
Author response to Anonymous Reviewer #1 on: “Analysis fire patterns 

and drivers with a global SEVER-FIRE model incorporated into Dynamic 

Global Vegetation Model and satellite and on-ground observations” by 

Sergey Venevsky et al. 

We appreciate the constructive comments from the reviewers. Reviewer 

comments are in black, our responses are in blue. 

And a revised document highlighting the tracked changes we have made 

based on these comments are also provided after the end of the response. 

Reviewer 1# 

The paper presents a dynamical fire model coupled with a vegetation 

scheme that is the global extension of a previous regional version 

designed for the Iberian peninsula. In general the topic is quite hot in the 

community. There is consensus that for many aspects we should go 

toward integrating more and more processes into the Earth system 

modelling, as it is proved that one process can improve the predictability 

of even not affected variables.  

While the topic and all associated developments are very welcome I found 

that the paper does not live up to my expectations. 

Thank you for your comments. We completely changed all wordings in 

Introduction and somewhere Methods and Discussion and now hope we met 

expectations of Reviewer 1. 

First of all I should agree with the previous comment that the introduction 

feels more like a rant about others work that a fair assessment of the 

quality of the presented model. Moreover most of the time there is no 

scientific justification on why other approaches appear to be inferior. I do 

not find that the use “of rather complicated equations” (line 16) could be 

considered as an objective metric to judge the (non)- quality of a model 

in my opinion  

But what annoys most is the conveyed idea that satellite data and their 

use is almost inherently wrong and/or inferior to local measurements. 

This is just a personal thinking of the authors contradicted in large part 

by the tangible improvements that satellite data have brought to many 

communities including oceanography, numerical weather prediction and 

obviously fire mapping. Clearly there are limitations in satellite data but 

so there are in using local observations or even fire lab experiments as 

the representativeness is a serious issue there 

In my opinion statements like “No satellite derived data are used as an 

input of the model. Only physically based or just ’common sense’ based 



equations from on-ground observations allow direct implementation of 

SEVER-FIRE Model...” should be removed as they have no quality 

justification apart from the liking of the authors.  

Essentially I highly recommend to rewrite the introduction removing all 

the assertion that cannot be justified scientifically and highlighting the 

innovative aspect of the model proposed.  

Accept. The Introduction is re-written. And we delete all the assertion that 

cannot be justified scientifically and especially, highlight the innovative aspect 

of the model proposed. 

Methods  

The description of the model is a bit chaotic possibly due to the fact that 

a big part of the model had already been developed, therefore equations 

seems to appear out of no-where. I understand the need to describe the 

model but if modelling components were fully described somewhere else 

than a reference to a previous publication should suffice.  

Here we have a bit of contradictive requests of Reviewer 1 and Reviewer 2. We 

are more inclined that we should describe all model elements as Reviewer 2 

suggested (in case model components were already described we do it briefly). 

Specific points: 

1. the fire danger index is a byproduct of the model and not a model 

component and should be put later.  

Sorry, we kindly disagree that FDI is not a model component and keep 

description as it was. 

2. In the equation (7) for the number of expected fire from lightning I was 

expecting to have a soil moisture component as that would discriminate 

between wet and dry lightning. I believe the parameter moist is a constant? 

or is this soil moisture? Please clarify.  

Thank you for this comment. Term moist is volumetric soil moisture in 0.1 m of 

upper soil layer. This is now mentioned in paragraph 2.1.1. 

3. The parametric equations (5) and (6) need some justification are these 

teh fit over some data? Is this published somewhere else? If so they 

should be removed and the paper should only concentrate on what is new 

in this model.  

Yes. This is the fit of data over eight fuel types for two classes of ignitions for 

positive and negative flashes. Now it is mentioned in the section 2.1.4--2) 



Simulation of lightning ignition events and number of lightning fires.  

4. In the analysis in figure 2, how you make sure the fire were ignited from 

a lightning ?  

Number of lightning fires for provinces is published in Wierzchowski et al. 

(2002). Now it is mentioned in the caption for Figure 2. 

Equation 9. I wonder how you set the parameter a. Why did you decided 

that 1 fire over millions of hectares is a reasonable number? Also what is 

it millions of hectares? 1,2 ,10 ?  

This was a misprint. It should be read “one million hectares”. Using of not SI 

area units here appeared because of origin of equation 8, which is equivalent 

to equations 10 and 14 in Venevsky et al. (2002). Scaling parameter a=0.0001 

km2/mln. hectar was initially set (but not mentioned as I found) in my Reg-FIRM 

model (Venevsky et al., 2002) to convert mln hectares to square kilometers, 

here it was slightly modified (divided by 8 kgC/m-1 average fuel density). See 

changes below equation (8). 

5. I suppose equations 9 and 10 have been derived somewhere else? as 

all appears pretty cripticat  

Equation 10 is similar to equation 7 and (in our opinion) does not need 

clarification. Equation 8 is explained in more details now. Equation 9 was 

derived as logarithmic regression of historically observed number of human 

fires, see new text below Eq.(9): 

“Equation (9) was obtained using logarithmic regression from geographically 

distributed observed number of human fires (map of average over 1974-1994 

annual number of human fires for Spain (Vazquez and Moreno, 1998), map of 

average over annual number of human fires by Canadian ecoregions 1961-

1995 (Stocks et al., 2002) and map of average over annual number of total fires 

(assumed to be all human) by African countries 1981-1991 (Barbosa et al., 

1999). No division to rural and urban population was assumed when deriving 

Eq. (9)”   

6. The need for a simplification when considering human induced fires is 

understandable. One thing I would add is a fire management factor. So in 

Europe it is not just a matter of GDP- or wealth but also of controlling 

program in place.  

Indeed. We put this comment in Discussion and note it for future development 

of SEVER-FIRE. 

“Fire management factor should be added to the model in the regions where 

coordinated wildfire controlling program is in place (e.g. existence and actions 



of European Commissions Emergency Response Coordination Centre in 

Europe(https://ec.europa.eu/echo/what-we-do/civil-protection/forest-fires_en)).”   

7. Page 11 line 5 you mean EFFIS? Suppression makes sense in Europe 

and 2 days is probably reasonable. However there are many places were 

suppression does not take place. Is this a global parameter? Please 

comment on this  

Yes. Sorry for typo, these are EFFIS database. Application of 2 days as 

maximum for fire duration at global scale limits our model. We write now in the 

text: 

“However, the limitation of maximum fire duration to two days was set due to 

range in the fire duration of EFFIS database, which covers mainly European 

domain. Globally this limitation may be not valid for remote high latitude areas, 

but even in these regions mathematical expectation of fire duration will be close 

to one day (see Korovin (1996))” 

In Discussion: 

“Study and parameterization of fire duration in remote areas is necessary for 

improvement of area burnt calculation in these areas.” 

In Introduction: 

“(e.g., setting maximum time of fire to two days but this may be updated and 

modified in the future by introducing the latest global fire duration datasets 

(Andela et al., 2018)” 

Data  

1. Please specify if the GFED dataset used include small fires. 

No small fires are included. This is now mentioned in the section 2.3 

Results  

Results are difficult to judge as the datasets used for validations are 

affected themselves from large uncertainties. The model seems to 

produce reasonable spatial patterns for burned areas and a good 

improvements in the burning temporal variability especially when large 

anomalous conditions take place as the ones induced by ENSO. I do not 

see the lack of a big improvements as a problem as this is a first overall 

assessment of the global model and components can be tuned and 

improved if a specific aspects is proven very relevant for the fire process.  



Agree and thank you for your good summary. 

Final remark  

The paper is very dishomogeneous in the way is written. The discussion 

for example is very nicely worded while the method session is badly 

explained and difficult to follow as many equations are just taken out 

without clearly stating if this is the outcome of a previous analysis (I 

suspect that is the case).  

A throughout re-writing of the introduction is a strong requirement as at 

the moment, a part from upsetting an entire community, is not making a 

good service to the model either as does not explain what are the 

innovative aspects  

Thank you very much for your very constructive suggestions. Based on your 

specific comments before, we have revised the paper very carefreely. 

Especially, we re-write the Introduction part, including many innovative aspects 

of SEVER-FIRE, and clarify the Methods and Discussion parts. 

Finally as this is the presentation of a new model or at least a substantial 

development of an old one, I would suggest to extend the “code 

availability” section giving more details about the model itself 

(programming language, input output format/ licence etc etc) 

This has been done in the new ‘code availability’ part. 
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Referee #2 

Review summary  

In this manuscript, Venevsky et al. describe a new fire module, SEVER-

FIRE, incorporated into the SEVER dynamic global vegetation model 

(DGVM). SEVER-FIRE is largely based on the Reg-FIRM fire model, for 

whose description Venevsky was also lead author, and which provided 

the structural foundation upon which many modern global fire models 

have been built. SEVER-FIRE includes several new elements relating to 

fire ignition (by both lightning and humans) and fire termination, which 

seem likely to improve model realism. Many different approaches have 

been used in various aspects of global fire modeling, and the new 

elements introduced in this manuscript are welcome as alternative 

mechanisms and parameterizations. A new global fire-vegetation model, 

moreover, could add weight to efforts to explore the uncertainty related 

to fire drivers and the future of fire regimes around the world. For that 

reason, I think this manuscript could represent an important contribution 

to the fire modeling literature. That said, I recommend that the manuscript 

be resubmitted with major revisions. My explanation follows. 

Main critique 

Previous comments on this manuscript have highlighted the tone of parts 

of the paper as problematic. While I don’t see it as overly hostile, I do 

agree that revisions should be made in the aim of reflecting the authors’ 

respect for previous work. In their reply to Colin Prentice’s comment, the 

authors have indicated that they intend to make changes in that direction, 

so I will leave aside questions of tone and language. I do have some 

concerns regarding the content of the discussion, however.  

The modeling approach of Venevsky et al. is to minimize the use of 

parameterizations based on remote sensing (here, “remote-sensing 

approach”) and to instead favor mechanisms and relationships derived 

from first principles or laboratory-scale experiments (“first-principles 

approach”). This, they assert, may confer an advantage because their 

parameterizations may hold true far into the past or future (i.e., outside 

the satellite era) where remote-sensing-derived parameterizations do not. 

I can agree with that to some extent, in principle. However, Venevsky et 

al.—in the original manuscript and in their reply to Prentice—need to 

rethink how they discuss this.  

The arguments both in Introduction and Discussion were changed to meet 

requests of Reviewer 2 and 1. Now manuscript is focused mainly on innovations 

presented by SEVER-FIRE in comparison with other models. 

In their reply to Prentice, the authors cite Baudena et al. (2015) as 



supporting their contention that including parameterizations based on 

remote sensing data can result in unreliable models. Specifically, they 

quote this passage (quoted here in full): 

LPJ-GUESS-SPITFIRE simulation results do not show any low tree 

cover value (e.g., below 50 % cover) for rainfall higher than about 900 

mm yr−1 (Fig. 2b). In other words, this model (quite surprisingly) 

does not predict any savanna in mesic environments. In the model, 

though fire frequency is prescribed from the satellite data, fire 

spread depends on fuel load (Fig. 3c) and fuel moisture, and thus 

unfavorable conditions might still prevent fires. Both grass and tree 

presence increases fire intensity, opening up space, and thus 

favoring grasses. This is not strictly a positive grass–fire feedback 

because grass-free areas can also burn. Thus, as grasses are not 

fostered by the positive feedback with fire, they are always 

outcompeted by trees in LPJ-GUESS-SPITFIRE when water 

availability is high, and they do not survive above approximately 900 

mm yr−1. At the same time, this issue is also likely to be connected 

to fire intensity depending on fuel moisture. In this model, fire 

occurrence in a patch is calculated probabilistically from the 

proportion of burned area as determined from the remote sensing 

product. If fire occurs in a period of high fuel moisture, the intensity 

will be limited, thus having little effect on vegetation. This 

probabilistic approach is necessary because the temporal extent of 

the remote sensed data (now only ca. 10 years), used to generate the 

probability of burned area for each pixel, is much shorter than the 

extent of the climate data for which the model was run (ca. 100 years). 

And here is the authors’ interpretation, which they intend to include in 

their revision: 

For example, use of remote sensing derived fire frequency for Africa 

as an input to SPITFIRE for Africa, resulted in absence of savanna 

for the area with annual rainfall larger then 900 mm/yr (Baudena et 

al., 2015). This shortcoming of process-oriented fire model is 

attributed by authors to the short temporal extent of initial remote 

sensed data used for preparation of input data. 

That is unfortunately a misinterpretation of the Baudena et al. (2015) text. 

As described in Thonicke et al. (2010), Lehsten et al. (2009, 2016), and 

Rabin et al. (2017)—and as Venevsky et al. know, given their familiarity 

with how relevant parts of SPITFIRE were derived from Reg-FIRM—

SPITFIRE does of course have a module that, just as with SEVER-FIRE, 

endogenously computes fire occurrence. In Baudena et al. (2015), that 

module in LPJ-GUESS-SPITFIRE (and two other global fire-vegetation 

models) was experimentally disabled and replaced with exogenous, 



remotely sensed burned area, with the goal of isolating and comparing 

the fire-vegetation models’ representation of fire’s ecological effects 

rather than fire occurrence and spread. In the quoted text, Baudena et al. 

