
Comments on “Discrete k-nearest neighbor resampling for simulating multisite precipitation 
occurrence and adaption to climate change” by Taesam Lee and Vijay P. Singh 

 
Authors have addressed some of the comments satisfactorily. However, clarifications are needed 
on a few responses. I am highlighting those below. 

 
1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In response to the general comment of highlighting the novelty of the work, modified abstract says 
“Multisite occurrence model with standard normal variate (MONR) has been used preserving key 
statistics and contemporaneous correlation in literature, but it cannot reproduce lagged 
crosscorrelation between stations and long stochastic simulation is required to estimate its 
parameters. Employing a nonparametric technique, k-nearest neighbor resampling (KNNR), and 
coupling it with Genetic Algorithm (GA), this study proposes a novel simulation method for 
multisite precipitation occurrence overcoming the shortcomings of the existing MONR model.” 
This sounds as if the focus of the study itself is only to overcome the limitations of MONR 
model. The novelty (if any) is still not brought out clearly. 

 
Reply: The authors appreciate the comment. The abstract was modified to bring out the novelty of 
the current study accordingly. Hope this modification satisfactory.  
 
Stochastic weather simulation models are commonly employed in water resources management, 
agricultural applications, forest management, transportation management, and recreational 
activities. Stochastic simulation of multisite precipitation occurrence is a challenge because of its 
intermittent characteristics as well as spatial and temporal cross-correlation. This study proposes a 
novel simulation method for multisite precipitation occurrence employing a nonparametric 
technique, the discrete version of the k-nearest neighbor resampling (KNNR), and coupling it with 
Genetic Algorithm (GA). Its modification for the study of climatic change adaptation is also tested. 
The datasets simulated from both the DKNNR model and an existing traditional model were 



evaluated using a number of statistics, such as occurrence and transition probabilities as well as 
temporal and spatial cross-correlations. Results showed that the proposed DKNNR model with GA 
simulated multisite precipitation occurrence preserved the lagged crosscorrelation between sites 
while the existing conventional model was not able to reproduce lagged crosscorrelation between 
stations, so long stochastic simulation was required.  Also, the GA mixing process provided a 
number of new patterns that were different from observations, which was not feasible with the sole 
DKNNR model.  When climate change was considered, the model performed satisfactorily, but 
further improvement is required to more accurately simulate specific variations of the occurrence 
probability.   
  



 
 
2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A few recent studies are given below on the same topic, which focus on the same topic – multi- 
site precipitation occurrence. 
 
Evin et al., HESS, 2018: Stochastic generation of multi-site daily precipitation focusing on extreme 
events 
Mehrotra et al., JH, 2006: A comparison of three stochastic multi-site precipitation occurrence 
generators 

 
 
Reply: The authors appreciate the comment providing highly relevant studies. The provided 
references were mentioned and cited in the current manuscript.  
 
“The model is able to reproduce the contemporaneous multisite dependence structure and lagged 
dependence only for the same site but it requires a complex simulation process to estimate 
parameters for each site and is unable to preserve lagged dependence between sites.  Also, a recent 
improvement has also been made, but the weakness of the model in Wilks (1998) was not 
significantly improved (Evin et al., 2018; Mehrotra et al., 2006; Srikanthan and Pegram, 2009).” 
  



 
3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  
 
 
Please clarify how the results would be different for DKNNR and KNNR models. 
  
 
Reply: The authors believe that KNNR model is a multivariate model, since it is dealing with 
multisites. However, the DKNNR can be simplified as a univariate KNNR model with range from 
zero to the number of stations used.  Though the result behavior might be inherited from KNNR 
model, its implementation is much simpler than in case of the KNNR model.  
 
  



 
4. 

 
 
 
 
 
 
 
  
 
 
 
The authors have explained the need for GA in the methodology, to simulate the patterns 
different from the historical patterns. This is understood. However, it is not clear how GA 
will be trained to generate those patterns specific to the study area. I am sure that GA might 
generate many unwanted patterns also, which is not physically possible in the study region. 
How GA is supposed to avoid this unwanted patterns? 
 
Reply: The authors thank for the comment. The first procedure of the GA (genetic algorithm) is 
the “reproduction”. The reproduction procedure is also called “the mating process” implying that 
one male and one female are chosen, and their genes are cross-overed and mutated to create a 
new offspring. In other words, the new pattern is made from the historical patterns not totally 
outside from the data. Therefore, the creation of unwanted patterns in the simulated data is 
automatically suppressed from the nature of the GA algorithm. Also, note that the mutation 
probability is very rare that “unwanted patterns” do not occur often. However, it happens rarely, 
like in nature.  
The authors hope that this explanation can be acceptable to this reviewer. The manuscript is also 
modified accordingly to further inform readers of this issue. 
 
“Note that the reproduction procedure of the GA allows to generate new patterns that are similar 
to observed patterns, but a small number of totally new patterns are simulated from the mutation 
procedure of the GA.” 

 
   



5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
So, is it up on the user to opt for GA mixing? It should have been based on the properties of 
the time series and study region. If the rainfall exhibits more or less an unchanging pattern 
across the stations, then the future pattern can be found in the historical patterns too. In that 
case GA mixing could be avoided. The algorithm should have the criterion for that. 

 
Reply: Even if the GA mixing has no criterion to choose, the GA must be  applied since no one  
wants to simulate the patterns as the same as the historical. Of course,   future pattern can be found 
in the historical  patterns too. However, only historical patterns in the future patterns cannot be 
desirable, as shown in Figure 4. Hope this explanation  can be acceptable to this reviewer.



6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thanks for agreeing to this comment. In that case, there is an over-emphasis in the title 
regarding the “adaptation to climate change”. If the methodology is not addressing the 
climate change, please remove the section or modify it accordingly. Section 5.4 still claims 
“Adaptation to climate change”. This can be addressed along with the next comment (7th 

comment), where again authors justify the changing of these probabilities to address the 
climate change. It is not clear, how tuning of crossover and mutation probabilities could 
handle the non-stationarity (or climate change according to authors) in the time series of 
multiple stations? 

 
 
Reply: The authors consider that the major parts of the climate change adaptation studies in a 
stochastic generator for multisite precipitation occurrence is the capability to simulate the 
occurrence series with its changing probability. Even if only the marginal and transition 
probabilities were tested in the current study in section 3.2 and section 6.4, the current model can 
be further developed to handle the climate change issue. The authors believe that tuning crossover 
and mutation probabilities could handle this issue for each station, but not multiple stations at the 
same time. As mentioned in the previous reply, this tuning process cannot handle the change of 
correlation structure in future climate scenarios. However, the key change of marginal and 
transition probabilities can be adapted in the DKNNR with GA model by tuning the crossover and 
mutation probabilities as tested in Figure 11 and Figure 12. We agree that the tuning probabilities 
must be further studied to clarify whether the model works reasonably well. Also note that the 
crossover probabilities might affect the stations each other while the mutation probabilities do not. 
 
To express how this tuning procedure is able to address future climate adaptation, the following 
description is added.  
“Assume that the occurrence probability (P1) of the control period is 0.26 (see the dotted line with 
cross on the bottom panel of Figure 11 and Figure 12) and GCM output indicates that the 
occurrence probability (P1) increases up to 0.27.  This can be achieved with increasing either the 
crossover probability to 0.1 or the mutation probability to 0.05. Note that the crossover 
probabilities might affect the stations each other while the mutation probabilities do not.” 
 
If this reviewer considers that this experimental part for climate change adaption is not good 
enough and still think this part must be removed, the authors will remove the whole part and 
change the title. However, the authors prefer leaving as is to indicate future development of the 
current model. 
  



7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I could not find much difference between simple KNNR model and KNNR model with GA 
mixing (Figures s2-s6 and Figures 5-9). Both produce almost same results. Does that mean, 
the incorporation of GA has not added much value? 

 
Reply: Note that the simple DKNNR model obtains the patterns from the historical data. Its 
simulated data are compared with the historical statistics. Therefore, DKNNR with GA is 
difficult to add much value more than the simple DKNNR except that the simulated data 
can have different patterns from the historical ones. However, the value of the DKNNR 
with GA is critical, since one of the major reasons for simulating weather data is to generate 
all possible cases to compare and prepare such cases. 
  



8. 

 
Please see comment 6 in this document, regarding the adaptation to climate change. 
 
