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Abstract. Comparing model output and observed data is an important step for assessing model performance and quality of 

simulation results. However, such comparisons are often hampered by differences in spatial scales between local point 

observations and large-scale simulations of grid-cells or pixels. In this study, we propose a generic approach for a pixel-to-

point comparison and provide statistical measures accounting for the uncertainty resulting from landscape variability and 

measurement errors in ecosystem variables. The basic concept of our approach is to determine the statistical properties of 30 

small-scale (within-pixel) variability and observational errors, and to use this information to correct for their effect when large-

scale area averages (pixel) are compared to small-scale point estimates.  We demonstrate our approach by comparing simulated 

values of aboveground biomass, woody productivity (woody net primary productivity, NPP) and residence time of woody 

biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the 

Amazon rainforest, a region with the typical problem of low data availability, potential scale mismatch and thus, high model 35 

uncertainty. We find that the DGVMs under- and overestimate aboveground biomass by 25% and up to 60%, respectively. 
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Our comparison metrics provide a quantitative measure for model-data agreement and show moderate to good agreement with 

the region-wide spatial biomass pattern detected by plot observations. However, all four DGVMs overestimate woody 

productivity and underestimate residence time of woody biomass even when accounting for the large uncertainty range of the 

observational data. This is because DGVMs do not represent the relation between productivity and residence time of woody 

biomass correctly. Thus, the DGVMs may simulate the correct large-scale patterns of biomass but for the wrong reasons. We 5 

conclude that more information about the underlying processes driving biomass distribution are necessary to improve DGVMs. 

Our approach provides robust statistical measures for any pixel-to-point comparison, which is applicable for evaluation of 

models and remote sensing products. 

1 Introduction 

The rate of environmental change in tropical South America and in particular in the Amazon region has been unprecedented 10 

in the last decades (e.g. Lewis et al. 2011; Davidson et al. 2012). Estimates of the amount of carbon stored in tropical rainforest 

biomass differ strongly (Avitabile et al., 2016;Baccini et al., 2012;Saatchi et al., 2011;Mitchard et al., 2014). In addition, 

estimated carbon release to the atmosphere from land-use change is uncertain (e.g. Houghton et al., 2012;Baccini et al., 

2017;Song et al., 2015;Harris et al., 2012). Nonetheless, a successful implementation of protection incentives, e.g. for reducing 

emissions from deforestation and degradation (REDD+), requires both accurate estimates of existing regional carbon stocks 15 

as well as improved projections of future scenarios (e.g. Langner et al., 2014). 

Dynamic global vegetation models (DGVMs) are important tools to estimate impacts of climate and land-use change on the 

carbon cycle (e.g. Cramer et al. 2004; Sitch et al. 2008). To correctly capture carbon dynamics in tropical forests, DGVMs 

need to improve the simulation approach of drought-related mortality and other types of tree mortality that control stand density 

(Pillet et al. 2018), they need to include more detailed gap dynamics influencing stand dynamics (Espírito-Santo et al., 20 

2014;Rödig et al., 2017), and they need to incorporate how nutrient availability limits woody productivity (Quesada et al. 

2012; Johnson et al. 2016). At the same time, model evaluation based on available data is necessary for which the primary 

source are ground-based observations of AGB obtained from forest census data (Lopez-Gonzalez et al. 2011; Brienen et al. 

2014; Lopez-Gonzalez et al. 2014; Mitchard et al. 2014; Brienen et al. 2015; Johnson et al. 2016). When conducting data-

model comparisons at the plot scale, the spatial resolution of both get into focus. The size of forest plots is typically in the 25 

order of 1 ha or less, whereas average DGVM grid-cell resolution is determined by the available gridded climate data set, 

which is usually about several thousand square kilometers (>100,000 ha). Plot observations are affected by observational 

errors, uneven spatial distribution (Saatchi et al. 2015) and spatial variability due to natural gap dynamics (Chambers et al. 

2013), and thus are likely to exhibit substantial deviation from average large-scale properties. The problem of comparing point 

data with model results obtained at grid-cell (pixel) size occurs in many applications of remote sensing and ecological 30 

modelling. 
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So far, we lack a reliable and objective method to compare simulation results from DGVMs at grid-cell scale (pixel) and plot 

(point) observations. Several studies, that evaluated patterns of interpolated maps from plot data and model simulations, 

concluded that the observed and simulated spatial patterns do not match (e.g. Johnson et al. 2016). Here, we complement these 

findings by providing quantitative statistical measures for such comparisons and present an approach for performing pixel-to-

point comparisons while accounting for different statistical properties of point and pixel values and its uncertainties. The basic 5 

concept of the approach is to determine statistical properties from small-scale variability and observational errors in ecosystem 

variables, in order to account for these effects when comparing large-scale area averages (pixels) and small-scale plot estimates 

(points). 

We apply our approach by comparing point estimates of ecosystem properties obtained from forest inventories (Mitchard et 

al. 2014; Brienen et al. 2015) to corresponding simulated pixel values from four state-of-the-art DGVMs. Similar to Johnson 10 

et al. (2016), we focus on three ecosystem properties that are well defined and represented in both, DGVMs and forest 

inventories: (i) aboveground biomass (AGB, in Mg C ha-1); (ii) aboveground woody productivity (WP, in Mg C ha-1 yr-1); and 

(iii) residence time of woody biomass (τ in years). 

We evaluate the accuracy of the spatial pattern of these three ecosystem properties and provide statistical measures for the 

quality of model simulations in comparison to observations, thereby accounting for small-scale landscape variability and 15 

associated measurement errors. We demonstrate the strength of our approach by highlighting its applicability for model 

evaluation and model benchmarking. 

In particular, we address three research questions: 

1) How well do models represent variations in aboveground biomass across the Amazon region? We expand the pure 

(visual) qualitative comparison by deriving three statistical metrics for a quantitative comparison. 20 

2) How can we evaluate differences between observed and simulated spatial biomass patterns (based on the presented 

metrics), in particular when considering different allometric equations? We discuss the effects of inadequate data and 

associated model uncertainty. 

3) What can we learn from the spatial heterogeneity and underlying drivers of spatial biomass patterns? We analyze 

simulated and observed patterns of WP and τ. 25 

2 Methods 

Landscape variability depends on the extent and heterogeneity of the study area (Turner et al., 2001). Point measurements 

within a pixel of larger spatial scale, for example, may reveal small-scale spatial variabilities within the pixel. We derive a 

“within-pixel variability” that so far has not been accounted for in earlier approaches. We present three steps to calculate three 

metrics that provide a measure on the best achievable correlation between point and pixel values (see Fig. 1). 30 
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2.1 A generic method for point-to-pixel comparisons 

2.1.1 Calculate the “global variability” across the region of interest 

Assume, we have a dataset X with a number N of point observations xi  at location i (e.g. plot observations from inventory 

data). In the first step, we calculate the mean 𝑥̅𝑥 and variance 𝜎𝜎𝑥𝑥2 across all plots in a region (e.g. across the Amazon region). 

The variance 𝜎𝜎𝑥𝑥2 denotes the global variability (i.e. the variability across the whole Amazon region) at point scale (Fig. 1a). 5 

2.1.2 Calculate within-pixel variability 

In the second step, we identify within-pixel variability from point measurements. With coarser pixel resolution, the spatial 

variability (here: global variability) is reduced. In order to compare pixel values against point values, global variability at point 

scale needs to be reduced by the within-pixel variability (variability component 𝜀𝜀𝑖𝑖; Fig. 1b).  