(2015) are attributing the poor performance of LPJ-GUESS-SPITFIRE not 

to the use of satellite data (which Baudena et al. effectively consider a 

true representation of reality) but rather to LPJ-GUESS-SPITFIRE not 

representing fuel availability and moisture in a realistic way. The relevant 

mechanisms in LPJ-GUESSSPITFIRE were not derived from remote 

sensing data.  

Thank you very much. Yes. Indeed, Baudena et al. (2015) are not speaking 

about using remote sensing data for parametrization of global fire model, but 

rather about using of remote sensing data as input (which is also written in 

suggested changes to the manuscript). What I meant in my response to I. Colin 

Prentice is that short period of prescribed from RS areas burnt in comparison 

with climate data range (100 years) for LPJ-GUESS-SPITFIRE made it 

necessary to use probabilistic method for fire occurrence in each singular patch. 

Use of probabilistic method could obscure resulting tree cover in a high fuel 

moisture patch where fire is randomly prescribed. However, I also think in with 

line of Reviewer 2, that to larger extent deficiencies in representation of 

resulting tree cover in Africa are mainly determined by deficiencies in 

representation of fire intensity by LPJ-GUESS-SPITFIRE. The text from our 

response to I. Colin Prentice is misleading in contexts of impact of RS data to 

parametrization, thus the text will be discarded in our final revision.                                                            

Venevsky et al. also, in their reply to Prentice, suggest that the Baudena 

et al. (2015) example shows a disadvantage of the remote sensing 

approach in the present as well. However, the example does not support 

their case: 

• It is the result of a contrived experiment that does not reflect how 

most global fire-vegetation models actually work.  

This is true. See above. 

• The only global fire-vegetation model I can think of that does 

directly input satellite-derived burned area (LM3-FINAL.1; Rabin et 

al., 2018) would not be negatively affected by that input in the 

present. This is because LM3-FINAL.1 (a) only applies those burned 

areas on cropland and pasture, thus avoiding the problem with bad 

fire inputs leading to bad community composition, and (b) uses 

constant combustion completeness and fractional mortality factors 

that would not be affected by fire occurring on wet vs. dry days. 

Rabin et al. (2018) do acknowledge that the use of this input is 

problematic when applied outside the period of its derivation. 



Yes. I agree that studies of Rabin et al. (2018), Rabin et al. (2015) demonstrate 

that satellite-derived input for burned areas with some restrictions mentioned 

by reviewer 2 (listed in (a) and (b)) can be successfully applied in global fire 

models. Rabin et al. (2018) also demonstrated that relatively small sub-set of 

satellite-derived input can be successfully used for optimization of parameters 

of global fire model. Similar method was also applied by Khvostikov et al. (2015) 

for optimization of parameters of a dynamic global vegetation model for Russia 

for better description of simulated land cover. I also think that satellite-derived 

areas burnt should be used for optimization of parameters for SEVER-FIRE in 

the future, but once more will promote developing at first instance a first-

principle global fire model with limited or no satellite derived parameters and 

only afterwards use satellite-derived data for fine tuning by formal or heuristic 

optimization. The important findings of Rabin et.al. 2018 and 2015 were 

presented in the end of Discussion.    

As I’ve said, I agree with the authors that a first-principles approach could 

be advantageous because it seems more likely to result in 

parameterizations that are more robust outside the satellite era, but I 

cannot think of how any example using historical data would support their 

case. Instead, I think the best thing the authors could write is what they 

wrote in their reply to Prentice: 

We argue that it would be advantageous if one can produce long-

term fire relationships without depending on remote-sensing, which 

is available for a relatively short period of time (a few decades). Fire 

return intervals can be of the order of hundreds of years, whereas 

remote sensing is available for several decades. Therefore using 

remote sensing to derive relationships implicitly assumes a space 

for time substitution, which may or may not hold. Also our approach 

in turn allows the remote sensing to be employed as a valuable 

evaluation dataset, albeit over this limited time interval.  

Thank you for good advice. We included the paragraph you have mentioned in 

slightly modified form in Introduction. 

However, I am actually not convinced that SEVER-FIRE even is more 

grounded in first principles than most other global fire-vegetation models! 

I see at least one instance where remote sensing or other large-scale, 

recent historical datasets have been used: 

• Equations 1–6, governing lightning ignitions, were derived from 

national networks of ground-based sensors in the United States and 

Canada in 1997 (Allen & Pickering, 2002).  

This is true, Allen and Pickering (2002) parametrization is designed from the 

OTD/LIS observation network for North America. However, the polynomial 



power four parametrization (number of flashes by convective variables, in our 

case convective precipitation) is designed based on physical model of induction 

suggested by Vonnegut (1963). We are now on the way of complete substitution 

of Allen and Pickering (2002) parametrization by the new entirely physically 

based model of lightning production (prototype is published in Venevsky (2014))    

• Equation 9 may also have used such a dataset, although it’s not 

clear exactly how it was parameterized. In their reply to Prentice, the 

authors mention that the value of a  ̄ for peninsular Spain was 

derived in the Reg-FIRM description (Venevsky et al., 2002); while I 

was not able to totally follow the chain of logic presented there, I do 

understand generally the strategy. However, I do not see the 

parameterization for the Sahel that, according to the authors’ reply 

to Prentice, is also supposedly in Venevsky et al. (2002). More 

importantly, even in their reply to Prentice, the authors do not 

describe what historical fire occurrence data they used to derive 

Equation 9. Was it satellite data? If so, that undermines the authors’ 

insistence that SEVER-FIRE has an advantage due to independence 

from parameterizations based on remote sensing data. Or was it 

instead based on national statistical databases? There are issues 

with those as well:  

– They only exist in certain wealthy countries. 

– They may not be reliable going back into the mid-20th century.  

– They depend to some extent on the satellite record for recent 

decades.  

– It would still be basing a part of the model on some external 

data which, although based on a longer time period than the 

satellite record, could still fail to be representative of 

mechanisms far in the past or future. 

We now tried to describe derivation of number of human ignitions in more 

details. For derivation of equation 9, we used 1) dataset on historical fire 

statistics for Spain 1974-1994 (Vazquez and Moreno, 1998); 2) dataset on 

historical fire statistics for Canada 1965-1991 (Stocks et al., 2002). We admit 

that these historic datasets do all have four shortcomings listed by Reviewer 2. 

The statement about Sahel in my reply to I. Colin Prentice is a mistake, what I 

wanted to say is estimate of �̅� for Africa by countries done in Reg-FIRM from 

(satellite) data of for areas burnt in Africa 1981-1991 (Barbosa et al., 1999). 

And the changes are shown in the text below Eq. (9).      

This is not to say that SEVER-FIRE is an outlier; essentially all global fire-

vegetation models are designed to reproduce a limited time series of 

historical data, either through explicit parameterization processes or 



through manual model tuning. Global fire models are typically classified 

into two groupings—purely empirical models and quasi-mechanistic 

models—which differ in their reliance on parameterizations derived from 

historical data. See, for example: 

• The anthropogenic ignition components of (most of) the eight 

models included in Table S1 in the Supplement of Rabin et al. (2017) 

• The parameter estimation (using the Levenberg-Marquardt 

algorithm) described for the quasi-mechanistic FINAL.1 in Rabin et 

al. (2018)  

• Purely empirical models such as SIMFIRE (Knorr et al., 2014, 2016) 

Thus SEVER-FIRE, rather than being categorically different from most 

other global fire-vegetation models (a “purely mechanistic” model, 

perhaps) as Venevsky et al. contend, seems instead to be more first-

principles-based only by a matter of degree (i.e., it derives lightning flash 

rate from weather rather than from a historical-derived climatology, 

although that derivation does itself depend in part on historical data). 

We agree that SEVER-FIRE is a quasi-mechanistic model which is more first-

principles-based by a matter of degree, this is now written in Introduction. 

Clarification for this definition of SEVER-FIRE is done based on terminology of 

study of Rabin et al. (2017) and Hantson et al. (2016). 

Finally, I agree with Reviewer 1 that the satellite record is not unique in its 

susceptibility to non-representativeness. Even completely accurate, 

decades-long, ground-based measurements could only be assumed to be 

representative of the time period covered, with whatever plant species, 

climate/weather patterns, and anthropogenic activity was there at the time. 

And of course such records are not completely—or even consistently—

accurate anyway! Furthermore, such records are not global in coverage, 

so even though the problem with space-for-time substitution is lessened 

relative to the satellite record (not eliminated completely), a space-for-

space problem is worsened. Likewise, laboratory-based experiments, 

such as those regarding the ignition efficiency of lightning strikes, 

depend on the species of plant litter involved—even an experiment 

sampling a wide variety of plant species from across the planet could fail 

to be representative of species far into the past or future. The brief 

temporal coverage of the satellite record may make it especially 

vulnerable to failures of robustness, but other datasets have their own 

problems. 

We certainly agree that both on-ground measurements and laboratory-based 

experiments are not the Golden Buddha to which we should pray. We now 

mention characteristic problems related to these kind of data in the Introduction. 



We just advocate finding understandable explanatory relationships which allow 

understandable interpretation and visible ways of modification for past and 

future whether they come from ground, laboratory or satellites or from some 

theory – does not matter.   

Every development team has their own principles that they bring to model 

construction. If those principles represent a significant break with the 

dominant mode of thinking in the field, it makes sense to spend time in 

the model description discussing them. However, Venevsky et al. seem to 

have a perfectly normal quasi-mechanistic fire model in SEVER-FIRE. 

Thus, this manuscript should be rewritten to focus on the model itself 

(especially where it differs from previous models) rather than the 

philosophy that governed its design. 

Thank you for your comments. It is all the question of definition, what is “normal 

quasi-mechanistic model”, what is not. We are, indeed, making an effort to build 

a first-principle global mechanistic fire model and we are on our way to have it. 

We have named our model ‘Experimental’ in order to show that some processes 

are included in SEVER-FIRE model ad hoc (timing of ignition activity of rural 

versus urban population, others) as mechanisms are still not described/studied, 

some processes are simplified (e.g. setting maximum time of fire to two days) 

and some processes are based on statistical descriptions from satellite data 

(number of on-ground flashes), as they wait there nearest time to be substituted 

by mechanistic models. In the Introduction (see below) and further on we 

followed advice of Reviewer 2 and focused mainly on the SEVER-FIRE model 

itself and this has been added in the Introduction part, but as well compromised 

and reserved some place to describe our principles of model design and we 

hope that the novelty and strategy of SEVER-FIRE can contribute significantly 

to the field as Reg-FIRM did in its time.  

Other major comments  

1. Apparent from the comments of Prentice and Reviewer 1, as well as my 

read of the manuscript, is that the authors need to improve the 

Introduction, Methods, and Discussion sections to better highlight the 

novel aspects of SEVER-FIRE. 

Thank you for your kind suggestions. We have re-written the Introduction, 

clarified the Method, and improve the Discussion, especially more focus on the 

innovation of SEVER-FIRE. We think that we met this request now. 

2. When explaining novel parts of SEVER-FIRE, the derivation process 

should always be fully explained—as the authors did for their equations 

regarding lightning strikes. Such explanation needs to be added for:  

• The wealth dependence of anthropogenic ignitions (Eq. 9; as they 

mention they will do in their reply to Prentice)  



Now explanation is given in the text below Eq. (9), see new text: 

“Equation (9) was obtained using logarithmic regression from geographically 

distributed observed number of human fires (map of average over 1974-1994 

annual number of human fires for Spain (Vazquez and Moreno, 1998), map of 

average over annual number of human fires by Canadian ecoregions 1961-

1995 (Stocks et al., 2002) and map of average over annual number of total fires 

(assumed to be all human) by African countries 1981-1991 (Barbosa et al., 

1999). No division to rural and urban population was assumed when deriving 

Eq. (9)” 

• The limitation of fire duration to two days. This limitation may have 

contributed to SEVER-FIRE’s underestimation of burned area in the 

boreal region: Korovin (1996) found that almost 70% of the burned 

forest in Russia over 1947–1992 resulted from fires that burned for 

more than ten days.  

The limitation of maximum fire duration to two days is explained by range of 

EFFIS database for Europe. This, of course, limits estimate of areas burnt in 

remote areas we write in the new text: 

“However, the limitation of maximum fire duration to two days was set due to 

range in the fire duration of EFFIS database, which covers mainly European 

domain. Globally this limitation may be not valid for remote high latitude areas, 

but even in these regions mathematical expectation of fire duration will be close 

to one day (see Korovin (1996))” 

In Discussion: 

“Study and parameterization of fire duration in remote areas is necessary for 

improvement of area burnt calculation in these areas.” 

In Introduction: 

“(e.g., setting maximum time of fire to two days but this may be updated and 

modified in the future by introducing the latest global fire duration datasets 

(Andela et al., 2018)” 

3. The factor timingj, which modulates the frequency of human ignitions 

depending on the time of year, seems rather ad-hoc but could 

nevertheless be of use for many fire models. The authors should 

demonstrate that including it actually improves the simulation of annual 

total and/or seasonal timing of burned area. 