Reply: See Reply 6. 
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Abstract 27 

Stochastic weather simulation models are commonly employed in water resources management, 28 

agricultural applications, forest management, transportation management, and recreational 29 

activities. Stochastic simulation of multisite precipitation occurrence is a challenge because of its 30 

intermittent characteristics as well as spatial and temporal cross-correlation. This study proposes 31 

a novel simulation method for multisite precipitation occurrence employing a nonparametric 32 

technique, the discrete version of the k-nearest neighbor resampling (KNNR), and coupling it with 33 

Genetic Algorithm (GA). Also, iIts modification for the study of climatic change adaptation wais 34 

also further tested. Although the multisite occurrence model with standard normal variate (MONR) 35 

has been used for preserving key precipitation statistics and contemporaneous correlation, it does 36 

not reproduce lagged crosscorrelation between stations so long stochastic simulation is required. 37 

Employing a nonparametric technique, k-nearest neighbor resampling (KNNR) and coupling it 38 

with Genetic Algorithm (GA), this study proposes a novel simulation method for multisite 39 

precipitation occurrence, overcoming the shortcomings of the MONR model. The novel discrete 40 

version of KNNR (DKNNR) model was developed and its modification for the study of climatic 41 

change adaptation was tested. The datasets simulated from both the DKNNR model and the an 42 

MONR existing traditional model were evaluated using a number of statistics, such as occurrence 43 

and transition probabilities as well as temporal and spatial cross-correlations. Results showed that 44 

the proposed DKNNR model with GA simulated multisite precipitation occurrence , preserveding 45 

the lagged crosscorrelation between sites while the existing conventional model was still cannot 46 

be able to reproduce lagged crosscorrelation between stations, so long stochastic simulation wais 47 

required.  Also, the GA mixing process provideds a number of new patterns that weare different 48 

from observations, which was not feasible with capable of the sole DKNNR model.  When climate 49 
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change was considered, the model performed satisfactorily, but further improvement is required 50 

to more accurately simulate specific variations of the occurrence probability.   51 

52 
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1. Introduction 53 

Stochastic simulation of weather variables has been employed for water resources 54 

management, hydrological design, agricultural irrigation, forest management, transportation 55 

planning and evacuation, recreation activities, filling-in missing historical data, simulating data, 56 

extending observed records, and simulating different weather conditions. Stochastic simulation 57 

models play a key role in producing weather sequences, while preserving the statistical 58 

characteristics of observed data. A number of stochastic weather simulation models have been 59 

developed using parametric and nonparametric approaches (Lee, 2017; Lee et al., 2012; Wilby et 60 

al., 2003; Wilks, 1999; Wilks and Wilby, 1999).  61 

Parametric approaches simulate statistical characteristics of observed weather data with a set 62 

of parameters that are determined by fitting  (Jeong et al., 2012; Lee, 2016; Zheng and Katz, 2008), 63 

whereas in  nonparametric approaches, historical analogs with current conditions are searched, 64 

following the weather simulation data (Buishand and Brandsma, 2001; Lee et al., 2012). 65 

Combinations of parametric and nonparametric approaches have also been proposed 66 

(Apipattanavis et al., 2007; Frost et al., 2011).  67 

Among weather variables, precipitation possesses intermittency and zero values between 68 

precipitation events, which make it difficult to properly reproduce the events (Beersma and 69 

Buishand, 2003; Hughes et al., 1999; Katz and Zheng, 1999). To overcome the problem of 70 

intermittency and zero values, precipitation is simulated separately from other variables. The main 71 

method for reproducing intermittency has been the multiplication of precipitation occurrence and 72 

an amount as Z=X·Y, where X is the occurrence (binary as either 0 or 1) and Y is the amount (Jeong 73 

et al., 2013; Lee and Park, 2017; Todorovic and Woolhiser, 1975). The spatial and temporal 74 
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dependence in the occurrence and amount of precipitation introduces further complexity in 75 

multisite simulation.  76 

Wilks (1998) presented a multisite simulation model for the occurrence process (i.e. X) using 77 

the standard normal variable that is spatially dependent, representing the relation between the 78 

occurrence variable and the standard normal variable with simulation data. Originally, the 79 

occurrence of precipitation had been simulated with a discrete Markov Chain (MC) model (Katz, 80 

1977). Compared to the MC model that requires a significant number of parameters for generating 81 

multisite occurrence, the multisite occurrence model proposed by Wilks (1998) transforms the 82 

standard normal variate and simulates the sequence with multivariate normal distribution, and then 83 

back-transforms the multivariate normal sequence to the original domain. The model is able to 84 

reproduce the contemporaneous multisite dependence structure and lagged dependence only for 85 

the same site but it requires a complex simulation process to estimate parameters for each site and 86 

is unable to preserve lagged dependence between sites.  Also, a recent improvement has also been 87 

made, but the weakness of the model in Wilks (1998) was not significantly improved (Evin et al., 88 

2018; Mehrotra et al., 2006; Srikanthan and Pegram, 2009). 89 

Lee et al. (2010a) proposed a nonparametric-based stochastic simulation model for 90 

hydrometeorological variables. Their model overcame the shortcomings of a previous 91 

nonparametric simulation model (Lall and Sharma, 1996), called k-nearest neighbor resampling 92 

(KNNR) but the simulated data do not produce patterns different from those of the observed data 93 

(Brandsma and Buishand, 1998; Mehrotra et al., 2006; St-Hilaire et al., 2012). In addition to 94 

KNNR, Lee et al. (2010a) used a meta-heuristic Genetic Algorithm (GA) that led to the 95 

reproduction of similar populations by mixing the simulated datasets. Note that the reproduction 96 
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procedure of the GA allows to generate new patterns that are similar to observed patterns, but a 97 

small number of totally new patterns are simulated from the mutation procedure of the GA. 98 

While KNNR is employed to find historical analogues of multisite occurrence similar to the 99 

current status of a simulation series, GA is applied to use its skill to generate a new descendant 100 

from the historical parent chosen with the KNNR. In this procedure, the multisite occurrence of 101 

precipitation can be simulated while preserving spatial and temporal correlations. Meta-heuristic 102 

techniques, such as GA, have been popularly employed in a number of hydrometeorological 103 

applications (Chau, 2017; Fotovatikhah et al., 2018; Taormina et al., 2015; Wang et al., 2013). 104 

Although a number of variants of KNNR-GA have been applied (Lee et al., 2012; Lee and Park, 105 

2017), none of them can simulate multisite occurrence of precipitation whose characteristics are 106 

binary and temporally and spatially related. 107 

Therefore, this study proposes a stochastic simulation method for multisite occurrence of 108 

precipitation with the KNNR-GA based nonparametric approach that (1) simulates multisite 109 

occurrence with a simple and direct procedure without parameterization of all the required 110 

occurrence probabilities; and (2) reproduces the complex temporal and spatial correlation between 111 

stations as well as the basic occurrence probabilities. The proposed nonparametric model is 112 

compared with the popular model proposed by Wilks (1998). Even though the multisite occurrence 113 

data generated from the Wilks model preserves various statistical characteristics of the observed 114 

data well, significant underestimation of lagged cross-correlation still exists. Furthermore, the 115 

relation between standard normal variable and occurrence variable relies on long stochastic 116 

simulation.  117 

The paper is organized as follows. The next section presents the mathematical background 118 

of existing multisite occurrence modeling and section discusses the modeling procedure.  The 119 
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study area and data are reported in section 4. The model application is presented in section 5. 120 

Results of the proposed model are discussed in section 6, and summary and conclusions are 121 

presented in section 7.  122 

2. Background 123 

2.1. Single site occurrence modeling  124 

Let s

tX represent the occurrence of daily precipitation for a location s (s=1,…, S) on day t 125 

(t=1,…, n; n is the number observed days) and let s

tX be either zero for dry day or one for wet day. 126 

The first order Markov chain model for s

tX is defined with the assumption that the occurrence 127 

probability of a wet day is fully defined by the previous day as 128 

  ss

t

s

t pXX 011 0|1Pr  
     (1) 129 

  ss

t

s

t pXX 111 1|1Pr  
     (2) 130 

Also ss pp 0100 1  and ss pp 1110 1  , since the summation of zero and one should be unity 131 

with the same previous condition. This consists of a transition probability matrix (TPM) as 132 













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


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


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s
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1111

0101

1110
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1

1
    (3) 133 

The marginal distributions of TPM (i.e. p0 and p1) can be expressed with TPM and its condition of 134 

p0 + p1 =1 as: 135 

ss

s
s

pp

p
p

1101

01
0

1 
        (4) 136 
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ss

s
s

pp

p
p

1101

11
1

1

1




       (5) 137 

Note that p1 represents the probability of precipitation occurrence for a day, while p0 does non-138 

occurrence. The lag-1 autocorrelation of precipitation occurrence is the combination of transition 139 

probabilities as: 140 

     
ss ppss 01111 ),(       (6) 141 

 The simulation can be done by comparing TPM with a uniform random number (ut
s) as 142 

      


 


otherwise    0

 if    1 1

s

i

s

ts

t

pu
X      (7) 143 

where s

ip 1
is the selected probability from TPM regarding the previous condition i (i.e. either 0 or 144 

1). Wilks (1998) suggested a different method using a standard normal random number s

tw  ~N[0,1] 145 

as 146 

     


 




otherwise    0

)( if    1 1

1 s

i

s

ts

t

pw
X     (8) 147 

where 1 indicates the inverse of the standard normal cumulative function Φ.  148 

2.2. Multisite occurrence modeling 149 

Wilks (1998) suggested a multisite occurrence model using a standard normal random 150 

number (here, denoted as MONR) that is spatially dependent but serially independent.  The 151 

correlation of the standard normal variate for a site pair of q and s can be expressed as:  152 

], [),( s

t

q

t wwcorrsq       (9) 153 
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Also, the correlation of the original occurrence variate is 154 

 ],[),( s

t

q

t XXcorrsq       (10) 155 

Once the correlation of the standard normal variate is known, the simulation of multisite 156 

precipitation occurrence is straightforward. Multivariate standard normal distribution  is used with 157 

a parameter set of [0, T] where 0 is the zero vector (Sx1) and T is the correlation matrix with the 158 

elements of ),( sq for },...,1{ Sq  and },...,1{ Ss .  159 

Since direct estimation of ),( sq is not feasible, a simulation technique is used to estimate  160 

