
Author response to Anonymous Reviewer #2 on: “Analysis fire patterns 
and drivers with a global SEVER-FIRE model incorporated into Dynamic 
Global Vegetation Model and satellite and on-ground observations” by 
Sergey Venevsky et al. 

We appreciate the constructive comments from the reviewers. Reviewer 
comments are in black, our responses are in blue. 

And a revised document highlighting the tracked changes we have made 
based on these comments are also provided after the end of the response. 

Referee #2 

Review summary  

In this manuscript, Venevsky et al. describe a new fire module, SEVER-
FIRE, incorporated into the SEVER dynamic global vegetation model 
(DGVM). SEVER-FIRE is largely based on the Reg-FIRM fire model, for 
whose description Venevsky was also lead author, and which provided 
the structural foundation upon which many modern global fire models 
have been built. SEVER-FIRE includes several new elements relating to 
fire ignition (by both lightning and humans) and fire termination, which 
seem likely to improve model realism. Many different approaches have 
been used in various aspects of global fire modeling, and the new 
elements introduced in this manuscript are welcome as alternative 
mechanisms and parameterizations. A new global fire-vegetation model, 
moreover, could add weight to efforts to explore the uncertainty related 
to fire drivers and the future of fire regimes around the world. For that 
reason, I think this manuscript could represent an important contribution 
to the fire modeling literature. That said, I recommend that the manuscript 
be resubmitted with major revisions. My explanation follows. 

Main critique 

Previous comments on this manuscript have highlighted the tone of parts 
of the paper as problematic. While I don’t see it as overly hostile, I do 
agree that revisions should be made in the aim of reflecting the authors’ 
respect for previous work. In their reply to Colin Prentice’s comment, the 
authors have indicated that they intend to make changes in that direction, 
so I will leave aside questions of tone and language. I do have some 
concerns regarding the content of the discussion, however.  

The modeling approach of Venevsky et al. is to minimize the use of 
parameterizations based on remote sensing (here, “remote-sensing 
approach”) and to instead favor mechanisms and relationships derived 
from first principles or laboratory-scale experiments (“first-principles 
approach”). This, they assert, may confer an advantage because their 



parameterizations may hold true far into the past or future (i.e., outside 
the satellite era) where remote-sensing-derived parameterizations do not. 
I can agree with that to some extent, in principle. However, Venevsky et 
al.—in the original manuscript and in their reply to Prentice—need to 
rethink how they discuss this.  

The arguments both in Introduction and Discussion were changed to meet 
requests of Reviewer 2 and 1. Now manuscript is focused mainly on innovations 
presented by SEVER-FIRE in comparison with other models. 

In their reply to Prentice, the authors cite Baudena et al. (2015) as 
supporting their contention that including parameterizations based on 
remote sensing data can result in unreliable models. Specifically, they 
quote this passage (quoted here in full): 

LPJ-GUESS-SPITFIRE simulation results do not show any low tree 
cover value (e.g., below 50 % cover) for rainfall higher than about 900 
mm yr−1 (Fig. 2b). In other words, this model (quite surprisingly) 
does not predict any savanna in mesic environments. In the model, 
though fire frequency is prescribed from the satellite data, fire 
spread depends on fuel load (Fig. 3c) and fuel moisture, and thus 
unfavorable conditions might still prevent fires. Both grass and tree 
presence increases fire intensity, opening up space, and thus 
favoring grasses. This is not strictly a positive grass–fire feedback 
because grass-free areas can also burn. Thus, as grasses are not 
fostered by the positive feedback with fire, they are always 
outcompeted by trees in LPJ-GUESS-SPITFIRE when water 
availability is high, and they do not survive above approximately 900 
mm yr−1. At the same time, this issue is also likely to be connected 
to fire intensity depending on fuel moisture. In this model, fire 
occurrence in a patch is calculated probabilistically from the 
proportion of burned area as determined from the remote sensing 
product. If fire occurs in a period of high fuel moisture, the intensity 
will be limited, thus having little effect on vegetation. This 
probabilistic approach is necessary because the temporal extent of 
the remote sensed data (now only ca. 10 years), used to generate the 
probability of burned area for each pixel, is much shorter than the 
extent of the climate data for which the model was run (ca. 100 years). 

And here is the authors’ interpretation, which they intend to include in 
their revision: 

For example, use of remote sensing derived fire frequency for Africa 
as an input to SPITFIRE for Africa, resulted in absence of savanna 
for the area with annual rainfall larger then 900 mm/yr (Baudena et 
al., 2015). This shortcoming of process-oriented fire model is 



attributed by authors to the short temporal extent of initial remote 
sensed data used for preparation of input data. 

That is unfortunately a misinterpretation of the Baudena et al. (2015) text. 
As described in Thonicke et al. (2010), Lehsten et al. (2009, 2016), and 
Rabin et al. (2017)—and as Venevsky et al. know, given their familiarity 
with how relevant parts of SPITFIRE were derived from Reg-FIRM—
SPITFIRE does of course have a module that, just as with SEVER-FIRE, 
endogenously computes fire occurrence. In Baudena et al. (2015), that 
module in LPJ-GUESS-SPITFIRE (and two other global fire-vegetation 
models) was experimentally disabled and replaced with exogenous, 
remotely sensed burned area, with the goal of isolating and comparing 
the fire-vegetation models’ representation of fire’s ecological effects 
rather than fire occurrence and spread. In the quoted text, Baudena et al. 
(2015) are attributing the poor performance of LPJ-GUESS-SPITFIRE not 
to the use of satellite data (which Baudena et al. effectively consider a 
true representation of reality) but rather to LPJ-GUESS-SPITFIRE not 
representing fuel availability and moisture in a realistic way. The relevant 
mechanisms in LPJ-GUESSSPITFIRE were not derived from remote 
sensing data.  

Thank you very much. Yes. Indeed, Baudena et al. (2015) are not speaking 
about using remote sensing data for parametrization of global fire model, but 
rather about using of remote sensing data as input (which is also written in 
suggested changes to the manuscript). What I meant in my response to I. Colin 
Prentice is that short period of prescribed from RS areas burnt in comparison 
with climate data range (100 years) for LPJ-GUESS-SPITFIRE made it 
necessary to use probabilistic method for fire occurrence in each singular patch. 
Use of probabilistic method could obscure resulting tree cover in a high fuel 
moisture patch where fire is randomly prescribed. However, I also think in with 
line of Reviewer 2, that to larger extent deficiencies in representation of 
resulting tree cover in Africa are mainly determined by deficiencies in 
representation of fire intensity by LPJ-GUESS-SPITFIRE. The text from our 
response to I. Colin Prentice is misleading in contexts of impact of RS data to 
parametrization, thus the text will be discarded in our final revision.                                                            

Venevsky et al. also, in their reply to Prentice, suggest that the Baudena 
et al. (2015) example shows a disadvantage of the remote sensing 
approach in the present as well. However, the example does not support 
their case: 

• It is the result of a contrived experiment that does not reflect how 
most global fire-vegetation models actually work.  

This is true. See above. 



• The only global fire-vegetation model I can think of that does 
directly input satellite-derived burned area (LM3-FINAL.1; Rabin et 
al., 2018) would not be negatively affected by that input in the 
present. This is because LM3-FINAL.1 (a) only applies those burned 
areas on cropland and pasture, thus avoiding the problem with bad 
fire inputs leading to bad community composition, and (b) uses 
constant combustion completeness and fractional mortality factors 
that would not be affected by fire occurring on wet vs. dry days. 
Rabin et al. (2018) do acknowledge that the use of this input is 
problematic when applied outside the period of its derivation. 

Yes. I agree that studies of Rabin et al. (2018), Rabin et al. (2015) demonstrate 
that satellite-derived input for burned areas with some restrictions mentioned 
by reviewer 2 (listed in (a) and (b)) can be successfully applied in global fire 
models. Rabin et al. (2018) also demonstrated that relatively small sub-set of 
satellite-derived input can be successfully used for optimization of parameters 
of global fire model. Similar method was also applied by Khvostikov et al. (2015) 
for optimization of parameters of a dynamic global vegetation model for Russia 
for better description of simulated land cover. I also think that satellite-derived 
areas burnt should be used for optimization of parameters for SEVER-FIRE in 
the future, but once more will promote developing at first instance a first-
principle global fire model with limited or no satellite derived parameters and 
only afterwards use satellite-derived data for fine tuning by formal or heuristic 
optimization. The important findings of Rabin et.al. 2018 and 2015 were 
presented in the end of Discussion.    

As I’ve said, I agree with the authors that a first-principles approach could 
be advantageous because it seems more likely to result in 
parameterizations that are more robust outside the satellite era, but I 
cannot think of how any example using historical data would support their 
case. Instead, I think the best thing the authors could write is what they 
wrote in their reply to Prentice: 

We argue that it would be advantageous if one can produce long-
term fire relationships without depending on remote-sensing, which 
is available for a relatively short period of time (a few decades). Fire 
return intervals can be of the order of hundreds of years, whereas 
remote sensing is available for several decades. Therefore using 
remote sensing to derive relationships implicitly assumes a space 
for time substitution, which may or may not hold. Also our approach 
in turn allows the remote sensing to be employed as a valuable 
evaluation dataset, albeit over this limited time interval.  

Thank you for good advice. We included the paragraph you have mentioned in 
slightly modified form in Introduction. 



However, I am actually not convinced that SEVER-FIRE even is more 
grounded in first principles than most other global fire-vegetation models! 
I see at least one instance where remote sensing or other large-scale, 
recent historical datasets have been used: 

• Equations 1–6, governing lightning ignitions, were derived from 
national networks of ground-based sensors in the United States and 
Canada in 1997 (Allen & Pickering, 2002).  

This is true, Allen and Pickering (2002) parametrization is designed from the 
OTD/LIS observation network for North America. However, the polynomial 
power four parametrization (number of flashes by convective variables, in our 
case convective precipitation) is designed based on physical model of induction 
suggested by Vonnegut (1963). We are now on the way of complete substitution 
of Allen and Pickering (2002) parametrization by the new entirely physically 
based model of lightning production (prototype is published in Venevsky (2014))    

• Equation 9 may also have used such a dataset, although it’s not 
clear exactly how it was parameterized. In their reply to Prentice, the 
authors mention that the value of a¯ for peninsular Spain was 
derived in the Reg-FIRM description (Venevsky et al., 2002); while I 
was not able to totally follow the chain of logic presented there, I do 
understand generally the strategy. However, I do not see the 
parameterization for the Sahel that, according to the authors’ reply 
to Prentice, is also supposedly in Venevsky et al. (2002). More 
importantly, even in their reply to Prentice, the authors do not 
describe what historical fire occurrence data they used to derive 
Equation 9. Was it satellite data? If so, that undermines the authors’ 
insistence that SEVER-FIRE has an advantage due to independence 
from parameterizations based on remote sensing data. Or was it 
instead based on national statistical databases? There are issues 
with those as well:  

– They only exist in certain wealthy countries. 

– They may not be reliable going back into the mid-20th century.  

– They depend to some extent on the satellite record for recent 
decades.  

– It would still be basing a part of the model on some external 
data which, although based on a longer time period than the 
satellite record, could still fail to be representative of 
mechanisms far in the past or future. 

