 11 

found that result because they have not accounted for the observation error correlations. 12 

 13 

Comparison of the CPSR experiment with IASI and MOZAIC showed degraded skill in the upper troposphere (above 250 hPa 14 

for IASI and above 500 hPa for MOZAIC) compared to the MET experiment. That degradation was significant for IASI but 15 

not MOZAIC. It was attributed to the assimilation of biased retrievals above 300 hPa illustrating the need to extend the CPSR 16 

method to truncated retrieval profiles. Section 4.3 explained the extension, and Section 5.2 compared the L10VMRR-RJ3 17 

(assimilation of truncated raw retrieval profiles) and CPSR-RJ3 (assimilation of truncated phase space retrieval profiles) 18 

experiments where we did not assimilate the biased MOPITT CO retrievals above 300 hPa. That comparison showed that the 19 

L10VMRR-RJ3 and CPSR-RJ3 experiments produced similar results confirming the applicability of the CPSR approach to 20 

truncated retrieval profiles. However, they also highlighted an important characteristic of assimilating truncated retrieval 21 

profiles. Excluding the assimilation of some elements of the observation profiles can significantly alter the: (i) information 22 

content of the assimilated observations; and (ii) the amplitude of the averaging kernel sensitivities. Those modifications can 23 

combine to reduce the state variable correlations and the corresponding analysis increments.  We are researching modification 24 

of the CPSR extension to truncated retrieval profiles to address the reduced impact from not assimilating retrievals from 25 
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selected levels. 1 

 2 

Code and Data Availability 3 

The current versions of the WRF-Chem, WRF, WRFVAR, and WPS codes are available from the WRF download site at 4 

http://www2.mmm.ucar.edu/wrf/users/download/get_sources.html.  The current version of the DART code is at available at 5 

https://www.image.ucar.edu/DAReS/DART/DART2_Starting.php#download, and the current version of the WRF-6 

Chem/DART branch is available at https://www.image.ucar.edu/DAReS/DART/DART2_Starting.php#download.  The WRF-7 

Chem/DART branch is the same as the DART code except for inclusion of the WRF-Chem/DART system.   There is no need 8 

to down load both codes.  Presently, there is no users guide available for WRF-Chem/DART.  However, the authors have 9 

prepared a slide presentation that describes much of the chemical data assimilation script function, variables, and organization.  10 

Interested readers should contact the first author for a copy of that presentation and assistance with using WRF-Chem/DART. 11 

The large-scale model’s forecast and observational data used to run the ensemble forecast/data assimilation cycling 12 

experiments described in the paper are generally available from the respective data distribution sites.  That data set has not 13 

been posted to a public site due to its size but is available from the first author upon request. 14 
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 1 

 2 

Experiment 

Assimilate 

meteorology 

observations 

Assimilate 

MOPITT CO raw 

retrievals 

Assimilate 

MOPITT CO 

CPSRs 

Assimilate 

MOPITT CO 

QORs 

Assimilate 

retrieval full 

profiles 

Assimilate 

truncated 

retrieval 

profiles 

MET Yes No No No No No 

VMRR Yes Yes No No Yes No 

L10VMRR Yes Yes No No Yes No 

CPSR Yes No Yes No Yes No 

QOR Yes No No Yes Yes No 

L10VMRR-RJ3 Yes Yes No No No Yes 

CPSR-RJ3 Yes No Yes No No Yes 

 3 

Table 1. Summary of the WRF-Chem/DART Forecast/Data Assimilation Experiments.  4 
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 CompAK 1 CompAK 2 CompAK 3 Trace 

Full Histogram .9638 .4785 .0099 1.452 

0.9 £ DOFS £ 1.1 .8997 .1174 .0006 1.018 

1.4 £ DOFS £ 1.6 .9771 .5188 .0059 1.502 

1.9 £ DOFS £ 2.1 1.016 .8899 .0518 1.957 

 1 

Table 2. Average information content for each mode of the averaging kernel for the entire study period. CompAK 1 denotes 2 
the average information in mode 1, CompAK 2 is for mode 2, and so forth. Trace denotes the total information content. “Full 3 
Histogram” means all retrievals were considered. “DOFS” denotes the degree of freedom for the signal, and the different 4 
DOFS rows identify the average information content for the different DOFS ranges and averaging kernel modes. 5 
 6 
  7 
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 CompAK 1 CompAK 2 CompAK 3 Trace 

Full Profile .9638 .4785 .0099 1.452 

Reject Top 

Three 
.7983 .2851 .0045 1.088 

Reject Middle 

Three 
.7254 .3849 .0078 1.118 

Reject Bottom 

Three 
.9335 .3770 .0065 1.317 

 1 

Table 3. Average total and fractional information content for each mode of the averaging kernel for the entire study period. 2 
CompAK 1 denotes the average fractional information in mode 1, CompAK 2 is for mode 2, and so forth. Trace denotes the 3 
total information content. “Full Profile” means all retrievals were assimilated (i.e., none were discarded). “Reject Top Three” 4 
means that retrievals at pressure levels < 300 hPa were discarded. “Reject Middle Three” means that retrievals between 300 hPa 5 
and 600 hPa were discarded. “Reject Bottom Three” means that retrievals below 700 hPa were discarded.  6 
  7 



 
 

30 

 1 
  2 

 3 
Figure 1. Forecast (assimilation prior) verification statistics for all experiments in MOPITT retrieval space on the left and 4 