),( sq from ),( sq . A long sequence of the occurrences is simulated with different values of 161 

),( sq and its corresponding correlation of the original domain ),( sq  is estimated with the 162 

simulated long sequence by the inverse standard normal cumulative function (i.e. -1). A curve 163 

between ),( sq and ),( sq is derived from this long simulation with the MONR model and is 164 

employed for parameter estimation for a real application. 165 

3. DKNNR  166 

3.1. DKNNR modeling procedure 167 

In the current study, a novel multisite simulation model for discrete occurrence of precipitation 168 

variable with k-nearest neighbor resampling (KNNR) technique (Lall and Sharma, 1996; Lee 169 

and Ouarda, 2011; Lee et al., 2017) for a discrete case (denoted as Discrete KNNR; DKNNR) 170 

is proposed by combining a mixture mechanism with Genetic Algorithm (GA). Provided the 171 

number of nearest neighbors, k, is known, the discrete k-nearest neighbor resampling with 172 

genetic algorithm is done as follows: 173 



10 

(1) Estimate the distance between the current (i.e. time index: c) multisite occurrence 174 

s

cX and the observed multisite occurrence s

ix . Here, the distance is measured for 175 

i=1,…, n-1 as 176 

    




S

s

s

i

s

ci xXD
1       

(11) 177 

(2) Arrange the estimated distances from step (1) in ascending order, select the first k 178 

distances (i.e., the smallest k values), and reserve the time indices of the smallest k 179 

distances. 180 

(3) Randomly select one of the stored k time indices with the weighting probability 181 

given by 182 

    





k

j

m

j

m
w

1

/1

/1
 ,       km ,...,1       (12) 183 

(4) Assume the selected time index from step (3) as p. Note that there are a number of 184 

values that have the same distance as the selected 
pD , since 

pD  is a natural number 185 

between 0 and S. For example, if S=2 and Xc
1=0 and Xc

2=1, the two sequences have 186 

the same D=1 as [xi
1=0 and xi

2=0] and [xi
1=1 and xi

2=1]. In this case, a random 187 

selection procedure is required to take into account the cases with the same quantity. 188 

One particular time index is randomly selected with equal probabilities among the 189 

time indices of the same distances. Note that instead of the random selection, one 190 

can always use the first one. In such a case, only one historical combination of 191 

multisite occurrences will be selected. 192 

서식 있음: 글꼴: 기울임꼴



11 

(5) Assign the binary vector of the proceeding index of the selected time as193 

},1{1+1+ ][= Ss

s

pp x ∈x . Here, p is the finally selected time index from step (4). 194 

(6) Execute the following steps for GA mixing if GA mixing is subjectively selected. 195 

Otherwise, skip this step. 196 

(6-1) Reproduction: Select one additional time index using steps (1) through (4) and 197 

denote this index as p*. Obtain the corresponding precipitation occurrence 198 

values, },...,1{1*1* ][ Ss

s

pp x ∈ x . The subsequent two GA operators employ the two 199 

selected vectors, 
1+px  and

 1+*px . This reproduction process is a mating process 200 

by finding another individual that has similar characteristics similar to those of 201 

the current one xp+1. With this procedure, a vector similar to the current vector 202 

will be mated and will produce a new descendant.   203 

(6-2) Crossover: Replace each element s

px 1  with s

px 1* at probability crP , i.e., 204 





 








otherwise    

  if   

1

1*

1 s

p

cr

s

ps

c
x

Px
X


    (13) 205 

where ε is a uniform random number between 0 and 1. From this crossover, a 206 

new occurrence vector whose elements are similar to the historical ones is generated.  207 

(6-3) Mutation: Replace each element (i.e., each station, s=1,…, S) with one selected 208 

from all the observations of this element for i=1,…, n with probability mP , i.e., 209 





 








otherwise    

  if   

1

1

1 s

p

m

s

s

c
x

Px
X


    (14) 210 
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where 
sx 1  is selected from },...,1{][ ni

s

ix ∈  with equal probability for i=1,…, n 211 

and ε is a uniform random number between 0 and 1. This mutation procedure 212 

allows to generate a multisite occurrence combination that is totally different 213 

from the historical records. Without this procedure, multisite occurrences 214 

always similar to historical combinations are generated, which is not feasible 215 

for a simulation purpose.   216 

(7) Repeat steps (1)-(6) until the required data are generated. 217 

The selection of the number of nearest neighbors (k) has been investigated by Lall and 218 

Sharma (1996) and Lee and Ouarda (2011). A simple selection method was applied in the current 219 

study as nk  . For hydrometeorological stochastic simulation, this heuristic approach of the k 220 

selection has been employed  (Lall and Sharma, 1996; Lee and Ouarda, 2012; Lee et al., 2010b; 221 

Prairie et al., 2006; Rajagopalan and Lall, 1999).  One can use generalized cross-validation (GCV) 222 

as shown in Sharma and Lall (1996) and Lee and Ouarda 2011 by treating this simulation as a 223 

prediction problem. However, the current multisite occurrence simulation does not necessarily 224 

require an accurate value prediction and not much difference in simulation using the simple 225 

heuristic approach has been reported. Also, this heuristic approach of the k selection has been 226 

popularly employed for hydrometeorological stochastic simulations (Lall and Sharma, 1996; Lee 227 

and Ouarda, 2012; Lee et al., 2010b; Prairie et al., 2006; Rajagopalan and Lall, 1999). 228 

In Appendix A, an example of the DKNNR simulation procedure is explained in detail.  229 

3.2. Adaptation to climate change 230 

The capability of model to take climate change into account is critical. For example, the 231 

marginal distributions and transition probabilities in Eqs. (5)(5) and (3)(3) can change in future 232 
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climate scenarios. It is known that nonparametric simulation models have a difficulty to adapt to 233 

climate change, since the models employ in general the current observation sequences. However, 234 

the proposed model in the current study possesses the capability to adapt to the variations of 235 

probabilities by tuning the crossover and mutation probabilities in Pcr (13)(13) and Pm (14)(14) , 236 

adding the condition when applied.  237 

For example, the probability of P11 can be increased with the cross-over probability Pcr by 238 

adding the condition to increase the probability of P11 as:  239 





 




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
otherwise    

1 & 1 &   if   

1

1*1*

1 s
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s

c

s
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s
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c
x

XxPx
X


   (15) 240 

It is obviously possible to increase the probability of P1 by removing the condition of 1s

cX . 241 

In addition, further adjustment can be made with the mutation process in Eq. (14)(14) as 242 





 








otherwise    

1  and   if   

1
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 
   (16) 243 

This adjustment of adding the condition 1 1 

sx  can increase the marginal distribution as much as 244 

Pm×P1.  This has been tested in a case study. 245 

4. Study area and data description 246 

For testing the occurrence model, 12 weather stations were selected from Yeongnam province 247 

which is located in the southeastern part of South Korea, as shown in Figure 1Figure 1. Information 248 

on longitude and latitude (fourth and fifth columns) as well as order index and the identification 249 
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number (first and second columns) of these stations operated by Korea Meteorological 250 

Administration with the area name (third column) is shown in Table 1Table 1. The employed 251 

precipitation dataset presents strong seasonality, since this area is dry from late fall to early autumn 252 

and humid and rainy during the remaining seasons, especially in summer. The employed stations 253 

are not far from each other, at most 100 km apart, and not much high mountains are located in the 254 

current study area. Therefore, this region can be considered as a homogeneous region (Lee et al., 255 

2007). 256 

Figure 1Figure 1 illustrates the locations of the selected weather stations. All the stations are 257 

inside Yeongnam province which consists of two different regions as north and south Gyeongsang 258 

as well as the self-governing cities of Busan, Daegu, and Ulsan. Most of the Yeongnam region is 259 

drained to Nakdong River. To validate the proposed model appropriately, test sites must be highly 260 

correlated with each other as well as have significant temporal relation. The stations inside the 261 

Yeongnam area cover one of the most important watersheds, the Nakdong River basin, where the 262 

Nakdong River passes through the entire basin and its hydrological assessments for agriculture 263 

and climate change have a particular value in flood control and water resources management such 264 

as floods and droughts. 265 

It is important to analyze the impact of weather conditions for planning agricultural 266 

operations and water resources management, especially during the summer season, because around 267 

50-60 percent of the annual precipitation occurs during the summer season from June to September.  268 

The length of daily precipitation data record ranges from 1976 to 2015 and the summer season 269 

record was employed, since a large number of rainy days occur during summer and it is important 270 

to preserve these characteristics. Also, the whole year dataset was tested and other seasons were 271 
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further applied but the correlation coefficient was relatively high and its correlation matrix 272 

estimated was not a positive semi-definite matrix for the MONR model. 273 

5. Application  274 

To analyze the performance of the proposed DKNNR model, the occurrence of precipitation 275 

was simulated. The DKNNR simulation was compared with that of the MONR model. For each 276 

model, 100 series of daily occurrence with the same record length were simulated.  The key 277 

statistics of observed data and each generated series, such as transition probabilities (P11, P01 , and 278 

