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Abstract. Comparing model output and observed data is an important step for assessing model performance and quality of 

simulation results. However, such comparisons are often hampered by differences in spatial scales between local point 

observations and large-scale simulations of grid-cells or pixels. In this study, we propose a generic approach for a pixel-to-

point comparison that accounts for the uncertainty resulting from landscape variability and measurement errors in ecosystem 30 

variables, and provide statistical measures. The basic concept of our approach is to determine the statistical properties of 

small-scale (within-pixel) variability and observational errors, and to use this information to correct for their effect when 

large-scale area averages (pixel) are compared to small-scale point estimates.  We demonstrate our approach by comparing 

simulated values of aboveground biomass, woody productivity (woody net primary productivity, NPP) and residence time of 

woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots 35 

in the Amazon rainforest, a region with the typical problem of low data availability, a scale mismatch and high model 

uncertainty. We find that the DGVMs under- and overestimate aboveground biomass by 25% and up to 60%, respectively. 
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Our comparison metrics provide a quantitative measure for model-data agreement and show moderate to good agreement 

with the region-wide spatial biomass pattern detected by plot observations. However, all four DGVMs overestimate woody 

productivity and underestimate residence time of woody biomass even when accounting for the large uncertainty range of 

the observational data. This is because DGVMs do not represent the relation between productivity and residence time of 

woody biomass correctly. Thus, the DGVMs may simulate the correct large-scale patterns of biomass but for the wrong 5 

reasons. We conclude that more information about the underlying processes driving biomass distribution are necessary to 

improve DGVMs. Our approach provides robust statistical measures for any pixel-to-point comparison, which is applicable 

for evaluation of models and remote sensing products. 

1 Introduction 

The rate of environmental change in tropical South America and in particular in the Amazon region has been unprecedented 10 

in the last decades (e.g. Lewis et al. 2011; Davidson et al. 2012). Estimates of the amount of carbon stored in tropical 

rainforest biomass differ strongly (Avitabile et al., 2016;Baccini et al., 2012;Saatchi et al., 2011;Mitchard et al., 2014). In 

addition, estimated carbon release to the atmosphere from land-use change is uncertain (e.g. Houghton et al., 2012;Baccini et 

al., 2017;Song et al., 2015;Harris et al., 2012). Nonetheless, a successful implementation of protection incentives, e.g. for 

reducing emissions from deforestation and degradation (REDD+), requires both accurate estimates of existing regional 15 

carbon stocks as well as improved projections of future scenarios (e.g. Langner et al., 2014). 

Dynamic global vegetation models (DGVMs) are important tools to estimate impacts of climate and land-use change on the 

carbon cycle (e.g. Cramer et al. 2004; Sitch et al. 2008). To correctly capture carbon dynamics in tropical forests, DGVMs 

need to improve the simulation approach of drought-related mortality and other types of tree mortality that control stand 

density (Pillet et al. 2018), and they need to incorporate how nutrient availability limits woody productivity (Quesada et al. 20 

2012; Johnson et al. 2016). At the same time, model evaluation based on available data is necessary for which the primary 

source are ground-based observations of AGB obtained from forest census data (Lopez-Gonzalez et al. 2011; Brienen et al. 

2014; Lopez-Gonzalez et al. 2014; Mitchard et al. 2014; Brienen et al. 2015; Johnson et al. 2016). When conducting data-

model comparisons at the plot scale, the spatial resolution of both get into focus. The size of forest plots is typically in the 

order of 1 ha or less, whereas average DGVM grid-cell resolution is determined by the available gridded climate data set, 25 

which is usually about several thousand square kilometers (>100,000 ha). Plot observations are affected by observational 

errors, uneven spatial distribution (Saatchi et al. 2015) and variability due to natural gap dynamics (Chambers et al. 2013), 

and thus are likely to exhibit substantial deviation from average large-scale properties. The problem of comparing point data 

with model results obtained at grid-cell (pixel) size occurs in many applications of remote sensing and ecological modelling. 