The variability component 𝜀𝜀𝑖𝑖 is assumed to be normally distributed with zero mean and variance 𝜎𝜎𝜀𝜀2: 10 

𝜀𝜀𝑖𝑖 ~ 𝒩𝒩(0,𝜎𝜎𝜀𝜀2)            (1) 

Based on the variability component 𝜀𝜀𝑖𝑖 , we estimate the within-pixel variance 𝜎𝜎𝜀𝜀2 from the point observations by analysing 

their covariance, which is equivalent to the nugget effect (i.e. the sum of variance caused by small-scale variability and 

observation error) in a semivariogram (see SI Methods). Due to the limited amount of inventory data, we assume here, that 𝜎𝜎𝜀𝜀2 

is stationary across the region of interest (for details on that assumption see discussion and SI Results). 15 

The global variance at point scale 𝜎𝜎𝑥𝑥2 now differs from the corrected global variance at pixel scale, 𝜎𝜎𝑥𝑥,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2 , as variances add 

quadratically, assuming that the (small scale) variability component 𝜀𝜀𝑖𝑖 has errors uncorrelated to the global distribution of x : 

𝜎𝜎𝑥𝑥,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2 = 𝜎𝜎𝑥𝑥2 − 𝜎𝜎𝜀𝜀2           (2) 

2.1.3 Metrics for the comparison of two datasets with different spatial resolutions 

In a third step, we compare the point data xi with simulated data yi at pixel scale. Similar to the above procedure, we calculate 20 

the mean 𝑦𝑦� and variance 𝜎𝜎𝑦𝑦2 for the simulated pixels that contain point observations (hereby we assign each point observation 

the pixel value in which the point is located). We then compare the simulation results by applying three metrics:  

1) Mean bias (MB): the ratio of means y� x�⁄  across the whole region as a measure of the mean bias in the patterns which 

is not affected by small scale variability;  

2) Pattern amplitude (PA): the ratio of standard deviations σy σx,corr⁄  using the corrected global variability (i.e. removed 25 

within-pixel variability) and serves as a measure of differences in pattern amplitude or in the variability of the 

simulated and observed data;  

3) Similarity of pattern (SP): We use 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  as a measure of the similarity of the ‘shape’ of spatial patterns, i.e. the spatial 

correlation of simulated and observed data (see SI).  Accordingly, we can calculate the maximum achievable 
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correlation coefficient 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, which is derived from correlating the observational data set at point scale to the same 

observational data set at pixel scale (see Fig. 1a, b and SI). 

The limited number of point observations and their non-random spatial distribution in the Amazon region affects the accuracy 

of the comparison. We therefore estimate confidence intervals for the comparison metrics MB, PA and SP, respectively, by 

applying a bootstrapping technique (10,000 repetitions). Because the estimation of 𝜎𝜎𝜀𝜀2 is based on the analysis of the spatial 5 

correlation structure of the data, a block-bootstrapping is performed (Politis and Romano, 1994). For each permutation, the 

domain of observations is randomly divided into 100 tiles (random orientation and offset, ca. pixel size) from which a random 

recombination is drawn with replacement. This technique assures that the spatial correlation structure of the data remains 

intact. 

2.2 Application of the pixel-to-point comparison to simulated and observed data from the Amazon region 10 

2.2.1 Observed data at point scale: Description of site-level data 

The observed data at point scale are forest census-based plot measurements across the Amazon region, in which all plots that 

were subject to anthropogenic disturbances, including selective logging were excluded (Brienen et al. 2015). The average plot 

size is ~1.2 ha (Brienen et al. 2015) so that the plots incorporate most size classes of natural gaps, particularly as the plot data 

were averaged across sites occurring within the same pixel. Across the plot network, the biases introduced into estimate of 15 

carbon balance by one hectare plots not sampling the very largest and rarest natural gaps are in fact very small (Espirito-Santo 

et al. 2014). We use datasets of AGB (Lopez-Gonzalez et al., 2011;Lopez-Gonzalez et al., 2014;Mitchard et al., 2014), WP 

and woody loss (WL; Brienen et al., 2014). WP and WL are derived “[…] from the sum of biomass growth of surviving trees 

and trees that recruited (that is, reached a diameter ≥ 100 mm), and mortality [=woody loss] from the biomass of trees that 

died between censuses” (Brienen et al. 2015). We convert AGB, WP and WL from dry biomass to carbon mass (see SI 20 

Methods). For the calculation of AGB, we use different allometric equations that account e.g. for regional differences in wood 

density or tree height (Table S1). We exemplify our comparison metrics based on AGB calculated from the three parameter 

moist tropical forest allometry from Chave et al. (2005), where tree height is estimated from DBH individually for each stem 

based on the region-specific Weibull models from Feldpausch et al. (2012). Wood density is estimated for each stem using the 

mean value for the species in the Global Wood Density Database (Chave et al., 2009;Zanne et al., 2009), or the mean for the 25 

genus using congeneric taxa from Mexico, Central America and tropical South America if no data were available for that 

species (Mitchard et al. 2014). We here evaluate the principal AGB dataset (KDHρ) from Mitchard et al. (2014) in more detail 

(the other allometric equations are presented in the supplement). 

2.2.2 Simulated data at pixel scale: Description of DGVM simulations 

We use outputs from four state-of-the-art DGVMs, namely the Lund-Potsdam-Jena DGVM for managed Land (LPJmL, 30 

Bondeau et al., 2007;Gerten et al., 2004;Sitch et al., 2003), the Joint U.K. Land Environment Simulator (JULES), v. 2.1. (Best 
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et al., 2011;Clark et al., 2011), the INtegrated model of LAND surface processes (INLAND) model (a development of the 

IBIS model, Kucharik et al., 2000) and the Organising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) model 

(Krinner et al., 2005). A short description of each of the applied models is provided in the Supplementary Information (SI 

Methods). The models were applied to the Amazon region covering the area of 88°W to 34°W and 13°N to 25°S at a spatial 

resolution of 1°x 1° lat/lon. The resolution of the DGVMs is defined by the resolution of the climate input data for which we 5 

here used bias-corrected NCEP meteorological data (Sheffield et al., 2006). Model runs were performed based on the 

standardized Moore Foundation Andes-Amazon Initiative (AAI) modelling protocol (Zhang et al., 2015). The same set of 

models and output variables was analysed in Johnson et al. (2016). 

2.2.3 Comparing inventory and simulation results 

In our application, data set X corresponds to the inventory measurements at point scale (Fig. 1a). For this dataset, we have to 10 

derive the within-pixel variability (Fig. 1b). Data set Y corresponds to the simulated pixel values (Fig. 1c). Hence, the pixel 

scale is defined by the resolution of the model simulation (1°x1°, approximately 12,200 km², Fig. 1c). We calculate the three 

metrics (sect. 2.1.3) from the observed and simulated ecosystem variables AGB, WP and τ. 

3 Results 

3.1 Comparison of aboveground biomass (AGB) 15 

The visual comparison indicates that the spatial pattern of AGB from the plots (Fig. 2a and Fig. S1) differs from the spatial 

patterns of AGB simulated by either DGVM (Fig. 2c-f). In addition, the DGVM patterns are vastly different among each other. 