We now tried to describe derivation of number of human ignitions in more 
details. For derivation of equation 9, we used 1) dataset on historical fire 



statistics for Spain 1974-1994 (Vazquez and Moreno, 1998); 2) dataset on 
historical fire statistics for Canada 1965-1991 (Stocks et al., 2002). We admit 
that these historic datasets do all have four shortcomings listed by Reviewer 2. 
The statement about Sahel in my reply to I. Colin Prentice is a mistake, what I 
wanted to say is estimate of 𝑎" for Africa by countries done in Reg-FIRM from 
(satellite) data of for areas burnt in Africa 1981-1991 (Barbosa et al., 1999). 
And the changes are shown in the text below Eq. (9).      

This is not to say that SEVER-FIRE is an outlier; essentially all global fire-
vegetation models are designed to reproduce a limited time series of 
historical data, either through explicit parameterization processes or 
through manual model tuning. Global fire models are typically classified 
into two groupings—purely empirical models and quasi-mechanistic 
models—which differ in their reliance on parameterizations derived from 
historical data. See, for example: 

• The anthropogenic ignition components of (most of) the eight 
models included in Table S1 in the Supplement of Rabin et al. (2017) 

• The parameter estimation (using the Levenberg-Marquardt 
algorithm) described for the quasi-mechanistic FINAL.1 in Rabin et 
al. (2018)  

• Purely empirical models such as SIMFIRE (Knorr et al., 2014, 2016) 

Thus SEVER-FIRE, rather than being categorically different from most 
other global fire-vegetation models (a “purely mechanistic” model, 
perhaps) as Venevsky et al. contend, seems instead to be more first-
principles-based only by a matter of degree (i.e., it derives lightning flash 
rate from weather rather than from a historical-derived climatology, 
although that derivation does itself depend in part on historical data). 

We agree that SEVER-FIRE is a quasi-mechanistic model which is more first-
principles-based by a matter of degree, this is now written in Introduction. 
Clarification for this definition of SEVER-FIRE is done based on terminology of 
study of Rabin et al. (2017) and Hantson et al. (2016). 

Finally, I agree with Reviewer 1 that the satellite record is not unique in its 
susceptibility to non-representativeness. Even completely accurate, 
decades-long, ground-based measurements could only be assumed to be 
representative of the time period covered, with whatever plant species, 
climate/weather patterns, and anthropogenic activity was there at the time. 
And of course such records are not completely—or even consistently—
accurate anyway! Furthermore, such records are not global in coverage, 
so even though the problem with space-for-time substitution is lessened 
relative to the satellite record (not eliminated completely), a space-for-
space problem is worsened. Likewise, laboratory-based experiments, 



such as those regarding the ignition efficiency of lightning strikes, 
depend on the species of plant litter involved—even an experiment 
sampling a wide variety of plant species from across the planet could fail 
to be representative of species far into the past or future. The brief 
temporal coverage of the satellite record may make it especially 
vulnerable to failures of robustness, but other datasets have their own 
problems. 

We certainly agree that both on-ground measurements and laboratory-based 
experiments are not the Golden Buddha to which we should pray. We now 
mention characteristic problems related to these kind of data in the Introduction. 
We just advocate finding understandable explanatory relationships which allow 
understandable interpretation and visible ways of modification for past and 
future whether they come from ground, laboratory or satellites or from some 
theory – does not matter.   

Every development team has their own principles that they bring to model 
construction. If those principles represent a significant break with the 
dominant mode of thinking in the field, it makes sense to spend time in 
the model description discussing them. However, Venevsky et al. seem to 
have a perfectly normal quasi-mechanistic fire model in SEVER-FIRE. 
Thus, this manuscript should be rewritten to focus on the model itself 
(especially where it differs from previous models) rather than the 
philosophy that governed its design. 

Thank you for your comments. It is all the question of definition, what is “normal 
quasi-mechanistic model”, what is not. We are, indeed, making an effort to build 
a first-principle global mechanistic fire model and we are on our way to have it. 
We have named our model ‘Experimental’ in order to show that some processes 
are included in SEVER-FIRE model ad hoc (timing of ignition activity of rural 
versus urban population, others) as mechanisms are still not described/studied, 
some processes are simplified (e.g. setting maximum time of fire to two days) 
and some processes are based on statistical descriptions from satellite data 
(number of on-ground flashes), as they wait there nearest time to be substituted 
by mechanistic models. In the Introduction (see below) and further on we 
followed advice of Reviewer 2 and focused mainly on the SEVER-FIRE model 
itself and this has been added in the Introduction part, but as well compromised 
and reserved some place to describe our principles of model design and we 
hope that the novelty and strategy of SEVER-FIRE can contribute significantly 
to the field as Reg-FIRM did in its time.  

Other major comments  

1. Apparent from the comments of Prentice and Reviewer 1, as well as my 
read of the manuscript, is that the authors need to improve the 
Introduction, Methods, and Discussion sections to better highlight the 



novel aspects of SEVER-FIRE. 

Thank you for your kind suggestions. We have re-written the Introduction, 
clarified the Method, and improve the Discussion, especially more focus on the 
innovation of SEVER-FIRE. We think that we met this request now. 

2. When explaining novel parts of SEVER-FIRE, the derivation process 
should always be fully explained—as the authors did for their equations 
regarding lightning strikes. Such explanation needs to be added for:  

• The wealth dependence of anthropogenic ignitions (Eq. 9; as they 
mention they will do in their reply to Prentice)  

Now explanation is given in the text below Eq. (9), see new text: 

“Equation (9) was obtained using logarithmic regression from geographically 
distributed observed number of human fires (map of average over 1974-1994 
annual number of human fires for Spain (Vazquez and Moreno, 1998), map of 
average over annual number of human fires by Canadian ecoregions 1961-
1995 (Stocks et al., 2002) and map of average over annual number of total fires 
(assumed to be all human) by African countries 1981-1991 (Barbosa et al., 
1999). No division to rural and urban population was assumed when deriving 
Eq. (9)” 

• The limitation of fire duration to two days. This limitation may have 
contributed to SEVER-FIRE’s underestimation of burned area in the 
boreal region: Korovin (1996) found that almost 70% of the burned 
forest in Russia over 1947–1992 resulted from fires that burned for 
more than ten days.  

The limitation of maximum fire duration to two days is explained by range of 
EFFIS database for Europe. This, of course, limits estimate of areas burnt in 
remote areas we write in the new text: 

“However, the limitation of maximum fire duration to two days was set due to 
range in the fire duration of EFFIS database, which covers mainly European 
domain. Globally this limitation may be not valid for remote high latitude areas, 
but even in these regions mathematical expectation of fire duration will be close 
to one day (see Korovin (1996))” 

In Discussion: 

“Study and parameterization of fire duration in remote areas is necessary for 
improvement of area burnt calculation in these areas.” 

In Introduction: 



“(e.g., setting maximum time of fire to two days but this may be updated and 
modified in the future by introducing the latest global fire duration datasets 
(Andela et al., 2018)” 

3. The factor timingj, which modulates the frequency of human ignitions 
depending on the time of year, seems rather ad-hoc but could 
nevertheless be of use for many fire models. The authors should 
demonstrate that including it actually improves the simulation of annual 
total and/or seasonal timing of burned area. 

We discuss seasonal timing of areas burnt, which are in particularly 
consequence of timinig implementation in paragraph 3.2 of Results. We think, 
however, that sensitivity and/or optimization study is out of scope for this 
manuscript and assigned for future work we write in Discussion:   

“In addition, sensitivity study for critical newly implemented features timing and 
duration and further formal optimization for parameters of SEVER-FIRE model 
using teaching subset of remote sensing data for observed areas burnt 
(Khvostikov et al., 2015; Rabin et al., 2018) can further improve performance 
of the presented global fire model.” 

4. A glaring hole in many global fire models is that they do not allow multi-
day burning, and so SEVER-FIRE’s inclusion of this is most welcome. 
However, as with timingj, the authors should demonstrate that including 
this parameterization improves their model.  

We discuss geographical distribution of areas burnt, which are in particularly 
consequence of duration implementation in paragraph 3.1 of Results. We think, 
however, that sensitivity and/or optimization study is out of scope for this 
manuscript and assigned for future work we write in Discussion: 

“In addition, sensitivity study for critical newly implemented features timing and 
duration and further formal optimization for parameters of SEVER-FIRE model 
using teaching subset of remote sensing data for observed areas burnt 
(Khvostikov et al., 2015; Rabin et al., 2018) can further improve performance 
of the presented global fire model.” 

5. I disagree with Reviewer 1’s critique that the paper should be 
condensed by removing previously-published model components and 
instead directing readers to those publications. It is too easy to gloss over 
important differences that may have arisen in the time since the original 
publication, and makes it too difficult for the reader to learn about the 
model. One alternative could be to move explanation of non-novel model 
parts to one or more Appendices (or, less preferably in my opinion, a 
separate Supplement). The authors should also consider constructing a 
table-based description of their model to match the form of the 



supplementary tables in Rabin et al. (2017). This would enable a much 
simpler comparison between SEVER-FIRE and the models described 
there, and would ensure a complete description of all relevant aspects of 
the model.  

Thank you for this comment. This comment is conflict from the Reviewer 1. So, 
we tried to put as much clarity as possible to our model description now. As for 
the suggestion to put equations of SEVER-FIRE in Table form of Rabin et al. 
(2017) we decide not to do it for this version of the model. We are now working 
on the follow-up version of SEVER-FIRE which is supposed to be closer to a 
first-principle model. We have an intention to join FireMIP project and run a next 
version within the FireMIP protocol. After these actions comparison of model 
structure in tabular form of Rabin et al. 2017 and simultaneous comparison 
results of SEVER-FIRE and other FireMIP models will have bigger sense and 
will be more helpful for other fire modelers.    

6. The authors should explain why the model outputs were compared to 
GFED2, instead of the more recent GFED3(s) or GFED4(s), which would 
have a number of advantages: 

• These datasets cover nearly twice the time period as GFED2, 
which would increase the time period available for comparison—
which the authors acknowledge as a weakness.  

• GFED3 incorporated an improved burned area detection algorithm 
(Giglio et al., 2010).  

• GFED4 incorporated further improvements to the burned area 
detection algorithm (Giglio et al., 2013).  

• The “s” versions of GFED3 and GFED4 are boosted by burned 
area estimated for small fires that the original algorithms fail to 
detect (Randerson et al., 2012). 

Historically, validation of presented version of SEVER-FIRE model (SEVER-
FIRE v1.0) was accomplished just in time when GFED3 version was finalized. 
As we were building Experimental version of global fire model which was 
supposed to be further developed we decided not to do re-validation with 
GFED3. The basis for this decision was that qualitatively and quantitatively 
GFED2 and GFED3 are similar (see Figure 10 in Giglio et al. (2010)). GFED3 
and GFED4 are also very similar (see comparison in Giglio et al. (2013)) and 
at http://www.globalfiredata.org/figures.html). Versions with small fires have too 
large uncertainties (van der Werf et al., 2017) (Chuvieco et al., 2016)) which 
may obscure our goals of analysis of features of fire model. As we plan further 
development of SEVER-FIRE with joining FireMIP soon we have intention to 
use GFED4s or GFED4 version for new validation similarly to other FireMIP 
members. So, we think for the purposes of our current SEVER-FIRE model 



status presented validation with GFED2 is sufficient.  

Minor comments and technical corrections  

1. P10 L24–25: This sentence should cite the “other global fire models,” 
as well as perhaps Rabin et al. (2017), which provides a comprehensive 
overview and comparison of a number of global fire models.  

Accept and added. 

2. P11 L15 (Eq. 12): This equation structure does not seem to account for 
the fact that, for a given rate of linear spread, an older fire has a longer 
fireline and thus will add more burned area per unit time than a more 
recent fire. This could be a contributing factor to the underestimation of 
burned area in boreal regions, where large, long-lasting fires contribute 
significantly to total burned area. I do not consider this a critical issue, 
but it’s something the authors should definitely mention.  