So far, we lack a reliable and objective method to compare simulation results from DGVMs at grid-cell scale (pixel) and plot 30 

(point) observations. Several studies, that evaluated patterns of interpolated maps from plot data and model simulations, 

concluded that the observed and simulated spatial patterns do not match (e.g. Johnson et al. 2016). Here, we complement 
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these findings by providing quantitative statistical measures for such comparisons and present an approach for performing 

pixel-to-point comparisons while accounting for different statistical properties of point and pixel values and its uncertainties. 

The basic concept of the approach is to determine statistical properties from small-scale variability and observational errors 

in ecosystem variables, in order to account for these effects when comparing large-scale area averages (pixels) and small-

scale plot estimates (points). 5 

We apply our approach by comparing point estimates of ecosystem properties obtained from forest inventories (Mitchard et 

al. 2014; Brienen et al. 2015) to corresponding simulated pixel values from four state-of-the-art DGVMs. Similar to Johnson 

et al. (2016), we focus on three ecosystem properties that are well defined and represented in both, DGVMs and forest 

inventories: (i) aboveground biomass (AGB, in Mg C ha-1); (ii) aboveground woody productivity (WP, in Mg C ha-1 yr-1); 

and (iii) residence time of woody biomass (τin years). 10 

We evaluate the accuracy of the spatial pattern of these three ecosystem properties and provide statistical measures for the 

quality of model simulations in comparison to observations, thereby accounting for small-scale landscape variability and 

associated measurement errors. We demonstrate the strength of our approach by highlighting its applicability for model 

evaluation and model benchmarking. 

In particular, we address three research questions: 15 

1) How well do models represent variations in aboveground biomass across the Amazon region? We expand the pure 

(visual) qualitative comparison by deriving three statistical metrics for a quantitative comparison. 

2) How can we evaluate differences between observed and simulated spatial biomass patterns (based on the presented 

metrics), in particular when considering different allometric equations? We discuss the effects of inadequate data 

and associated model uncertainty. 20 

3) What can we learn from the spatial heterogeneity and underlying drivers of spatial biomass patterns? We analyze 

simulated and observed patterns of WP and τ. 

2 Methods 

Landscape variability depends on the extent and resolution of the study area (Turner et al., 2001). Point measurements within 

a pixel of larger spatial scale, for example, may reveal small-scale spatial variabilities within the pixel. We derive a “within-25 

pixel variability” that so far has not been accounted for in earlier approaches. We present three steps to calculate three 

metrics that provide a measure on the best achievable correlation between point and pixel values (see Fig. 1). 
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2.1 A generic method for point-to-pixel comparisons 

2.1.1 Calculate the “global variability” across the region of interest 

Assume, we have a dataset X with a number N of point observations xi  at location i (e.g. plot observations from inventory 

data). In the first step, we calculate the mean �̅� and variance 𝜎௫
ଶ across all plots in a region (e.g. across the Amazon region). 

The variance 𝜎௫
ଶ denotes the global variability (i.e. the variability across the whole Amazon region) at point scale (Fig. 1a). 5 

2.1.2 Calculate within-pixel variability 

In the second step, we identify within-pixel variability from point measurements. With coarser pixel resolution, the spatial 

variability (here: global variability) is reduced. In order to compare pixel values against point values, global variability at 

point scale needs to be reduced by the within-pixel variability (variability component 𝜀; Fig. 1b).  

The variability component 𝜀 is assumed to be normally distributed with zero mean and variance 𝜎ఌ
ଶ: 10 

𝜀 ~ 𝒩(0, 𝜎ఌ
ଶ)            (1) 

Based on the variability component 𝜀 , we estimate the within-pixel variance 𝜎ఌ
ଶ from the point observations by analysing 

their covariance, which is equivalent to the nugget effect (i.e. the sum of variance caused by small-scale variability and 

observation error) in a semivariogram (see SI Methods). Due to the limited amount of inventory data, we assume here, that 

𝜎ఌ
ଶ is stationary across the region of interest (for details on that assumption see discussion and SI Results). 15 