P1) and cross-correlation (see Eq.(10)(10)), were determined. The MONR model underestimated 279 

the lag-1 cross-correlation, as indicated by Wilks (1998). In the current study, this statistic was 280 

analyzed, since a synoptic scale weather system often results in lagged cross-correlation for daily 281 

precipitation data (Wilks, 1998). It was formulated as 282 

],[),( 11

s

t

q

t XXcorrsq      (17) 283 

Statistics from 100 generated series were evaluated by the root mean square error (RMSE) 284 

expressed as:  285 
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N

RMSE     (18) 286 

where N is the number of series (here 100), G

m is the statistic estimated from the mth generated 287 

series, while 
h is the statistic for the observed data. Note that lower RMSE indicates better 288 

performance, represented by ing the summarized error of a given statistic of generated series from 289 

the statistic of the observed data.  290 
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The 100 simulated statistic values were illustrated with boxplots to show their variability as 291 

shown in Figure 5Figure 5 - Figure 7Figure 7. The box of boxplot represents the interquartile range 292 

(IQR) ranging from 25 percentile to 75 percentile. The whiskers extend to up and down 1.5×IQR. 293 

Data beyond the whiskers (1.5×IQR) are indicated by a plus sign (+). The horizontal line inside 294 

the box represents the median of the data. The statistics of the observed data are denoted by a cross 295 

(x). The closer a cross is to the horizontal line inside the box, the better the simulated data from a 296 

model reproduces the statistical characteristics of the observed data. 297 

6. Results 298 

6.1. GA mixing and its probability selection 299 

The roles of crossover probability crP  (Eq. (13)(13)) and mutation probability mP (Eq.(14)(14)) 300 

were studied by Lee et al. (2010b). In the current study, we further tested by selecting an 301 

appropriate parameter set of these two parameters with the simulated data from the DKNNR model 302 

and the record length of 100,000. RMSE (Eq. (18)(18)) of the three transition and limiting 303 

probabilities (P11, P01, and P1) between the simulated data and the observed was used, since those 304 

probabilities are key statistics that the simulated data must match with the observed data and no 305 

parameterization of these probabilities was made for the current DKNNR model. Results are 306 

shown in Figure 2Figure 2 and Figure 3Figure 3 for Pcr and Pm, respectively. For Pcr in Figure 307 

2Figure 2, the probability of 0.02 shows the smallest RMSE in all transition and limiting 308 

probabilities. The RMSE of Pm in Figure 3Figure 3 shows a slight fluctuation along with Pm. 309 

However, all three probabilities (P11, P01, and P1) have relatively small RMSEs in Pm =0.003. 310 

Therefore, the parameter set 0.02 and 0.003 was chosen for Pcr and Pm, respectively, and employed 311 

in the current study. We also tested the simulation without the GA mixing procedure (results not 312 
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shown). The results showed that no better result could be found from the simulation without GA 313 

mixing. The necessity of the GA mixing is further discussed in the following. 314 

We further tested and discuss why the GA mixing is necessary in the proposed DKNNR 315 

model as follows. For example, assume that three weather stations are considered and observed 316 

data only has the occurrence cases of 000, 001,011,010, 011,100,111 among 23=8 possible cases. 317 

In other words, no patterns for 110 and 101 is found in the observed data. Note that 0 is dry day 318 

and 1 is rainy (or wet) day. The KNNR is a resampling process in that the simulation data is 319 

resampled from the observations. Therefore, no new patterns such as 110 and 101 can be found in 320 

the simulated data.  321 

This can be problematic for the simulation purpose in that one of the major simulation 322 

purposes is to simulate sequences that might possibly happen in the future. The wet (1) or dry (0) 323 

for multisite precipitation occurrence is decided by the spatial distribution of a precipitation 324 

weather system. A humid air mass can be distributed randomly, relying on wind velocity and 325 

direction as well as the surrounding air pressure. In general, any combinations of wet and dry 326 

stations can be possible, especially when the simulation continues infinitely. Therefore, the 327 

patterns of simulated data must be allowed to have any possible combinations, here 4096 even if 328 

it has not been observed from the historical records. Also, its probability to have this new pattern 329 

must not be high, since it has not been observed in the historical records and this can be taken into 330 

account by low probability of the crossover and mutation.  331 

This drawback of the KNNR model frequently happens in multisite occurrence as the 332 

number of stations increases. Note that the number of patterns increases as 2n where n is the number 333 

of stations. If n=12, then 4096 cases must be observed. However, among 4096 cases, observed 334 
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cases are limited, since the number of data is limited. The GA process can mix two candidate 335 

patterns to produce new patterns. For example, in the three station case, a new pattern 101 can be 336 

produced from two observed occurrence candidates of 001 and 100 by the crossover of the first 337 

value of 001 to the first value of 100 (i.e. 001 101), which is not in the observed data.  338 

Note that the data employed in the case study are 40 years and 122 days (summer months) 339 

in each year. The total number of the observed data is 4880 and the number of possible cases is 340 

4096. We checked the number how many of possible cases that were  are not found in the observed 341 

data. The result shows that 3379 cases weare not observed at all for the entire cases as shown in 342 

Figure 4Figure 4.  343 

We further investigated the number of how many new patterns that weare generated with the 344 

probabilities Pcr=0.02, Pm=0.001 by the proposed GA mixing. The generated data for 100 345 

sequences from DKNNR with the GA mixing shows that the number 3379 was reduced to 1200, 346 

which is not in the dataset among the 4096 possible patterns. Therefore, more than 2000 new 347 

patterns were simulated with the GA mixing process. The KNNR model without the GA mixing 348 

did oes not produce any new patterns in the 100 sequences with the same length of the historical 349 

data. 350 

 351 

6.2. Occurrence and transition probabilities 352 

The data simulated from the proposed DKNNR model and the existing MONR model were 353 

analyzed. The estimated transition probabilities (P11 and P01 in Eq. (3)(3)) as well as the occurrence 354 

probability (P1 in Eq. (5)(5)) are shown in Table 2Table 2 and Figure 5Figure 5 - Figure 7Figure 355 

7 for the observed data and the data generated from the DKNNR and MONR models. In Table 356 
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2Table 2, the observed statistic shows that P11 is always higher than P01 and P1 is between P11 and 357 

P01. Site 6 shows the lowest P11 and P1 and site 12 shows the highest P11.  358 

As shown in Figure 5Figure 5, the probability P11 of the observed data shows that sites 6, 7, 359 

8, and 9 located in the northern part of the region exhibited lower consistency (i.e. consecutive 360 

rainy days) than did the other sites, while sites 5 and 12 had higher probability of P11 than did other 361 

sites. Both models preserved well the observed P11 statistic. It seems that the MONR model had a 362 

slightly better performance, since this statistic is parameterized in the model as shown in  section 363 

2.2 and that is the same for P01 and P1 as shown in Figure 6Figure 6 and Figure 7Figure 7. Note 364 

that the MONR model employed the transition probabilities in simulating rainfall occurrence, 365 

while the DKNNR model did not. The occurrence probability P1 can be described with the 366 

combination of transition probabilities as in Eq. (5)(5). Even though the transition probabilities 367 

were not employed in simulating rainfall occurrence, the DKNNR model preserved this statistic 368 

fairly well.  369 

In the DKNNR modeling procedure, the simple distance measurement in Eq. (11)(11) allows 370 

to preserve transition probabilities in that the following multisite occurrence is resampled from the 371 

historical data whose previous states of multisite occurrence (xi
s) are similar to the current 372 

simulation multisite occurrence (Xc
s). This summarized distance (Di) is an essential tool in the 373 

proposed DKNNR modeling. The condition of the current weather system is memorized and the 374 

system is conditioned on simulating the following multisite occurrence with the distance 375 

measurement like a precipitation weather system dynamically changes but often it impacts the 376 

system of the following day. 377 
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As shown in Figure 6Figure 6, the P01 probability showed a slightly different behavior such 378 

that sites 1, 2, and 3 located in the middle part of the Yeongnam province showed a higher 379 

probability than did other sites. A slight underestimation was seen for sites 2 and 11 but it was not 380 

critical, since its observed value with a cross mark was close to the upper IQR representing 75 381 

percentile.  382 

The behavior of P1 was found to be the same as that of the P11 probability. It can be seen in 383 

Figure 7Figure 7 that no significant underestimation is seen for the DKNNR model (top panel). 384 

The P1 statistic was fairly preserved by both DKNNR and MONR models. Note that the MONR 385 

model parameterized the P1 statistic through the transition probabilities as in Eq. (5)(5), while the 386 

DKNNR model did not. Although the DKNNR model used almost no parameters for simulation, 387 

the P1 statistic was preserved fairly well.  388 

6.3. Cross-correlation 389 

Cross-correlation is a measure of the relationship between sites. The preservation of cross-390 

correlation is important for the simulation of precipitation occurrence and is required in the 391 

regional analysis for water resources management or agricultural applications. Furthermore, 392 

lagged cross-correlation is also essential as much as is cross-correlation (i.e. contemporaneous 393 

correlation). For example, the amount of streamflow for a watershed from a certain precipitation 394 

event is highly related with lagged cross-correlation.  395 

Daily precipitation occurrence, in general, shows the strongest serial correlation at lag-1 and 396 

its correlation decays as the lag gets longer. This is because a precipitation weather system moves 397 

according to the surrounding pressure and wind direction that dynamically change within a day or 398 
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week. Therefore, we analyzed the lag-1 cross-correlation in the current study as the representative 399 

lagged correlation structure. 400 

The cross-correlation of observed data is shown in Table 3Table 3. High cross-correlation 401 

among grouped sites, such as sites 6, 7, and 8 (northern part) and sites 3, 4, and 5, as well as 12 402 