Mentioned now. 

3. P12 L17–26 (Sect. 2.2.2): It would be nice to see, probably in a 
Supplement, figures showing the input data described here.  

Thank you for your suggestions. We uploaded the input socio-economic data 
to the GutHub together with the code of SEVER-FIRE in case others may need 
it. See code availability. And this have been mentioned in section 2.2. 

4. P13 L18: “As a DGVM” should be deleted—there are certainly DGVMs 
that have the capability to output results that reflect the vegetated area in 
a gridcell. The authors should also explain (a) why they found it necessary 
to adjust the GFED data, rather than simply adjusting the SEVER outputs, 
and (b) what the net impacts of their adjustments were on global burned 
area.  

Accept. Because after re-gridding of GFED dataset to SEVER lan-lat grid 
coastlines of both datasets are still different. Impact of this GIS operations on 
global burnt are is small (less than 3%). This is in the text now. see section 2.4. 

5. P14 L19–21: A citation of Lasslop et al. (2015) should be made here.  

Accept. 

6. P16 L14–16: This text implies that the overestimation of fire in India 
may have something to do with the fact that the model simulates grass 
there. In reality, it’s probably because of strong fire suppression resulting 
from high fractional coverage of cropland.  



This reservation is now mentioned in the section 3.1. 

7. P18 L14: Mention should be made of the fact that these regions were 
originally created for use with GFED (Giglio et al., 2006).  

Mentioned now. 

8. Work is needed on the Discussion paragraph about anthropogenic 
impacts on fire (P21 L7–19):  

• Pfeiffer et al. (2013) should be mentioned, since they introduce a 
number of interesting ideas for modeling of human fire use.  

Mentioned now. 

• “In Africa for example, the combination of a strong seasonal wet-
dry climate with regular human ignitions favours high fire 
incidence.” This sentence does not seem to fit with the idea 
introduced in the previous sentence; namely, that land use and 
agricultural practices are likely more directly related to fire 
incidence than wealth in certain regions. 

The sentence is deleted. 

Except for the comments from the both reviewers, we also revised the 
manuscript carefully based on the kind reviewer from Iain Colin Prentice and 
editors, meanwhile, some typos are changed as well. 
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Abstract. Biomass burning is an important environmental process with a strong influence on vegetation 

and on the atmospheric composition. It competes with microbes and herbivores to convert biomass to 

CO2 and it is a major contributor of gases and aerosols to the atmosphere. To better understand and predict 

global fire occurrence, fire models have been developed and coupled to Dynamic Global Vegetation 

Models (DGVMs) and Earth System Models (ESMs).  15 

We present SEVER-FIRE v1.0 (Socio-Economic and natural Vegetation ExpeRimental global fire model 

version 1.0) which is incorporated into the SEVER-DGVM. One of the major focuses of SEVER-FIRE 

model is an implementation of pyrogenic behaviour of humans (timing of their activities and their 

willingness/necessity to ignite or suppress fire), related to socio-economic and demographic conditions 

in a geographical domain of the model application. Burned areas and emissions from the SEVER model 20 

are compared to the Global Fire Emission Database version 2 (GFED), derived from satellite observations, 

while number of fires are compared with regional historical fire statistics. We focus both on the model 

output accuracy and on its assumptions regarding fire drivers, and perform: 

1- An evaluation of the predicted spatial and temporal patterns, focusing on fire incidence, seasonality 

and inter-annual variability. 25 

2- Analysis to evaluate the assumptions concerning the etiology, or causation, of fire, including climatic 

and anthropogenic drivers, as well as the type and amount of vegetation. 
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SEVER reproduces the main features of climate driven inter-annual fire variability at a regional scale, 

such as the large fires associated with the 1997-98 El Niño event in Indonesia, Central and South America, 

which had critical ecological and atmospheric impacts. Spatial and seasonal patterns of fire incidence 

reveal some model inaccuracies, and we discuss the implications of the distribution of vegetation types 

inferred by the DGVM, and of assumed proxies of human fire practices. We further suggest possible 5 

development directions, to enable such models to better project future fire activity. 

1 Introduction 

The biosphere is affected by fires through physical and chemical pathways, involving interactions 

between the terrestrial and atmospheric components of carbon, water and nutrients cycles. As a natural 

phenomenon, fires are an integral part of a majority of ecosystems, influencing soil fertility, stand 10 

regeneration, vegetation composition, and succession (Le Page et al., 2015; Levine et al., 1999). However, 

through its anthropogenic use for land management (agriculture, pasture, deforestation), fire incidence is 

considerably higher than under natural conditions in many regions, including savannas in Africa and 

Australia, or tropical forests in South America and South East Asia (Bond et al., 2005).  

Abundant literature points a variety of impacts, roles, and drivers of fires, and an extended range of spatial 15 

and time scales involved. It is estimated that, on average, an area equivalent to that of India burns every 

year, predominantly in savannas and grasslands (Tansey et al., 2004). Burned areas in tropical and boreal 

forests are smaller, but their high productivity and carbon storage capacity results in significant emissions 

of numerous greenhouse gases (e.g. CO2, CH4, (Andreae and Merlet, 2001); (Pereira et al., 1999)). 

Globally, total fire emissions are equivalent to approximately one third of fossil fuel burning emissions 20 

(Le Quéré et al., 2015; van der Werf et al., 2006b; Wu et al., 2017). Net emissions, stemming from 

deforestation or increased fire activity, are much smaller, but poorly constrained (van der Werf et al., 

2006a), and highly variable on inter-annual time scales, especially through induced changes in fire 

sensitivity of highly productive ecosystems by El Niño/La Niña and other climatic phenomena (Duncan 

et al., 2003; Langenfelds et al., 2002; Le Page et al., 2008; van der Werf et al., 2004; van der Werf et al., 25 

2008). 

The strong integration of fires with the biosphere system is also emphasized by their dependence on a 

complex system of interactive drivers, designated as the fire triangle (Schoennagel et al., 2004), 

dominated by climate, vegetation and human activities. Precipitation rates and temperature partly control 

the amount of fuel available to burn, its moisture content, and fire behaviour in case of ignition (Crevoisier 30 

et al., 2007; Turner et al., 2008). Fire incidence, fire severity, and ensuing emissions are also dependent 

on the vegetation types, structure and productivity of the ecosystem (Andreae and Merlet, 2001; Hammill 

and Bradstock, 2006). Finally, anthropogenic activities, as mentioned above, greatly bias the natural 



 3 

occurrence of fires, increased in many regions as a land management tool, or decreased through fire 

suppression strategies (firefighting, preventive fires, (Veblen et al., 2000)). Other factors are involved 

(topography, natural landscape breaks, grazing), but most important is the interaction between those 

drivers, which needs to be considered to yield relevant information about fire risk (Dwyer et al., 2000a). 

Dynamic Global Vegetation Models (DGVMs) and Earth System Models (ESMs) simulate vegetation 5 

dynamics at global scale, fire is included as an explicit process in some of these models (Arora and Boer, 

2005a; Bachelet et al., 2001; Li et al., 2013; Rabin et al., 2018; Thonicke et al., 2010; Thonicke et al., 

2001; Venevsky et al., 2002; Wu et al., 2017; Yue et al., 2014). Given the importance of fires and their 

dependence on various model inputs or simulated processes, the development of fire modules is of great 

interest to understand and evaluate the fire related couplings and feedbacks assumptions. Comprehensive 10 

review of global fire modelling activity is given by Hantson et al. (2016) and an overview of recent global 

fire models participating in the Fire Modelling Intercomparison Project (FireMIP) is presented by Rabin 

et al. (2017). Hantson et al. (2016) distinguish four level of complexity for global fire models incorporated 

into DGVMs (see Figure 2 in their study) depending on processes included in models: 

1) Simplest statistical model relates areas burnt with climate and/or vegetation (Glob-FIRM, 15 

(Thonicke et al., 2001)) and/or human activities (Knorr et al., 2014). 

2) Models estimating statistically number of fires and expected size of fires (Pechony and Shindell, 

2009). 

3) Process-based quasi-mechanistic models which use functional relationships between climate, 

vegetation and socio-economic drivers of wildfires (MC-FIRE (Lenihan and Bachelet, 2015), 20 

CTEM (Arora and Boer, 2005b), CLM-Li (Li et al., 2013), LM3-FINAL (Rabin et al., 2018) etc.). 

This approach was firstly introduced by Reg-FIRM model (Venevsky et al., 2002) and further 

developed by follow-up SPITFIRE (Thonicke et al., 2010) model and is derivatives (JSBACH-

SPITFIRE (Lasslop et al., 2014), LPJ-LMfire (Pfeiffer et al., 2013), LPJ-GUESS-SPITFIRE 

(Lehsten et al., 2009), ORCHIDEE-SPITFIRE (Yue et al., 2014), and LPX-Mv1 (Kelley and 25 

Harrison, 2014).  

4)  Complete representation of all processes in space and time (first-principle approach model. 

Nine from the 11 global models participating in FireMIP experiment are process-oriented quasi-

mechanistic models (Rabin et al., 2017), however, mainly due to complexity of the processes involved all 

these models are still not at the level 4. The closest to the complete representation of all fire related 30 

processes in time is SPITFIRE model (see Table 1 in Hantson et al. (2016)) and their modifications. 

SPITFIRE modelling community achieved significant results in global and regional fire modelling 

describing dynamics of wildfires in savannah – forest transition zone (Baudena et al., 2015), 

�����: only a few
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contemporary dynamics of areas burnt in Europe (Wu et al., 2015), global fire regimes in pre-industrial 

zone (Pfeiffer et al., 2013) and changes in global carbon balance (Prentice et al., 2011).   

While complete representation of all processes which determine wildfire dynamics in space and time is 

still under its way, quasi-mechanistic models use different parametrisations of ignitions and spread of 

wildfire. Parametrisations are based either on long term fires statistics, or on remote sensing data which 5 

are valuable data source due to its availability and global coverage. SPITFIRE model, for example, use 

lightning frequency as an input for calculation of number of lightning fires. We argue that it would be 

advantageous if one can produce long-term fire relationships without depending on remote-sensing, 

which is available for a relatively short period of time (a few decades). Fire return intervals can be of the 

order of hundreds of years, whereas remote sensing is available for several decades. Therefore, using 10 

remote sensing to derive relationships implicitly assumes a space for time substitution, which may or may 

not hold. On the other hand, parameterisations based on ground-based measurements or laboratory-based 

experiments have their own problems, like insufficient accuracy and low representativeness in space, but 

considered to be more robust in time and, thus, very useful in DGVMs or ESMs for investigation of future 

global change impacts or past global fire regimes reconstruction.  15 

We present in this study SEVER-FIRE v1.0 (Socio-Economic and natural Vegetation ExpeRimental 

global fire model version 1.0; simplified as SEVER-FIRE in the following text) incorporated into the 

SEVER-DGVM (Venevsky and Maksyutov, 2007; Wu et al., 2017), which is a modification of LPJ-

DGVM (Sitch et al., 2003) for daily time step computation. SEVER-FIRE is a quasi-mechanistic model, 

which is a follow up of Reg-FIRM for the globe, with several new features aiming approaching to 20 

complete representation of wildfire processes. We improve earlier algorithms of Reg-FIRM and introduce 

new functionality with respect: 1) to estimate the numbers of lightning fires from data on convective 

activity in the atmosphere 2) to estimate numbers of human fires from urban against rural population 

(timing of their appearance in natural landscapes and their ratio) and regional wealth index, as well 3) to 

estimate more realistically fire duration, which in the new model depends on human suppression and 25 

weather situation and can last for up to two days. One of the major focuses of SEVER-FIRE model is an 

implementation of pyrogenic behaviour of humans (timing of their activities and their 

willingness/necessity to ignite or suppress fire), related to socio-economic and demographic conditions 

in a geographical domain of the model application.  Importance of description of pyrogenic behaviour of 

humans are confirmed by recent findings of bi-modal fire regimes, reflecting human fingerprint in global 30 

fires dynamics (Benali et al., 2017), as well as by differences in timing of ignitions determined by 

religious background in Sub-Sahara Africa (Pereira et al., 2015). Fire weather regimes, set by climate 

dynamics, and fuel state set by vegetation dynamics are other important drivers in SEVER-FIRE model. 