The global variance at point scale 𝜎௫
ଶ now differs from the corrected global variance at pixel scale, 𝜎௫,

ଶ , as variances add 

quadratically, assuming that the (small scale) variability component 𝜀 has errors uncorrelated to the global distribution of x : 

𝜎௫,
ଶ = 𝜎௫

ଶ − 𝜎ఌ
ଶ           (2) 

2.1.3 Metrics for the comparison of two datasets with different spatial resolutions 

In a third step, we compare the point data xi with simulated data yi at pixel scale. Similar to the above procedure, we 20 

calculate the mean 𝑦ത and variance 𝜎௬
ଶ for the simulated pixels that contain point observations (hereby we assign each point 

observation the pixel value in which the point is located). We then compare the simulation results by applying three metrics:  

1) Mean bias (MB): the ratio of means yത xത⁄  across the whole region as a measure of the mean bias in the patterns 

which is not affected by small scale variability;  

2) Pattern amplitude (PA): the ratio of standard deviations σ୷ σ୶,ୡ୭୰୰⁄  using the corrected global variability (i.e. 25 

removed within-pixel variability) and serves as a measure of differences in pattern amplitude or in the variability of 

the simulated and observed data;  

3) Similarity of pattern (SP): We use 𝑟  as a measure of the similarity of the ‘shape’ of spatial patterns, i.e. the 

spatial correlation of simulated and observed data (see SI).  Accordingly, we can calculate the maximum achievable 
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correlation coefficient 𝑟௫, which is derived from correlating the observational data set at point scale to the same 

observational data set at pixel scale (see Fig. 1a, b and SI). 

The limited number of point observations and their non-random spatial distribution in the Amazon region affects the 

accuracy of the comparison. We therefore estimate confidence intervals for the comparison metrics MB, PA and SP, 

respectively, by applying a bootstrapping technique (10,000 repetitions). Because the estimation of 𝜎ఌ
ଶ  is based on the 5 

analysis of the spatial correlation structure of the data, a block-bootstrapping is performed (Politis and Romano, 1994). For 

each permutation, the domain of observations is randomly divided into 100 tiles (random orientation and offset, ca. pixel 

size) from which a random recombination is drawn with replacement. This technique assures that the spatial correlation 

structure of the data remains intact. 

2.2 Application of the pixel-to-point comparison to simulated and observed data from the Amazon region 10 

2.2.1 Observed data at point scale: Description of site-level data 

We use forest census-based datasets of AGB (Lopez-Gonzalez et al., 2011;Lopez-Gonzalez et al., 2014;Mitchard et al., 

2014), WP and woody loss (WL; Brienen et al., 2014), and convert it from dry biomass to carbon mass (see SI Methods). 

For the calculation of AGB, we use different allometric equations that account e.g. for regional differences in wood density 

or tree height (Table S1). 15 

2.2.2 Simulated data at pixel scale: Description of DGVM simulations 

We use outputs from four state-of-the-art DGVMs, namely the Lund-Potsdam-Jena DGVM for managed Land (LPJmL, 

Bondeau et al., 2007;Gerten et al., 2004;Sitch et al., 2003), the Joint U.K. Land Environment Simulator (JULES), v. 2.1. 

(Best et al., 2011;Clark et al., 2011), the INtegrated model of LAND surface processes (INLAND) model (a development of 

the IBIS model, Kucharik et al., 2000) and the Organising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) 20 

model (Krinner et al., 2005). A short description of each of the applied models is provided in the Supplementary Information 

(SI Methods). The models were applied to the Amazon region covering the area of 88°W to 34°W and 13°N to 25°S at a 

spatial resolution of 1°x 1° lat/lon. Model runs were performed based on the standardized Moore Foundation Andes-Amazon 

Initiative (AAI) modelling protocol (Zhang et al., 2015). The same set of models and output variables was analysed in 