We discuss seasonal timing of areas burnt, which are in particularly 

consequence of timinig implementation in paragraph 3.2 of Results. We think, 



however, that sensitivity and/or optimization study is out of scope for this 

manuscript and assigned for future work we write in Discussion:   

“In addition, sensitivity study for critical newly implemented features timing and 

duration and further formal optimization for parameters of SEVER-FIRE model 

using teaching subset of remote sensing data for observed areas burnt 

(Khvostikov et al., 2015; Rabin et al., 2018) can further improve performance 

of the presented global fire model.” 

4. A glaring hole in many global fire models is that they do not allow multi-

day burning, and so SEVER-FIRE’s inclusion of this is most welcome. 

However, as with timingj, the authors should demonstrate that including 

this parameterization improves their model.  

We discuss geographical distribution of areas burnt, which are in particularly 

consequence of duration implementation in paragraph 3.1 of Results. We think, 

however, that sensitivity and/or optimization study is out of scope for this 

manuscript and assigned for future work we write in Discussion: 

“In addition, sensitivity study for critical newly implemented features timing and 

duration and further formal optimization for parameters of SEVER-FIRE model 

using teaching subset of remote sensing data for observed areas burnt 

(Khvostikov et al., 2015; Rabin et al., 2018) can further improve performance 

of the presented global fire model.” 

5. I disagree with Reviewer 1’s critique that the paper should be 

condensed by removing previously-published model components and 

instead directing readers to those publications. It is too easy to gloss over 

important differences that may have arisen in the time since the original 

publication, and makes it too difficult for the reader to learn about the 

model. One alternative could be to move explanation of non-novel model 

parts to one or more Appendices (or, less preferably in my opinion, a 

separate Supplement). The authors should also consider constructing a 

table-based description of their model to match the form of the 

supplementary tables in Rabin et al. (2017). This would enable a much 

simpler comparison between SEVER-FIRE and the models described 

there, and would ensure a complete description of all relevant aspects of 

the model.  

Thank you for this comment. This comment is conflict from the Reviewer 1. So, 

we tried to put as much clarity as possible to our model description now. As for 

the suggestion to put equations of SEVER-FIRE in Table form of Rabin et al. 

(2017) we decide not to do it for this version of the model. We are now working 

on the follow-up version of SEVER-FIRE which is supposed to be closer to a 

first-principle model. We have an intention to join FireMIP project and run a next 

version within the FireMIP protocol. After these actions comparison of model 



structure in tabular form of Rabin et al. 2017 and simultaneous comparison 

results of SEVER-FIRE and other FireMIP models will have bigger sense and 

will be more helpful for other fire modelers.    

6. The authors should explain why the model outputs were compared to 

GFED2, instead of the more recent GFED3(s) or GFED4(s), which would 

have a number of advantages: 

• These datasets cover nearly twice the time period as GFED2, 

which would increase the time period available for comparison—

which the authors acknowledge as a weakness.  

• GFED3 incorporated an improved burned area detection algorithm 

(Giglio et al., 2010).  

• GFED4 incorporated further improvements to the burned area 

detection algorithm (Giglio et al., 2013).  

• The “s” versions of GFED3 and GFED4 are boosted by burned 

area estimated for small fires that the original algorithms fail to 

detect (Randerson et al., 2012). 

Historically, validation of presented version of SEVER-FIRE model (SEVER-

FIRE v1.0) was accomplished just in time when GFED3 version was finalized. 

As we were building Experimental version of global fire model which was 

supposed to be further developed we decided not to do re-validation with 

GFED3. The basis for this decision was that qualitatively and quantitatively 

GFED2 and GFED3 are similar (see Figure 10 in Giglio et al. (2010)). GFED3 

and GFED4 are also very similar (see comparison in Giglio et al. (2013)) and 

at http://www.globalfiredata.org/figures.html). Versions with small fires have too 

large uncertainties (van der Werf et al., 2017) (Chuvieco et al., 2016)) which 

may obscure our goals of analysis of features of fire model. As we plan further 

development of SEVER-FIRE with joining FireMIP soon we have intention to 

use GFED4s or GFED4 version for new validation similarly to other FireMIP 

members. So, we think for the purposes of our current SEVER-FIRE model 

status presented validation with GFED2 is sufficient.  

Minor comments and technical corrections  

1. P10 L24–25: This sentence should cite the “other global fire models,” 

as well as perhaps Rabin et al. (2017), which provides a comprehensive 

overview and comparison of a number of global fire models.  

Accept and added. 

2. P11 L15 (Eq. 12): This equation structure does not seem to account for 

the fact that, for a given rate of linear spread, an older fire has a longer 

http://www.globalfiredata.org/figures.html


fireline and thus will add more burned area per unit time than a more 

recent fire. This could be a contributing factor to the underestimation of 

burned area in boreal regions, where large, long-lasting fires contribute 

significantly to total burned area. I do not consider this a critical issue, 

but it’s something the authors should definitely mention.  

Mentioned now. 

3. P12 L17–26 (Sect. 2.2.2): It would be nice to see, probably in a 

Supplement, figures showing the input data described here.  

Thank you for your suggestions. We uploaded the input socio-economic data 

to the GutHub together with the code of SEVER-FIRE in case others may need 

it. See code availability. And this have been mentioned in section 2.2. 

4. P13 L18: “As a DGVM” should be deleted—there are certainly DGVMs 

that have the capability to output results that reflect the vegetated area in 

a gridcell. The authors should also explain (a) why they found it necessary 

to adjust the GFED data, rather than simply adjusting the SEVER outputs, 

and (b) what the net impacts of their adjustments were on global burned 

area.  

Accept. Because after re-gridding of GFED dataset to SEVER lan-lat grid 

coastlines of both datasets are still different. Impact of this GIS operations on 

global burnt are is small (less than 3%). This is in the text now. see section 2.4. 

5. P14 L19–21: A citation of Lasslop et al. (2015) should be made here.  

Accept. 

6. P16 L14–16: This text implies that the overestimation of fire in India 

may have something to do with the fact that the model simulates grass 

there. In reality, it’s probably because of strong fire suppression resulting 

from high fractional coverage of cropland.  

This reservation is now mentioned in the section 3.1. 

7. P18 L14: Mention should be made of the fact that these regions were 

originally created for use with GFED (Giglio et al., 2006).  

Mentioned now. 

8. Work is needed on the Discussion paragraph about anthropogenic 

impacts on fire (P21 L7–19):  

• Pfeiffer et al. (2013) should be mentioned, since they introduce a 

number of interesting ideas for modeling of human fire use.  



Mentioned now. 

• “In Africa for example, the combination of a strong seasonal wet-

dry climate with regular human ignitions favours high fire 

incidence.” This sentence does not seem to fit with the idea 

introduced in the previous sentence; namely, that land use and 

agricultural practices are likely more directly related to fire 

incidence than wealth in certain regions. 

The sentence is deleted. 

Except for the comments from the both reviewers, we also revised the 

manuscript carefully based on the kind reviewer from Iain Colin Prentice and 

editors, meanwhile, some typos are changed as well. 
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Abstract. Biomass burning is an important environmental process with a strong influence on vegetation 

and on the atmospheric composition. It competes with microbes and herbivores to convert biomass to 

CO2 and it is a major contributor of gases and aerosols to the atmosphere. To better understand and predict 

global fire occurrence, fire models have been developed and coupled to Dynamic Global Vegetation 

Models (DGVMs) and Earth System Models (ESMs).  15 

We present SEVER-FIRE v1.0 (Socio-Economic and natural Vegetation ExpeRimental global fire model 

version 1.0) which is incorporated into the SEVER-DGVM. One of the major focuses of SEVER-FIRE 

model is an implementation of pyrogenic behaviour of humans (timing of their activities and their 

willingness/necessity to ignite or suppress fire), related to socio-economic and demographic conditions 

in a geographical domain of the model application. Burned areas and emissions from the SEVER model 20 

are compared to the Global Fire Emission Database version 2 (GFED), derived from satellite 

observations, while number of fires are compared with regional historical fire statistics. We focus both 

on the model output accuracy and on its assumptions regarding fire drivers, and perform: 

1- An evaluation of the predicted spatial and temporal patterns, focusing on fire incidence, seasonality 

and inter-annual variability. 25 

2- Analysis to evaluate the assumptions concerning the etiology, or causation, of fire, including climatic 

and anthropogenic drivers, as well as the type and amount of vegetation. 
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SEVER reproduces the main features of climate driven inter-annual fire variability at a regional scale, 

such as the large fires associated with the 1997-98 El Niño event in Indonesia, Central and South America, 

which had critical ecological and atmospheric impacts. Spatial and seasonal patterns of fire incidence 

reveal some model inaccuracies, and we discuss the implications of the distribution of vegetation types 

inferred by the DGVM, and of assumed proxies of human fire practices. We further suggest possible 5 

development directions, to enable such models to better project future fire activity. 

1 Introduction 

The biosphere is affected by fires through physical and chemical pathways, involving interactions 

between the terrestrial and atmospheric components of carbon, water and nutrients cycles. As a natural 

phenomenon, fires are an integral part of a majority of ecosystems, influencing soil fertility, stand 10 

regeneration, vegetation composition, and succession (Le Page et al., 2015; Levine et al., 1999). However, 

through its anthropogenic use for land management (agriculture, pasture, deforestation), fire incidence is 

considerably higher than under natural conditions in many regions, including savannas in Africa and 

Australia, or tropical forests in South America and South East Asia (Bond et al., 2005).  

Abundant literature points a variety of impacts, roles, and drivers of fires, and an extended range of spatial 15 

and time scales involved. It is estimated that, on average, an area equivalent to that of India burns every 

year, predominantly in savannas and grasslands (Tansey et al., 2004). Burned areas in tropical and boreal 

forests are smaller, but their high productivity and carbon storage capacity results in significant emissions 

of numerous greenhouse gases (e.g. CO2, CH4, (Andreae and Merlet, 2001); (Pereira et al., 1999)). 

Globally, total fire emissions are equivalent to approximately one third of fossil fuel burning emissions 20 

(Le Quéré et al., 2015; van der Werf et al., 2006b; Wu et al., 2017). Net emissions, stemming from 

deforestation or increased fire activity, are much smaller, but poorly constrained (van der Werf et al., 

2006a), and highly variable on inter-annual time scales, especially through induced changes in fire 

sensitivity of highly productive ecosystems by El Niño/La Niña and other climatic phenomena (Duncan 

et al., 2003; Langenfelds et al., 2002; Le Page et al., 2008; van der Werf et al., 2004; van der Werf et al., 25 

2008). 

The strong integration of fires with the biosphere system is also emphasized by their dependence on a 

complex system of interactive drivers, designated as the fire triangle (Schoennagel et al., 2004), 

dominated by climate, vegetation and human activities. Precipitation rates and temperature partly control 

the amount of fuel available to burn, its moisture content, and fire behaviour in case of ignition (Crevoisier 30 

et al., 2007; Turner et al., 2008). Fire incidence, fire severity, and ensuing emissions are also dependent 

on the vegetation types, structure and productivity of the ecosystem (Andreae and Merlet, 2001; Hammill 

and Bradstock, 2006). Finally, anthropogenic activities, as mentioned above, greatly bias the natural 
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occurrence of fires, increased in many regions as a land management tool, or decreased through fire 

suppression strategies (firefighting, preventive fires, (Veblen et al., 2000)). Other factors are involved 

(topography, natural landscape breaks, grazing), but most important is the interaction between those 

drivers, which needs to be considered to yield relevant information about fire risk (Dwyer et al., 2000a). 

Dynamic Global Vegetation Models (DGVMs) and Earth System Models (ESMs) simulate vegetation 5 

dynamics at global scale, fire is included as an explicit process in only a fewsome of these models (Arora 

and Boer, 2005a; Bachelet et al., 2001; Li et al., 2013; Rabin et al., 2018; Thonicke et al., 2010; Thonicke 

et al., 2001; Venevsky et al., 2002; Wu et al., 2017; Yue et al., 2014). Given the importance of fires and 

their dependence on various model inputs or simulated processes, the development of fire modules is of 

great interest to understand and evaluate the fire related couplings and feedbacks assumptions. 10 

Comprehensive review of global fire modelling activity is given by Hantson et al. (2016) and an overview 

of recent global fire models participating in the Fire Modelling Intercomparison Project (FireMIP) is 

presented by Rabin et al. (2017). Hantson et al. (2016) distinguish four level of complexity for global fire 

models incorporated into DGVMs (see Figure 2 in their study) depending on processes included in 

models: 15 

1) Simplest statistical model relates areas burnt with climate and/or vegetation (Glob-FIRM, 

(Thonicke et al., 2001)) and/or human activities (Knorr et al., 2014). 

2) Models estimating statistically number of fires and expected size of fires (Pechony and Shindell, 

2009). 

3) Process-based quasi-mechanistic models which use functional relationships between climate, 20 

vegetation and socio-economic drivers of wildfires (MC-FIRE (Lenihan and Bachelet, 2015), 

CTEM (Arora and Boer, 2005b), CLM-Li (Li et al., 2013), LM3-FINAL (Rabin et al., 2018) etc.). 