SEVER-DGVM fire module, based on climate observations, external anthropogenic parameters, and 

�����:  Some global fire models are designed to study impact 35 
of anthropogenic phenomena in global fire dynamics and are not 
incorporated into DGVMs or ESMs (Le Page et al., 2015), but rather 
give further insight for fire modelling within Earth and biosphere 
simulators. Last global fire models designed for DGVMs (Li et al., 
2013; Thonicke et al., 2010) contain sets of rather complicated 40 
equations with variety of coefficients (despite they name themselves 
intermediate complexity models) which is hard to obtain unless 
satellite derived functions are used. Some of global fire models use 
satellite observations as input (e.g SPITFIRE (Thonicke et al., 2010) 
for number of lightning strikes). Such features hinder further use of 45 
these global fire models for climate change and socio-economic 
change studies, which should be based solely on understandable 
physical reasoning. Assessment against observation data of global 
fire models within DGVMs is now based mainly on satellite data. 
This limits validation to only one registered quantitative 50 
characteristics of global fire regime, namely area burnt (another 
satellite based variable global carbon emission is as a rule result of a 
model itself) and at a limited time interval (as a rule last two-three 
decades). Meanwhile, historical fire statistics exists in all major 
forested countries and includes numbers of registered fires by case 55 
(lightning or human) and areas burnt starting at least from sixties of 
the last century. Ignoring of historical statistics leads to visible 
shortcoming in description of regional fire regimes. For example, 
LPJ-DGVM based SPITEFIRE global fire model (Thonicke et al., 
2010), which was historically follow up of Reg-FIRM regional LPJ-60 
DGVM fire model (Venevsky et al., 2002) used for simulation 
numbers of fires and areas burnt in Spain, overestimates number of 
fires (see Figure 3 c in SPITFIRE (Thonicke et al., 2010)) in Iberian 
Peninsula three to four times. SEVER-FIRE (Socio-Economic and 
natural Vegetation ExpeRimental global fire model is incorporated 65 
into  the SEVER_DGVM (Venevsky and Maksyutov, 2007; Wu et 
al., 2017), which is a modification of LPJ-DGVM (Sitch et al., 2003) 
for daily time step computation. SEVER-FIRE model is a follow up 
of Reg-FIRM and is designed using principles of the last. No satellite 
derived data are used as an input of the model. Only physically based 70 
or just ’common sense’ based equations from on-ground observations 
allow direct implementation of SEVER-FIRE model in any DGVM 
or ESM for investigation of future global change impacts or past 
global fire regimes reconstruction. Unlike in other global DGVM fire 
modules (Li et al., 2013; Thonicke et al., 2010) all equations are kept 75 
simple following ideology of Reg-FIRM. One of the major focuses of 
SEVER-FIRE model is an implementation of pyrogenic behaviour of 
humans (timing of their activities and their willingness/necessity to 
ignite or supress fire), related to socio-economic and demographic 
conditions in a geographical domain of the model application.  80 
Importance of description of   pyrogenic behaviour of humans are 
confirmed by recent findings of bi-modal fire regimes, reflecting 
human fingerprint in global fires dynamics (Benali et al., 2017), as 
well as by differences in timing of ignitions determined by religious 
background in Sub-Sahara Africa (Pereira et al., 2015). Fire weather 85 
regimes, set by climate dynamics, and fuel state set by vegetation 
dynamics are other important drivers in SEVER-FIRE model. 
SEVER-DGVM fire module, based on climate observations, external 
anthropogenic parameters, and SEVER-DGVM derived vegetation, 
estimates fire incidence and emissions. The resulting vegetation 90 
disturbance feeds back to the DGVM, ensuring a fully coupled 
system (see model description).
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SEVER-DGVM derived vegetation, estimates fire incidence and emissions. The resulting vegetation 

disturbance feeds back to the DGVM, ensuring a fully coupled system (see model description). 

We perform a comparison of SEVER outputs with fire data derived from satellite sources, the Global Fire 

Emission Database version 2 (GFED) (van der Werf et al., 2006b), as well as with historic fire data 

(number of lightning and human fires and their area burnt) with two objectives. First, a global evaluation 5 

of a DGVM-fire model, focusing on crucial and simple features, namely fire incidence, seasonality, inter-

annual variability, and emissions. Second, (the most important) by identifying the reasons for large 

inconsistencies we propose further modifications to SEVER-FIRE. The work presented in this paper is 

partly based on the Ph.D. thesis by Y. Le Page. We therefore signal the reader that significant parts of the 

text in the sections 3 and 4 already appeared in Le Page (2009). 10 

We are making an effort to make a closer step to a first-principle global mechanistic fire model.  We have 

named our model ‘Experimental’ in order to show that some processes are included in SEVER-FIRE 

model ad hoc (timing of ignition activity of rural versus urban population, others) as mechanisms are still 

not described/studied, some processes are simplified (e.g., setting maximum time of fire to two days but 

this may be updated and modified in the future by introducing the latest global fire duration datasets 15 

(Andela et al., 2018)) and some processes are based on statistical descriptions from satellite data (number 

of on-ground flashes), as they wait there nearest time to be substituted by physically based mechanistic 

models 

2. Data and Methods 

2.1 SEVER-DGVM and SEVER-FIRE Models 20 

2.1.1 Input of DGVM to fire model 

SEVER-DGVM is a coupled vegetation-fire mechanistic model designed to run at a range of temporal 

(daily to monthly) and spatial (10 km to 2.5 º with 0.5º mostly tested) resolution levels (Venevsky and 

Maksyutov, 2007). The fire module SEVER-FIRE is a further development of the Reg-FIRM (Venevsky 

et al., 2002), which was applied only for Iberian Peninsula, from a regional to the global scale. The aim 25 

of this model is to provide at the global scale a comprehensive mechanistic description of major 

characteristics registered in standard fires statistics and/or satellite observations around the world, namely 

number of fires, area burnt and carbon emissions. An important goal of SEVER-FIRE model is inclusion 

in Earth System models (Bonan and Doney, 2018; Bowman et al., 2009) in order to make realistic climate 

change predictions of global wildfire dynamics The most important variables, provided by SEVER-30 

DGVM for SEVER-FIRE model include the distribution of 10 Plant Functional Types , which are similar 

to LPJ-DGVM vegetation types (see names of PFT in Table 1) over the globe, described as a distribution 

�����: We perform a comparison of SEVER outputs with fire 
data derived from satellite sources, the Global Fire Emission 
Database version 2 (GFED) (van der Werf et al., 2006a), as well as 35 
with historic fire data with two objectives. First, a global evaluation 
of a DGVM-fire model, focusing on crucial and simple features, 
namely fire incidence, seasonality, inter-annual variability, and 
emissions. Second, (the most important) by identifying the reasons 
for large inconsistencies we propose further modifications to 40 
SEVER-FIRE. As it was already mentioned, current global fire 
modules feature conceptual differences, but are generally based on 
similar assumptions. Thus, this study may provide relevant 
information for improvement of other current DGVM fire modules. 
The work presented in this paper is partly based on the Ph.D. thesis 45 
by Y. Le Page. We therefore signal the reader that significant parts of 
the text in the sections 3 and 4 already appeared in Le Page (2009).↵

�����:  Unlike the other global fire models (Thonicke et al., 
2010), which use conceptual approach of Reg-FIRM for design of 
process-oriented fire model, SEVER-FIRE model does not include 50 
satellite based derived relationships, but only equation based on 
field/laboratory observations and “common sense” hypothesis, when 
on-ground data are not available.

�����: fully
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of fractions within a grid cell "#$%
&'(

, net primary productivity )**&'( , carbon of aboveground 

vegetation +&'(, fuel loading	-.(/01, described as a mass of litter, and soil moisture 23.4( in the upper 0.1 

m layer2 (see Table 2 for description of fire model variables and parameters) 

2.1.2 External input to fire model 

Gridded climate, demographic and socio-economic data comprise external input for the fire module. 5 

Minimum/maximum daily temperature	(567/59:, daily precipitation/convective precipitation &;$+/+&;$+ 

and wind speed	< are the climate variables used in SEVER-FIRE. Human population density *, ratio of 

rural to total population (rural and urban population) ;<; = >?@?

>ABA
, wealth index CD and average distance 

from megacities E.4( (recalculated with simplified assumptions from population density and ratio of rural 

to urban population) comprise socio-economic input to the fire model.  10 

2.1.3 Output of fire model 

The model separates human-induced (indexed as hum) and lightning fires (indexed as nat) by sources of 

ignition and all output variables of fire models can be obtained either by these two classes of fires of for 

both classes in total as their sum (not indexed). We omit the mentioned indexes in description of output 

variables further on for simplicity.  The output of the model includes number of fires	)'.;$ , area burnt 15 

FG<;H(, fire carbon emission 	+	'.;$	, number of PFT’s individuals killed ).HE&'(	 and updated vegetation 

carbon and NPP. Fire model feedbacks to the DGVM through the increased area (equal to burnt areas by 

PFTs) and decreased number of PFT’s individuals for competitive occupation by PFTs after a fire and 

updated carbon fluxes and pools for carbon cycle simulation within vegetation model.  

Thus, the DGVM and fire module work in interactive mode, incorporating a representation of fire-20 

vegetation feedbacks. 

2.1.4 Components of SEVER-FIRE 

The SEVER-FIRE model consists of six related components described below: 

- Estimation of fire weather danger index and fire probability, 

- Simulation of lightning ignition events and number of lightning fires, 25 

- Simulation of human ignition events and number of human fires, 

- Simulation of fire spread after ignition, 

- Fire termination, 
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- Estimation of fire effects (areas burnt, pyrogenic emissions, number of each PFT individuals killed). 

All six components are controlled by PFT dependent fire parameters (see list in Table 2) 

1) Estimation of fire weather danger index and fire probability 

Fire weather danger index FDI(d), measured from 0 (“no fire danger”), to 1 (“extreme fire danger”), is 

estimated in SEVER-FIRE based on the Reg-FIRM fire danger index (Venevsky et al., 2002). It is 5 

calculated at a daily time step as a multiple of exponentially normalized Nesterov Index (based on 

accumulated difference of minimum and maximum temperature, forced to zero by 3 mm daily 

precipitation threshold) and vegetation and soil moisture dependent fire probability. Using of Reg-FIRM 

based fire weather danger indexes, became popular in contemporary global fire modelling (Arora and 

Boer, 2005b; Thonicke et al., 2010) mainly due to calculation simplicity. Direct comparison of fire risk 10 

for Siberia, described by more sophisticated Canadian Fire Danger and Russian Fire Danger Indexes (used 

by national Forest Service) in both countries with Reg-FIRM Fire Danger Index, revealed that they are 

almost equivalent (Rubtsov, personal communication). The fire probability function is designed as a 

regression  from observations (Thonicke et al., 2001). It depends on current soil moisture in the upper 10 

cm layer and PFT dependent fire moisture of extinction (Table 1), adapted from experimental study of 15 

Albini (1976). 