Johnson et al. (2016). 25 

2.2.3 Comparing inventory and simulation results 

In our application, data set X corresponds to the inventory measurements at point scale (Fig. 1a). For this dataset, we have to 

derive the within-pixel variability (Fig. 1b). Data set Y corresponds to the simulated pixel values (Fig. 1c). Hence, the pixel 

scale is defined by the resolution of the model simulation (1°x1°, approximately 12,200 km², Fig. 1c). We calculate the three 

metrics (sect. 1.3) from the observed and simulated ecosystem variables AGB, WP and τ. 30 
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3 Results 

3.1 Comparison of aboveground biomass (AGB) 

The visual comparison indicates that the spatial pattern of AGB from the plots (Fig. 2a and Fig. S1) differs from the spatial 

patterns of AGB simulated by either DGVM (Fig. 2c-f). In addition, the DGVM patterns are vastly different among each 

other. 5 

Mean �̅� and global variability 𝜎௫ of AGB for all plot observations across the Amazon region (Fig. 3a) range from 134-153 

and 36-50 MgC ha-1, respectively (Tab. S2), depending on the allometric equation applied. Within-pixel variability 𝜎ఌ, as 

calculated from Eq. S1, ranges between 28 and 36 MgC ha-1. The corrected variability of observed AGB at pixel-scale 

(𝜎௫,) is thus substantially lower than the global variability and ranges between 22-39 MgC ha-1 (Fig. 4a, Tab. S2). Based 

on these estimates we calculate the maximum achievable coefficients 𝑟௫ for a comparison between pixel averages and 10 

point estimates of 0.61 to 0.78 for different allometric models (Fig. 5).  

The models simulate a continuous cover of biomass across the Amazon region at a spatial resolution of 1°x1° pixel size. For 

our comparison, we only use the simulated pixel values of AGB at each plot location. Thus, the estimated statistical 

properties are not representative for the entire Amazon region but only for a relatively small subset of pixels (i.e. 98 pixels as 

in Fig. 2a/b). For simulated AGB from the four DGVMs, we estimate a mean 𝑦ത of 114 MgC ha-1 for INLAND, 151 MgC ha-15 

1 for JULES, 217 MgC ha-1 for ORCHIDEE and 170 MgC ha-1 for LPJmL (Fig. 3a, Tab. S3). Depending on the allometric 

equation applied to calculate observed biomass (Tab. S1), INLAND underestimates mean AGB by 15-25%. LPJmL and 

ORCHIDEE overestimate AGB by 11-26 and 42-62%, respectively. JULES deviates only by 1% from AGB derived from 

the 2-parameter allometric equations (kdr2p, kd2p), but overestimates AGB derived from all 3-parameter allometric 

equations by 12% (Tab. S3). 20 

Mean global variability of simulated AGB, 𝜎௬, ranges between 13 MgC ha-1 for JULES and 62 MgC ha-1 for ORCHIDEE 

(Fig. 4a and Tab. S3). Without correcting for small-scale variability 𝜎ఌ in the point-to-pixel comparison, we would conclude 

that the pattern amplitude simulated by ORCHIDEE and LPJmL agree quite well with observed patterns (Fig. 4b). However, 

when accounting for the lower corrected variability (𝜎௫,), because the error of observation-based estimates at pixel-level 

is smaller, it becomes easier to falsify models with uncertain data. We find that LPJmL and ORCHIDEE both overestimate 25 

the observed spatial amplitude by 43% and 62%, respectively (Fig. 4c and see Tab. S3 for other allometric models). For 

INLAND and JULES, on the other hand, we find a corresponding underestimation of pattern amplitude by 14 and 65%, 

respectively. We also note that confidence intervals for 𝜎௬ 𝜎௫,⁄  are large in particular for ORCHIDEE and LPJmL (Fig. 

4c).  

Correlation coefficients indicating the similarity of simulated and observed patterns of AGB range from 0.25 - 0.53 30 

(corrected) across all models (Tab. S3). The highest similarity of pattern (i.e. best correlation values 𝑟) is found for 

ORCHIDEE, lowest similarity of pattern for LPJmL. Across the three models INLAND, JULES and LPJmL, generally, 
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higher similarity of pattern is found for the allometric models that include regional height models and mean or species 

specific wood density (Kdhr, Kdh; Fig. 5). 