IASI retrieval space on the right. The red curve is root mean square error (RMSE), and the blue curve is bias (model – 5 

observation). The experiments are described in the text and summarized in Table 1.  6 
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 1 

 2 
 3 

Figure 2. Comparisons of the CPSR experiment against the IAGOS/MOZAIC in situ CO profiles in ppb composited for 1 June 4 
2008 for Dallas, TX in panel (a), 3 and 9 June 2008 for Portland, OR in panel (b), and 7 June 2008 for Philadelphia, PA in 5 
panel (c). Chem EX refers to the CPSR experiment. The error bars are based on the ensemble variability.  6 
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 1 

 2 

 3 
Figure 3. Histogram of MOPITT CO “degrees of freedom of signal” (DOFS) with blow-up histograms for selected DOFS 4 
ranges in the upper panels. The lower panels show composite MOPITT CO averaging kernel profiles for: (a) all DOFS, (b) 5 
(0.9 ≤	DOFS	≤ 1.1), (c) (1.4 ≤	DOFS	≤ 1.6), and (d) (1.9 ≤	DOFS	≤ 2.1). The averaging kernel identifiers are V-xxx where xxx 6 
is the approximate pressure level mid-point in hPa for the associated averaging kernel profile. 7 
 8 



 
 

33 

 1 
Figure 4. Composite vertical profiles for the: (i) leading left singular vectors of the MOPITT CO averaging kernels in the upper 2 
row, (ii) compressed averaging kernels in the middle row, and (iii) rotated and compressed averaging kernels in the lower row. 3 
The DOFS ranges are the same as defined for Fig. 2. For the profile labels “SingVec x” refers to ranked singular vectors where 4 
x = 1 is the first leading singular vectors, x = 2 is the second leading singular vector, and so forth. “Trans Ak x” refers to the 5 
compressed or rotated and compressed averaging kernel profile associated with the QOR and CPSR mode x respectively. 6 
 7 
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 1 
Figure 5. Shaded contours of CO in ppb for the MET and CPSR experiment 6-hr forecasts valid at this cycle time in the left 2 
and right upper panels respectively. The lower row presents the difference between the CPSR and MET forecasts (the CPSR 3 
experiment 6-hr forecast minus the MET experiment 6-hr forecast) in the left panel and the assimilation increment for analysis 4 
at this cycle time in the right panel. All figures are for ~950 hPa and the 9 June 2008 18 UTC cycle. The curved rectangle 5 
represents the WRF-Chem domain.  6 
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 1 

 2 
Figure 6. The assimilated MOPITT CO retrievals in the upper panels and the corresponding IASI CO retrievals (not 3 
assimilated) in the lower panels. The left figures are for ~950 hPa, and the right figures are for ~850 hPa. All figures are for 4 
the 9 June 2008 18 UTC cycle. The retrievals are in ppb.  5 
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 1 

    2 

   3 
Figure 7. Vertical profiles of the time/horizontal domain average CO in ppb from the CPSR and MET experiments for 4 
9 June 2008 18 UTC in retrieval space. “Forecast” is the assimilation prior, and “Analysis” is the assimilation posterior. The 5 
left two panels compare the forecast/assimilation results against MOPITT CO retrievals (assimilated), and the right two panels 6 
compare those results against IASI CO retrievals (not assimilated). In the legends, Chem EX refers to the CPSR experiment. 7 
The error bars are based on the ensemble variability.  8 
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    2 

 3 

   4 

 5 

  6 

 7 

 8 
Figure 8. Same as Fig. 7 except this figure compares the L10VMRR, L10VMRR-RJ3, CPSR, and CPSR-RJ3 experiments. 9 
The upper panels compare the forecast/assimilation results against MOPITT CO retrievals (assimilated) and the lower panels 10 
compare those results against IASI CO retrievals (not assimilated). In the legends, Chem EX is a placeholder for the 11 
L10VMRR-RJ3, L10VMRR, CPSR, and CPSR-RJ3 experiments depending on the panel. 12 
  13 
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 1 

 2 
Figure 9. Shaded contours of CO in ppb for the CPSR and CPSR-RJ3 experiment assimilation priors in the left and right upper 3 
panels respectively and for the CPSR and MET experiment difference (the CPSR minus the MET experiment, defined as CPSR 4 
EX CO Del-Fcst) and the CPSR-RJ3 and MET experiment difference (the CPSR-RJ3 minus the MET experiment, defined as 5 
CPSR-RJ3 EX CO Del-Fcst) assimilation priors in the left and right lower panels respectively. The CPSR experiments maps 6 
in this figure are the same as in Fig. 5 and included for reference. All figures are for ~950 hPA at 9 June 2008 18 UTC.  7 
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 2 

 3 
Figure 10. Same as Fig. 9 except for ~300 hPa. 4 
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  1 

 2 
Figure 11. Same as the lower two rows of Fig. 4 except that this figure is for the retrieval discard experiments. Column (a) is 3 
for the full retrieval profile assimilation experiment and is the same as column (a) in Fig. 3. Column (b) is for the “Reject Top 4 
Three” experiment in Table 2. Column (c) is for the “Reject Middle Three” experiment.  Column (d) is for the “Reject Bottom 5 
Three” experiment. Notice that the range of the abscissa is reduced from column (a) to columns (b) – (d).  6 
 7 