This approach was firstly introduced by Reg-FIRM model (Venevsky et al., 2002) and further 

developed by follow-up SPITFIRE (Thonicke et al., 2010) model and is derivatives (JSBACH-

SPITFIRE (Lasslop et al., 2014), LPJ-LMfire (Pfeiffer et al., 2013), LPJ-GUESS-SPITFIRE 25 

(Lehsten et al., 2009), ORCHIDEE-SPITFIRE (Yue et al., 2014), and LPX-Mv1 (Kelley and 

Harrison, 2014).  

4)  Complete representation of all processes in space and time (first-principle approach model. 

Nine from the 11 global models participating in FireMIP experiment are process-oriented quasi-

mechanistic models (Rabin et al., 2017), however, mainly due to complexity of the processes involved all 30 

these models are still not at the level 4. The closest to the complete representation of all fire related 

processes in time is SPITFIRE model (see Table 1 in Hantson et al. (2016)) and their modifications. 

SPITFIRE modelling community achieved significant results in global and regional fire modelling 
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describing dynamics of wildfires in savannah – forest transition zone (Baudena et al., 2015), 

contemporary dynamics of areas burnt in Europe (Wu et al., 2015), global fire regimes in pre-industrial 

zone (Pfeiffer et al., 2013) and changes in global carbon balance (Prentice et al., 2011).  Some global fire 

models are designed to study impact of anthropogenic phenomena in global fire dynamics and are not 

incorporated into DGVMs or ESMs (Le Page et al., 2015), but rather give further insight for fire modelling 5 

within Earth and biosphere simulators. Last global fire models designed for DGVMs (Li et al., 2013; 

Thonicke et al., 2010) contain sets of rather complicated equations with variety of coefficients (despite 

they name themselves intermediate complexity models) which is hard to obtain unless satellite derived 

functions are used. Some of global fire models use satellite observations as input (e.g SPITFIRE 

(Thonicke et al., 2010) for number of lightning strikes). Such features hinder further use of these global 10 

fire models for climate change and socio-economic change studies, which should be based solely on 

understandable physical reasoning. Assessment against observation data of global fire models within 

DGVMs is now based mainly on satellite data. This limits validation to only one registered quantitative 

characteristics of global fire regime, namely area burnt (another satellite based variable global carbon 

emission is as a rule result of a model itself) and at a limited time interval (as a rule last two-three decades). 15 

Meanwhile, historical fire statistics exists in all major forested countries and includes numbers of 

registered fires by case (lightning or human) and areas burnt starting at least from sixties of the last 

century. Ignoring of historical statistics leads to visible shortcoming in description of regional fire 

regimes. For example, LPJ-DGVM based SPITEFIRE global fire model (Thonicke et al., 2010), which 

was historically follow up of Reg-FIRM regional LPJ-DGVM fire model (Venevsky et al., 2002) used 20 

for simulation numbers of fires and areas burnt in Spain, overestimates number of fires (see Figure 3 c in 

SPITFIRE (Thonicke et al., 2010)) in Iberian Peninsula three to four times. SEVER-FIRE (Socio-

Economic and natural Vegetation ExpeRimental global fire model is incorporated into  the 

SEVER_DGVM (Venevsky and Maksyutov, 2007; Wu et al., 2017), which is a modification of LPJ-

DGVM (Sitch et al., 2003) for daily time step computation. SEVER-FIRE model is a follow up of Reg-25 

FIRM and is designed using principles of the last. No satellite derived data are used as an input of the 

model. Only physically based or just ’common sense’ based equations from on-ground observations allow 

direct implementation of SEVER-FIRE model in any DGVM or ESM for investigation of future global 

change impacts or past global fire regimes reconstruction. Unlike in other global DGVM fire modules (Li 

et al., 2013; Thonicke et al., 2010) all equations are kept simple following ideology of Reg-FIRM. One 30 

of the major focuses of SEVER-FIRE model is an implementation of pyrogenic behaviour of humans 

(timing of their activities and their willingness/necessity to ignite or supress fire), related to socio-

economic and demographic conditions in a geographical domain of the model application.  Importance 

of description of   pyrogenic behaviour of humans are confirmed by recent findings of bi-modal fire 

regimes, reflecting human fingerprint in global fires dynamics (Benali et al., 2017), as well as by 35 

differences in timing of ignitions determined by religious background in Sub-Sahara Africa (Pereira et 



 5 

al., 2015). Fire weather regimes, set by climate dynamics, and fuel state set by vegetation dynamics are 

other important drivers in SEVER-FIRE model. SEVER-DGVM fire module, based on climate 

observations, external anthropogenic parameters, and SEVER-DGVM derived vegetation, estimates fire 

incidence and emissions. The resulting vegetation disturbance feeds back to the DGVM, ensuring a fully 

coupled system (see model description).  5 

While complete representation of all processes which determine wildfire dynamics in space and time is 

still under its way, quasi-mechanistic models use different parametrisations of ignitions and spread of 

wildfire. Parametrisations are based either on long term fires statistics, or on remote sensing data which 

are valuable data source due to its availability and global coverage. SPITFIRE model, for example, use 

lightning frequency as an input for calculation of number of lightning fires. We argue that it would be 10 

advantageous if one can produce long-term fire relationships without depending on remote-sensing, 

which is available for a relatively short period of time (a few decades). Fire return intervals can be of the 

order of hundreds of years, whereas remote sensing is available for several decades. Therefore, using 

remote sensing to derive relationships implicitly assumes a space for time substitution, which may or may 

not hold. On the other hand, parameterisations based on ground-based measurements or laboratory-based 15 

experiments have their own problems, like insufficient accuracy and low representativeness in space, but 

considered to be more robust in time and, thus, very useful in DGVMs or ESMs for investigation of future 

global change impacts or past global fire regimes reconstruction.  

We present in this study SEVER-FIRE v1.0 (Socio-Economic and natural Vegetation ExpeRimental 

global fire model version 1.0; simplified as SEVER-FIRE in the following text) incorporated into the 20 

SEVER-DGVM (Venevsky and Maksyutov, 2007; Wu et al., 2017), which is a modification of LPJ-

DGVM (Sitch et al., 2003) for daily time step computation. SEVER-FIRE is a quasi-mechanistic model, 

which is a follow up of Reg-FIRM for the globe, with several new features aiming approaching to 

complete representation of wildfire processes. We improve earlier algorithms of Reg-FIRM and introduce 

new functionality with respect: 1) to estimate the numbers of lightning fires from data on convective 25 

activity in the atmosphere 2) to estimate numbers of human fires from urban against rural population 

(timing of their appearance in natural landscapes and their ratio) and regional wealth index, as well 3) to 

estimate more realistically fire duration, which in the new model depends on human suppression and 

weather situation and can last for up to two days. One of the major focuses of SEVER-FIRE model is an 

implementation of pyrogenic behaviour of humans (timing of their activities and their 30 

willingness/necessity to ignite or suppress fire), related to socio-economic and demographic conditions 

in a geographical domain of the model application.  Importance of description of pyrogenic behaviour of 

humans are confirmed by recent findings of bi-modal fire regimes, reflecting human fingerprint in global 

fires dynamics (Benali et al., 2017), as well as by differences in timing of ignitions determined by 
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religious background in Sub-Sahara Africa (Pereira et al., 2015). Fire weather regimes, set by climate 

dynamics, and fuel state set by vegetation dynamics are other important drivers in SEVER-FIRE model. 

SEVER-DGVM fire module, based on climate observations, external anthropogenic parameters, and 

SEVER-DGVM derived vegetation, estimates fire incidence and emissions. The resulting vegetation 

disturbance feeds back to the DGVM, ensuring a fully coupled system (see model description). 5 

We perform a comparison of SEVER outputs with fire data derived from satellite sources, the Global Fire 

Emission Database version 2 (GFED) (van der Werf et al., 2006b), as well as with historic fire data 

(number of lightning and human fires and their area burnt) with two objectives. First, a global evaluation 

of a DGVM-fire model, focusing on crucial and simple features, namely fire incidence, seasonality, inter-

annual variability, and emissions. Second, (the most important) by identifying the reasons for large 10 

inconsistencies we propose further modifications to SEVER-FIRE. The work presented in this paper is 

partly based on the Ph.D. thesis by Y. Le Page. We therefore signal the reader that significant parts of the 

text in the sections 3 and 4 already appeared in Le Page (2009). 

We are making an effort to make a closer step to a first-principle global mechanistic fire model.  We have 

named our model ‘Experimental’ in order to show that some processes are included in SEVER-FIRE 15 

model ad hoc (timing of ignition activity of rural versus urban population, others) as mechanisms are still 

not described/studied, some processes are simplified (e.g., setting maximum time of fire to two days but 

this may be updated and modified in the future by introducing the latest global fire duration datasets 

(Andela et al., 2018)) and some processes are based on statistical descriptions from satellite data (number 

of on-ground flashes), as they wait there nearest time to be substituted by physically based mechanistic 20 

models 

We perform a comparison of SEVER outputs with fire data derived from satellite sources, the Global Fire 

Emission Database version 2 (GFED) (van der Werf et al., 2006a), as well as with historic fire data with 

two objectives. First, a global evaluation of a DGVM-fire model, focusing on crucial and simple features, 

namely fire incidence, seasonality, inter-annual variability, and emissions. Second, (the most important) 25 

by identifying the reasons for large inconsistencies we propose further modifications to SEVER-FIRE. 

As it was already mentioned, current global fire modules feature conceptual differences, but are generally 

based on similar assumptions. Thus, this study may provide relevant information for improvement of 

other current DGVM fire modules. The work presented in this paper is partly based on the Ph.D. thesis 

by Y. Le Page. We therefore signal the reader that significant parts of the text in the sections 3 and 4 30 

already appeared in Le Page (2009). 

2. Data and Methods 
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2.1 SEVER-DGVM and SEVER-FIRE Models 

2.1.1 Input of DGVM to fire model 

SEVER-DGVM is a coupled vegetation-fire mechanistic model designed to run at a range of temporal 

(daily to monthly) and spatial (10 km to 2.5 º with 0.5º mostly tested) resolution levels (Venevsky and 

Maksyutov, 2007). The fire module SEVER-FIRE is a further development of the Reg-FIRM (Venevsky 5 

et al., 2002), which was applied only for Iberian Peninsula, from a regional to the global scale. Unlike the 

other global fire models (Thonicke et al., 2010), which use conceptual approach of Reg-FIRM for design 

of process-oriented fire model, SEVER-FIRE model does not include satellite based derived relationships, 

but only equation based on field/laboratory observations and “common sense” hypothesis, when on-

ground data are not available. The aim of this model is to provide at the global scale a comprehensivefully 10 

mechanistic description of major characteristics registered in standard fires statistics and/or satellite 

observations around the world, namely number of fires, area burnt and carbon emissions. An important 

goal of SEVER-FIRE model is inclusion in Earth System models (Bonan and Doney, 2018; Bowman et 

al., 2009) in order to make realistic climate change predictions of global wildfire dynamics The most 

important variables, provided by SEVER-DGVM for SEVER-FIRE model include the distribution of 10 15 

Plant Functional Types , which are similar to LPJ-DGVM vegetation types (see names of PFT in Table 

1) over the globe, described as a distribution of fractions within a grid cell 𝐶𝑣𝑒𝑔
𝑝𝑓𝑡

, net primary 

productivity 𝑁𝑃𝑃𝑝𝑓𝑡, carbon of aboveground vegetation 𝑐𝑝𝑓𝑡, fuel loading 𝑙𝑖𝑡𝑝𝑓𝑡, described as a mass of 

litter, and soil moisture 𝑚𝑜𝑖𝑠𝑡 in the upper 0.1 m layer𝑚 (see Table 2 for description of fire model 

variables and parameters) 20 

2.1.2 External input to fire model 

Gridded climate, demographic and socio-economic data comprise external input for the fire module. 

Minimum/maximum daily temperature 𝑡𝑚𝑖𝑛/𝑚𝑎𝑥, daily precipitation/convective precipitation 𝑝𝑟𝑒𝑐/𝑐𝑝𝑟𝑒𝑐 

and wind speed 𝑢 are the climate variables used in SEVER-FIRE. Human population density 𝑃, ratio of 

rural to total population (rural and urban population) 𝑟𝑢𝑟 =
𝑃𝑟𝑢𝑟

𝑃𝑡𝑜𝑡
, wealth index 𝑊𝐼 and average distance 25 

from megacities 𝑑𝑖𝑠𝑡 (recalculated with simplified assumptions from population density and ratio of rural 

to urban population) comprise socio-economic input to the fire model.  