3.2 Comparison of woody productivity (WP) 

Mean �̅� and variability at pixel-scale 𝜎௫, of observed WP are 2.57 and 0.38 Mg C ha-1 yr-1, respectively. There seems to 

be a weak spatial pattern in the plot estimates at pixel level (Fig. 6a), which is not reflected by the models (Fig. 6c-f). The 5 

DGVMs display a distinct pattern of WP across the region that strongly differs among the four models (Fig. 6c-f).  

Mean WP simulated by the DGVMs (𝑦ത) is between 4-5 Mg C ha-1 yr-1 for LPJmL and JULES, and 8-9 Mg C ha-1 yr-1 for 

INLAND and ORCHIDEE, respectively (Tab. S4). All DGVMs strongly overestimate mean WP (Tab. 1A). In addition, 

most models overestimate the pattern amplitude, and the simulated variability ranges between 0.72 and 1.6 Mg C ha-1 yr-1 

(Tab. S4). Pattern similarity of observed and simulated data is low ranging from 0.03 to 0.50 (Tab.1A), even with a relatively 10 

low maximum achievable correlation of 0.65 (Tab. 1A). 

3.3 Comparison of residence time of woody biomass (τ) 

Mean �̅� and variability at pixel-scale 𝜎௫, of observed τ are 74 and 28 years, respectively. Again the visual comparison 

shows that the simulations do not match the observations (Fig. 7a vs. Fig. 7c-f). The simulated mean 𝑦ത of τ ranges between 

15 (INLAND) to 35 (LPJmL) years with a variability of 3 (INLAND) to 8 (LPJmL) years. This is displayed in our 15 

comparison metrics: Mean bias results in very low values (i.e. strong underestimation of 53 to 80%; Tab. 1B) and pattern 

amplitude is strongly underestimated by 65 to 87% (Tab. 1B). The similarity of pattern is very low for all models (Tab. 1B). 

4 Discussion 

We here present a novel approach for a pixel-to-point comparison. We account for the reduced observed variability when 

going from point to pixel scale by evaluating three indicators, i.e. the mean bias, the pattern amplitude and the similarity of 20 

spatial pattern (section 1.3). We use an example from the Amazon region by comparing model output from four DGVMs and 

forest inventory data. In the following, we discuss our findings of substantial discrepancies between simulated and observed 

patterns of AGB, WP and τ across the Amazon region. 

4.1 How well do model simulations represent observed biomass patterns across the Amazon? 

Interpolated biomass maps from plot observations (e.g. Johnson et al., 2016;Malhi et al., 2006) should be treated with 25 

caution since plot observations may not be representative at the landscape-scale (Chave et al., 2004). As a result, a direct and 

meaningful comparison of observed and simulated maps is currently not feasible but reliable biomass estimates are necessary 

for implementation of protection incentives and future projections of biomass development. Our results demonstrate that 

most models are in good agreement and deviate from mean observational biomass by less than 20% (i.e. low mean bias c.f. 
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Fig. 3) and their variability at landscape-scale deviates by about 40% (i.e. pattern amplitude, c.f. Fig. 4). Such relatively 

good agreement was also found in simulation runs from Delbart et al. (2010) and Johnson et al. (2016). Our results even 

yield relatively high similarity in observed and simulated spatial patterns of AGB at pixel scale (except LPJmL; c.f. Fig. 5), 

given the fact that the maximum achievable correlation in the data itself is only 0.6-0.8 (Fig. 5). However, while our 

approach shows that some models could provide robust estimates for standing biomass stocks across the Amazon region (c.f. 5 

Fig. 2) it highlights that currently DGVMs do not represent productivity and related turnover correctly (i.e. the relation 

between productivity and residence time of woody biomass). As a result, the models might simulate the correct patterns for 

the wrong reasons as far as it can be derived from observational data. Ground observations suggest that forest structure, 

forest dynamics and species composition vary across the Amazon region, such that variations in geology and soil 

fertility/mechanical properties coincide with region-wide variations in aboveground biomass, growth and stem mortality 10 

rates (Johnson et al., 2016;Quesada et al., 2012). In addition, disturbances with different sizes and frequency may be an 

important additional driver for such variations (Espírito-Santo et al., 2014;Rödig et al., 2017). It is necessary to consider 

such processes in DGVMs. 