Mean 𝑥̅𝑥 and global variability 𝜎𝜎𝑥𝑥 of AGB for all plot observations across the Amazon region (Fig. 3a) range from 134-153 and 

36-50 MgC ha-1, respectively (Tab. S2), depending on the allometric equation applied. Within-pixel variability 𝜎𝜎𝜀𝜀, as calculated 

from Eq. S1, ranges between 28 and 36 MgC ha-1. The corrected variability of observed AGB at pixel-scale (𝜎𝜎𝑥𝑥,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) is thus 20 

substantially lower than the global variability and ranges between 22-39 MgC ha-1 (Fig. 4a, Tab. S2). Based on these estimates 

we calculate the maximum achievable coefficients 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 for a comparison between pixel averages and point estimates of 0.61 

to 0.78 for different allometric equations (Fig. 5).  

The models simulate a continuous cover of biomass across the Amazon region at a spatial resolution of 1°x1° pixel size. For 

our comparison, we only use the simulated pixel values of AGB at each plot location. Thus, the estimated statistical properties 25 

are not representative for the entire Amazon region but only for a relatively small subset of pixels (i.e. 98 pixels as in Fig. 

2a/b). For simulated AGB from the four DGVMs, we estimate a mean 𝑦𝑦� of 114 MgC ha-1 for INLAND, 151 MgC ha-1 for 

JULES, 217 MgC ha-1 for ORCHIDEE and 170 MgC ha-1 for LPJmL (Fig. 3a, Tab. S3). Depending on the allometric equation 

applied to calculate observed biomass (Tab. S1), INLAND underestimates mean AGB by 15-25%. LPJmL and ORCHIDEE 

overestimate AGB by 11-26 and 42-62%, respectively. JULES deviates only by 1% from AGB derived from the 2-parameter 30 
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allometric equations (kdr2p, kd2p), but overestimates AGB derived from all 3-parameter allometric equations by 12% (Tab. 

S3). 

Mean global variability of simulated AGB, 𝜎𝜎𝑦𝑦, ranges between 13 MgC ha-1 for JULES and 62 MgC ha-1 for ORCHIDEE (Fig. 

4a and Tab. S3). Without correcting for small-scale variability 𝜎𝜎𝜀𝜀 in the point-to-pixel comparison, we would conclude that 

the pattern amplitude simulated by ORCHIDEE and LPJmL agree quite well with observed patterns (Fig. 4b). However, when 5 

accounting for the lower corrected variability (𝜎𝜎𝑥𝑥,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), because the error of observation-based estimates at pixel-level is 

smaller, it becomes easier to falsify models with uncertain data. We find that LPJmL and ORCHIDEE both overestimate the 

observed spatial amplitude by 43% and 62%, respectively (Fig. 4c and see Tab. S3 for other allometric equations). For 

INLAND and JULES, on the other hand, we find a corresponding underestimation of pattern amplitude by 14 and 65%, 

respectively. We also note that confidence intervals for 𝜎𝜎𝑦𝑦 𝜎𝜎𝑥𝑥,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⁄  are large in particular for ORCHIDEE and LPJmL (Fig. 10 

4c).  

Correlation coefficients indicating the similarity of simulated and observed patterns of AGB range from 0.25 - 0.53 (corrected) 

across all models (Tab. S3). The highest similarity of pattern (i.e. best correlation values 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) is found for ORCHIDEE, lowest 

similarity of pattern for LPJmL. Across the three models INLAND, JULES and LPJmL, generally, higher similarity of pattern 

is found for the allometric equations that include regional height models and mean or species specific wood density (KDHρ, 15 

KDH; Fig. 5). 

3.2 Comparison of woody productivity (WP) 

Mean 𝑥̅𝑥 and variability at pixel-scale 𝜎𝜎𝑥𝑥,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of observed WP are 2.57 and 0.38 Mg C ha-1 yr-1, respectively. There seems to be 

a weak spatial pattern in the plot estimates at pixel level (Fig. 6a), which is not reflected by the models (Fig. 6c-f). The DGVMs 

display a distinct pattern of WP across the region that strongly differs among the four models (Fig. 6c-f).  20 

Mean WP simulated by the DGVMs (𝑦𝑦�) is between 4-5 Mg C ha-1 yr-1 for LPJmL and JULES, and 8-9 Mg C ha-1 yr-1 for 

INLAND and ORCHIDEE, respectively (Tab. S4). All DGVMs strongly overestimate mean WP (Tab. 1A). In addition, most 

models overestimate the pattern amplitude, and the simulated variability ranges between 0.72 and 1.6 Mg C ha-1 yr-1 (Tab. S4). 

Pattern similarity of observed and simulated data is low ranging from 0.03 to 0.50 (Tab.1A), even with a relatively low 

maximum achievable correlation of 0.65 (Tab. 1A). 25 

3.3 Comparison of residence time of woody biomass (τ) 

Mean 𝑥̅𝑥 and variability at pixel-scale 𝜎𝜎𝑥𝑥,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of observed τ are 74 and 28 years, respectively. Again the visual comparison 

shows that the simulations do not match the observations (Fig. 7a vs. Fig. 7c-f). The simulated mean 𝑦𝑦� of τ ranges between 15 

(INLAND) to 35 (LPJmL) years with a variability of 3 (INLAND) to 8 (LPJmL) years. This is displayed in our comparison 

metrics: Mean bias results in very low values (i.e. strong underestimation of 53 to 80%; Tab. 1B) and pattern amplitude is 30 

strongly underestimated by 65 to 87% (Tab. 1B). The similarity of pattern is very low for all models (Tab. 1B). 
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4 Discussion 

We here present a novel approach for a pixel-to-point comparison. We account for the reduced observed variability when 

going from point to pixel scale by evaluating three indicators, i.e. the mean bias, the pattern amplitude and the similarity of 

spatial pattern (section 1.3). We use an example from the Amazon region by comparing model output from four DGVMs and 

forest inventory data. In the following, we discuss our findings of substantial discrepancies between simulated and observed 5 

patterns of AGB, WP and τ across the Amazon region. 

4.1 How well do model simulations represent observed biomass patterns across the Amazon? 

Interpolated biomass maps from plot observations (e.g. Johnson et al., 2016;Malhi et al., 2006) should be treated with caution 

since plot observations may not be representative at the landscape-scale (Chave et al., 2004). As a result, a direct and 

meaningful comparison of observed and simulated maps is currently not feasible but reliable biomass estimates are necessary 10 

for implementation of protection incentives and future projections of vegetation biomass. Our results demonstrate that most 

models are in good agreement and deviate from mean observational biomass by less than 20% (i.e. low mean bias c.f. Fig. 3) 

and their variability at landscape-scale deviates by about 40% (i.e. pattern amplitude, c.f. Fig. 4). Such relatively good 

agreement was also found in simulation runs from Delbart et al. (2010) and Johnson et al. (2016). Our results even yield 

relatively high similarity in observed and simulated spatial patterns of AGB at pixel scale (except LPJmL; c.f. Fig. 5), given 15 

the fact that the maximum achievable correlation in the data itself is only 0.6-0.8 (Fig. 5). This indicates that there is 

considerable uncertainty in the data, which needs to be considered in point-to-pixel comparisons and which we elaborate in 

the following paragraph. 