2) Simulation of lightning ignition events and number of lightning fires 

The number of potential lightning ignitions in a grid cell is calculated from the daily number of cloud-to-

ground flashes )0I9JKLJ , which is estimated from convective precipitation as a non-linear regression 

polynomial function of power four (as in Allen and Pickering (2002)). Using of power four polynomial 20 

function by convective precipitation to represent number of flashes has theoretical physical grounds 

(Vonnegut, 1963). Allen and Pickering (2002) prepared their parametrization of number of flashes for 

North America, so we made a validation test of )0I9JKLJfor the globe (Venevsky, 2014) using OTD-LIS 

observed lightning data (Christian Hugh et al., 2003) and found that the parametrization performs well at 

global scale (R2=0.51). Cloud-to-ground flashes are divided to negatively charged (90%) and positively 25 

charged (10%) (Latham and Schlieter, 1989). Only the flashes with long continuous current (LCC flashes, 

75% of positively charged and 25% of negatively charged) can ignite wildfire (Latham and Schlieter, 

1989). Efficiency of LCC flashes to ignite depends from bulk density of fuel as it was shown in laboratory 

(Latham and Schlieter, 1989), so number of efficient to ignite positive flashes )0I9JKLJ/MJ
L00 and number of 

efficient to ignite negative flashes )0I9JKLJ7LN
L00  at first glance can be simplified as Eq. (1) and Eq. (2): 30 
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 )0I9JKLJ/MJ
L00 = )0I9JKLJ ∗ 0.1 ∗ 0.75 ∗ G ∗ F ∗ E$H4 ∗ (1̅KV7WLX ,                                        (1) 

 )0I9JKLJ7LN
L00 = )0I9JKLJ ∗ 0.9 ∗ 0.25 ∗ G ∗ F ∗ E$H4 ∗ (1̅KV7WLX ,                                        (2) 

where b =0.1 is efficiency of lightning t ignite (Latham and Schlieter, 1989), a=0.25 m2/kgC regression 

coefficient (simplified from Latham and Schlieter (1989)), (1̅KV7WLX  is an average daily time of thunder 

over a grid cell, set to one hour and twenty minutes (Uman, 1987) and dens is bulk density of fuel 5 

(kgC/m2). Bulk density of fuel is an important variable of SEVER-FIRE model, used in several basic 

equations. We assume that all PFTs found in a grid cell are distributed homogeneously and bulk density 

of fuel in a grid cell is calculated as Eq. (3):  

E$H4 = ∑ "#$%>\](.) ∗ E$H4>\](.)
`/01
6ab ,                                                                         (3) 

where "#$%>\](.) is foliar projection cover of i-th PFT,  E$H4>\](.) is bulk density of i-th PFT (see 10 

Table 1), which are taken from from Reg-FIRM (Venevsky et al., 2002) and study of Albini (1976), )&'( 

is total number of PFTs in a grid cell. Bulk density of fuel in the grid cell and depth of fuel (in cm), 

calculated as Eq. (4): 

E$&(ℎ = 0.1 ∗ ∑ -.(>\](.)
`/01
6ab /E$H4,                                                                             (4) 

and thery are translated into arriving daily number of natural ignitions from positive  )6N7616M7J/MJand 15 

negative flashes )6N7616M7J7LN, using fitting into two functions of data for probability to ignite for positive 

and negative flashes by eight fuel types (see Table 1 of Anderson (2002)), obtained from laboratory 

experiments (Eq. (5) and (6)): 

)6N7616M7J/MJ
	= (1/(1 + exp	(5.5 ∗ (1./1.5) ∗∗ (((16.−E$H4)/16. ) ∗ 5) ∗ 1.25 − 1.2 ∗ 0.5 ∗∗ ((16.−E$H4)/

16.∗ 5. +0.1) ∗ E$&(ℎ)	)) ∗ )0I9JKLJ/MJ
L00,                                                                                                (5) 20 

)6N7616M7J7LN
	= (1/(1 + exp	(5.5 ∗ (1./1.5) ∗∗ (((16.−E$H4)/16. ) ∗ 5) − 1.2 ∗ 0.5 ∗∗ ((16.−E$H4)/16.∗

5. ) ∗ E$&(ℎ)	)) ∗ )0I9JKLJ7LN
L00 .                                                                                                          (6)                                                              

Total number of arriving ignitions from effective positive and negative LCC flashes are recalculated into 

number of surviving natural fires )06XLJ791 in a grid cell with area kNX6W  , which depends on daily fire 

danger index lmD	(E) maximum rate of surviving ignitions ;F($JVXn6n9I59:, taken as 0.15 (Anderson, 25 

�����: 0

�����: generalisation 

�����: probaility
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2002) and soil moisture in 1 cm fuel layer, simplified as 10% of soil moisture moist in upper 10 cm, see 

Eq. (7): 

)06XLJ791
(E) = lmD	(E) ∗ ()6N7616M7J/MJ

+ )6N7616M7J7LN
) ∗ ;F($JVXn6n9I59: ∗ (1 −23.4( ∗ 0.1) ∗

0.15 ∗ (1 + 0.0001 ∗ ($-$# − 1000))o ∗ kNX6W .                                                              (7)        

Dependence of number of lightning fires in Eq. (7) by elevation $-$# in meters was obtained by linear 5 

regression from data of  Vazquez and Moreno (1998) for Peninsular Spain. Module of number of lightning 

fires was validated using data for lightning and lightning fires in central cordillera of Canada 

(Wierzchowski et al., 2002). This study contains data for number of lightning fires for the years 1961-

1994 and annual number of lightning strikes for 1989-1994 for the central cordillera area 50-54°N, 114-

120°W. The central mountain range in the area divides it into two parts, one is in British Columbia, 10 

another in Alberta provinces. SEVER-FIRE is able to reproduce values for total annual number of 

lightning strikes for both provinces (see Fig. 1) and number of lightning fires in the provinces (see Fig. 

2). 

The model reproduces three to two fold dominance of annual number of lightning strikes in Alberta and 

seven to ten fold dominance of annual number of lightning fires in British Columbia. Using of convective 15 

precipitation as a driver for number of lightning fires also confirmed by study of (Cardoso Manoel et al., 

2007), who found that lightning fire occurrence in Brazil is related to zonal flux of moisture in the 

atmosphere.  

3)  Simulation of human ignition events and number of human fires 

The number of potential human ignitions )6N7616M7J_KV597(E)	is calculated as a power function from 20 

population density with saturation, suggested by the Russian Forest Service and also used in the Reg-

FIRM (Venevsky et al., 2002) multiplied by normalized socio-economic characteristics of population and 

by fuel conditions (see Eq. (8)):  

()6N7616M7J_KV597q(E) = 6.8 ∗ *s.ot ∗ Fu ∗ ;F($/M/v
∗ (.2.H%v(E) ∗ F ∗ E$H4,              (8) 

where P is population density in persons per km2, Fu	is a mathematical expectation of number of ignition 25 

produced by one person for one million hectares, a= 0.125*10-4 [ km2/million hectare * m2/kgC] ( scaling 

coefficient from million hectares to square kilometers (Venevsky et al., 2002), divided by average fuel 

density 8 kgC/m2)  j is either rural ( j=rur ) or urban population ( j=urb ),  ;F($_&3&v is a ratio of rural 

tp urban population, so that ;F($_&3&XVX + ;F($_&3&VXw = 1, (.2.H%v(E)  is daily timing of pyrogenic 

activity of population. Timing of human pyrogenic activity (.2.H%v(E)at a first glance is defined 30 

�����: (similar to lightning ignitions) in the grid cell 

�����: s

�����: of 

�����:  multiplied by 

�����: 10-4  (coefficient a) to scale for square kilometers,35 
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separately for the northern and southern hemisphere and for rural and urban population as a step function, 

and it is mostly based on agricultural and vacation calendars (for city inhabitants). It is set so that sum of  

(.2.H%XVX9I(E) and (.2.H%VXw97(E) is equal always to one. So, for example, for the entire northern 

hemisphere it was set to one in July, August (Summer vacations) for urban population (zero for rural 

population in these months), March, April, May (Spring agriculture activities) and September, October, 5 

November (Autumn agriculture activities) for rural population (zero for urban population in these months) 

and to 0.5 in the rest of a year.  

Mathematical expectation of number of ignition produced by one person for millions of hectares Fu is set 

to be an exponential function of wealth index WI, determined from the data of UN Human Settlemnet 

Program (see Eq. (9)):	 10 

Fu = exp(−7.65 ∗ 10xy ∗ CD).                                                                                       (9)  

Equation (9) was obtained using logarithmic regression from geographically distributed observed number 

of human fires (map of average over 1974-1994 annual number of human fires for Spain (Vazquez and 

Moreno, 1998), map of average over annual number of human fires by Canadian ecoregions 1961-1995 

(Stocks et al., 2002) and map of average over annual number of total fires (assumed to be all human) by 15 

African countries 1981-1991 (Barbosa et al., 1999b). No division to rural and urban population was 

assumed when deriving Eq. (9). Equation (9) assumes that maximum mathematical expectation of number 

of ignition produced by one person is equal to one million hectares for a day (estimate of Russian Forest 

Service, see (Melekhov, 1978)), for a grid cell with the most theoretically possible poorest population 

(WI=0) and Fu =0.1 ignition/day*person*million hectare for a grid cell with the most theoretically wealthy 20 

population (WI=30 – closest is the Stockholm metropolitan area). Average value of Fu is equal to 0.22 

ignition/person*million hectar (WI=20.5) for peninsular Spain as in Reg-FIRM (Venevsky et al., 2002). 

Total number of human fires in a grid cell is calculated as Eq. (10): 	

)06XLJKV5
(E) = lmD	(E) ∗ ()6N7616M7J_KV5XVX

+ )6N7616M7JVXw
) ∗ kNX6W                        (10) 

The number of human fires for peninsular Spain was validated for Reg-FIRM, which has the same 25 

equations as SEVER-FIRE in the region. To check plausibility of approach for calculation of total number 

of fires, we make validation for Canada for 1961-1995 (Stocks et al., 2002) (see Fig. 3), because Canada 

has significant variation for climatic conditions, vegetation composition, population density and socio-

economic state of population.    

The description of human ignitions in SEVER-FIRE model is very simplistic and does not have intention 30 

to describe to major extent complex economic, cultural and social practice of people (agricultural, hunting 

�����: This

�����: eqaul

�����: for 

�����: s35 
�����: of 
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or pastoral, other) resulting in pyrogenic activities. We left out (or oversimplified, like in the timing 

function and mathematical expectation of number of ignition produced by one person) description of an 

influence of land use to number of human ignitions in the fire model, because SEVER-DGVM anyway 

does not include description of human land use and/or it’s influence to natural vegetation. By application 

of SEVER-DGVM we aim to describe relatively human-less global vegetation, which got additional 5 

control regulator, namely external human and/or lightning ignitions. This limitation of SEVER-DGVM 

implies certain constraints on our results in both vegetation distribution and areas burnt, but it also gives 

us an opportunity to identify and locate the areas, where interaction between land use, fire regimes and 

vegetation should be described explicitly and accurately.      