(southeast coastal area, 0.68-0.87), was found. As expected, sites 5 and 12 had the highest cross-403 

correlation (0.87) due to proximity. The northern sites and coastal sites showed low cross-404 

correlation. This observed cross-correlation was well preserved in the data generated from both 405 

DKNNR and MONR models, as shown in Figure 8Figure 8 as well as Table 4Table 4 and Table 406 

5Table 5. However, consistently slight but significant underestimation of cross-correlation was 407 

seen for the data generated by the MONR model (see the bottom panel of Figure 8Figure 8). Note 408 

that the errorbars are extended to upper and lower lines of the circles to 1.95×standard deviation.  409 

The difference of RMSE in Table 6Table 6 showed this characteristic, as most of the values were 410 

positive, indicating that the proposed DKNNR model performed better for cross-correlation.  411 

The lag-1 cross-correlation of observed data, as shown in Table 7Table 7, ranged from 0.22-412 

0.35. The lag-1 cross-correlation for the same site (i.e. ),(1 sq , q=s) was autocorrelation and was 413 

highly related with P01 and P11 as in Eq. (6)(6). All the lag-1 cross-correlations exhibited similar 414 

magnitudes even for autocorrelation. This implies that the lag-1 cross-correlation among the 415 

selected sites was as strong as the autocorrelation and as much as the transition probabilities P01 416 

and P11, thereof.  417 

The observed lag-1 cross-correlations were well preserved in the data generated by the 418 

DKNNR model, as shown in the top panel of Figure 9Figure 9, while the MONR model showed 419 

significant underestimation, as seen in the bottom panel of Figure 9Figure 9. The difference of 420 
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RMSE shown in Table 8Table 8 reflects this behavior. In the bottom panel of Figure 9Figure 9, 421 

some of the lag-1 cross-correlations were well preserved, that wereas aligned with the base line. 422 

From Table 8Table 8, the MONR model reproduced the autocorrelations well with the shaded 423 

values. It is because the lag-1 autocorrelation was indirectly parameterized with the transition 424 

probabilities of P11 and P01 as in Eq. (6)(6). Other than this autocorrelation, the lag-1 cross-425 

correlation was not reproduced well with the MONR model. This shortcoming was mentioned by 426 

Wilks (1998). Meanwhile, the proposed DKNNR model preserved this statistic without any 427 

parameterization.  428 

We further tested the performance measurements of MAE and Bias whose . The estimates 429 

showed that MAE had no difference from RMSE. In addition, Bias of the lag-1 correlation 430 

presented significant negative values implying its underestimation for the simulated data of the 431 

MONR model as shown in Table 9Table 9, while Table 10Table 10 of the DKNNR model showed 432 

a much smaller bias.  433 

Also, the whole year data instead of the summer season data was tested for model fitting. 434 

Note that all the results presented above were for the summer season data (June-September) as 435 

mentioned in section 4 on data description. The lag-1 cross-correlation is shown in Figure 10Figure 436 

10 which indicates that the same characteristic was observed as for the summer season, such that 437 

the proposed DKNNR model preserved better the lagged cross-correlation than did the existing 438 

MONR model. Other statistics, such as correlation matrix and transition probabilities, exhibited 439 

the same results (not shown). Also, other seasons were tried but the estimated correlation matrix 440 

was not a positive semi-definite matrix and its inverse cannot be made for multivariate normal 441 

distribution in the MONR model. It was because the selected stations were close to each other 442 

(around 50-100 km) and produced high cross-correlation, especially in the occurrence during dry 443 
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seasons. Special remedy for the existing MONR model should be applied, such as decreasing 444 

cross-correlation by force, but further remedy was not applied in the current study since it was not 445 

within the current scope and focus. 446 

6.4. Adaptation to climate change 447 

Model adaptability to climate change in hydro-meteorological simulation models is a critical 448 

factor, since one of the major applications of the models is to assess the impact of climate change. 449 

Therefore, we tested the capability of the proposed model in the current study by adjusting the 450 

probabilities of cross-over and mutation as in Eqs. (15)(15) and (16)(16). A number of variations 451 

can be made with different conditions.  452 

In Figure 11Figure 11, the changes of transition and marginal probabilities are shown along 453 

with the increase of ing the crossover probability Pcr from 0.01 to 0.2 with the condition that that 454 

the candidate value is one and the previous value is also one as in Eq. (15)(15) for the selected 5 455 

stations among the 12 stations (from station 1 to station 5, see Table 1Table 1 for details). The 456 

stations were limited in this analysis due to computational time. In each case 100 series were 457 

simulated. The average value of the simulated statistics is presented in the figure. It is obvious that 458 

the transition probability P11 increased as intended along with the increase of Pcr . As expected 459 

from Eq. (5)(5), P1 presents that the change of P1 is highly related to P11. However, the probability 460 

P01 fluctuated along with the increase of Pcr. Elaborate work to adjust all the probabilities is 461 

however required.  462 

The changes in transition and marginal probabilities are presented in Figure 12Figure 12 463 

with increasing mutation probability Pm from 0.01 to 0.2 under the condition that the candidate 464 

value is one so that the marginal probability P1 increased. P01 also increased along with increasing 465 
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P1. The change of P11 was not related with other probabilities. The combination of the adjustment 466 

of Pcr and Pm with a certain condition to the previous state will allow the specific adaptation for 467 

simulating future climatic scenarios.  468 

As an example, assume that the occurrence probability (P1) of the control period is 0.26 (see 469 

the dotted line with cross on the bottom panel of Figure 11 and Figure 12) and GCM output 470 

indicates that the occurrence probability (P1) increases up to 0.27.  This can be achieved with 471 

increasing either the crossover probability to 0.1 or the mutation probability to 0.05. Note that the 472 

crossover probabilities might affect the stations each other, while the mutation probabilities do not 473 

Climate change, however, may refer to a larger phenomenon, which cannot be addressed 474 

directly through modifying only the marginal and transition probabilities as in the current study. 475 

Further modeling development on systematically varying temporal and spatial cross-correlations 476 

is required to properly address the climate change of the regional precipitation system. 477 

7. Conclusions 478 

In the current study, the discrete version of a nonparametric simulation model, based on 479 

KNNR, is proposed to overcome the shortcomings of the existing MONR model, such as long 480 

stochastic simulation for parameter estimation and underestimation of the lagged crosscorrelation 481 

between sites as well as testing the adaptability for climatic change. Occurrence and transition 482 

probabilities and cross-correlation as well as lag-1 cross-correlation are estimated for both models. 483 

Better preservation of cross-correlation and lag-1 cross-correlation with the DKNNR model than 484 

the MONR model is observed. For some cases (i.e., the whole year data and other seasons than the 485 

summer season), the estimated cross-correlation matrix is not a positive semi-definite matrix so 486 
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the multivariate normal simulation is not applicable for the MONR model, because the tested sites 487 

are close to each other with high cross-correlation.  488 

Results of this study indicate that the proposed DKNNR model reproduces the occurrence 489 

and transition probabilities satisfactorily fairly and preserves the cross-correlations better than does 490 

the existing MONR model. Furthermore, not much effort is required to estimate the parameters in 491 

the DKNNR model, while the MONR model requires a long stochastic simulation just to estimate 492 

each parameter. Thus, the proposed DKNNR model can be a good alternative for simulating 493 

multisite precipitation occurrence. 494 

We tested further the enhancement of the proposed model for adapting to climate change by 495 

modifying the mutation and crossover probabilities Pm and Pcr. The rResults showed that the 496 

proposed DKNNR model has the capability to adapt to the climate change scenarios, but further 497 

elaborate work is required to find the best probability estimation for climate change. Also, only 498 

the marginal and transition probabilities cannot address the climate change of regional 499 

precipitation. The variation of temporal and spatial cross-correlation structure must be considered 500 

to properly address the climate change of the regional precipitation system. Further study on 501 

improving the model adaptability to climate change will be followed in the near future. Also, the 502 

simulated multisite occurrence can be coupled with a multisite amount model to produce 503 

precipitation events, including zero values. Further development can be made for multisite amount 504 

models with a nonparametric technique, such as KNNR and bootstrapping.  505 

Code and Data Availability  506 

DKNNR code is written in Matlab and is available as a supplement. 507 
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Appendix A: Example of DKNNR  516 

In this appendix, one example of DKNNR simulation is presented with observed dataset in 517 

Table A 1Table A 1 (i.e. },1{][ Ss

s

ii x ∈x  for i=1,…,n; here S=12 and n=16). The upper part of the 518 

table presents the observed precipitation (unit: mm). Its occurrence data is presented in the bottom 519 

part of this table. The current precipitation occurrence }12,...,1{][  s

s

cc XX is shown in the second 520 

row of Table A 2Table A 2. The number of nearest neighbors 416  nk and the parameters 521 

for GA (i.e. Pc and Pm) are 0.1 and 0.01, respectively. Simulation can be made as follows: 522 