4.2 How to evaluate differences between observed and simulated patterns of biomass (based on the presented metrics), 
in particular when considering different allometric equations? 20 

As discussed by several authors (e.g. Baker et al., 2004;Chave et al., 2006;Chave et al., 2014;Réjou-Méchain et al., 2017), the 

methodology used to convert plot measurements to actual biomass may lead to differential biomass estimates depending on 

the respective assumptions of the allometric equations employed (i.e. using species-level or community mean wood density, 

and region-specific or basin-wide height models, see SI Tab. S1). As a result, we here find a more or less pronounced pattern 

of biomass variability across the Amazon region based on respective assumption used (c.f. Fig. 2, Fig. S1). While mean global 25 

variability of biomass is highest for the allometric equations including species-level wood density (c.f. Figure S1, Table S2), 

highest within-pixel variability is found for biomass values estimated from two-parameter allometric equations (Tab. S2) 

excluding tree height (c.f. Table S1). This result is also reflected by the lower maximum achievable correlation coefficient 

(rmax), describing how observational data at point scale correlates with observational data at pixel scale, which is particularly 

low for the two-parameter allometric equations (Fig. 5). Albeit the fact that three out of four DGVMs achieve a relatively good 30 

agreement between simulated and observed patterns at the pixel scale we find substantial uncertainty in the observational data 

due to spatial heterogeneity of local vegetation characteristics such as the structural and functional tree species composition 
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affecting biomass estimates across the Amazon (see also Rödig et al. 2017). The uncertainty resulting from conversion of raw 

inventory measurements into biomass from different allometric equations is generally neglected in model-data comparisons. 

However, it strongly affects our pixel-to-point comparison metrics, thereby remaining an important bottleneck for good model-

data biomass comparisons. We suggest to include AGB estimates with associated uncertainties, e.g. using Bayesian inference 

procedures (see Réjou-Méchain et al., 2017) or to directly compare modelled allometries and related parameters in DGVMs 5 

with observational data. 

4.3 What can we learn from including spatial heterogeneity and underlying drivers of biomass? 

While our approach shows that some models could provide robust estimates for standing biomass stocks across the Amazon 

region (c.f. Fig. 2) it highlights that currently DGVMs do not represent productivity and related turnover correctly (i.e. the 

relation between productivity and residence time of woody biomass). As a result, the models might simulate the correct patterns 10 

for the wrong reasons as far as it can be derived from observational data. The four DGVMs applied in this study generally 

capture the observed pattern of AGB but strongly overestimate observed WP and underestimate τ, and, from a pixel 

perspective, do not show strong variability across the Amazon region, thereby not capturing observed gradients (c.f. Fig. 6 and 

Tab. 1). WP and τ are driving AGB and are calculated by different schemes in the four DGVMs, e.g., regarding carbon 

allocation and drivers of mortality. Ground observations suggest that forest structure, forest dynamics and species composition 15 

vary across the Amazon region, such that variations in geology and soil fertility/mechanical properties coincide with region-

wide variations in aboveground biomass, growth and stem mortality rates (Johnson et al., 2016;Quesada et al., 2012). In 

accordance, recent studies highlight that variation in stem mortality rates determines spatial variation in AGB and conclude 

that mortality should be modeled on the basis of individual stems, since stem-size distributions and stand density are important 

for predicting variation in aboveground biomass (Johnson et al., 2016;Rödig et al., 2017;Pillet et al., 2018). Projected 20 

increasing disturbances with different sizes and frequency may be an important additional driver for further variations under 

future scenarios (Espírito-Santo et al., 2014;Rödig et al., 2017). Nonetheless, the mechanisms leading to stem mortality need 

to be implemented in models based on experimental data that are only recently becoming available (Meir et al., 2015;Rowland 

et al., 2015). Overall, the DGVMs are able to reproduce the observed spatial pattern of AGB across the Amazon region, 

whereas for WP the model performance is less good and reproduction of the spatial pattern in mortality is generally very poor 25 

(Fig. 2, 6, 7). This suggests that models need to account for processes such as WP and mortality more mechanistically by 

including factors associated with resource limitation and disturbances regimes (see also Johnson et al. 2016). Recent efforts 

aiming at improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical 

parameters (such as τ and Vcmax) have found that using single values for key parameters limits simulation accuracy (Castanho 

et al., 2013). Thus, we conclude that a more mechanistic representation of the processes driving the spatial variability of carbon 30 

stocks and fluxes, forest structure and tree demographic dynamics is necessary to improve simulation accuracy (Rödig et al., 

2018). 
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5 Future applications of the methodological approach and outlook 

In general, we assume that the basic concept of our method is applicable to any comparison between two datasets that are 

characterized by differences in spatial scale. If the process that causes small-scale variability can be approximated as white 

noise, corrected statistics can be computed. Notwithstanding future developments of next generation DGVMs, the most 

relevant step of the presented approach is to account for the within-pixel variability 𝜎𝜎𝜀𝜀from the point data to allow for a 5 

comparison of observational and simulated data. Due to relatively sparse plot data availability, we assume here that 𝜎𝜎𝜀𝜀 is 

stationary across the Amazon region. To evaluate this assumption further, we have calculated a regional within-pixel variability 

𝜎𝜎𝜀𝜀 (Fig. S2) and find that it is in the range of the Amazon-wide 𝜎𝜎𝜀𝜀of 28 to 36 Mg C ha-1 (depending on the allometric equation 

used, see Tab. S2). Field studies show that forest dynamics vary locally, mostly due to variations in natural disturbance regimes, 

mortality and edaphic properties (e.g. Baker et al., 2004;Chambers et al., 2013;Chave et al., 2006;Malhi et al., 2006;John et 10 

al., 2007), which in turn strongly influences our calculated within-pixel variability and thus, the metrics of the pixel-to-point 

comparison. Recent regional studies, that combine observational plot data and remote-sensing products from applications such 

as LIDAR (regions of Peru: Marvin et al. (2014), French Guyana: Fayad et al. (2016), Congo: Xu et al. (2017)), have already 

proven to detect spatial variability at high spatial resolution, which could be used to calculate a pixel-wise within-pixel 

variability based on our approach. Upcoming remote sensing missions as the Global Ecosystem Dynamics Investigation Lidar 15 

(GEDI), the ESA BIOMASS mission, the NASA-ISRO Synthetic Aperture Radar (NISAR) mission, or the proposed Tandem-

L mission (Moreira et al., 2015) will have the potential to provide non-stationary values of within-pixel variability for all 

regions of the Amazon. Thus, it is desirable to include regionally or locally specific estimates of 𝜎𝜎𝜀𝜀2 in our analyses, which 

could be derived e.g. from above mentioned remote sensing data or from individual tree-based high-resolution simulations 

(e.g. Rödig et al., 2017). In any case, we conclude that upcoming model-data comparison studies should at least account for 20 

stationary within-pixel variability when comparing simulated spatial data to data from discrete observational networks. 

6 Code and data availability 

All models are described in more detail in the supplementary material. The model code for LPJmL is available through PIK’s 

gitlab server at https://gitlab.pik-potsdam.de/lpjml/LPJmL and archived under https://doi.org/10.5880/pik.2018.002. The 

model code for ORCHIDEE is available under http://dx.doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5597. The 25 

model code for JULES is available from the JULES FCM repository: https://code.metoffice.gov.uk/trac/jules (registration 

required). The model code for INLAND is available from http://www.ccst.inpe.br/wp-content/uploads/inland/inland2.0.tar.gz. 