4) Simulation of fire spread after ignition 10 

Rate of fire spread after an ignition event is simulated using a simplified version of the Rothermel 

thermodynamic equation (Venevsky et al., 2002), and depends on wind speed, fuel  bulk density and soil 

moisture content in the upper layer as a proxy of fuel moisture. As in the Reg-FIRM approach, a fire 

cannot take place when fuel loading threshold (100 g/m2), calculated as litter pool by a DGVM, is not 

crossed. Simulation of rate spread, using Rothermel equation, in SEVER-FIRE is similar to the one used 15 

by some of recent landscape fire models (Cary et al., 2006) and other global fire models (Li et al., 2013; 

Rabin et al., 2017; Yue et al., 2014). However, there is a large difference in translation of rate of fire 

spread into areas burnt in landscape models and SEVER-FIRE. Indeed, landscape models account for 

terrain and fuel discontinuity (water bodies, highways etc.), while global fire models do not include this 

feature. Analysis, to which extent up-scaling from landscape level to a rather coarse grid cell of SEVER-20 

FIRE should be done in the future.  

5) Fire termination 

Fire termination occurs with the onset of a significant rainfall event (more than 3 mm), causing weather 

danger to drop to zero. Close to cities, fire termination occurs after a delay dependent on distance to the 

city, as a proxy for human fire suppression. Fire suppression function (time to eliminate a fire) was 25 

constructed as a log-linear regression function from distance to the city, using fire duration statistics for 

Europe and Russia from EFFIS database (San Miguel-Ayanz et al., 2012). As a result, a single fire can 

continue in the model from one hour up to two days (see Eq. (11)): 

 E<;F(z3Huuuuuuuuuuuu = 2 ∗ (1 − exp(−10xt ∗ E.4(),                                                                 (11) 

where dist is a distance (km) from a nearest city (area with P > 400 persons/km2). 30 

�����: C
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However, the limitation of maximum fire duration to two days was set due to range in the fire duration of 

EFFIS database, which covers mainly European domain. Globally this limitation may be not valid for 

remote high latitude areas, but even in these regions mathematical expectation of fire duration will be 

close to one day (see Korovin (1996)). 

6) Estimation of fire effects 5 

The rate of spread is converted to an absolute value of average area burnt for one fire, using elliptic fire 

spread model (van Wagner, 1969) similarly to the Reg-FIRM approach (Venevsky et al., 2002), which is 

also adopted by majority of other global fire models. 

Daily area burnt in the DGVM grid cell is calculated as Eq. (12): 

FG<;H((.) = )06XL(.) ∗ k(.) + )06XL(. − 1) ∗ k(.),                                                   (12) 10 

where )06XL(.) are number of fires, ignited in a day i, )06XL(. − 1) are number of fires continuing from 

previous day (if any do exist) and k(.) is an area of spread for one fire, determined by vegetation and 

climate (see above). Equation (12) is a simplification of increase in areas of continuing fires as it does not 

account for a fact that growth of a next day fire starts from a perimeter of the previous day fire. 

Daily burned area estimates are aggregated annually to estimate fire effects. Percentage of vegetation 15 

individuals killed depends on area burned and on resistance of each PFT to fires (Table 1), taken directly 

from the Glob-FIRM (Thonicke et al., 2001). The percentages are then converted to emissions, based on 

vegetation carbon content (dead PFT individuals are considered to be entirely burned), and daily 

redistributed following the profile of fire probability. 

The model outlined above should be considered as an approach to design a global comprehensive process-20 

oriented fire model based mainly on field observations and physically based assumptions. Still more 

analysis to be done for representation of fire processes within the model and calibration of parameters 

used in the model. For instance, study of Scott and Burgan, 2005 indicated that moisture of extinction, 

used in SEVER-FIRE (see Table 1) may vary from 12% to 40%, for different fuel types, i.e. has a larger 

range than in our model. We plan to make sensitivity and optimization tests to improve the SEVER-FIRE 25 

model parameters and modifications of equations when necessary.  

2.2 Data 

2.2.1 Climate data 

�����:  first

�����: completely30 
�����: only 

�����:  with no satellite derived functions
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For this study, precipitation data from the National Centres for Environmental Prediction (NCEP climate 

data (minimum/maximum temperature, precipitation and convective precipitation, short-wave radiation 

and wind speed, http://www.cpc.ncep.noaa.gov/) were interpolated to 0.5 degree longitude/latitude spatial 

resolution for the period 1957 to 2006 (52 years). Daily wind speed is not well estimated in reanalysis 

approach (Kalnay et al., 1996b), so it was averaged over the entire period and applied in simulation runs 5 

without inter-annual variability. The input soil texture data and CO2 atmospheric concentration over the 

same period coincide with those of the LPJ-DGVM (Sitch et al., 2003). The model is run globally from 

bare soil state 15 times with the climate data for 52 (years and the CO2 atmospheric concentration fixed 

for the year 1957 (spin-up period), in order to achieve equilibrium of soil carbon pools. From this 

equilibrium state, SEVER is forced by climate and atmospheric CO2 for the period 1957- 2006 (transient 10 

period). 

2.2.2 Socio-economic data 

Distance from a city was pre-calculated from population density and the ratio of urban to rural population. 

For this, areas where urban population density exceeds 400 persons/km2 were considered as cities (UN 

definition of Human Settlements Program). Gridded population and rural to urban ratio data sets for years 15 

1940-2050, used by SEVER-FIRE were elaborated using UN Development Program estimates by major 

economic regions. Wealth index was calculated first for 600 cities around the globe (Svirejeva-Hopkins, 

personal communication) using approach of UN Human Settlement Program as a sum of six socio –

economic components, each normalized to be ranged between 0 (minimum) and 5 (maximum). 

Components included GDP per capita, number of persons with high education, number of doctors, crime 20 

rate, access to clean potable water, air pollution level. Data for the cities was extrapolated for the entire 

land area using non-linear spline at a regular grid of DGVM. And Socio-economic data used in this study 

can be found at Code availability section. 

2.3 Burned area and carbon emission validation data 

GFED is a global 1º resolution database (van der Werf et al., 2006a), which relies on three different active 25 

fire products calibrated to Moderate Resolution Imaging Spectrometer (MODIS) 500 meter burned area, 

for a temporal coverage spanning 1997-2006 (Giglio et al., 2006). Fire activity data from the Tropical 

Rainfall Measuring Mission (TRMM) – Visible and Infrared Scanner (VIRS, (Giglio et al., 2003)) and 

European Remote Sensing Satellites (ERS) Along Track Scanning Radiometer (ATSR, (Arino and 

Plummer, 2001)) sensors are used for the 1997-2001 period. Over 2001-2006, the calibration was based 30 

on active fires from MODIS (Giglio et al., 2006). Carbon emissions were then estimated based on those 

burned area estimates, with fuel loads calculated by the Carnegie-Ames-Stanford Approach (CASA) 

model (van der Werf et al., 2006a). 
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The active fire to burned area calibration step and the use of three different sensors to build this dataset 

generate significant uncertainties on burned area estimates, which are considered to be about 50% at 

regional scales, although not quantified in the used version of GFED (van der Werf, personal 

communication). Used version of GFED also does not contain small fires. Emission uncertainties are 

consequently higher, taking into account their further dependence on the CASA model and on fuel loads 5 

and emission factor values. 

2.4 Fire incidence, fire variability and carbon emission evaluation 

We chose to focus primarily on burned area to evaluate the model at global scale, as this is a prerequisite 

to estimate carbon emissions. However, carbon emission being an essential aspect of biomass burning, 

its representation is briefly evaluated.  10 

Fire incidence, seasonality, and inter-annual variability from SEVER are compared to GFED data over 

the 1997-2006 period. SEVER-DGVM considers grid cells to be 100% land or water. This required a few 

adjustments on both datasets (re-gridding of GFED data to SEVER lan-lon grid and overlay of two 

datasets), causing minor changes in the original GFED statistics (less than 3% for total global area burnt 

and global fire emissions). We consider burned fraction (BF) rather than burned areas, a latitudinal 15 

unbiased indicator of fire density given the use of a lat-lon grid. 

Fire incidence is mostly dependent on three key factors, conceptualized by the fire triangle (Schoennagel 

et al., 2004): fuel availability, readiness of fuel to burn, and ignition source. SEVER spatial patterns of 

fire incidence are first compared to GFED, through the mean annual grid cell burned fraction (BF). BF 

drivers are then explored with a selection of relevant environmental variables, based on the fire triangle 20 

concept: 

- Annual amount of precipitation, from the CPC merged Analysis of Precipitation (CMAP, (Xie and 

Arkin, 1997)), provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, 

(http://www.cdc.noaa.gov/). 

- An indicator of dry season severity (DSS), which was constructed from precipitation (CMAP) and 25 

temperature data (NCEP/NCAR re-analysis project, (Kalnay et al., 1996a)). The indicator (Breckle, 

2002), representing a rainfall deficit or a temperature excess, is computed as indicated by Fig. 4. 

Here we consider it as a rainfall deficit (unit: mm). 

- Net Primary Productivity (NPP). Its influence on fires is estimated with NPP estimates from (Imhoff 

et al., 2004) and from SEVER. 30 

�����: current 
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- Land cover spatial distribution. SEVER-DGVM vegetation distribution and its impacts on BF 

patterns is evaluated with the Global Land Cover for the year 2000 (GLC2000, (Bartholomé and 

Belward, 2005)). 

- Human rural and urban population density from the Global Demographic Data Collection 

(Vorosmarty et al., 2000), provided by the University of New Hampshire, EOS-WEBSTER Earth 5 

Science Information Partner (ESIP). An indicator of the rural predominance of the population was 

defined (Eq. (13)): 

{<;F-.(| =
X/M/xV/M/

X/M/}V/M/
 ,                                                                                          (13) 

where ;&3& and <&3& being respectively the rural and urban population of the considered grid cell. 

Rurality varies between 1, fully rural, to -1, fully urban populations. 10 

- Gross Domestic Product (GDP) gridded data (van Vuuren et al., 2007), provided by the Netherlands 

Environmental Assessment Agency. 

We left aside wind speed, which significantly affects readiness of fuel to burn and fire spread, as an 

analyzed environmental variable, due to constrains put on it in the presented SEVER-FIRE simulations 

(see description of input data in Sect. 2.2). However, Lasslop et al. (2015) demonstrated that  modification 15 

of rate of spread dependence by wind speed may influence sufficiently areas burnt, so we plan to explore 

wind speed as BF driver in the future. 

We used CMAP precipitation data (extracted mainly from remote sensing data) in analysis to get more 

realistic relationship between fire regimes observed and precipitation. We, however, could not use CMAP 

precipitation as climate input for SEVER-DGVM due to too short period of observations (CMAP started 20 

from 1979) and used instead the NCEP reanalysis precipitation data which is longer and provide bigger 

ratio between lengths o transient and spin-up simulation periods in DGVM important for realistic 

description of vegetation and fires. Thus, discrepancies in relationships between fire and precipitations in 

our analysis for GFED and SEVER-FIRE cases can be to some extent explained by differences between 

NCEP and CMAP precipitation fields. These differences, however, have only regional character and do 25 

not change our general conclusion. 