2.1.3 Output of fire model 

The model separates human-induced (indexed as hum) and lightning fires (indexed as nat) by sources of 

ignition and all output variables of fire models can be obtained either by these two classes of fires of for 30 

both classes in total as their sum (not indexed). We omit the mentioned indexes in description of output 
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variables further on for simplicity.  The output of the model includes number of fires 𝑁𝑓𝑖𝑟𝑒 , area burnt 

𝑎𝑏𝑢𝑟𝑛𝑡, fire carbon emission  𝑐 𝑓𝑖𝑟𝑒 , number of PFT’s individuals killed 𝑁𝑖𝑛𝑑𝑝𝑓𝑡  and updated vegetation 

carbon and NPP. Fire model feedbacks to the DGVM through the increased area (equal to burnt areas by 

PFTs) and decreased number of PFT’s individuals for competitive occupation by PFTs after a fire and 

updated carbon fluxes and pools for carbon cycle simulation within vegetation model.  5 

Thus, the DGVM and fire module work in interactive mode, incorporating a representation of fire-

vegetation feedbacks. 

2.1.4 Components of SEVER-FIRE 

The SEVER-FIRE model consists of six related components described below: 

- Estimation of fire weather danger index and fire probability, 10 

- Simulation of lightning ignition events and number of lightning fires, 

- Simulation of human ignition events and number of human fires, 

- Simulation of fire spread after ignition, 

- Fire termination, 

- Estimation of fire effects (areas burnt, pyrogenic emissions, number of each PFT individuals killed). 15 

All six components are controlled by PFT dependent fire parameters (see list in Table 2) 

1) Estimation of fire weather danger index and fire probability 

Fire weather danger index FDI(d), measured from 0 (“no fire danger”), to 1 (“extreme fire danger”), is 

estimated in SEVER-FIRE based on the Reg-FIRM fire danger index (Venevsky et al., 2002). It is 

calculated at a daily time step as a multiple of exponentially normalized Nesterov Index (based on 20 

accumulated difference of minimum and maximum temperature, forced to zero by 3 mm daily 

precipitation threshold) and vegetation and soil moisture dependent fire probability. Using of Reg-FIRM 

based fire weather danger indexes, became popular in contemporary global fire modelling (Arora and 

Boer, 2005b; Thonicke et al., 2010) mainly due to calculation simplicity. Direct comparison of fire risk 

for Siberia, described by more sophisticated Canadian Fire Danger and Russian Fire Danger Indexes (used 25 

by national Forest Service) in both countries with Reg-FIRM Fire Danger Index, revealed that they are 

almost equivalent (Rubtsov, personal communication). The fire probability function is designed as a 

regression  from observations (Thonicke et al., 2001). It depends on current soil moisture in the upper 10 
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cm layer and PFT dependent fire moisture of extinction (Table 1), adapted from experimental study of 

Albini (1976). 

2) Simulation of lightning ignition events and number of lightning fires 

The number of potential lightning ignitions in a grid cell is calculated from the daily number of cloud-to-

ground flashes 𝑁𝑓𝑙𝑎𝑠ℎ𝑒𝑠 , which is estimated from convective precipitation as a non-linear regression 5 

polynomial function of power four (as in Allen and Pickering (2002)). Using of power four polynomial 

function by convective precipitation to represent number of flashes has theoretical physical grounds 

(Vonnegut, 1963). Allen and Pickering (2002) prepared their parametrization of number of flashes for 

North America, so we made a validation test of 𝑁𝑓𝑙𝑎𝑠ℎ𝑒𝑠for the globe (Venevsky, 2014) using OTD-LIS 

observed lightning data (Christian Hugh et al., 2003) and found that the parametrization performs well at 10 

global scale (R2=0.51). Cloud-to-ground flashes are divided to negatively charged (90%) and positively 

charged (10%) (Latham and Schlieter, 1989). Only the flashes with long continuous current (LCC flashes, 

75% of positively charged and 25% of negatively charged) can ignite wildfire (Latham and Schlieter, 

1989). Efficiency of LCC flashes to ignite depends from bulk density of fuel as it was shown in laboratory 

(Latham and Schlieter, 1989), so number of efficient to ignite positive flashes 𝑁𝑓𝑙𝑎𝑠ℎ𝑒𝑠𝑝𝑜𝑠

𝑒𝑓𝑓 and number of 15 

efficient to ignite negative flashes 𝑁𝑓𝑙𝑎𝑠ℎ𝑒𝑠𝑛𝑒𝑔

𝑒𝑓𝑓  at first glance can be simplified as Eq. (1) and Eq. (2): 

 𝑁𝑓𝑙𝑎𝑠ℎ𝑒𝑠𝑝𝑜𝑠

𝑒𝑓𝑓 = 𝑁𝑓𝑙𝑎𝑠ℎ𝑒𝑠 ∗ 0.1 ∗ 0.75 ∗ 𝑏 ∗ 𝑎 ∗ 𝑑𝑒𝑛𝑠 ∗ 𝑡�̅�ℎ𝑢𝑛𝑑𝑒𝑟,                                        (1) 

 𝑁𝑓𝑙𝑎𝑠ℎ𝑒𝑠𝑛𝑒𝑔

𝑒𝑓𝑓 = 𝑁𝑓𝑙𝑎𝑠ℎ𝑒𝑠 ∗ 0.9 ∗ 0.25 ∗ 𝑏 ∗ 𝑎 ∗ 𝑑𝑒𝑛𝑠 ∗ 𝑡�̅�ℎ𝑢𝑛𝑑𝑒𝑟,                                        (2) 

where b =0.01 is efficiency of lightning t ignite (Latham and Schlieter, 1989), a=0.25 m2/kgC regression 

coefficient (simplified from Latham and Schlieter (1989)), 𝑡�̅�ℎ𝑢𝑛𝑑𝑒𝑟 is an average daily time of thunder 20 

over a grid cell, set to one hour and twenty minutes (Uman, 1987) and dens is bulk density of fuel 

(kgC/m2). Bulk density of fuel is an important variable of SEVER-FIRE model, used in several basic 

equations. We assume that all PFTs found in a grid cell are distributed homogeneously and bulk density 

of fuel in a grid cell is calculated as Eq. (3):  

𝑑𝑒𝑛𝑠 = ∑ 𝐶𝑣𝑒𝑔𝑃𝐹𝑇(𝑖) ∗ 𝑑𝑒𝑛𝑠𝑃𝐹𝑇(𝑖)
𝑁𝑝𝑓𝑡
𝑖=1 ,                                                                         (3) 25 

where 𝐶𝑣𝑒𝑔𝑃𝐹𝑇(𝑖) is foliar projection cover of i-th PFT,  𝑑𝑒𝑛𝑠𝑃𝐹𝑇(𝑖) is bulk density of i-th PFT (see 

Table 1), which are taken from from Reg-FIRM (Venevsky et al., 2002) and study of Albini (1976), 𝑁𝑝𝑓𝑡 

is total number of PFTs in a grid cell. Bulk density of fuel in the grid cell and depth of fuel (in cm), 

calculated as Eq. (4): 
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𝑑𝑒𝑝𝑡ℎ = 0.1 ∗ ∑ 𝑙𝑖𝑡𝑃𝐹𝑇(𝑖)
𝑁𝑝𝑓𝑡
𝑖=1 /𝑑𝑒𝑛𝑠,                                                                             (4) 

and thery are translated into arriving daily number of natural ignitions from positive  𝑁𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝑝𝑜𝑠
and 

negative flashes 𝑁𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝑛𝑒𝑔
, using fitting generalisation into two functions of data for 

probailityprobability to ignite for positive and negative flashes by eight fuel types (see Table 1 of 

Anderson (2002)), obtained from laboratory experiments (Eq. (5) and (6)): 5 

𝑁𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝑝𝑜𝑠
 = (1/(1 + exp (5.5 ∗ (1./1.5) ∗∗ (((16. −𝑑𝑒𝑛𝑠)/16. ) ∗ 5) ∗ 1.25 − 1.2 ∗ 0.5 ∗∗ ((16. −𝑑𝑒𝑛𝑠)/

16.∗ 5. +0.1) ∗ 𝑑𝑒𝑝𝑡ℎ) )) ∗ 𝑁𝑓𝑙𝑎𝑠ℎ𝑒𝑠𝑝𝑜𝑠

𝑒𝑓𝑓 ,                                                                                                (5) 

𝑁𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝑛𝑒𝑔
 = (1/(1 + exp (5.5 ∗ (1./1.5) ∗∗ (((16. −𝑑𝑒𝑛𝑠)/16. ) ∗ 5) − 1.2 ∗ 0.5 ∗∗ ((16. −𝑑𝑒𝑛𝑠)/16.∗

5. ) ∗ 𝑑𝑒𝑝𝑡ℎ) )) ∗ 𝑁𝑓𝑙𝑎𝑠ℎ𝑒𝑠𝑛𝑒𝑔

𝑒𝑓𝑓 .                                                                                                          (6)                                                              

Total number of arriving ignitions from effective positive and negative LCC flashes are recalculated into 10 

number of surviving natural fires 𝑁𝑓𝑖𝑟𝑒𝑠𝑛𝑎𝑡
 in a grid cell with area 𝑆𝑔𝑟𝑖𝑑 , which depends on daily fire 

danger index 𝐹𝐷𝐼 (𝑑) maximum rate of surviving ignitions 𝑟𝑎𝑡𝑒𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑚𝑎𝑥
, taken as 0.15 (Anderson, 

2002) and soil moisture in 1 cm fuel layer, simplified as 10% of soil moisture moist in upper 10 cm, see 

Eq. (7): 

𝑁𝑓𝑖𝑟𝑒𝑠𝑛𝑎𝑡
(𝑑) = 𝐹𝐷𝐼 (𝑑) ∗ (𝑁𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝑝𝑜𝑠

+ 𝑁𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝑛𝑒𝑔
) ∗ 𝑟𝑎𝑡𝑒𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑚𝑎𝑥

∗ (1 − 𝑚𝑜𝑖𝑠𝑡 ∗ 0.1) ∗15 

0.15 ∗ (1 + 0.0001 ∗ (𝑒𝑙𝑒𝑣 − 1000))4 ∗ 𝑆𝑔𝑟𝑖𝑑 .                                                              (7)        

Dependence of number of lightning fires in Eq. (7) by elevation 𝑒𝑙𝑒𝑣 in meters was obtained by linear 

regression from data of  Vazquez and Moreno (1998) for Peninsular Spain. Module of number of lightning 

fires was validated using data for lightning and lightning fires in central cordillera of Canada 

(Wierzchowski et al., 2002). This study contains data for number of lightning fires for the years 1961-20 

1994 and annual number of lightning strikes for 1989-1994 for the central cordillera area 50-54°N, 114-

120°W. The central mountain range in the area divides it into two parts, one is in British Columbia, 

another in Alberta provinces. SEVER-FIRE is able to reproduce values for total annual number of 

lightning strikes for both provinces (see Fig. 1) and number of lightning fires in the provinces (see Fig. 

2). 25 

The model reproduces three to two fold dominance of annual number of lightning strikes in Alberta and 

seven to ten fold dominance of annual number of lightning fires in British Columbia. Using of convective 

precipitation as a driver for number of lightning fires also confirmed by study of (Cardoso Manoel et al., 
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2007), who found that lightning fire occurrence in Brazil is related to zonal flux of moisture in the 

atmosphere.  

3)  Simulation of human ignition events and number of human fires 

The number of potential human ignitions 𝑁𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠_ℎ𝑢𝑚𝑎𝑛(𝑑) is calculated as a power function from 

population density with saturation, suggested by the Russian Forest Service and also used in the Reg-5 

FIRM (Venevsky et al., 2002) multiplied by normalized socio-economic characteristics of population and 

by fuel conditions (similar to lightning ignitions) in the grid cell (see Eq. (8)):  

(𝑁𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠_ℎ𝑢𝑚𝑎𝑛𝑗
(𝑑) = 6.8 ∗ 𝑃0.43 ∗ �̅� ∗ 𝑟𝑎𝑡𝑒𝑝𝑜𝑝𝑗

∗ 𝑡𝑖𝑚𝑖𝑛𝑔𝑗(𝑑) ∗ 𝑎 ∗ 𝑑𝑒𝑛𝑠,              (8) 

where P is population density in persons per km2, �̅� is a mathematical expectation of number of ignition 

produced by one person for one millions of hectares multiplied by , a= 0.125*10-4 [ km2/million hectare 10 

* m2/kgC] ( scaling coefficient from million hectares to square kilometers (Venevsky et al., 2002), divided 

by average fuel density 8 kgC/m2) 10-4  (coefficient a) to scale for square kilometers, j is either rural ( 

j=rur ) or urban population ( j=urb ),  𝑟𝑎𝑡𝑒_𝑝𝑜𝑝𝑗  is a ratio of rural tp urban population, so that 

𝑟𝑎𝑡𝑒_𝑝𝑜𝑝𝑟𝑢𝑟 + 𝑟𝑎𝑡𝑒_𝑝𝑜𝑝𝑢𝑟𝑏 = 1 , 𝑡𝑖𝑚𝑖𝑛𝑔𝑗(𝑑)   is daily timing of pyrogenic activity of population. 