The permanent archive of the observational data from Mitchard et al. (2014) can be accessed at 

http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1, see also Lopez-Gonzales et al. (2014). The inventory data from 

Brienen et al. (2015) are available at http://dx.doi.org/10.5521/ForestPlots.net/2014_4, see also Brienen et al. (2014).  30 

https://gitlab.pik-potsdam.de/lpjml/LPJmL
https://doi.org/10.5880/pik.2018.002
http://dx.doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5597
http://www.ccst.inpe.br/wp-content/uploads/inland/inland2.0.tar.gz
http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1
http://dx.doi.org/10.5521/ForestPlots.net/2014_4


11 
 

7 Author contribution 

AR and JH conceived the ideas and designed methodology, and contributed equally to the paper; AR, JH, ER, PP and CZ 

analysed the data; FL, KT, MG, CR, BC, GS performed simulation runs; all authors contributed to writing the paper. 

8 Acknowledgements 

We acknowledge funding from the European Union’s Seventh Framework Programme AMAZALERT project (282664), the 5 

Helmholtz Alliance “Remote Sensing and Earth System Dynamics”, and the Belmont Forum/BMBF funded project CLIMAX. 

We acknowledge the efforts of the TEAM, RAINFOR and ATDM projects making the observational datasets available. 

9 References 

Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., 
Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., 10 
Malhi, Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Ferry, S. J. W., Sunderland, T., Laurin, G. V., 
Gatti, R. C., Valentini, R., Verbeeck, H., Wijaya, A., and Willcock, S.: An integrated pan-tropical biomass map using multiple reference 
datasets, Global Change Biology, 22, 1406-1420, doi:10.1111/gcb.13139, 2016. 
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., 
Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nature 15 
Climate Change, 2, 182-185, 10.1038/nclimate1354, 2012. 
Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., and Houghton, R. A.: Tropical forests are a net carbon source based 
on aboveground measurements of gain and loss, Science, 358, 230-234, 10.1126/science.aam5962, 2017. 
Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, 
W. F., Lewis, S. L., Monteagudo, A., Neill, D. A., Vargas, P. N., Pitman, N. C. A., Silva, J. N. M., and Martinez, R. V.: Increasing biomass 20 
in Amazonian forest plots, Phil. Trans. R. Soc. B, 359, 353-365, 2004. 
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, 
N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment 
Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677-699, 10.5194/gmd-4-677-2011, 2011. 
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and 25 
Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Global Change Biology, 13, 679-706, 
2007. 
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., 
Malhi, Y., Lewis, S. L., Vasquez Martinez, R., Alexiades, M., Alvarez Davila, E., Alvarez-Loayza, P., Andrade, A., Aragao, L. E. O. C., 
Araujo-Murakami, A., Arets, E. J. M. M., Arroyo, L., Aymard C, G. A., Banki, O. S., Baraloto, C., Barroso, J., Bonal, D., Boot, R. G. A., 30 
Camargo, J. L. C., Castilho, C. V., Chama, V., Chao, K. J., Chave, J., Comiskey, J. A., Cornejo Valverde, F., da Costa, L., de Oliveira, E. 
A., Di Fiore, A., Erwin, T. L., Fauset, S., Forsthofer, M., Galbraith, D. R., Grahame, E. S., Groot, N., Herault, B., Higuchi, N., Honorio 
Coronado, E. N., Keeling, H., Killeen, T. J., Laurance, W. F., Laurance, S., Licona, J., Magnussen, W. E., Marimon, B. S., Marimon-Junior, 
B. H., Mendoza, C., Neill, D. A., Nogueira, E. M., Nunez, P., Pallqui Camacho, N. C., Parada, A., Pardo-Molina, G., Peacock, J., Pena-
Claros, M., Pickavance, G. C., Pitman, N. C. A., Poorter, L., Prieto, A., Quesada, C. A., Ramirez, F., Ramirez-Angulo, H., Restrepo, Z., 35 
Roopsind, A., Rudas, A., Salomao, R. P., Schwarz, M., Silva, N., Silva-Espejo, J. E., Silveira, M., Stropp, J., Talbot, J., ter Steege, H., Teran-
Aguilar, J., Terborgh, J., Thomas-Caesar, R., Toledo, M., Torello-Raventos, M., Umetsu, R. K., van der Heijden, G. M. F., van der Hout, P., 
Guimaraes Vieira, I. C., Vieira, S. A., Vilanova, E., Vos, V. A., and Zagt, R. J.: Plot Data from: “Long-term decline of the Amazon carbon 
sink”, ForestPlots.NET, DOI: 10.5521/ForestPlots.net/2014_4, 2014. 
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., 40 
Malhi, Y., Lewis, S. L., Vasquez Martinez, R., Alexiades, M., Alvarez Davila, E., Alvarez-Loayza, P., Andrade, A., Aragao, L. E. O. C., 
Araujo-Murakami, A., Arets, E. J. M. M., Arroyo, L., Aymard C, G. A., Banki, O. S., Baraloto, C., Barroso, J., Bonal, D., Boot, R. G. A., 
Camargo, J. L. C., Castilho, C. V., Chama, V., Chao, K. J., Chave, J., Comiskey, J. A., Cornejo Valverde, F., da Costa, L., de Oliveira, E. 
A., Di Fiore, A., Erwin, T. L., Fauset, S., Forsthofer, M., Galbraith, D. R., Grahame, E. S., Groot, N., Herault, B., Higuchi, N., Honorio 