(1) Estimate the distance Di between  ix  and cX for i=1,…,n-1 as in Eq.(11)(11). For 523 

example, for i=1, 524 

6|10|...|11||10|
1

11 


S

s

ss

c xXD  525 

All the estimated distances are shown in the last column of Table A 2Table A 2. 526 

http://www.weather.go.kr/weather/main.jsp
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(2) The daily index values are sorted according to the smallest distances shown in the first 527 

two columns of Table A 3Table A 3. The sorted day indices and their corresponding 528 

distances are shown in the third and fourth columns of Table A 3Table A 3. From the k 529 

number of sorted indices, one is selected with the weight probability (see Eq.(12)(12)), 530 

which is shown in the last column of Table A 3Table A 3. 531 

(3) Simulate a uniform random number (u) between 0 and 1. Say u=0.321. This value must 532 

be compared with the cumulative weighted probabilities in the last column of Table A 533 

3Table A 3 as [0 0.48 0.72 0.88 1.0]. The corresponding day index is assigned as to where 534 

the simulated uniform number falls in the cumulative weighted probabilities, here [0 0.48]. 535 

Therefore, the selected day, p, is 14. The occurrences of the following day p+1=15 for 12 536 

stations are selected as in the second row of Table A 4Table A 4.  537 

(4) For GA mixture, another set must be chosen as in step (3). Say u=0.561, which falls in 538 

[0.48 0.72]. The second one should be selected. However, there are a number of days with 539 

the same distances. Specifically, six days have the same distances with Di=4. In this case, 540 

one among all six days is selected with equal probability. Assume that p=4 is selected and 541 

the following occurrences are selected, as shown in the third row of Table A 4Table A 4. 542 

(5) With two sets, crossover and mutation process is performed as follows: 543 

(5-1) Crossover: For each station, a uniform random number (ε) is generated and 544 

compared with Pc=0.1 here. Say ε =0.345, then skip since ε =0.345> Pc=0.1. For 545 

s=6, assume the generated random number, ε (=0.051)< Pc(=0.1) and then switch 546 

the 6th station value of Set 1 into the value of Set 2 (see Table A 4Table A 4). The 547 
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occurrence state of s

cX 1
turns into 1 from 0 as shown in the fourth row of Table A 548 

4Table A 4 as well as station 8.  549 

(5-2) Mutation: For each station, a uniform random number (ε) is generated and compared 550 

with Pm=0.01. For s=12, assume ε =0.009< Pm=0.01 and switch the 12th station 551 

value of Set 1 with the one selected among all the observed 12th station values with 552 

equal probability (here the last column, s=12, of the bottom part of Table A 1Table 553 

A 1, [1 1 0 0 … 1]). The occurrence state of 12

1cX turns into 0 from 1 as shown in 554 

the fourth column of Table A 4Table A 4.  555 

(6) Repeat steps (1)-(5) until the target simulation length is reached.  556 

557 
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 655 

Table 1. Information on 12 selected stations from Yeongnam province, South Korea. 656 

Order 
Station 

Number† 
Name Longitude Latitude 

1 138 Pohang 129.3797 36.0327 

2 143 Daegu 128.6189 35.8850 

3 152 Ulsan 129.3200 35.5600 

4 159 Busan 129.0319 35.1044 

5 162 Tongyeong 128.4356 34.8453 

6 277 Youngdeok 129.4092 36.5331 

7 278 Uisung 128.6883 36.3558 

8 279 Gumi 128.3206 36.1306 

9 281 Youngcheon 128.9514 35.9772 

10 285 Hapcheon 128.1697 35.5650 

11 288 Milyang 128.7439 35.4914 

12 294 Geojae 128.6044 34.8881 

†The station number indicates the identification number operated by Korea Meteorological 657 

Administration (KMA). 658 
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Table 2. Occurrence and transition probabilities of observed data and data simulated by DKNNR 661 

and MONR for 12 stations from Yeongnam province, South Korea, during the summer season. 662 

Note that 100 sets with the same record length as the observed data were simulated and the 663 

statistics of 100 sets were averaged.   664 

  Obs DKNNR MONR 

  P11 P01 P1 P11 P01 P1 P11 P01 P1 

S1 0.56 0.27 0.38 0.56 0.27 0.38 0.56 0.26 0.37 

S2 0.56 0.27 0.38 0.58 0.26 0.38 0.57 0.25 0.37 

S3 0.57 0.26 0.38 0.58 0.26 0.38 0.56 0.26 0.37 

S4 0.58 0.25 0.37 0.58 0.25 0.37 0.57 0.24 0.36 

S5 0.58 0.25 0.37 0.59 0.24 0.37 0.58 0.24 0.36 

S6 0.52 0.25 0.34 0.50 0.24 0.33 0.52 0.24 0.33 

S7 0.55 0.26 0.36 0.56 0.25 0.36 0.55 0.24 0.35 

S8 0.56 0.25 0.37 0.57 0.25 0.37 0.57 0.24 0.36 

S9 0.55 0.25 0.36 0.55 0.24 0.35 0.55 0.24 0.35 

S10 0.58 0.25 0.38 0.59 0.24 0.37 0.57 0.23 0.35 

S11 0.57 0.25 0.36 0.58 0.24 0.36 0.56 0.24 0.35 

S12 0.59 0.25 0.38 0.59 0.25 0.38 0.59 0.25 0.37 

 665 

 666 

  667 
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Table 3. Cross-correlation of observed data for 12 stations from Yeongnam province, South 668 

Korea. 669 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 1.00 0.70 0.70 0.64 0.58 0.70 0.65 0.63 0.75 0.64 0.66 0.59 

S2 0.70 1.00 0.67 0.64 0.61 0.64 0.70 0.72 0.79 0.72 0.74 0.62 

S3 0.70 0.67 1.00 0.75 0.68 0.61 0.57 0.57 0.68 0.67 0.74 0.70 

S4 0.64 0.64 0.75 1.00 0.79 0.56 0.56 0.55 0.65 0.66 0.73 0.82 

S5 0.58 0.61 0.68 0.79 1.00 0.51 0.54 0.55 0.61 0.65 0.70 0.87 

S6 0.70 0.64 0.61 0.56 0.51 1.00 0.69 0.65 0.68 0.59 0.59 0.54 

S7 0.65 0.70 0.57 0.56 0.54 0.69 1.00 0.78 0.71 0.65 0.63 0.55 

S8 0.63 0.72 0.57 0.55 0.55 0.65 0.78 1.00 0.71 0.68 0.65 0.56 

S9 0.75 0.79 0.68 0.65 0.61 0.68 0.71 0.71 1.00 0.68 0.71 0.62 

S10 0.64 0.72 0.67 0.66 0.65 0.59 0.65 0.68 0.68 1.00 0.77 0.66 

S11 0.66 0.74 0.74 0.73 0.70 0.59 0.63 0.65 0.71 0.77 1.00 0.70 

S12 0.59 0.62 0.70 0.82 0.87 0.54 0.55 0.56 0.62 0.66 0.70 1.00 

 670 

 671 
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Table 4. Averaged cross-correlation of the 100 simulated series from the DKNNR model for 12 673 

stations from Yeongnam province, South Korea. 674 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 1.00 0.68 0.69 0.64 0.60 0.69 0.64 0.62 0.73 0.63 0.65 0.61 

S2 0.68 1.00 0.67 0.63 0.62 0.63 0.68 0.72 0.77 0.74 0.73 0.63 

S3 0.69 0.67 1.00 0.74 0.69 0.60 0.58 0.59 0.66 0.68 0.74 0.70 

S4 0.64 0.63 0.74 1.00 0.79 0.55 0.55 0.56 0.62 0.65 0.71 0.81 

S5 0.60 0.62 0.69 0.79 1.00 0.51 0.56 0.58 0.60 0.66 0.70 0.86 

S6 0.69 0.63 0.60 0.55 0.51 1.00 0.68 0.64 0.65 0.59 0.58 0.53 

S7 0.64 0.68 0.58 0.55 0.56 0.68 1.00 0.78 0.69 0.65 0.63 0.56 

S8 0.62 0.72 0.59 0.56 0.58 0.64 0.78 1.00 0.70 0.69 0.67 0.58 

S9 0.73 0.77 0.66 0.62 0.60 0.65 0.69 0.70 1.00 0.67 0.69 0.60 

S10 0.63 0.74 0.68 0.65 0.66 0.59 0.65 0.69 0.67 1.00 0.77 0.67 

S11 0.65 0.73 0.74 0.71 0.70 0.58 0.63 0.67 0.69 0.77 1.00 0.71 

S12 0.61 0.63 0.70 0.81 0.86 0.53 0.56 0.58 0.60 0.67 0.71 1.00 

 675 
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Table 5. Averaged cross-correlation of 100 simulated series from the MONR model for 12 678 

stations from Yeongnam province. 679 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 1.00 0.63 0.67 0.58 0.54 0.66 0.62 0.60 0.68 0.55 0.62 0.53 