The relationship of chosen variables with fire incidence is not linear, and it involves multi-variable 

interactions. A more in-depth analysis of fire drivers would thus benefit from the use of multivariate 

statistics. We chose to avoid this level of complexity, since the most important conclusions are likely to 

be drawn from straightforward analysis, as a first evaluation of a global fire model. We thus analyze fire 30 

incidence through simple bi-dimensional plots. 
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Seasonality is evaluated via the fire season peak, i.e. the month with maximum fire activity for each grid 

cell. Inter-annual variability is compared to GFED both globally and regionally, to identify how the model 

performs on specific fire events and for different ecosystems. Again, in a similar way to fire incidence, 

fire inter-annual variability has been shown to depend on climatic and vegetation conditions. (Meyn et 

al., 2007) highlight three types of fire ecosystems, depending on their annual fire limitation by fuel amount, 5 

readiness of fuel to burn, or both, considering that the availability of ignition sources is relatively constant 

in time. Here, we further explore the climate impact on the readiness of fuel to burn, analyzing the 

implications of both fire season precipitation and fire season maximum temperature for fire inter-annual 

variability, along three ecosystem types (boreal, tropical humid, and dry/semi-dry). To extract those 

variables, the extent of the fire season in a grid cell was defined as the months with more than 1/12th of 10 

the mean annual BF. Fuel availability, the second factor highlighted by (Meyn et al., 2007), is also 

discussed. 

3. Results 

3.1 Fire incidence and emissions 

Figure 5 shows the spatial distribution of the average annual BF for GFED and SEVER. GFED clearly 15 

depicts the most extensively burned continents, i.e. Africa and Australia. It also indicates high fire activity 

at the edges of the tropical forest, due to land clearing and pasture management, in Central and South 

America and South East Asia (Langner et al., 2007; Morton et al., 2006). Fire incidence is much lower in 

most temperate and boreal ecosystems, except for the north-western Iberian Peninsula and Kazakhstan, 

both regularly affected by fires. A few other regions display high BF values, for example eastern Siberia 20 

and Alaska. Note, however, that for ecosystems with a long fire return interval, as is the case in boreal 

regions, the statistics computed over 10 years are very sensitive to the occurrence of important fire events 

during that period, and it can not be considered representative of the long term regional fire regime. 

Eastern Siberia, for example, was highly affected by fires in 1998, boosting the 10 years average (Kajii 

et al., 2002; Le Page et al., 2008). 25 

SEVER accurately reproduces some of the main spatial patterns of fire incidence, i.e. high BF values over 

Africa and Australia, very limited fire activity in the tropical evergreen forest and in most temperate and 

boreal regions. For a better emphasis of the discrepancies, Figure 6 illustrates the mismatch between 

GFED and SEVER through a normalized difference burned fraction index (NDBF) computed as Eq. (14): 

)m~l =
�\ÄÅÇÅÉx�\ÑÖÅÜ

�\ÄÅÇÅÉ}�\ÑÖÅÜ
	,                                                                                             (14)    30 
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Where ~láàâàä  and ~lã\àå are the annual fire incidence averaged over 1997-2006 from the model and 

the observations, respectively. )m~l is constrained between -1 (large model under-estimation) and 1 

(large model over-estimation). Finally, Figure 7 shows the gradient of three broad PFTs classes (Bare soil, 

Grass and Trees), as modelled by SEVER, and the regions of large over/under estimation of the actual 

tree cover percentage inferred from GLC2000. Those results and further comparison with GLC2000 5 

clearly reveal the following patterns: 

- Regions with low observed fire incidence and the presence of grass in the model display fire over-

estimation, regardless of the GLC2000 landcover, and the more grass, the higher the over-estimation. 

This is the case for example in North America, India, South America and Papua New Guinea. The 

overestimation in these areas can be also caused by high fractional coverage of croplands, not 10 

included in SEVER-FIRE model. 

- Regions with dominant tree cover, or with a large over-estimation of trees in the model, display 

under-estimation of fire incidence. This is the case in a large strip covering Kazakhstan and eastern 

Europe, and in most of South East Asia, for example. 

- The model underestimates the very high fire incidence observed in sub-Saharan Africa.  15 

Considering drivers of BF spatial distribution, Figure 8 illustrates the interactive influence of paired 

combinations of the previously described variables. In GFED, the most affected regions are clearly 

constrained by annual precipitation between 500 and 1500 mm/year and a dry season severity ranging 

from 150 to 500mm of rainfall deficit (Fig. 8: top). SEVER is less restrictive regarding this climatic 

limitation, but the general dependence patterns are similar to the observations. Concerning vegetation 20 

characteristics (Fig. 8: middle), fires affect ecosystems of all levels of NPP, although fire incidence is low 

at the extreme ends of the spectrum. Similar values of NPP and annual precipitation can be found in very 

different ecosystems, as in boreal and sub-tropical regions for example, with great differences in fire 

incidence, hence the low predictability of GFED BF by NPP and precipitation. SEVER also shows little 

constraining of the mean BF by the combination of those two variables. Finally, high fire incidence is 25 

biased towards rural regions with very low economic income (<600 US$/capita/year), as shown in Fig. 8: 

bottom, with the exception of Australia, the only wealthy country highly affected by fires. SEVER also 

shows this rural bias, but on average allows higher fire incidence in wealthy regions, including North 

America. 

Finally, Figure 9 displays the mean annual carbon emissions for GFED and SEVER. Emissions are mainly 30 

dependent on fire incidence, the type and moisture content of the affected vegetation, and fire severity. In 

SEVER, dead PFTs individuals are entirely emitted to the atmosphere, while GFED takes into 

consideration combustion completeness. Consequently, the absolute level of emissions cannot be 
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compared, being much higher in SEVER, as expected. However, the spatial patterns reveal the importance 

of tropical savannas and forests in the global partitioning of carbon emissions in both GFED and SEVER, 

as well as a significant contribution from boreal regions. We are planning to correct SEVER for 

combustion completeness as well as for post-fire mortality processes. 

3.2 Seasonality 5 

Figure 10 shows the spatial patterns of the month with maximum fire activity for each grid cell, and the 

mismatch between GFED and SEVER. SEVER roughly reproduces the observed spatial patterns, with 

73% of the grid cells with a mismatch lower than or equal to 2 months. Significant discrepancies occur 

in Sub-Saharan Africa, which peaks over March to June in the model, while GFED, along with other 

observation sources, indicate October to February (Barbosa et al., 1999a; Clerici et al., 2004; Dwyer et 10 

al., 2000b). 

Sub-Saharan Africa is a major fire region (Dwyer et al., 2000c; Tansey et al., 2004), contributing to a 

large fraction of global fire activity from October to February, a period when most other regions 

experience little or no fire activity. As such, the inability of SEVER to reproduce fire seasonality in Sub-

Saharan Africa is one of its major current limitations. Delayed fire season is also significant in Central 15 

North America and south-eastern Australia. 

The fire seasonal cycle is partially driven by climate, but it can also be strongly influenced by human 

activities. Figure 11 illustrates the averaged profile of the fire season and the dry season over Sub-Saharan 

Africa, for those grid cells with a SEVER fire peak discrepancy larger than or equal to 4 months. For each 

of these cells, we computed the monthly fire season, centred the peak month on the x-axis, and then 20 

derived the corresponding monthly DSS profile. Once averaged over all grid cells, the fire and DSS 

profiles show the temporal connection between both variables. Figure 11 clearly indicates that in the grid 

cells considered, the fire season is shifted towards the early dry season in GFED, and towards the late dry 

season in SEVER. 

In regions with lower use of fire as a management tool, as in boreal forests, the model performs much 25 

better and, along with the observations, tends to place the peak month in the middle or late dry season 

(not shown). The implication of these findings for model improvement are detailed in the discussion 

section. 

3.3 Inter-annual variability 

Figure 12 shows the grid cells correlation between annual BF timeseries from GFED and SEVER. 30 

Equatorial Asia, Mexico and a majority of boreal regions are in good agreement, along with part of South 
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America. As discussed later, those regions are characterised by their sensitivity to climate variability, 

especially to the El Niño of 1997/98 (Le Page et al., 2008). Poorest agreement is found in Africa, India, 

China, western Russia, south of the USA Great Lakes, and in parts of South America. 

Inter-annual variability is further analyzed using a set of 13 regions, originally created for GFED analysis 

(Giglio et al., 2006) as represented in Fig. 13. Globally, and for each of those regions, Figure 14 shows 5 

the BF inter-annual anomalies from GFED and SEVER, along with the monthly distribution of fire 

activity as a further indicator of the timing of specific fire events, and of fire seasonality. The very poor 

agreement in the global plot was to be expected, given the discrepancies in mean spatial fire incidence 

(Fig. 5), resulting in different contributions from regions to the total fire anomalies. This is clearly 

revealed by the monthly plot, showing that total fire activity in December-February, peaking in GFED 10 

with the large contribution of sub-Saharan Africa, is very low in SEVER. Consequently, a given fire 

anomaly in Africa has a much bigger global impact in GFED than in SEVER. 

Regional partitioning allows identifying and comparing specific fire events more easily, especially the 

ones driven by large scale climatic variability. The El Niño episode of 1997-1998 appears clearly in the 

BONA, CEAM, BOAS and EQAS regions in the observations, and is generally captured by the model 15 

with precise timing. Annually, the importance of those events is also reproduced for EQAS and BOAS, 

with respectively 1997 and 1998 being the peaking year in both GFED and SEVER. Generally, fire 

patterns in the other regions are not properly represented. The monthly resolution plots also give further 

insights into the regional scale seasonal cycle, which is generally very well reproduced, except for 

northern hemisphere Africa and Australia. 20 

Figure 15 displays the dependence of fire anomalies on precipitation and temperature anomalies over the 

fire season, through their effect on soil and vegetation moisture status. Drought conditions are the main 

pre-requisite for fire occurrence within all vegetation types, although in low NPP ecosystems, low 

vegetation amount can be a limiting factor, resulting in a dependence of fire anomalies on growing season 

precipitation also (Holmgren et al., 2006; van der Werf et al., 2008). The relationship is first pictured 25 

globally (Fig. 15), showing that both precipitation and temperature anomalies are strong drivers, 

constraining positive fire anomalies almost exclusively to precipitation deficits, and towards positive 

temperature anomalies. This relationship is then analyzed in GFED for 3 types of ecosystems: 

- Boreal ecosystems, a spatial aggregation of the BONA and BOAS regions. Boreal fires are shown 

to be strongly dependent on temperature, at a level comparable to precipitation.  30 

- Tropical humid regions, selected within South America, Africa and Equatorial Asia, as the pixels 

with annual precipitation above 1500mm. Their fire anomalies are also strongly related to 

precipitation, while temperature is a weak driver.  
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- Semi-dry and dry African and Australian regions (annual precipitation below 500mm), which are 

characterised by high anthropogenic fire activity. For those regions, both fire season precipitation 

and temperature anomalies are poor predictors of fire anomalies. 

Those patterns are well reproduced on a global scale, such that the patterns of dependence on both climatic 

variables are similar in the model and in observations (Fig. 15). In boreal/tropical humid ecosystems, 5 

SEVER shows the same trends towards more/less dependence on temperature, although not as neatly as 

in GFED. In the case of semi-dry and dry African and Australian regions, the model also shows a weaker 

dependence on precipitation and temperature, but stronger than in the observations. 

4. Discussion 

Perhaps one of the most important achievements of SEVER, as revealed by this study, is the realistic 10 

modelling of strong climate driven fire anomalies, such as the large biomass burning events resulting 

from El Niño-induced droughts in various regions of the world (Fig. 12 and Fig. 14). This climate induced 

variability is known to be considerable and has important consequences for atmospheric composition, the 

terrestrial carbon cycle, and biodiversity, as discussed in the Introduction. As such its accurate 

representation in DGVMs and ESMs is essential. 15 

The in-depth analysis of this climatic influence highlight the variability of the precipitation/temperature 

dependence patterns (Fig. 15). Boreal regions are characterised by great annual amplitudes of 

precipitation and temperature. As such, both play an important role in the dynamics of soil and vegetation 

moisture status, through rainfall and evaporation, thus the strong fire dependence on both variables. In 

tropical humid regions, temperature variability is much lower, and only a major and prolonged 20 

precipitation deficit will result in fire prone conditions (van der Werf et al., 2008). 