4.2 How to evaluate differences between observed and simulated patterns of biomass (based on the presented 
metrics), in particular when considering different allometric models? 15 

As discussed by several authors (e.g. Baker et al., 2004;Chave et al., 2006;Chave et al., 2014;Réjou-Méchain et al., 2017), 

the methodology used to convert plot measurements to actual biomass may lead to differential biomass estimates depending 

on the respective assumptions of the allometric equations employed (i.e. using species-level or mean wood density, and 

regional or continental height models, see SI Tab. S1). As a result, we here find a more or less pronounced pattern of 

biomass variability across the Amazon region based on respective assumption used (c.f. Fig. 2). While mean global 20 

variability of biomass is highest for the allometric equations including species-level wood density (c.f. Figure S1, Table S2), 

highest within-pixel variability is found for biomass values estimated from two-parameter allometric equations (Tab. S2) 

excluding tree height (c.f. Table S1). This result is also reflected by the lower maximum achievable correlation coefficient 

(rmax), describing how observational data at point scale correlates with observational data at pixel scale, which is particularly 

low for the two-parameter allometric equations (Fig. 5). Albeit the fact that three out of four DGVMs achieve a relatively 25 

good agreement between simulated and observed patterns at the pixel scale we find substantial uncertainty in the 

observational data due to spatial heterogeneity of local vegetation characteristics such as the structural and functional tree 

species composition that affects biomass estimates across the Amazon (see also Rödig et al. 2017). The uncertainty resulting 

from conversion of raw inventory measurements into biomass from measured allometries is generally neglected in model-

data comparisons. However, it strongly affects our pixel-to-point comparison metrics, thereby remaining an important 30 

bottleneck for good model-data biomass comparisons (see also Réjou-Méchain et al., 2017). A solution could be to compare 

modelled allometry with observational data. 
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4.3 What can we learn from including spatial heterogeneity and underlying drivers of biomass? 

The four DGVMs applied in this study generally capture the observed pattern of AGB but strongly overestimate observed 

WP and underestimate τ, and, from a pixel perspective, do not show strong variability across the Amazon region, thereby not 

capturing observed gradients (c.f. Fig. 6 and Tab. 1). WP and τ are driving AGB and are calculated by different schemes in 

the four DGVMs, e.g., regarding carbon allocation and drivers for mortality. Recent studies highlight that variation in stem 5 

mortality rates determines spatial variation in AGB and therefore conclude that mortality should be modeled on the basis of 

individual stems, due to the fact that stem-size distributions and stand density are important for predicting variation in 

aboveground biomass (Johnson et al., 2016;Rödig et al., 2017;Pillet et al., 2018). However, the mechanisms leading to stem 

mortality need to be implemented in models based on experimental data that are only recently becoming available (Meir et 

al., 2015;Rowland et al., 2015). Overall, the DGVMs are able to reproduce the observed spatial pattern of AGB across the 10 

Amazon region, whereas for WP the model performance is less good and reproduction of the spatial pattern in mortality is 

generally very poor (Fig. 2, 6, 7). This suggests that models need to account for processes such as WP and mortality more 

mechanistically by including factors associated with resource limitation and disturbances regimes (see also Johnson et al. 

2016). Recent efforts aiming at improving simulated Amazon forest biomass and productivity by including spatial variation 

in biophysical parameters (such as τ and Vcmax) have found that using single values for key parameters limits simulation 15 

accuracy (Castanho et al., 2013). Thus, we conclude that a more mechanistic representation of the processes driving the 

spatial variability of carbon stocks and fluxes, forest structure and tree demographic dynamics is necessary to improve 

simulation accuracy (Rödig et al., 2018). 