S2 0.63 1.00 0.61 0.60 0.57 0.59 0.68 0.68 0.75 0.66 0.72 0.58 

S3 0.67 0.61 1.00 0.71 0.67 0.57 0.56 0.53 0.65 0.61 0.71 0.69 

S4 0.58 0.60 0.71 1.00 0.78 0.50 0.52 0.52 0.61 0.62 0.69 0.78 

S5 0.54 0.57 0.67 0.78 1.00 0.48 0.51 0.53 0.57 0.62 0.67 0.81 

S6 0.66 0.59 0.57 0.50 0.48 1.00 0.67 0.62 0.63 0.54 0.54 0.49 

S7 0.62 0.68 0.56 0.52 0.51 0.67 1.00 0.75 0.70 0.61 0.62 0.52 

S8 0.60 0.68 0.53 0.52 0.53 0.62 0.75 1.00 0.66 0.64 0.61 0.52 

S9 0.68 0.75 0.65 0.61 0.57 0.63 0.70 0.66 1.00 0.63 0.69 0.57 

S10 0.55 0.66 0.61 0.62 0.62 0.54 0.61 0.64 0.63 1.00 0.72 0.61 

S11 0.62 0.72 0.71 0.69 0.67 0.54 0.62 0.61 0.69 0.72 1.00 0.66 

S12 0.53 0.58 0.69 0.78 0.81 0.49 0.52 0.52 0.57 0.61 0.66 1.00 

 680 
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Table 6. The difference of RMSE of cross-correlation between MONR and DKNNR. Note that 684 

the positive value indicates that the DKNNR model better performs in preserving the cross-685 

correlation, while a negative value (underlined) shows that the MONR model better performs.  686 

MONR-

DKNNR 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 0.000 0.014 0.004 0.013 0.012 0.012 0.008 0.005 0.024 0.031 0.011 0.035 

S2 0.014 0.000 0.023 0.013 0.021 0.009 0.010 0.013 0.018 0.027 0.011 0.020 

S3 0.004 0.023 0.000 0.015 0.004 0.014 0.003 0.022 0.009 0.028 0.011 0.004 

S4 0.013 0.013 0.015 0.000 0.002 0.017 0.018 0.014 0.018 0.018 0.027 0.024 

S5 0.012 0.021 0.004 0.002 0.000 0.014 0.021 0.014 0.015 0.013 0.015 0.012 

S6 0.012 0.009 0.014 0.017 0.014 0.000 0.006 0.010 0.030 0.018 0.029 0.021 

S7 0.008 0.010 0.003 0.018 0.021 0.006 0.000 0.005 0.008 0.024 0.012 0.023 

S8 0.005 0.013 0.022 0.014 0.014 0.010 0.005 0.000 0.032 0.019 0.022 0.023 

S9 0.024 0.018 0.009 0.018 0.015 0.030 0.008 0.032 0.000 0.019 0.005 0.027 

S10 0.031 0.027 0.028 0.018 0.013 0.018 0.024 0.019 0.019 0.000 0.020 0.021 

S11 0.011 0.011 0.011 0.027 0.015 0.029 0.012 0.022 0.005 0.020 0.000 0.022 

S12 0.035 0.020 0.004 0.024 0.012 0.021 0.023 0.023 0.027 0.021 0.022 0.000 

Note that no negative value can be found implying that the DKNNR model preserves the 687 

crosscorrelation better than the MONR model. 688 

 689 

 690 

 691 

 692 

  693 



40 

Table 7. Lag-1 cross-correlation of observed data for 12 stations from Yeongnam province, 694 

South Korea. 695 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 0.29‡ 0.26 0.30 0.27 0.24 0.29 0.26 0.24 0.27 0.26 0.28 0.26 

S2 0.28 0.30 0.29 0.28 0.26 0.28 0.28 0.27 0.31 0.30 0.32 0.27 

S3 0.28 0.26 0.31 0.30 0.27 0.27 0.25 0.24 0.27 0.27 0.30 0.27 

S4 0.28 0.27 0.32 0.34 0.31 0.27 0.26 0.26 0.28 0.28 0.31 0.32 

S5 0.29 0.28 0.32 0.35 0.34 0.27 0.27 0.26 0.29 0.29 0.33 0.35 

S6 0.25 0.22 0.26 0.23 0.22 0.27 0.24 0.22 0.25 0.23 0.24 0.23 

S7 0.25 0.26 0.27 0.25 0.25 0.28 0.29 0.27 0.27 0.27 0.28 0.26 

S8 0.29 0.30 0.29 0.27 0.26 0.30 0.31 0.30 0.31 0.30 0.31 0.27 

S9 0.29 0.29 0.30 0.29 0.27 0.29 0.27 0.27 0.30 0.30 0.31 0.28 

S10 0.28 0.31 0.32 0.31 0.29 0.29 0.30 0.30 0.31 0.33 0.34 0.29 

S11 0.27 0.29 0.31 0.30 0.27 0.27 0.27 0.27 0.29 0.30 0.32 0.29 

S12 0.30 0.29 0.32 0.35 0.33 0.28 0.27 0.26 0.29 0.30 0.33 0.35 

‡Shaded values represent lag-1 autocorrelation (i.e. the one lagged correlation for the same site).  696 
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Table 8. The difference of RMSE of lag-1 cross-correlation between MONR and DKNNR. Note 699 

that a positive value indicates that the DKNNR model better performs in preserving lag-1 cross-700 

correlation, while a negative value (underlined) shows that the MONR model better performs. 701 

MONR-

DKNNR 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 0.000 0.048 0.075 0.049 0.041 0.095 0.059 0.036 0.047 0.055 0.063 0.052 

S2 0.070 0.000 0.079 0.057 0.046 0.104 0.068 0.047 0.066 0.058 0.073 0.047 

S3 0.067 0.054 0.000 0.046 0.031 0.096 0.072 0.056 0.055 0.052 0.056 0.025 

S4 0.086 0.075 0.083 0.002 0.037 0.117 0.089 0.077 0.078 0.062 0.077 0.040 

S5 0.111 0.096 0.098 0.074 0.002 0.124 0.103 0.085 0.105 0.070 0.108 0.049 

S6 0.039 0.024 0.060 0.038 0.043 -0.002 0.028 0.017 0.045 0.034 0.055 0.037 

S7 0.055 0.045 0.077 0.061 0.062 0.084 0.000 0.023 0.051 0.052 0.071 0.064 

S8 0.092 0.078 0.104 0.079 0.068 0.115 0.079 0.000 0.094 0.078 0.101 0.074 

S9 0.060 0.052 0.084 0.066 0.056 0.106 0.057 0.056 0.001 0.069 0.076 0.064 

S10 0.091 0.094 0.105 0.081 0.062 0.123 0.107 0.085 0.100 0.001 0.092 0.063 

S11 0.064 0.061 0.071 0.057 0.033 0.109 0.084 0.063 0.062 0.043 -0.002 0.043 

S12 0.121 0.099 0.096 0.077 0.036 0.130 0.101 0.086 0.107 0.082 0.109 0.003 

 702 
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 704 

Table 9. Bias of lag-1 cross-correlation of the generated data from the DKNNR model. Note that 705 

a positive value indicates the overestimation of lag-1 cross-correlation, while a negative value 706 

shows underestimation. Note that 



N

m

hG

mNBias
1

/1 and see Eq. (18)(18) for the details of 707 

each term. 708 

 709 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 0.000 0.009 0.001 0.003 0.006 -0.002 0.010 0.011 0.006 0.010 0.010 0.006 

S2 0.005 0.009 0.010 0.006 0.008 0.006 0.011 0.011 0.004 0.009 0.009 0.010 

S3 0.002 0.010 0.001 -0.002 0.003 0.002 0.007 0.008 0.006 0.009 0.006 0.007 

S4 0.006 0.009 0.004 0.001 0.007 0.003 0.008 0.008 0.009 0.010 0.010 0.005 

S5 0.004 0.005 0.000 -0.001 -0.001 0.007 0.005 0.006 0.002 0.008 0.000 -0.001 

S6 -0.002 0.006 0.000 0.002 -0.001 -0.002 0.004 0.003 0.002 0.005 0.004 0.001 

S7 0.004 0.008 0.003 0.003 0.001 0.004 0.002 0.006 0.007 0.007 0.007 0.002 

S8 0.000 0.005 0.004 0.001 0.004 -0.003 -0.003 0.000 0.001 0.004 0.006 0.003 

S9 0.005 0.007 0.006 0.003 0.006 0.004 0.010 0.007 0.004 0.007 0.006 0.007 

S10 0.003 0.005 0.001 -0.001 -0.001 0.001 0.001 0.001 0.003 0.000 0.002 0.001 

S11 0.010 0.010 0.008 0.004 0.008 0.009 0.009 0.009 0.010 0.010 0.011 0.008 

S12 0.003 0.006 0.001 -0.001 0.004 0.003 0.008 0.008 0.005 0.005 0.002 0.001 
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Table 10. Bias of lag-1 cross-correlation of the generated data from the Wilks model. Note that a 712 

positive value indicates the overestimation of lag-1 cross-correlation, while a negative value 713 

shows underestimation. 714 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S1 -0.001 -0.062 -0.089 -0.063 -0.055 -0.106 -0.074 -0.052 -0.060 -0.070 -0.080 -0.067 