Finally, semi-dry and dry regions of Africa and Australia are characterised by a low dependence on both 

parameters. Those regions are under specific climatic conditions, characterised by a rather short and 

irregular wet season for vegetation growth, followed by a long dry season (Peel et al., 2007). Under those 

conditions, fuel availability, rather than its readiness to burn, limits the occurrence of fires (Meyn et al., 25 

2007). Under low wet season precipitation, vegetation build-up may be too low to sustain a fire. Under 

high wet season precipitation, vegetation growth leads to less patchy vegetation, which will dry out over 

the following dry season, becoming highly susceptible to fires. This scheme is very specific of those hot 

dry and semi-dry regions dominated by annual herbaceous vegetation. In the case of middle to high 

productivity ecosystems with the presence of woody vegetation, the relationship is generally reversed: 30 

enhanced wet season precipitation leads to higher soil and vegetation moisture status, delaying desiccation 

over the dry season, thus reducing fire susceptibility. The contrast between those two distinct vegetation-
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climate-fire relationships is most evident in Australia (Fig. 16). The SEVER vegetation scheme did not 

perform very well over Australia, and so the role of wet season precipitation is not properly represented 

(not shown). 

At global scale, SEVER is shown to be fairly realistic regarding this temperature/precipitation dependence, 

which was to be expected since both variables are involved in the fire weather danger and fire spread 5 

calculations. However, the variability of the relationship along ecosystem types (boreal, tropical humid, 

semi-dry/dry), resulting from complex interactions between fire drivers, is not as straightforward to 

capture. The realistic results for such an interactive system suggests that the feedback mechanisms as 

defined in the SEVER-DGVM/SEVER-FIRE coupled scheme do reach a reasonable level of complexity 

and accuracy, especially in the case of boreal and tropical ecosystems. 10 

The mean burned fraction (Fig. 5) is a more challenging feature for the model to replicate. Key 

associations represented in the fire triangle (Schoennagel et al., 2004) are, however, reproduced (Fig. 8), 

i.e. fire occurrence limitation by moisture in very humid ecosystems, or by low fuel amount in arid regions. 

Unfortunately, SEVER models potential - not actual - vegetation cover, hampering an in-depth diagnostic 

of the fire incidence estimates. However, grass/trees appear to be over/under sensitive to fires, with the 15 

exception of highest fire incidence regions (Africa, northern Australia), where SEVER underestimates 

fire activity, independent from vegetation cover (Fig. 6 and Fig. 7). The main PFT parameters controlling 

fire incidence are bulk density (fire ignition and spread, see Table 1), and flammability (fire danger index 

computation). Flammability takes the same value for all tree PFTs, and a distinct value for both C3 and 

C4 grasses together. As such, it may be a relevant factor to correct the over/under estimation observed in 20 

grass/trees. Of critical importance for fires are also three vegetation types not yet included in SEVER-

DGVM: croplands and pasture (land management fires (Pyne, 2001)), savannas, and peatlands (modest 

land extent, but major carbon hotspot (Page et al., 2002; Turquety et al., 2007)). 

It is also essential to improve our understanding of anthropogenic impacts on fire incidence. The initial 

assumptions of the model, with population and wealth status as the most important human proxies, are to 25 

be re-assessed carefully in regional studies, given the implication of other factors. Especially, the most 

evident cases of human induced increased or decreased fire activity are related to land use type and 

agricultural practices, more than to economic and social status. For example, (Pfeiffer et al., 2013) divided 

population into three according to their dominating land use types: farmers, pastorals and hunter-gathers. 

Kaplan et al. (2016) showed that this division determined structure of areas burnt during Last Glacial 30 

Maximum. Thus, a simple timing function for rural population implemented into SEVER-DGVM may 

not work properly in Africa.  Relating those ignitions to low wealth status, as done in SEVER, is certainly 

functional after a few adjustments, but seems less robust to other regions than an association of land use 

with timing of human pyrogenic activities and number of human ignitions. As an illustration, wealth status 

�����: In Africa for example, the combination of a strong 35 
seasonal wet-dry climate with regular human ignitions favours high 
fire incidence. 
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is not well adapted to account for high fire incidence induced by humans in northern Australia (Russell-

Smith et al., 2007). Additional proxies for human pyrogenic activities implemented in SEVER-FIRE 

could include deforestation activities (Zhan et al., 2002) and land use/landcover data (Thenkabail et al., 

2006). Fire management factor should be added to the model in the regions where coordinated wildfire 

controlling program is in place (e.g. existence and actions of European Commissions Emergency 5 

Response Coordination Centre in Europe (https://ec.europa.eu/echo/what-we-do/civil-protection/forest-

fires_en)). 

Advantages of including relationship between land use and timing of pyrogenic activities in SEVER 

would possibly also extend to a better representation of fire seasonality. In sub-Saharan Africa for 

example, Figure 11 reveals that the fire season (October-February, Fig. 10) is shifted towards early 10 

months of the dry season, which mainly results from the use of fires for agricultural and land management 

practices (Clerici et al., 2004). For the whole southern hemisphere, however, human pyrogenic activity 

in SEVER is set to reach a maximum from March to May and September to November, which is not 

realistic in the case of sub-Saharan Africa, a major fire region. Timing of pyrogenic activities in sub-

Saharan may be rather challenging as even implementation of land use in global fire model (Le Page et 15 

al., 2015) still brings 1 to 3 month delay in fire peak. Besides, it was demonstrated that religious affiliation 

modulates agricultural burning activities in the area (Pereira et al., 2015), which is completely off the 

view of global fire modelers at the time. It is seen that a set of regional case studies with an active use of 

available historical data is necessary to implement more realistic features of human pyrogenic activities 

in global fire models. Study and parameterization of fire duration in remote areas is necessary for 20 

improvement of area burnt calculation in these areas. 

Description of lightning fires need also improvements, starting from estimation of number of lightning 

strikes effective for fire ignition. Despite lightning strike is considered to be to major extent a stochastic 

event, there is a visible room of better description of number of cloud-to-ground flashes based on recent 

findings of role of aerosols in electrification of thunder clouds (Stolz Douglas et al., 2015; Venevsky, 25 

2014). In addition, sensitivity study for critical newly implemented features timing and duration and 

further formal optimization for parameters of SEVER-FIRE model using teaching subset of remote 

sensing data for observed areas burnt (Khvostikov et al., 2015; Rabin et al., 2015; Rabin et al., 2018) can 

further improve performance of the presented global fire model. 

5. Conclusions 30 

This paper analysis results from a DGVM which includes an interactive, dynamically-linked fire module. 

It reveals that the most important climate driven fire features are reproduced by the model, while the 

dependence on vegetation characteristics and, especially, human pyrogenic activities prevents the further 
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development of realistic estimates of fire incidence, and of regional to global inter-annual variability. 

Regional adjustments of global fire models based on analysis of both historical fire statistics/records and 

recent satellite observations are necessary for further understanding of global fire dynamics in past, 

present and future.   
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Table 1: 5 of the 35 parameters defined for each of the 10 SEVER PFTs.  

PFTs 
Moisture of 

extinction1 

Fire resistance 

index2 

Minimum 

coldest monthly 

mean TºC3 

Maximum 

coldest monthly 

mean 

temperature3 

Bulk density of 

fuel kg/m2 

Tropical Broadleaved evergreen tree 0.3 0.12 15.5 Æ 3 

Tropical Broadleaved rain green tree 0.3 0.5 15.5 Æ 2 

Temperate Needleleaved evergreen tree 0.3 0.12 -2 22 10 

Temperate Broadleaved evergreen tree 0.3 0.12 3 18.8 10 

Temperate Broadleaved summer green tree 0.3 0.12 -17 15.5 10 

Boreal Needleleaved evergreen tree 0.3 0.12 -32.5 -2 16 

Boreal Needleleaved summer green tree 0.3 0.12 Æ -2 16 

Boreal Broadleaved summer green tree 0.3 0.12 Æ -2 16 

C3 perennial grass 0.2 1 Æ 15.5 2 

C4 perennial grass 0.2 1 15.5 Æ 2 
1 Involved in the computation of fire probability 

2 Involved in the computation of vegetation disturbance after a fire 

3 Æ indicates no limitation from the considered parameter 
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Figure 1. Observed and simulated number of lightning strikes in central cordillera of Canada. Left: 

in Alberta; Right: in British Columbia. 

 

 5 

Figure 2. Total number of lightning fires observed (Wierzchowski et al., 2002) and simulated. Left: 

in Alberta; Right: in British Columbia. 
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Figure 3. Registered and simulated number of fires in Canada. 

 

 

Figure 4: Definition of the dry season indicator on a climatic diagram as the yellow patch area. 5 
On the y-scales, 1ºC is equivalent to 2mm/year of precipitation, and Dry Season Severity (DSS) is 

computed as the area of the region where the temperature profile is above the precipitation 

profile.  
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Figure 5. Mean Annual Burned Fraction (percentage) over 1997-2006. Top: GFED; Bottom, 

SEVER-FIRE. 5 



 35 

 

Figure 6. Discrepancies in the model outputs relative to GFED observation derived data, as 

represented by the normalised difference burned fraction index (see text). Black/grey colours 

represent grid cells where fires only occur in GFED/SEVER. 

 5 

Figure 7. SEVER DGVM Land Cover distribution, grouped in 3 broad classes: Bare soil, Grass 

(C3 and C4) and Trees (all Tree PFTs, see Table 1). 

 

 

 10 
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Figure 8. Mean Annual Burned Fraction over 1997-2006 (left: GFED; right: SEVER-FIRE) as a 

function of paired parameters. Top: Annual Precipitation and Dry season severity; Middle: 

Precipitation and NPP; Bottom: Rurality indicator and GDP.  
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Figure 9. Mean Annual emissions (gC/m2/year) over 1997-2006. Top: GFED; Bottom, SEVER-

FIRE. 5 

  



 38 

 

 

Figure 10. Top: Peak of the fire season in GFED; Middle: Peak of the fire season in SEVER; Bottom: relative 5 
mismatch between SEVER and GFED peaking month of the fire season. 
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Figure 11. Averaged correspondence of fire season with dry season anomalies over regions of sub-

Saharan Africa with a delay in peak month superior or equal to 4. 

 

5 
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Figure 12. Correlation of annual BF from GFED and SEVER, over 1997-2006. 

 

Figure 13. Regions used for inter-annual variability analysis. BONA: Boreal North America; 

TENA: Temperate North America ; CEAM: Central America ; SOAM: South America ; EURO: 5 
Europe ; NHAF: Northern Hemisphere Africa ; SHAF: Southern Hemisphere Africa ; BOAS: 

Boreal Asia ; CEAS: Central Asia ; SEAS: South East Asia ; EQAS: Equatorial Asia ; AUST: 

Australia. 
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Figure 14. Regional comparison of fire variability over 1997-2006. For each region subplot: Top: 

annual Anomalies; Bottom: monthly time series constrained to [0 1]. The region name is indicated 

at the top left corner, the average fire incidence at the top right. 5 
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Burned Fraction Anomalies 

Figure 15: Dependence of fire anomalies to Temperature and Precipitation  
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Figure 16: Dependence of fire anomalies to wet season precipitation and landcover type in 

Australia for GDED data 
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