12 
 

Coronado, E. N., Keeling, H., Killeen, T. J., Laurance, W. F., Laurance, S., Licona, J., Magnussen, W. E., Marimon, B. S., Marimon-Junior, 
B. H., Mendoza, C., Neill, D. A., Nogueira, E. M., Nunez, P., Pallqui Camacho, N. C., Parada, A., Pardo-Molina, G., Peacock, J., Pena-
Claros, M., Pickavance, G. C., Pitman, N. C. A., Poorter, L., Prieto, A., Quesada, C. A., Ramirez, F., Ramirez-Angulo, H., Restrepo, Z., 
Roopsind, A., Rudas, A., Salomao, R. P., Schwarz, M., Silva, N., Silva-Espejo, J. E., Silveira, M., Stropp, J., Talbot, J., ter Steege, H., Teran-
Aguilar, J., Terborgh, J., Thomas-Caesar, R., Toledo, M., Torello-Raventos, M., Umetsu, R. K., van der Heijden, G. M. F., van der Hout, P., 5 
Guimaraes Vieira, I. C., Vieira, S. A., Vilanova, E., Vos, V. A., and Zagt, R. J.: Long-term decline of the Amazon carbon sink, Nature, 519, 
344-348, 10.1038/nature14283 
http://www.nature.com/nature/journal/v519/n7543/abs/nature14283.html#supplementary-information, 2015. 
Castanho, A. D. A., Coe, M. T., Costa, M. H., Malhi, Y., Galbraith, D., and Quesada, C. A.: Improving simulated Amazon forest biomass 
and productivity by including spatial variation in biophysical parameters, Biogeosciences, 10, 2255-2272, 10.5194/bg-10-2255-2013, 2013. 10 
Chambers, J. Q., Negron-Juarez, R. I., Magnabosco Marrac, D. M., Di Vittorioa, A., Tewse, J., Roberts, D., Ribeiro, G. H. P. M., Trumbore, 
S. E., and Higuchi, N.: The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape, 
Proceedings of the National Academy of Sciences, 110, 3949–3954, 2013. 
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., and Perez, R.: Error propagation and scaling for tropical forest biomass estimates, 
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359, 409-420, 10.1098/rstb.2003.1425, 2004. 15 
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., 
Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., and Yamakura, T.: Tree allometry and improved estimation of carbon stocks and balance in 
tropical forests, Oecologia, 145, 87–99, 2005. 
Chave, J., Muller-Landau, H. C., Baker, T. R., Easdale, T. A., Steege, H. t., and Webb, C. O.: REGIONAL AND PHYLOGENETIC 
VARIATION OF WOOD DENSITY ACROSS 2456 NEOTROPICAL TREE SPECIES, Ecological Applications, 16, 2356-2367, 20 
10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2, 2006. 
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne, A. E.: Towards a worldwide wood economics spectrum, Ecology 
Letters, 12, 351-366, 2009. 
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, 
R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, 25 
E. M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G., and Vieilledent, G.: Improved allometric models to 
estimate the aboveground biomass of tropical trees, Global Change Biology, 20, 3177-3190, 10.1111/gcb.12629, 2014. 
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, 
O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon 
fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701-722, 10.5194/gmd-4-701-2011, 2011. 30 
Delbart, N., Ciais, P., Chave, J., Viovy, N., Malhi, Y., and Le Toan, T.: Mortality as a key driver of the spatial distribution of aboveground 
biomass in Amazonian forest: results from a dynamics vegetation model. , Biogeosciences, 7, 3017-3039, 2010. 
Espírito-Santo, F. D. B., Gloor, M., Keller, M., Malhi, Y., Saatchi, S., Nelson, B., Junior, R. C. O., Pereira, C., Lloyd, J., Frolking, S., Palace, 
M., Shimabukuro, Y. E., Duarte, V., Mendoza, A. M., López-González, G., Baker, T. R., Feldpausch, T. R., Brienen, R. J. W., Asner, G. P., 
Boyd, D. S., and Phillips, O. L.: Size and frequency of natural forest disturbances and the Amazon forest carbon balance, Nature 35 
Communications, 5, 3434, 10.1038/ncomms4434 
https://www.nature.com/articles/ncomms4434#supplementary-information, 2014. 
Fayad, I., Baghdadi, N., Guitet, S., Bailly, J.-S., Hérault, B., Gond, V., El Hajj, M., and Tong Minh, D. H.: Aboveground biomass mapping 
in French Guiana by combining remote sensing, forest inventories and environmental data, International Journal of Applied Earth 
Observation and Geoinformation, 52, 502-514, https://doi.org/10.1016/j.jag.2016.07.015, 2016. 40 
Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo Mendoza, A., Lopez-Gonzalez, G., Banin, L., Abu 
Salim, K., Affum-Baffoe, K., Alexiades, M., Almeida, S., Amaral, I., Andrade, A., Aragão, L. E. O. C., Araujo Murakami, A., Arets, E. J. 
M. M., Arroyo, L., Aymard C, G. A., Baker, T. R., Bánki, O. S., Berry, N. J., Cardozo, N., Chave, J., Comiskey, J. A., Alvarez, E., de 
Oliveira, A., Di Fiore, A., Djagbletey, G., Domingues, T. F., Erwin, T. L., Fearnside, P. M., França, M. B., Freitas, M. A., Higuchi, N., C, 
E. H., Iida, Y., Jiménez, E., Kassim, A. R., Killeen, T. J., Laurance, W. F., Lovett, J. C., Malhi, Y., Marimon, B. S., Marimon-Junior, B. H., 45 
Lenza, E., Marshall, A. R., Mendoza, C., Metcalfe, D. J., Mitchard, E. T. A., Neill, D. A., Nelson, B. W., Nilus, R., Nogueira, E. M., Parada, 
A., Peh, K. S. H., Pena Cruz, A., Peñuela, M. C., Pitman, N. C. A., Prieto, A., Quesada, C. A., Ramírez, F., Ramírez-Angulo, H., Reitsma, 
J. M., Rudas, A., Saiz, G., Salomão, R. P., Schwarz, M., Silva, N., Silva-Espejo, J. E., Silveira, M., Sonké, B., Stropp, J., Taedoumg, H. E., 
Tan, S., ter Steege, H., Terborgh, J., Torello-Raventos, M., van der Heijden, G. M. F., Vásquez, R., Vilanova, E., Vos, V. A., White, L., 
Willcock, S., Woell, H., and Phillips, O. L.: Tree height integrated into pantropical forest biomass estimates, Biogeosciences, 9, 3381-3403, 50 
10.5194/bg-9-3381-2012, 2012. 
Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: Terrestrial vegetation and water balance - hydrological evaluation of a 
dynamic global vegetation model, Journal of Hydrology, 286, 249-270, 2004. 
Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas, W., Hansen, M. C., Potapov, P. V., and Lotsch, A.: Baseline Map 
of Carbon Emissions from Deforestation in Tropical Regions, Science, 336, 1573-1576, 10.1126/science.1217962, 2012. 55 

http://www.nature.com/nature/journal/v519/n7543/abs/nature14283.html#supplementary-information
https://www.nature.com/articles/ncomms4434#supplementary-information
https://doi.org/10.1016/j.jag.2016.07.015