Timing of human pyrogenic activity 𝑡𝑖𝑚𝑖𝑛𝑔𝑗(𝑑)at a first glance is defined separately for the northern 15 

and southern hemisphere and for rural and urban population as a step function, and it is mostly based on 

agricultural and vacation calendars (for city inhabitants). It is set so that sum of  𝑡𝑖𝑚𝑖𝑛𝑔𝑟𝑢𝑟𝑎𝑙(𝑑) and 

𝑡𝑖𝑚𝑖𝑛𝑔𝑢𝑟𝑏𝑎𝑛(𝑑) is equal always to one. So, for example, for the entire northern hemisphere it was set to 

one in July, August (Summer vacations) for urban population (zero for rural population in these months), 

March, April, May (Spring agriculture activities) and September, October, November (Autumn 20 

agriculture activities) for rural population (zero for urban population in these months) and to 0.5 in the 

rest of a year.  

Mathematical expectation of number of ignition produced by one person for millions of hectares �̅� is set 

to be an exponential function of wealth index WI, determined from the data of UN Human Settlemnet 

Program (see Eq. (9)):  25 

�̅� = exp(−7.65 ∗ 10−2 ∗ 𝑊𝐼).                                                                                       (9)  

Equation (9) was obtained using logarithmic regression from geographically distributed observed number 

of human fires (map of average over 1974-1994 annual number of human fires for Spain (Vazquez and 

Moreno, 1998), map of average over annual number of human fires by Canadian ecoregions 1961-1995 

(Stocks et al., 2002) and map of average over annual number of total fires (assumed to be all human) by 30 
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African countries 1981-1991 (Barbosa et al., 1999b). No division to rural and urban population was 

assumed when deriving Eq. (9). Equation (9)This assumes that maximum mathematical expectation of 

number of ignition produced by one person is eqaulequal to one for millions of hectares for a day (estimate 

of Russian Forest Service, see (Melekhov, 1978)), for a grid cell with the most theoretically possible 

poorest population (WI=0) and �̅� =0.1 ignition/day*person*million hectare for a grid cell with the most 5 

theoretically wealthy population (WI=30 – closest is the Stockholm metropolitan area). Average value of 

�̅�  is equal to 0.22 ignition/person*million hectar (WI=20.5) for peninsular Spain as in Reg-FIRM 

(Venevsky et al., 2002). 

Total number of human fires in a grid cell is calculated as Eq. (10):  

𝑁𝑓𝑖𝑟𝑒𝑠ℎ𝑢𝑚
(𝑑) = 𝐹𝐷𝐼 (𝑑) ∗ (𝑁𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠_ℎ𝑢𝑚𝑟𝑢𝑟

+ 𝑁𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝑢𝑟𝑏
) ∗ 𝑆𝑔𝑟𝑖𝑑                       (10) 10 

The number of human fires for peninsular Spain was validated for Reg-FIRM, which has the same 

equations as SEVER-FIRE in the region. To check plausibility of approach for calculation of total number 

of fires, we make validation for Canada for 1961-1995 (Stocks et al., 2002) (see Fig. 3), because Canada 

has significant variation for climatic conditions, vegetation composition, population density and socio-

economic state of population.    15 

The description of human ignitions in SEVER-FIRE model is very simplistic and does not have intention 

to describe to major extent complex economic, cultural and social practice of people (agricultural, hunting 

or pastoral, other) resulting in pyrogenic activities. We left out (or oversimplified, like in the timing 

function and mathematical expectation of number of ignition produced by one person) description of an 

influence of land use to number of human ignitions in the fire model, because SEVER-DGVM anyway 20 

does not include description of human land use and/or it’s influence to natural vegetation. By application 

of SEVER-DGVM we aim to describe relatively human-less global vegetation, which got additional 

control regulator, namely external human and/or lightning ignitions. This limitation of SEVER-DGVM 

implies certain constraints on our results in both vegetation distribution and areas burnt, but it also gives 

us an opportunity to identify and locate the areas, where interaction between land use, fire regimes and 25 

vegetation should be described explicitly and accurately.      

4) Simulation of fire spread after ignition 

Rate of fire spread after an ignition event is simulated using a simplified version of the Rothermel 

thermodynamic equation (Venevsky et al., 2002), and depends on wind speed, fuel  bulk density and soil 

moisture content in the upper layer as a proxy of fuel moisture. As in the Reg-FIRM approach, a fire 30 

cannot take place when fuel loading threshold (100 g/m2), calculated as litter pool by a DGVM, is not 

crossed. Simulation of rate spread, using Rothermel equation, in SEVER-FIRE is similar to the one used 
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by some of recent landscape fire models (Cary et al., 2006) and other global fire models (Li et al., 2013; 

Rabin et al., 2017; Yue et al., 2014). However, there is a large difference in translation of rate of fire 

spread into areas burnt in landscape models and SEVER-FIRE. Indeed, landscape models account for 

terrain and fuel discontinuity (water bodies, highways etc.), while global fire models do not include this 

feature. Analysis, to which extent up-scaling from landscape level to a rather coarse grid cell of SEVER-5 

FIRE should be done in the future.  

5) Fire termination 

Fire termination occurs with the onset of a significant rainfall event (more than 3 mm), causing weather 

danger to drop to zero. Close to cities, fire termination occurs after a delay dependent on distance to the 

city, as a proxy for human fire suppression. Fire suppression function (time to eliminate a fire) was 10 

constructed as a log-linear regression function from distance to the city, using fire duration statistics for 

Europe and Russia from EFFISC database (San Miguel-Ayanz et al., 2012). As a result, a single fire can 

continue in the model from one hour up to two days (see Eq. (11)): 

 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 2 ∗ (1 − exp(−10−3 ∗ 𝑑𝑖𝑠𝑡),                                                                 (11) 

where dist is a distance (km) from a nearest city (area with P > 400 persons/km2). 15 

However, the limitation of maximum fire duration to two days was set due to range in the fire duration of 

EFFIS database, which covers mainly European domain. Globally this limitation may be not valid for 

remote high latitude areas, but even in these regions mathematical expectation of fire duration will be 

close to one day (see Korovin (1996)). 

6) Estimation of fire effects 20 

The rate of spread is converted to an absolute value of average area burnt for one fire, using elliptic fire 

spread model (van Wagner, 1969) similarly to the Reg-FIRM approach (Venevsky et al., 2002), which is 

also adopted by majority of other global fire models. 

Daily area burnt in the DGVM grid cell is calculated as Eq. (12): 

𝑎𝑏𝑢𝑟𝑛𝑡(𝑖) = 𝑁𝑓𝑖𝑟𝑒(𝑖) ∗ 𝑆(𝑖) + 𝑁𝑓𝑖𝑟𝑒(𝑖 − 1) ∗ 𝑆(𝑖),                                                   (12) 25 

where 𝑁𝑓𝑖𝑟𝑒(𝑖) are number of fires, ignited in a day i, 𝑁𝑓𝑖𝑟𝑒(𝑖 − 1) are number of fires continuing from 

previous day (if any do exist) and 𝑆(𝑖) is an area of spread for one fire, determined by vegetation and 

climate (see above). Equation (12) is a simplification of increase in areas of continuing fires as it does not 

account for a fact that growth of a next day fire starts from a perimeter of the previous day fire. 
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Daily burned area estimates are aggregated annually to estimate fire effects. Percentage of vegetation 

individuals killed depends on area burned and on resistance of each PFT to fires (Table 1), taken directly 

from the Glob-FIRM (Thonicke et al., 2001). The percentages are then converted to emissions, based on 

vegetation carbon content (dead PFT individuals are considered to be entirely burned), and daily 

redistributed following the profile of fire probability. 5 

The model outlined above should be considered as a firstn approach to design a global 

comprehensivecompletely process-oriented fire model based only mainly on field observations and 

physically based assumptions with no satellite derived functions. Still more analysis to be done for 

representation of fire processes within the model and calibration of parameters used in the model. For 

instance, study of Scott and Burgan, 2005 indicated that moisture of extinction, used in SEVER-FIRE 10 

(see Table 1) may vary from 12% to 40%, for different fuel types, i.e. has a larger range than in our model. 

We plan to make sensitivity and optimization tests to improve the SEVER-FIRE model parameters and 

modifications of equations when necessary.  

2.2 Data 

2.2.1 Climate data 15 

For this study, precipitation data from the National Centres for Environmental Prediction (NCEP climate 

data (minimum/maximum temperature, precipitation and convective precipitation, short-wave radiation 

and wind speed, http://www.cpc.ncep.noaa.gov/) were interpolated to 0.5 degree longitude/latitude spatial 

resolution for the period 1957 to 2006 (52 years). Daily wind speed is not well estimated in reanalysis 

approach (Kalnay et al., 1996b), so it was averaged over the entire period and applied in simulation runs 20 

without inter-annual variability. The input soil texture data and CO2 atmospheric concentration over the 

same period coincide with those of the LPJ-DGVM (Sitch et al., 2003). The model is run globally from 

bare soil state 15 times with the climate data for 52 (years and the CO2 atmospheric concentration fixed 

for the year 1957 (spin-up period), in order to achieve equilibrium of soil carbon pools. From this 

equilibrium state, SEVER is forced by climate and atmospheric CO2 for the period 1957- 2006 (transient 25 

period). 

2.2.2 Socio-economic data 

Distance from a city was pre-calculated from population density and the ratio of urban to rural population. 

For this, areas where urban population density exceeds 400 persons/km2 were considered as cities (UN 

definition of Human Settlements Program). Gridded population and rural to urban ratio data sets for years 30 

1940-2050, used by SEVER-FIRE were elaborated using UN Development Program estimates by major 

economic regions. Wealth index was calculated first for 600 cities around the globe (Svirejeva-Hopkins, 
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personal communication) using approach of UN Human Settlement Program as a sum of six socio –

economic components, each normalized to be ranged between 0 (minimum) and 5 (maximum). 

Components included GDP per capita, number of persons with high education, number of doctors, crime 

rate, access to clean potable water, air pollution level. Data for the cities was extrapolated for the entire 

land area using non-linear spline at a regular grid of DGVM. And Socio-economic data used in this study 5 

can be found at Code availability section. 

2.3 Burned area and carbon emission validation data 

GFED is a global 1º resolution database (van der Werf et al., 2006a), which relies on three different active 

fire products calibrated to Moderate Resolution Imaging Spectrometer (MODIS) 500 meter burned area, 

for a temporal coverage spanning 1997-2006 (Giglio et al., 2006). Fire activity data from the Tropical 10 

Rainfall Measuring Mission (TRMM) – Visible and Infrared Scanner (VIRS, (Giglio et al., 2003)) and 

European Remote Sensing Satellites (ERS) Along Track Scanning Radiometer (ATSR, (Arino and 

Plummer, 2001)) sensors are used for the 1997-2001 period. Over 2001-2006, the calibration was based 

on active fires from MODIS (Giglio et al., 2006). Carbon emissions were then estimated based on those 

burned area estimates, with fuel loads calculated by the Carnegie-Ames-Stanford Approach (CASA) 15 

model (van der Werf et al., 2006a). 

The active fire to burned area calibration step and the use of three different sensors to build this dataset 

generate significant uncertainties on burned area estimates, which are considered to be about 50% at 

regional scales, although not quantified in the current used version of GFED (van der Werf, personal 

communication). Used version of GFED also does not contain small fires. Emission uncertainties are 20 

consequently higher, taking into account their further dependence on the CASA model and on fuel loads 

and emission factor values. 

2.4 Fire incidence, fire variability and carbon emission evaluation 

We chose to focus primarily on burned area to evaluate the model at global scale, as this is a prerequisite 

to estimate carbon emissions. However, carbon emission being an essential aspect of biomass burning, 25 

its representation is briefly evaluated.  

Fire incidence, seasonality, and inter-annual variability from SEVER are compared to GFED data over 

the 1997-2006 period. As a DGVM, SEVER-DGVM considers grid cells to be 100% land or water. This 

required a few adjustments on both datasets (re-gridding of GFED data to SEVER lan-lon grid and overlay 

of two datasets)(not discussed), causing minor changes in the original GFED statistics (less than 3% for 30 

total global area burnt and global fire emissions). We consider burned fraction (BF) rather than burned 

areas, a latitudinal unbiased indicator of fire density given the use of a lat-lon grid. 
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Fire incidence is mostly dependent on three key factors, conceptualized by the fire triangle (Schoennagel 

et al., 2004): fuel availability, readiness of fuel to burn, and ignition source. SEVER spatial patterns of 

fire incidence are first compared to GFED, through the mean annual grid cell burned fraction (BF). BF 

drivers are then explored with a selection of relevant environmental variables, based on the fire triangle 

concept: 5 

- Annual amount of precipitation, from the CPC merged Analysis of Precipitation (CMAP, (Xie and 

Arkin, 1997)), provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, 

(http://www.cdc.noaa.gov/). 

- An indicator of dry season severity (DSS), which was constructed from precipitation (CMAP) and 

temperature data (NCEP/NCAR re-analysis project, (Kalnay et al., 1996a)). The indicator (Breckle, 10 

2002), representing a rainfall deficit or a temperature excess, is computed as indicated by Fig. 4. 

Here we consider it as a rainfall deficit (unit: mm). 

- Net Primary Productivity (NPP). Its influence on fires is estimated with NPP estimates from (Imhoff 

et al., 2004) and from SEVER. 

- Land cover spatial distribution. SEVER-DGVM vegetation distribution and its impacts on BF 15 

patterns is evaluated with the Global Land Cover for the year 2000 (GLC2000, (Bartholomé and 

Belward, 2005)). 