S2 -0.084 0.000 -0.096 -0.072 -0.061 -0.117 -0.083 -0.063 -0.079 -0.072 -0.089 -0.063 

S3 -0.080 -0.070 0.001 -0.059 -0.043 -0.110 -0.086 -0.072 -0.069 -0.066 -0.071 -0.037 

S4 -0.100 -0.090 -0.097 -0.001 -0.048 -0.129 -0.103 -0.093 -0.093 -0.077 -0.092 -0.051 

S5 -0.125 -0.110 -0.111 -0.087 -0.001 -0.138 -0.117 -0.100 -0.118 -0.084 -0.121 -0.060 

S6 -0.053 -0.037 -0.074 -0.051 -0.057 -0.001 -0.039 -0.030 -0.060 -0.047 -0.070 -0.049 

S7 -0.068 -0.058 -0.091 -0.077 -0.077 -0.098 -0.002 -0.038 -0.065 -0.065 -0.086 -0.079 

S8 -0.106 -0.091 -0.119 -0.094 -0.084 -0.128 -0.093 0.001 -0.108 -0.091 -0.116 -0.088 

S9 -0.074 -0.064 -0.098 -0.080 -0.070 -0.119 -0.072 -0.070 -0.001 -0.082 -0.091 -0.078 

S10 -0.105 -0.107 -0.120 -0.096 -0.075 -0.136 -0.119 -0.097 -0.113 -0.001 -0.106 -0.076 

S11 -0.078 -0.074 -0.085 -0.070 -0.047 -0.123 -0.097 -0.077 -0.076 -0.056 -0.001 -0.057 

S12 -0.134 -0.112 -0.108 -0.088 -0.046 -0.142 -0.116 -0.101 -0.121 -0.095 -0.122 0.000 
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 718 

Figure 1. Locations of 12 selected weather stations at the Yeongnam province. See Table 1Table 719 

1 for further information about the stations. 720 
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 721 

 722 
Figure 2. Testing for different probabilities of crossover Pcr. RMSE is estimated for all the tested 723 

12 stations for each transition and limiting probability of the simulated data with the record 724 

length of 100,000.  725 

 726 

  727 
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 728 

 729 

 730 

Figure 3. Testing for different probabilities of mutation Pm. RMSE is estimated for all the tested 731 

12 stations for each transition and limiting probability of the simulated data with the record 732 

length of 100,000.  733 

 734 
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 736 
Figure 4. Frequency of the observed patterns among all the possible cases (212=4096). The X 737 

coordinate indicates each pattern with the numbering of the binary number system. All zero (0) 738 

and all one (4095) has the largest and second largest numbers of frequency as 1894 and 877, 739 

respectively as expected meaning all dry and all wet stations. Note that the bars are very sporadic 740 

indicating a number of occurrence patterns are not observed.  741 

 742 

 743 
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 744 

Figure 5. Boxplots of the P11 probability for the simulated data from the DKNNR model (top 745 

panel) and the MONR model (bottom panel) as well as the observed (x marker) for the 12 746 

selected weather stations from the Yeongnam province. 747 

 748 
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 749 

Figure 6. Boxplots of the P01 probability for the data simulated from the DKNNR model (top 750 

panel) and the MONR model (bottom panel) as well as the observed (x marker) for the 12 751 

selected weather stations from the Yeongnam province. 752 

 753 
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 763 

Figure 7. Boxplots of the P1 probability for the data simulated from the DKNNR model (top 764 

panel) and the MONR model (bottom panel) as well as the observed (x marker) for the 12 765 

selected weather stations from the Yeongnam province. 766 
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 767 

Figure 8. Scatterplot of cross-correlations between 12 weather stations for the observed data (X 768 

coordinate) and the generated data (Y coordinate) generated from the DKNNR model (top panel) 769 

and the MONR model (bottom panel).  The cross-correlations from 100 generated series are 770 

averaged for the filled circle and the errorbars upper and lower extended lines indicate the range 771 

of 1.95×standard deviation. 772 
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 775 

Figure 9. Scatterplot of lag-1 cross-correlations between 12 weather stations for the observed 776 

data (X coordinate) and the generated data (Y coordinate) generated from the DKNNR model 777 

(top panel) and the MONR model (bottom panel). The cross-correlations from 100 generated 778 

series are averaged for the filled circle and the errorbars upper and lower extended lines indicate 779 

the range of 1.95×standard deviation.  780 
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 782 

Figure 10. Scatterplot of lag-1 cross-correlations between 12 weather stations for the observed 783 

data (X coordinate) and the generated data (Y coordinate) generated from the DKNNR model 784 

(top panel) and the MONR model (bottom panel) with the whole year data not with the summer 785 

season. The cross-correlations from 100 generated series are averaged. 786 
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 792 

Figure 11. Transition probabilities and marginal distribution for the selected five stations along 793 

with changing the cross-over probability Pcr with the condition that the candidate value is one 794 

and the previous value is also one. See Eq.(15)(15) for the detail. 795 

 796 
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 797 

Figure 12. Transition probabilities and marginal distribution along with changing the cross-over 798 

probability with the condition that the mutation is processed only if the candidate value is one. 799 

See Eq.(16)(16) for the detail. 800 

 801 
 802 
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Table A 1. Example dataset of daily rainfall with 12 weather stations and 16 days for measured 804 

rainfall (mm) in the upper part of this table and its corresponding occurrences in the bottom part 805 

of this table. 806 

Day S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

1 2.0 2.9 1.2 0.0 0.0 1.8 4.0 8.9 2.0 4.6 1.3 0.6 

2 52.6 39.8 47.2 17.4 11.8 31.0 30.0 33.7 52.0 57.8 37.0 17.5 

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5 0.2 1.0 1.4 1.9 12.3 0.0 0.0 0.0 0.7 3.1 3.5 8.1 

6 14.8 0.2 0.8 0.2 5.0 0.0 0.0 18.0 0.0 0.0 0.6 3.1 

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10 0.0 1.0 0.0 0.4 0.0 3.8 0.0 0.1 0.0 0.0 0.0 0.0 

11 7.1 6.4 12.8 12.8 13.6 2.3 2.0 5.4 6.0 7.3 16.4 20.3 

12 0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 4.3 

13 10.0 1.6 11.6 14.3 1.5 5.4 0.0 0.0 2.5 0.0 2.7 16.1 

14 2.3 0.0 0.7 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 

15 31.5 4.3 30.6 12.7 14.4 25.8 3.5 0.8 5.0 2.7 6.5 20.3 

16 37.0 7.8 30.1 11.2 9.6 36.8 2.5 4.7 13.5 1.7 10.1 14.1 

Day S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

1 1 1 1 0 0 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 1 1 1 

3 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 

5 1 1 1 1 1 0 0 0 1 1 1 1 

6 1 1 1 1 1 0 0 1 0 0 1 1 

7 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 1 0 1 0 1 0 1 0 0 0 0 

11 1 1 1 1 1 1 1 1 1 1 1 1 

12 0 0 0 0 1 0 0 0 0 0 0 1 

13 1 1 1 1 1 1 0 0 1 0 1 1 

14 1 0 1 0 0 1 0 0 0 0 0 0 

15 1 1 1 1 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 1 1 1 1 
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Table A 2. Example dataset for estimating distances. The second row presents the current daily 808 

precipitation occurrences for 12 stations and the rows below show the absolute difference 809 

between the current occurrences (Xc) and the observed data in Table A 1Table A 1. The last 810 

column presents the distances in Eq. (11)(11). 811 

day S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Dist 

Xc 0 1 1 0 0 1 1 0 0 0 0 0  

1 1 0 0 0 0 0 0 1 1 1 1 1 6 

2 1 0 0 1 1 0 0 1 1 1 1 1 8 

3 0 1 1 0 0 1 1 0 0 0 0 0 4 

4 0 1 1 0 0 1 1 0 0 0 0 0 4 

5 1 0 0 1 1 1 1 0 1 1 1 1 9 

6 1 0 0 1 1 1 1 1 0 0 1 1 8 

7 0 1 1 0 0 1 1 0 0 0 0 0 4 

8 0 1 1 0 0 1 1 0 0 0 0 0 4 

9 0 1 1 0 0 1 1 0 0 0 0 0 4 

10 0 0 1 1 0 0 1 1 0 0 0 0 4 

11 1 0 0 1 1 0 0 1 1 1 1 1 8 

12 0 1 1 0 1 1 1 0 0 0 0 1 6 

13 1 0 0 1 1 0 1 0 1 0 1 1 7 

14 1 1 0 0 0 0 1 0 0 0 0 0 3 

15 1 0 0 1 1 0 0 1 1 1 1 1 8 

16 1 0 0 1 1 0 0 1 1 1 1 1 8 

 812 

  813 
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Table A 3. Example for selecting one sequence for Xc+1. The second row presents the distances 815 

in Table A 2Table A 2. The third and fourth columns show the sorted days and distances for the 816 

smallest distances to the largest in the second column. The fourth row presents the probabilities 817 

estimated with Eq. (12)(12). Note that there are six days whose distances are the same with each 818 

other. In this case all the days are included and among six days, one is selected with equal 819 

probabilities.  820 

Day Dist. 
Sorted 

Day 

Sorted 

Dist 
Prob 

1 6 14 3 0.48 

2 8 3 4 0.24 

3 4 4 4 0.16 

4 4 7 4 0.12 

5 9 8 4  

6 8 9 4  

7 4 10 4  

8 4 1 6  

9 4 12 6  

10 4 13 7  

11 8 2 8  

12 6 6 8  

13 7 11 8  

14 3 15 8  

15 8 16 8  

16 8 5 9  

 821 

  822 
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Table A 4. Example for GA mixture for Xc+1. The second and third rows present two selected 823 

sets, while the third row shows the final set for Xc+1 with the crossover at S6 and S8 and the 824 

mutation for S12.  825 

 
Assigned 

day, p 

Selected 

day, 

p+1 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Set1 14 15 1 0 0 1 1 0 0 1 1 1 1 1 

Set2 4 5 1 0 0 1 1 1 1 0 1 1 1 1 

Final   1 0 0 1 1 1 0 0 1 1 1 0 

 826 

 827 

  828 
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