13 
 

Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., De-Fries, R. S., Hansen, M. C., Le Quéré, C., and Ramankutty, N.: Carbon 
emissions from land use and land-cover change, Biogeosciences, 9, 5125–5142, 2012. 
John, R., Dalling, J. W., Harms, K. E., Yavitt, J. B., Stallard, R. F., Mirabello, M., Hubbell, S. P., Valencia, R., Navarrete, H., Vallejo, M., 
and Foster, R. B.: Soil nutrients influence spatial distributions of tropical tree species., Proceedings of the National Academy of Sciences, 
104, 864–869, 2007. 5 
Johnson, M. O., Galbraith, D., Gloor, M., De Deurwaerder, H., Guimberteau, M., Rammig, A., Thonicke, K., Verbeeck, H., Von Randow, 
C., and al., e.: Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic 
global vegetation models, Global Change Biology, 22, 3996-4013, doi: 10.1111/gcb.13315, 2016. 
Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic 
global vegetation model for studies of the coupled atmosphere biosphere system, Global Biogeochemical Cycles, 19, GB1015, 2005. 10 
Kucharik, C. J., Foley, J. A., Delire, C., Fisher, V. A., Coe, M. T., Lenters, J. D., Young-Molling, C., and Ramankutty, N.: Testing the 
performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure, Global Biogeochemical Cycles, 
14, 795-825, 2000. 
Langner, A., Achard, F., and Grassi, G.: Can recent pan-tropical biomass maps be used to derive alternative Tier 1 values for reporting 
REDD+ activities under UNFCCC?, Environmental Research Letters, 9, 124008, 2014. 15 
Lopez-Gonzalez, G., Lewis, S., Burkitt, M., and Phillips, O.: ForestPlots.net: a web application and research tool to manage and analyse 
tropical forest plot data, Journal of Vegetation Science, 22, 610-613, 2011. 
Lopez-Gonzalez, G., Mitchard, E., Feldpausch, T., Brienen, R., Monteagudo, A., Baker, T., Lewis, S., Lloyd, J., Quesada, C., Gloor, E., ter 
Steege, H., Meir, P., Alvarez, E., Araujo-Murakami, A., Aragao, L., Arroyo, L., Aymard, G., Banki, O., Bonal, D., Brown, S., Brown, F., 
Ceron, C., Chama Moscoso, V., Chave, J., Comiskey, J., Cornejo, F., Corrales Medina, M., Da Costa, L., Costa, F., Di Fiore, A., Domingues, 20 
T., Erwin, T., Fredericksen, T., Higuchi, N., Honorio Coronado, E., Killeen, T., Laurance, W., Levis, C., Magnusson, W., Marimon, B., 
Marimon-Junior, B., Mendoza Polo, I., Mishra, P., Nascimento, M., Neill, D., Nunez Vargas, M., Palacios, W., Parada-Gutierrez, A., Pardo 
Molina, G., Pena-Claros, M., Pitman, N., Peres, C., Poorter, L., Prieto, A., Ramirez-Angulo, H., Restrepo Correa, Z., Roopsind, A., Roucoux, 
K., Rudas, A., Salomao, R., Schietti, J., Silveira, M., De Souza, P., Steiniger, M., Stropp, J., Terborgh, J., Thomas, R., Toledo, M., Torres-
Lezama, A., Van Andel, T., van der Heijden, G., Vieira, I., Vieira, S., Vilanova-Torre, E., Vos, V., Wang, O., Zartman, C., de Oliveira, E., 25 
Morandi, P., Malhi, Y., and Phillips, O.: Amazon forest biomass measured in inventory plots. Plot Data from "Markedly divergent estimates 
of Amazon forest carbon density from ground plots and satellites." ForestPlots.net. , doi: 10.5521/FORESTPLOTS.NET/2014_1, 2014. 
Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, 
T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A., Neill, D. A., Nunez Vargas, P., Pitman, N. C. A., Quesada, C. A., 
Salamao, R., Silva, J. N. M., Torres-Lezama, A., Terborgh, J., Vasquez Martinez, R., and Vinceti, B.: The regional variation of aboveground 30 
live biomass in old-growth Amazonian forests, Global Change Biology, 12, 1107-1138, 2006. 
Marvin, D. C., Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., Sinca, F., and Tupayachi, R.: Amazonian landscapes and the bias 
in field studies of forest structure and biomass, Proceedings of the National Academy of Sciences, 111, E5224-E5232, 
10.1073/pnas.1412999111, 2014. 
Meir, P., Mencuccini, M., and Dewar, R. C.: Drought‐related tree mortality: addressing the gaps in understanding and prediction, New 35 
Phytologist, 207, 28-33, doi:10.1111/nph.13382, 2015. 
Mitchard, E. T. A., Feldpausch, T. R., Brienen, R. J. W., Lopez-Gonzalez, G., Monteagudo, A., Baker, T. R., Lewis, S. L., Lloyd, J., Quesada, 
C. A., Gloor, M., ter Steege, H., Meir, P., Alvarez, E., Araujo-Murakami, A., Aragao, L. E. O. C., Arroyo, L., Aymard, G., Banki, O., Bonal, 
D., Brown, S., Brown, F. I., Ceron, C. E., Chama Moscoso, V., Chave, J., Comiskey, J. A., Cornejo, F., Corrales Medina, M., Da Costa, L., 
Costa, F. R. C., Di Fiore, A., Domingues, T. F., Erwin, T. L., Frederickson, T., Higuchi, N., Honorio Coronado, E. N., Killeen, T. J., 40 
Laurance, W. F., Levis, C., Magnusson, W. E., Marimon, B. S., Marimon Junior, B. H., Mendoza Polo, I., Mishra, P., Nascimento, M. T., 
Neill, D., Nunez Vargas, M. P., Palacios, W. A., Parada, A., Pardo Molina, G., Pena-Claros, M., Pitman, N., Peres, C. A., Poorter, L., Prieto, 
A., Ramirez-Angulo, H., Restrepo Correa, Z., Roopsind, A., Roucoux, K. H., Rudas, A., Salomao, R. P., Schietti, J., Silveira, M., de Souza, 
P. F., Steininger, M. K., Stropp, J., Terborgh, J., Thomas, R., Toledo, M., Torres-Lezama, A., van Andel, T. R., van der Heijden, G. M. F., 
Vieira, I. C. G., Vieira, S., Vilanova-Torre, E., Vos, V. A., Wang, O., Zartman, C. E., Malhi, Y., and Phillips, O. L.: Markedly divergent 45 
estimates of Amazon forest carbon density from ground plots and satellites, Glob. Ecol. Biogeogr., 23, 935-946, 10.1111/geb.12168, 2014. 
Moreira, A., Krieger, G., Hajnsek, I., Papathanassiou, K., Younis, M., Lopez-Dekker, P., Huber, S., Villano, M., Pardini, M., Eineder, M., 
De Zan, F., and Parizzi, A.: Tandem-L: A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the 
Earth's Surface, IEEE Geoscience and Remote Sensing Magazine, 3, 8-23, 10.1109/MGRS.2015.2437353, 2015. 
Pillet, M., Joetzjer, E., Belmin, C., Chave, J., Ciais, P., Dourdain, A., Evans, M., Hérault, B., Luyssaert, S., Poulter, B., and Zhou, S.: 50 
Disentangling competitive vs. climatic drivers of tropical forest mortality, Journal of Ecology, 106, 1165-1179, doi:10.1111/1365-
2745.12876, 2018. 
Politis, D. N., and Romano, J. P.: The stationary bootstrap, J. Am. Stat. Assoc., 89, 1303–1313, 1994. 
Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patino, S., Fyllas, N. M., Hodnett, M. G., Herrera, R., Almeida, 
S., Alvarez Davila, E., Arneth, A., Arroyo, L., Chao, K. J., Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Honorio Coronado, E., Jimenez, 55 
E. M., Killeen, T., Lezama, A. T., Lloyd, G., Lopez-Gonzalez, G., Luizao, F. J., Malhi, Y., Monteagudo, A., Neill, D. A., Nunez Vargas, P., 