- Human rural and urban population density from the Global Demographic Data Collection 

(Vorosmarty et al., 2000), provided by the University of New Hampshire, EOS-WEBSTER Earth 

Science Information Partner (ESIP). An indicator of the rural predominance of the population was 20 

defined (Eq. (13)): 

𝑅𝑢𝑟𝑎𝑙𝑖𝑡𝑦 =
𝑟𝑝𝑜𝑝−𝑢𝑝𝑜𝑝

𝑟𝑝𝑜𝑝+𝑢𝑝𝑜𝑝
 ,                                                                                          (13) 

where 𝑟𝑝𝑜𝑝 and 𝑢𝑝𝑜𝑝 being respectively the rural and urban population of the considered grid cell. 

Rurality varies between 1, fully rural, to -1, fully urban populations. 

- Gross Domestic Product (GDP) gridded data (van Vuuren et al., 2007), provided by the Netherlands 25 

Environmental Assessment Agency. 

We left aside wind speed, which significantly affects readiness of fuel to burn and fire spread, as an 

analyzed environmental variable, due to constrains put on it in the presented SEVER-FIRE simulations 

(see description of input data in Sect. 2.2). However, Lasslop et al. (2015) demonstrated that  modification 

of rate of spread dependence by wind speed may influence sufficiently areas burnt, so we plan to explore 30 

wind speed as BF driver in the future. 
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We used CMAP precipitation data (extracted mainly from remote sensing data) in analysis to get more 

realistic relationship between fire regimes observed and precipitation. We, however, could not use CMAP 

precipitation as climate input for SEVER-DGVM due to too short period of observations (CMAP started 

from 1979) and used instead the NCEP reanalysis precipitation data which is longer and provide bigger 

ratio between lengths o transient and spin-up simulation periods in DGVM important for realistic 5 

description of vegetation and fires. Thus, discrepancies in relationships between fire and precipitations in 

our analysis for GFED and SEVER-FIRE cases can be to some extent explained by differences between 

NCEP and CMAP precipitation fields. These differences, however, have only regional character and do 

not change our general conclusion. 

The relationship of chosen variables with fire incidence is not linear, and it involves multi-variable 10 

interactions. A more in-depth analysis of fire drivers would thus benefit from the use of multivariate 

statistics. We chose to avoid this level of complexity, since the most important conclusions are likely to 

be drawn from straightforward analysis, as a first evaluation of a global fire model. We thus analyze fire 

incidence through simple bi-dimensional plots. 

Seasonality is evaluated via the fire season peak, i.e. the month with maximum fire activity for each grid 15 

cell. Inter-annual variability is compared to GFED both globally and regionally, to identify how the model 

performs on specific fire events and for different ecosystems. Again, in a similar way to fire incidence, 

fire inter-annual variability has been shown to depend on climatic and vegetation conditions. (Meyn et 

al., 2007) highlight three types of fire ecosystems, depending on their annual fire limitation by fuel 

amount, readiness of fuel to burn, or both, considering that the availability of ignition sources is relatively 20 

constant in time. Here, we further explore the climate impact on the readiness of fuel to burn, analyzing 

the implications of both fire season precipitation and fire season maximum temperature for fire inter-

annual variability, along three ecosystem types (boreal, tropical humid, and dry/semi-dry). To extract 

those variables, the extent of the fire season in a grid cell was defined as the months with more than 1/12th 

of the mean annual BF. Fuel availability, the second factor highlighted by (Meyn et al., 2007), is also 25 

discussed. 

3. Results 

3.1 Fire incidence and emissions 

Figure 5 shows the spatial distribution of the average annual BF for GFED and SEVER. GFED clearly 

depicts the most extensively burned continents, i.e. Africa and Australia. It also indicates high fire activity 30 

at the edges of the tropical forest, due to land clearing and pasture management, in Central and South 

America and South East Asia (Langner et al., 2007; Morton et al., 2006). Fire incidence is much lower in 
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most temperate and boreal ecosystems, except for the north-western Iberian Peninsula and Kazakhstan, 

both regularly affected by fires. A few other regions display high BF values, for example eastern Siberia 

and Alaska. Note, however, that for ecosystems with a long fire return interval, as is the case in boreal 

regions, the statistics computed over 10 years are very sensitive to the occurrence of important fire events 

during that period, and it can not be considered representative of the long term regional fire regime. 5 

Eastern Siberia, for example, was highly affected by fires in 1998, boosting the 10 years average (Kajii 

et al., 2002; Le Page et al., 2008). 

SEVER accurately reproduces some of the main spatial patterns of fire incidence, i.e. high BF values over 

Africa and Australia, very limited fire activity in the tropical evergreen forest and in most temperate and 

boreal regions. For a better emphasis of the discrepancies, Figure 6 illustrates the mismatch between 10 

GFED and SEVER through a normalized difference burned fraction index (NDBF) computed as Eq. (14): 

𝑁𝐷𝐵𝐹 =
𝐵𝐹𝑆𝐸𝑉𝐸𝑅−𝐵𝐹𝐺𝐹𝐸𝐷

𝐵𝐹𝑆𝐸𝑉𝐸𝑅+𝐵𝐹𝐺𝐹𝐸𝐷

 ,                                                                                             (14)    

Where 𝐵𝐹𝑆𝐸𝑉𝐸𝑅  and 𝐵𝐹𝐺𝐹𝐸𝐷 are the annual fire incidence averaged over 1997-2006 from the model and 

the observations, respectively. 𝑁𝐷𝐵𝐹 is constrained between -1 (large model under-estimation) and 1 

(large model over-estimation). Finally, Figure 7 shows the gradient of three broad PFTs classes (Bare 15 

soil, Grass and Trees), as modelled by SEVER, and the regions of large over/under estimation of the 

actual tree cover percentage inferred from GLC2000. Those results and further comparison with 

GLC2000 clearly reveal the following patterns: 

- Regions with low observed fire incidence and the presence of grass in the model display fire over-

estimation, regardless of the GLC2000 landcover, and the more grass, the higher the over-estimation. 20 

This is the case for example in North America, India, South America and Papua New Guinea. The 

overestimation in these areas can be also caused by high fractional coverage of croplands, not 

included in SEVER-FIRE model. 

- Regions with dominant tree cover, or with a large over-estimation of trees in the model, display 

under-estimation of fire incidence. This is the case in a large strip covering Kazakhstan and eastern 25 

Europe, and in most of South East Asia, for example. 

- The model underestimates the very high fire incidence observed in sub-Saharan Africa.  

Considering drivers of BF spatial distribution, Figure 8 illustrates the interactive influence of paired 

combinations of the previously described variables. In GFED, the most affected regions are clearly 

constrained by annual precipitation between 500 and 1500 mm/year and a dry season severity ranging 30 

from 150 to 500mm of rainfall deficit (Fig. 8: top). SEVER is less restrictive regarding this climatic 
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limitation, but the general dependence patterns are similar to the observations. Concerning vegetation 

characteristics (Fig. 8: middle), fires affect ecosystems of all levels of NPP, although fire incidence is low 

at the extreme ends of the spectrum. Similar values of NPP and annual precipitation can be found in very 

different ecosystems, as in boreal and sub-tropical regions for example, with great differences in fire 

incidence, hence the low predictability of GFED BF by NPP and precipitation. SEVER also shows little 5 

constraining of the mean BF by the combination of those two variables. Finally, high fire incidence is 

biased towards rural regions with very low economic income (<600 US$/capita/year), as shown in Fig. 

8: bottom, with the exception of Australia, the only wealthy country highly affected by fires. SEVER also 

shows this rural bias, but on average allows higher fire incidence in wealthy regions, including North 

America. 10 

Finally, Figure 9 displays the mean annual carbon emissions for GFED and SEVER. Emissions are mainly 

dependent on fire incidence, the type and moisture content of the affected vegetation, and fire severity. In 

SEVER, dead PFTs individuals are entirely emitted to the atmosphere, while GFED takes into 

consideration combustion completeness. Consequently, the absolute level of emissions cannot be 

compared, being much higher in SEVER, as expected. However, the spatial patterns reveal the importance 15 

of tropical savannas and forests in the global partitioning of carbon emissions in both GFED and SEVER, 

as well as a significant contribution from boreal regions. We are planning to correct SEVER for 

combustion completeness as well as for post-fire mortality processes. 

3.2 Seasonality 

Figure 10 shows the spatial patterns of the month with maximum fire activity for each grid cell, and the 20 

mismatch between GFED and SEVER. SEVER roughly reproduces the observed spatial patterns, with 

73% of the grid cells with a mismatch lower than or equal to 2 months. Significant discrepancies occur 

in Sub-Saharan Africa, which peaks over March to June in the model, while GFED, along with other 

observation sources, indicate October to February (Barbosa et al., 1999a; Clerici et al., 2004; Dwyer et 

al., 2000b). 25 

Sub-Saharan Africa is a major fire region (Dwyer et al., 2000c; Tansey et al., 2004), contributing to a 

large fraction of global fire activity from October to February, a period when most other regions 

experience little or no fire activity. As such, the inability of SEVER to reproduce fire seasonality in Sub-

Saharan Africa is one of its major current limitations. Delayed fire season is also significant in Central 

North America and south-eastern Australia. 30 

The fire seasonal cycle is partially driven by climate, but it can also be strongly influenced by human 

activities. Figure 11 illustrates the averaged profile of the fire season and the dry season over Sub-Saharan 
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Africa, for those grid cells with a SEVER fire peak discrepancy larger than or equal to 4 months. For each 

of these cells, we computed the monthly fire season, centred the peak month on the x-axis, and then 

derived the corresponding monthly DSS profile. Once averaged over all grid cells, the fire and DSS 

profiles show the temporal connection between both variables. Figure 11 clearly indicates that in the grid 

cells considered, the fire season is shifted towards the early dry season in GFED, and towards the late dry 5 

season in SEVER. 

In regions with lower use of fire as a management tool, as in boreal forests, the model performs much 

better and, along with the observations, tends to place the peak month in the middle or late dry season 

(not shown). The implication of these findings for model improvement are detailed in the discussion 

section. 10 

3.3 Inter-annual variability 

Figure 12 shows the grid cells correlation between annual BF timeseries from GFED and SEVER. 

Equatorial Asia, Mexico and a majority of boreal regions are in good agreement, along with part of South 

America. As discussed later, those regions are characterised by their sensitivity to climate variability, 

especially to the El Niño of 1997/98 (Le Page et al., 2008). Poorest agreement is found in Africa, India, 15 

China, western Russia, south of the USA Great Lakes, and in parts of South America. 

Inter-annual variability is further analyzed using a set of 13 regions, originally created for GFED analysis 

(Giglio et al., 2006) as represented in Fig. 13. Globally, and for each of those regions, Figure 14 shows 

the BF inter-annual anomalies from GFED and SEVER, along with the monthly distribution of fire 

activity as a further indicator of the timing of specific fire events, and of fire seasonality. The very poor 20 

agreement in the global plot was to be expected, given the discrepancies in mean spatial fire incidence 

(Fig. 5), resulting in different contributions from regions to the total fire anomalies. This is clearly 

revealed by the monthly plot, showing that total fire activity in December-February, peaking in GFED 

with the large contribution of sub-Saharan Africa, is very low in SEVER. Consequently, a given fire 

anomaly in Africa has a much bigger global impact in GFED than in SEVER. 25 

Regional partitioning allows identifying and comparing specific fire events more easily, especially the 

ones driven by large scale climatic variability. The El Niño episode of 1997-1998 appears clearly in the 

BONA, CEAM, BOAS and EQAS regions in the observations, and is generally captured by the model 

with precise timing. Annually, the importance of those events is also reproduced for EQAS and BOAS, 

with respectively 1997 and 1998 being the peaking year in both GFED and SEVER. Generally, fire 30 

patterns in the other regions are not properly represented. The monthly resolution plots also give further 
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insights into the regional scale seasonal cycle, which is generally very well reproduced, except for 

northern hemisphere Africa and Australia. 

Figure 15 displays the dependence of fire anomalies on precipitation and temperature anomalies over the 

fire season, through their effect on soil and vegetation moisture status. Drought conditions are the main 

pre-requisite for fire occurrence within all vegetation types, although in low NPP ecosystems, low 5 

vegetation amount can be a limiting factor, resulting in a dependence of fire anomalies on growing season 

precipitation also (Holmgren et al., 2006; van der Werf et al., 2008). The relationship is first pictured 

globally (Fig. 15), showing that both precipitation and temperature anomalies are strong drivers, 

constraining positive fire anomalies almost exclusively to precipitation deficits, and towards positive 

temperature anomalies. This relationship is then analyzed in GFED for 3 types of ecosystems: 10 

- Boreal ecosystems, a spatial aggregation of the BONA and BOAS regions. Boreal fires are shown 

to be strongly dependent on temperature, at a level comparable to precipitation.  

- Tropical humid regions, selected within South America, Africa and Equatorial Asia, as the pixels 

with annual precipitation above 1500mm. Their fire anomalies are also strongly related to 

precipitation, while temperature is a weak driver.  15 

- Semi-dry and dry African and Australian regions (annual precipitation below 500mm), which are 

characterised by high anthropogenic fire activity. For those regions, both fire season precipitation 

and temperature anomalies are poor predictors of fire anomalies. 