5 Future applications of the methodological approach and outlook 

In general, we assume that the basic concept of our method is applicable to any comparison between two datasets that are 20 

characterized by differences in spatial scale. If the process that causes small-scale variability can be approximated as white 

noise, corrected statistics can be computed. Notwithstanding future developments of next generation DGVMs, the most 

relevant step of the presented approach is to account for the within-pixel variability 𝜎ఌfrom the point data to allow for a 

comparison of observational and simulated data. Due to relatively sparse plot data availability, we assume here that 𝜎ఌ is 

stationary across the Amazon region. To evaluate this assumption further, we have calculated a regional within-pixel 25 

variability 𝜎ఌ (Fig. S2) and find that it is in the range of the Amazon-wide 𝜎ఌof 28 to 36 Mg C ha-1 (depending on the 

allometric equation used, see Tab. S2). Field studies show that forest dynamics vary locally, mostly due to variations in 

natural disturbance regimes, mortality and edaphic properties (e.g. Baker et al., 2004;Chambers et al., 2013;Chave et al., 

2006;Malhi et al., 2006;John et al., 2007), which in turn strongly influences our calculated within-pixel variability and thus, 

the metrics of the pixel-to-point comparison. Recent regional studies, that combine observational plot data and remote-30 

sensing products from applications such as LIDAR (regions of Peru: Marvin et al. (2014), French Guyana: Fayad et al. 

(2016), Congo: Xu et al. (2017)), have already proven to detect spatial variability at high spatial resolution, which could be 
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used to calculate a pixel-wise within-pixel variability. Upcoming remote sensing missions as the Global Ecosystem 

Dynamics Investigation Lidar (GEDI), the ESA BIOMASS mission, the NASA-ISRO Synthetic Aperture Radar (NISAR) 

mission, or the proposed Tandem-L mission (Moreira et al., 2015) will have the potential to provide non-stationary values of 

within-pixel variability for all regions of the Amazon. Thus, it is desirable to include regionally or locally specific estimates 

of 𝜎ఌ
ଶ in our analyses, which could be derived e.g. from above mentioned remote sensing data or from individual tree-based 5 

high-resolution simulations (e.g. Rödig et al., 2017). In any case, we conclude that upcoming model-data comparison studies 

should at least account for stationary within-pixel variability when comparing simulated spatial data to data from discrete 

observational networks. 

6 Code and data availability 

All models are described in more detail in the supplementary material. Model code is partly available from the respective 10 

modelling groups. Model output from the AMAZALERT project can be made available upon request. The permanent 

archive of the observational data from Mitchard et al. (2014) can be accessed at 

http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1, see also Lopez-Gonzales et al. (2014). The inventory data from 

Brienen et al. (2015) are available at http://dx.doi.org/10.5521/ForestPlots.net/2014_4, see also Brienen et al. (2014).  
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Figures 

 

Figure 1: Schematic overview of the three steps in the pixel-to-point comparison. Note that we refer to “landscape” as the region of 
interest for which point and pixel data are available. A block bootstrapping with 10000 repetitions is performed to derive 
confidence intervals of the comparison metrics. The detailed set of equations to calculate maximum similarity, PA and SP can be 5 
found in the SI. 
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Figure 2. Estimates of aboveground biomass (AGB) from forest plots in 1° x 1° pixels. (a) Mean AGB per pixel derived from 
inventory data based on one allometric equation (Kdhr, see SI for explanation and other allometric equations). (b) Number of 
plots per pixel and (c-f) simulated AGB from four DGVMs.  