14 
 

Paiva, R., Peacock, J., Penuela, M. C., Pena Cruz, A., Pitman, N., Priante Filho, N., Prieto, A., Ramirez, H., Rudas, A., Salomao, R., Santos, 
A. J. B., Schmerler, J., Silva, N., Silveira, M., Vasquez, R., Vieira, I., Terborgh, J., and Lloyd, J.: Basin-wide variations in Amazon forest 
structure and function are mediated by both soils and climate, Biogeosciences, 9, 2203-2246, 10.5194/bg-9-2203-2012, 2012. 
Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., and Hérault, B.: biomass: an r package for estimating above-ground biomass and 
its uncertainty in tropical forests, Methods in Ecology and Evolution, 8, 1163-1167, 10.1111/2041-210X.12753, 2017. 5 
Rödig, E., Cuntz, M., Heinke, J., Rammig, A., and Huth, A.: Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: 
Linking remote sensing, forest modelling and field inventory,, Glob. Ecol. Biogeogr., 26, 1292–1302, 2017. 
Rödig, E., Cuntz, M., Rammig, A., Fischer, R., Taubert, F., and Huth, A.: The importance of forest structure for carbon fluxes of the Amazon 
rainforest, Environmental Research Letters, 13, 054013, 2018. 
Rowland, L., da Costa, A. C. L., Galbraith, D. R., Oliveira, R. S., Binks, O. J., Oliveira, A. A. R., Pullen, A. M., Doughty, C. E., Metcalfe, 10 
D. B., Vasconcelos, S. S., Ferreira, L. V., Malhi, Y., Grace, J., Mencuccini, M., and Meir, P.: Death from drought in tropical forests is 
triggered by hydraulics not carbon starvation, Nature, 528, 119-+, 10.1038/nature15539, 2015. 
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., 
Petrova, S., White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks in tropical regions across three continents, 
Proceedings of the National Academy of Sciences of the United States of America, 108, 9899-9904, 10.1073/pnas.1019576108, 2011. 15 
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land 
Surface Modeling, Journal of Climate, 19, 3088-3111, 10.1175/jcli3790.1, 2006. 
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplans, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., 
and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation 
model, Global Change Biology, 9, 161-185, 2003. 20 
Song, X.-P., Huang, C., Saatchi, S., Hansen, M., and Townshend, J.: Annual Carbon Emissions from Deforestation in the Amazon Basin 
between 2000 and 2010, PLoS ONE, 10, e0126754, 2015. 
Turner, M. G., Gardner, R. H., and O'Neill, R. V.: Landscape Ecology in theory and praxis, edited by: Turner, M. G., Gardner, R. H., and 
O'Neill, R. V., Springer-Verlag, New York, 401 pp., 2001. 
Xu, L., Saatchi, S. S., Shapiro, A., Meyer, V., Ferraz, A., Yang, Y., Bastin, J.-F., Banks, N., Boeckx, P., Verbeeck, H., Lewis, S. L., Muanza, 25 
E. T., Bongwele, E., Kayembe, F., Mbenza, D., Kalau, L., Mukendi, F., Ilunga, F., and Ebuta, D.: Spatial Distribution of Carbon Stored in 
Forests of the Democratic Republic of Congo, Scientific Reports, 7, 15030, 10.1038/s41598-017-15050-z, 2017. 
Zanne, A. E., Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, 
M. C., and Chave, J.: Global wood density database, http://dx.doi.org/10.5061/dryad.234, 2009. 
Zhang, K., de Almeida Castanho, A. D., Galbraith, D. R., Moghim, S., Levine, N. M., Bras, R. L., Coe, M. T., Costa, M. H., Malhi, Y., 30 
Longo, M., Knox, R. G., McKnight, S., Wang, J., and Moorcroft, P. R.: The fate of Amazonian ecosystems over the coming century arising 
from changes in climate, atmospheric CO2, and land use, Global Change Biology, 21, 2569-2587, 10.1111/gcb.12903, 2015. 
 

  

http://dx.doi.org/10.5061/dryad.234


15 
 

Figures 

 

Figure 1: Schematic overview of the three steps in the pixel-to-point comparison. Note that we refer to “landscape” as the region of 
interest for which point and pixel data are available. (a) the mean and global variability at point scale are calculated from all plots 
across the landscape; (b) the within-pixel variability is calculated from all plots within the distance of the pixel-size (i.e. the red 5 
arrow corresponds with pixel size); (c) the mean and global variability is calculated from the pixel values and the three comparison 
metrics are derived. Note: A block bootstrapping with 10000 repetitions is performed to derive confidence intervals of the 
comparison metrics. The detailed set of equations to calculate maximum similarity, PA and SP can be found in the SI. 
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Figure 2. Estimates of aboveground biomass (AGB) from forest plots in 1° x 1° pixels. (a) Mean AGB per pixel derived from 
inventory data based on one allometric equation (KDHρ, see SI for explanation and other allometric equations). (b) Number of plots 
per pixel and (c-f) simulated AGB from four DGVMs.  

 5 

Figure 3. Distribution of aboveground biomass (AGB in MgC/ha) from the four DGVMs and from the observational plots (see also 
Table S2 and S3). The figure shows (a) the mean value (white dot) and distribution from bootstrapping of absolute AGB values from 
the four simulations and observed (grey violins). b) Mean bias as the ratio of mean simulated and mean observed AGB (𝒚𝒚�/𝒙𝒙�). 
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Figure 4: (a) Standard deviations of AGB (in MgC/ha) for the four models and observational data (for the other allometric equations 
see also Table S2, S3). For the observational data, the global variability at point scale (“observed”) and the corrected variability at 
pixel scale (“corrected”) is given; (b) ratio of standard deviations without correcting for within-pixel variability, (c) corrected metrics 
of pattern amplitude (𝝈𝝈𝒚𝒚/𝝈𝝈𝒙𝒙,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄). 5 

 

 

Figure 5: The similarity of the observed vs. simulated spatial pattern of AGB at pixel scale (as indicated by r  given in bars).  The 
similarity is calculated for different versions of observed AGB derived from six allometric equations (indicated by the colors, see 
Tab. S1). The dashed line shows the maximum achievable correlation coefficients rmax  from the observational data and for the 10 
different allometric equations. 
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Figure 6. Estimates of aboveground woody productivity (WP) from forest plots in 1° x 1° pixels. (a) Mean WP from inventory plots. 
(b) Number of plots per pixel and (c-f) simulated WP from four DGVMs. 
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Figure 7. Estimates of woody biomass residence time (τ) from forest plots in 1° x 1° pixels. (b) Mean residence time from inventory 
plots. (b) Number of plots per pixel and (c-f) simulated τ from four DGVMs.  
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Tables 

Table 1. Results of the point-to-pixel comparison for (A) woody productivity (WP) and (B) residence time of woody biomass (τ). In 
brackets, the 5% and 95% confidence intervals are given. Blue boxes indicate when models overestimate observed values, red boxes 
indicate underestimation. 5 

A) Woody 

productivity (WP) 

Mean 𝒙𝒙�   

(Mg/ha/yr) 

Corrected global variability 

𝝈𝝈𝒙𝒙,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 (Mg/ha/yr) 

Max. achievable 

correlation 𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎 

Observed 2.57 0.38 0.67 

 Mean bias (𝒚𝒚� 𝒙𝒙�⁄ ) 
Pattern amplitude 

(𝝈𝝈𝒚𝒚 𝝈𝝈𝒙𝒙,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄⁄ ) 
Similarity of pattern 

(rcorr) 

INLAND 3.11 (2.91 – 3.31) 2.91 (1.75 – 4.83) 0.36 (0.11 – 0.35) 

JULES 2.01 (1.88 – 2.14) 1.91 (1.08 – 3.25) 0.38 (0.07 – 0.37) 

ORCHIDEE 3.55 (3.21 – 3.96) 4.26 (2.64 – 6.96) 0.03 (-0.25 – 0.01) 

LPJmL 1.74 (1.63 – 1.83) 1.99 (1.36 – 3.16) 0.50 (0.27 – 0.50) 

B) Residence 

time (τ) 

𝒙𝒙� 

(years) 

𝝈𝝈𝒙𝒙,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

(years) 
𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎 

Observed 73.84 28.04 0.64 

 Mean bias (𝒚𝒚� 𝒙𝒙�⁄ ) 
Pattern amplitude 

(𝝈𝝈𝒚𝒚 𝝈𝝈𝒙𝒙,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄⁄ ) 
Similarity of pattern 

(rcorr) 

INLAND 0.20 (0.17 – 0.24) 0.13 (0.06 – 0.25) 0.01 (-0.30 – 0.02) 

JULES 0.42 (0.35 – 0.51) 0.24 (0.07 – 0.46) -0.23 (-0.68 – -0.22) 

ORCHIDEE 0.35 (0.29 – 0.42) 0.24 (0.12 – 0.45) 0.08 (-0.22 – 0.08) 

LPJmL 0.47 (0.38 – 0.59) 0.35 (0.19 – 0.61) -0.18 (-0.46 – -0.18) 
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