Those patterns are well reproduced on a global scale, such that the patterns of dependence on both climatic 

variables are similar in the model and in observations (Fig. 15). In boreal/tropical humid ecosystems, 20 

SEVER shows the same trends towards more/less dependence on temperature, although not as neatly as 

in GFED. In the case of semi-dry and dry African and Australian regions, the model also shows a weaker 

dependence on precipitation and temperature, but stronger than in the observations. 

4. Discussion 

Perhaps one of the most important achievements of SEVER, as revealed by this study, is the realistic 25 

modelling of strong climate driven fire anomalies, such as the large biomass burning events resulting 

from El Niño-induced droughts in various regions of the world (Fig. 12 and Fig. 14). This climate induced 

variability is known to be considerable and has important consequences for atmospheric composition, the 

terrestrial carbon cycle, and biodiversity, as discussed in the Introduction. As such its accurate 

representation in DGVMs and ESMs is essential. 30 
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The in-depth analysis of this climatic influence highlight the variability of the precipitation/temperature 

dependence patterns (Fig. 15). Boreal regions are characterised by great annual amplitudes of 

precipitation and temperature. As such, both play an important role in the dynamics of soil and vegetation 

moisture status, through rainfall and evaporation, thus the strong fire dependence on both variables. In 

tropical humid regions, temperature variability is much lower, and only a major and prolonged 5 

precipitation deficit will result in fire prone conditions (van der Werf et al., 2008). 

Finally, semi-dry and dry regions of Africa and Australia are characterised by a low dependence on both 

parameters. Those regions are under specific climatic conditions, characterised by a rather short and 

irregular wet season for vegetation growth, followed by a long dry season (Peel et al., 2007). Under those 

conditions, fuel availability, rather than its readiness to burn, limits the occurrence of fires (Meyn et al., 10 

2007). Under low wet season precipitation, vegetation build-up may be too low to sustain a fire. Under 

high wet season precipitation, vegetation growth leads to less patchy vegetation, which will dry out over 

the following dry season, becoming highly susceptible to fires. This scheme is very specific of those hot 

dry and semi-dry regions dominated by annual herbaceous vegetation. In the case of middle to high 

productivity ecosystems with the presence of woody vegetation, the relationship is generally reversed: 15 

enhanced wet season precipitation leads to higher soil and vegetation moisture status, delaying desiccation 

over the dry season, thus reducing fire susceptibility. The contrast between those two distinct vegetation-

climate-fire relationships is most evident in Australia (Fig. 16). The SEVER vegetation scheme did not 

perform very well over Australia, and so the role of wet season precipitation is not properly represented 

(not shown). 20 

At global scale, SEVER is shown to be fairly realistic regarding this temperature/precipitation 

dependence, which was to be expected since both variables are involved in the fire weather danger and 

fire spread calculations. However, the variability of the relationship along ecosystem types (boreal, 

tropical humid, semi-dry/dry), resulting from complex interactions between fire drivers, is not as 

straightforward to capture. The realistic results for such an interactive system suggests that the feedback 25 

mechanisms as defined in the SEVER-DGVM/SEVER-FIRE coupled scheme do reach a reasonable level 

of complexity and accuracy, especially in the case of boreal and tropical ecosystems. 

The mean burned fraction (Fig. 5) is a more challenging feature for the model to replicate. Key 

associations represented in the fire triangle (Schoennagel et al., 2004) are, however, reproduced (Fig. 8), 

i.e. fire occurrence limitation by moisture in very humid ecosystems, or by low fuel amount in arid 30 

regions. Unfortunately, SEVER models potential - not actual - vegetation cover, hampering an in-depth 

diagnostic of the fire incidence estimates. However, grass/trees appear to be over/under sensitive to fires, 

with the exception of highest fire incidence regions (Africa, northern Australia), where SEVER 

underestimates fire activity, independent from vegetation cover (Fig. 6 and Fig. 7). The main PFT 
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parameters controlling fire incidence are bulk density (fire ignition and spread, see Table 1), and 

flammability (fire danger index computation). Flammability takes the same value for all tree PFTs, and a 

distinct value for both C3 and C4 grasses together. As such, it may be a relevant factor to correct the 

over/under estimation observed in grass/trees. Of critical importance for fires are also three vegetation 

types not yet included in SEVER-DGVM: croplands and pasture (land management fires (Pyne, 2001)), 5 

savannas, and peatlands (modest land extent, but major carbon hotspot (Page et al., 2002; Turquety et al., 

2007)). 

It is also essential to improve our understanding of anthropogenic impacts on fire incidence. The initial 

assumptions of the model, with population and wealth status as the most important human proxies, are to 

be re-assessed carefully in regional studies, given the implication of other factors. Especially, the most 10 

evident cases of human induced increased or decreased fire activity are related to land use type and 

agricultural practices, more than to economic and social status. For example, (Pfeiffer et al., 2013) divided 

population into three according to their dominating land use types: farmers, pastorals and hunter-gathers. 

Kaplan et al. (2016) showed that this division determined structure of areas burnt during Last Glacial 

Maximum. In Africa for example, the combination of a strong seasonal wet-dry climate with regular 15 

human ignitions favours high fire incidence. Thus, a simple timing function for rural population 

implemented into SEVER-DGVM may not work properly in Africa.  Relating those ignitions to low 

wealth status, as done in SEVER, is certainly functional after a few adjustments, but seems less robust to 

other regions than an association of land use with timing of human pyrogenic activities and number of 

human ignitions. As an illustration, wealth status is not well adapted to account for high fire incidence 20 

induced by humans in northern Australia (Russell-Smith et al., 2007). Additional proxies for human 

pyrogenic activities implemented in SEVER-FIRE could include deforestation activities (Zhan et al., 

2002) and land use/landcover data (Thenkabail et al., 2006). Fire management factor should be added to 

the model in the regions where coordinated wildfire controlling program is in place (e.g. existence and 

actions of European Commissions Emergency Response Coordination Centre in Europe 25 

(https://ec.europa.eu/echo/what-we-do/civil-protection/forest-fires_en)). 

Advantages of including relationship between land use and timing of pyrogenic activities in SEVER 

would possibly also extend to a better representation of fire seasonality. In sub-Saharan Africa for 

example, Figure 11 reveals that the fire season (October-February, Fig. 10) is shifted towards early 

months of the dry season, which mainly results from the use of fires for agricultural and land management 30 

practices (Clerici et al., 2004). For the whole southern hemisphere, however, human pyrogenic activity 

in SEVER is set to reach a maximum from March to May and September to November, which is not 

realistic in the case of sub-Saharan Africa, a major fire region. Timing of pyrogenic activities in sub-

Saharan may be rather challenging as even implementation of land use in global fire model (Le Page et 
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al., 2015) still brings 1 to 3 month delay in fire peak. Besides, it was demonstrated that religious affiliation 

modulates agricultural burning activities in the area (Pereira et al., 2015), which is completely off the 

view of global fire modelers at the time. It is seen that a set of regional case studies with an active use of 

available historical data is necessary to implement more realistic features of human pyrogenic activities 

in global fire models. Study and parameterization of fire duration in remote areas is necessary for 5 

improvement of area burnt calculation in these areas. 

Description of lightning fires need also improvements, starting from estimation of number of lightning 

strikes effective for fire ignition. Despite lightning strike is considered to be to major extent a stochastic 

event, there is a visible room of better description of number of cloud-to-ground flashes based on recent 

findings of role of aerosols in electrification of thunder clouds (Stolz Douglas et al., 2015; Venevsky, 10 

2014). In addition, sensitivity study for critical newly implemented features timing and duration and 

further formal optimization for parameters of SEVER-FIRE model using teaching subset of remote 

sensing data for observed areas burnt (Khvostikov et al., 2015; Rabin et al., 2015; Rabin et al., 2018) can 

further improve performance of the presented global fire model. 

5. Conclusions 15 

This paper analysis results from a DGVM which includes an interactive, dynamically-linked fire module. 

It reveals that the most important climate driven fire features are reproduced by the model, while the 

dependence on vegetation characteristics and, especially, human pyrogenic activities prevents the further 

development of realistic estimates of fire incidence, and of regional to global inter-annual variability. 

Regional adjustments of global fire models based on analysis of both historical fire statistics/records and 20 

recent satellite observations are necessary for further understanding of global fire dynamics in past, 

present and future.   

6 Code availability 

SEVER-FIRE is presented in its 1.0 version, which is realised in FORTRAN language. It is open use 

scientific software. The source code of SEVER-FIRE and the socio-economic input data can be accessed 25 

freely from https://github.com/zjkwuchao/SEVER-FIRE-model.git The model code could be accessed by 

contacting Sergey Venevsky or Chao Wu. 
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Table 1: 5 of the 35 parameters defined for each of the 10 SEVER PFTs.  

PFTs 
Moisture of 

extinction1 

Fire resistance 

index2 

Minimum 

coldest monthly 

mean TºC3 

Maximum 

coldest monthly 

mean 

temperature3 

Bulk density of 

fuel kg/m2 

Tropical Broadleaved evergreen tree 0.3 0.12 15.5  3 

Tropical Broadleaved rain green tree 0.3 0.5 15.5  2 

Temperate Needleleaved evergreen tree 0.3 0.12 -2 22 10 

Temperate Broadleaved evergreen tree 0.3 0.12 3 18.8 10 

Temperate Broadleaved summer green tree 0.3 0.12 -17 15.5 10 

Boreal Needleleaved evergreen tree 0.3 0.12 -32.5 -2 16 

Boreal Needleleaved summer green tree 0.3 0.12  -2 16 

Boreal Broadleaved summer green tree 0.3 0.12  -2 16 

C3 perennial grass 0.2 1  15.5 2 

C4 perennial grass 0.2 1 15.5  2 

1 Involved in the computation of fire probability 

2 Involved in the computation of vegetation disturbance after a fire 

3  indicates no limitation from the considered parameter 
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Figure 1. Observed and simulated number of lightning strikes in central cordillera of Canada. Left: 

in Alberta; Right: in British Columbia. 

 

 5 

Figure 2. Total number of lightning fires observed (Wierzchowski et al., 2002) and simulated. Left: 

in Alberta; Right: in British Columbia. 
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Figure 3. Registered and simulated number of fires in Canada. 

 

 

Figure 4: Definition of the dry season indicator on a climatic diagram as the yellow patch area. 5 

On the y-scales, 1ºC is equivalent to 2mm/year of precipitation, and Dry Season Severity (DSS) is 

computed as the area of the region where the temperature profile is above the precipitation 

profile.  



 35 

 

 

 

Figure 5. Mean Annual Burned Fraction (percentage) over 1997-2006. Top: GFED; Bottom, 

SEVER-FIRE. 5 



 36 

 

Figure 6. Discrepancies in the model outputs relative to GFED observation derived data, as 

represented by the normalised difference burned fraction index (see text). Black/grey colours 

represent grid cells where fires only occur in GFED/SEVER. 

 5 

Figure 7. SEVER DGVM Land Cover distribution, grouped in 3 broad classes: Bare soil, Grass 

(C3 and C4) and Trees (all Tree PFTs, see Table 1). 

 

 

 10 
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Figure 8. Mean Annual Burned Fraction over 1997-2006 (left: GFED; right: SEVER-FIRE) as a 

function of paired parameters. Top: Annual Precipitation and Dry season severity; Middle: 

Precipitation and NPP; Bottom: Rurality indicator and GDP.  
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Figure 9. Mean Annual emissions (gC/m2/year) over 1997-2006. Top: GFED; Bottom, SEVER-

FIRE. 5 

  



 39 

 

 

Figure 10. Top: Peak of the fire season in GFED; Middle: Peak of the fire season in SEVER; Bottom: relative 5 

mismatch between SEVER and GFED peaking month of the fire season. 
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Figure 11. Averaged correspondence of fire season with dry season anomalies over regions of sub-

Saharan Africa with a delay in peak month superior or equal to 4. 

 

5 
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Figure 12. Correlation of annual BF from GFED and SEVER, over 1997-2006. 

 

Figure 13. Regions used for inter-annual variability analysis. BONA: Boreal North America; 

TENA: Temperate North America ; CEAM: Central America ; SOAM: South America ; EURO: 5 

Europe ; NHAF: Northern Hemisphere Africa ; SHAF: Southern Hemisphere Africa ; BOAS: 

Boreal Asia ; CEAS: Central Asia ; SEAS: South East Asia ; EQAS: Equatorial Asia ; AUST: 

Australia. 
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Figure 14. Regional comparison of fire variability over 1997-2006. For each region subplot: Top: 

annual Anomalies; Bottom: monthly time series constrained to [0 1]. The region name is indicated 

at the top left corner, the average fire incidence at the top right. 5 
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Burned Fraction Anomalies 

Figure 15: Dependence of fire anomalies to Temperature and Precipitation  
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Figure 16: Dependence of fire anomalies to wet season precipitation and landcover type in 

Australia for GDED data 
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