 5 

Figure 3. Distribution of aboveground biomass (AGB in MgC/ha) from the four DGVMs and from the observational plots (see also 
Table S2 and S3). The figure shows (a) the mean value (white dot) and distribution from bootstrapping of absolute AGB values 
from the four simulations and observed (grey violins). b) Mean bias as the ratio of mean simulated and mean observed AGB (𝒚ഥ/𝒙ഥ). 
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Figure 4: (a) Standard deviations of AGB (in MgC/ha) for the four models and observational data based on one allometric 
equation (see also Table S2, S3). For the observational data, the global variability at point scale (“observed”) and the corrected 
variability at pixel scale (“corrected”) is given; (b) ratio of standard deviations without correcting for within-pixel variability, (c) 
corrected metrics of pattern amplitude (𝝈𝒚/𝝈𝒙,𝒄𝒐𝒓𝒓). 5 

 

 

Figure 5: The similarity of the observed vs. simulated spatial pattern of AGB at pixel scale (as indicated by r  given in bars).  The 
similarity is calculated for different versions of observed AGB derived from six allometric models (indicated by the colors, see Tab. 
S1). The dashed line shows the maximum achievable correlation coefficients rmax  from the observational data and for the different 10 
allometric models. 
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Figure 6. Estimates of aboveground woody productivity (WP) from forest plots in 1° x 1° pixels. (a) Mean WP from inventory 
plots. (b) Number of plots per pixel and (c-f) simulated WP from four DGVMs. 
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Figure 7. Estimates of woody biomass residence time (τ) from forest plots in 1° x 1° pixels. (b) Mean residence time from inventory 
plots. (b) Number of plots per pixel and (c-f) simulated τ from four DGVMs.  
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Tables 

Table 1. Results of the point-to-pixel comparison for (A) woody productivity (WP) and (B) residence time of woody biomass (τ). In 
brackets, the 5% and 95% confidence intervals are given. Blue boxes indicate when models overestimate observed values, red 
boxes indicate underestimation. 5 

A) Woody 

productivity (WP) 

Mean 𝒙ഥ   

(Mg/ha/yr) 

Corrected global variability 

𝝈𝒙,𝒄𝒐𝒓𝒓 (Mg/ha/yr) 

Max. achievable 

correlation 𝒓𝒎𝒂𝒙 

Observed 2.57 0.38 0.67 

 Mean bias (𝒚ഥ 𝒙ഥ⁄ ) 
Pattern amplitude 

(𝝈𝒚 𝝈𝒙,𝒄𝒐𝒓𝒓⁄ ) 
Similarity of pattern 

(rcorr) 

INLAND 3.11 (2.91 – 3.31) 2.91 (1.75 – 4.83) 0.36 (0.11 – 0.35) 

JULES 2.01 (1.88 – 2.14) 1.91 (1.08 – 3.25) 0.38 (0.07 – 0.37) 

ORCHIDEE 3.55 (3.21 – 3.96) 4.26 (2.64 – 6.96) 0.03 (-0.25 – 0.01) 

LPJmL 1.74 (1.63 – 1.83) 1.99 (1.36 – 3.16) 0.50 (0.27 – 0.50) 

B) Residence 

time (τ) 

𝒙ഥ 

(years) 

𝝈𝒙,𝒄𝒐𝒓𝒓 

(years) 
𝒓𝒎𝒂𝒙 

Observed 73.84 28.04 0.64 

 Mean bias (𝒚ഥ 𝒙ഥ⁄ ) 
Pattern amplitude 

(𝝈𝒚 𝝈𝒙,𝒄𝒐𝒓𝒓⁄ ) 
Similarity of pattern 

(rcorr) 

INLAND 0.20 (0.17 – 0.24) 0.13 (0.06 – 0.25) 0.01 (-0.30 – 0.02) 

JULES 0.42 (0.35 – 0.51) 0.24 (0.07 – 0.46) -0.23 (-0.68 – -0.22) 

ORCHIDEE 0.35 (0.29 – 0.42) 0.24 (0.12 – 0.45) 0.08 (-0.22 – 0.08) 

LPJmL 0.47 (0.38 – 0.59) 0.35 (0.19 – 0.61) -0.18 (-0.46 – -0.18) 
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