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Dear Referees, dear Editor, 
 
We would like to thank you again for your positive comments and constructive suggestions for 
the improvement of our manuscript. In this document, we would like to provide our responses to 
the comments of Loris Foresti and Seppo Pulkkinen including the decision on specific changes 
in the manuscript. For that purpose, we use the following color code: 
 
black: original referee comment 
blue: our response 
 
Sincerely, 
Georgy (on behalf of the authors) 
 

Referee comments by Loris Foresti 

 
1. Page 2, line 1: "1-3 hours:”  “1-3 hours, for example:” 

ACTION: Fixed. 
 

2. Page 2, line 30: “the OFC is resolved”? 
ACTION: Fixed. 
 

3. Page 2, line 33-35: What did Liu et al. (2015) find from their study? Is it better to use LK 
or HS on satellite images? 

ACTION: The corresponding sentence “Liu et al. (2015) proposed using a local Lucas–Kanade 
optical flow method (Lucas and Kanade, 1981) independently for each pixel of satellite imagery 
and compared its performance with a global Horn–Schunck (Horn and Schunck, 1981) optical 
flow algorithm.” in the Introductory section has been updated as follows: 
 
“Liu et al. (2015) proposed using a local Lucas–Kanade optical flow method (Lucas and 
Kanade, 1981) independently for each pixel of satellite imagery because they found it 
outperformed a global Horn–Schunck (Horn and Schunck, 1981) optical flow algorithm in the 
context of precipitation nowcasting from infrared satellite images.” 
 

4. Table 1: In the caption you should specify the grid size and that the computational time 
refers to both optical flow and extrapolation for 12 frames (as done in Sect. 5.3). It could 
be worth separating the computational time of the optical flow from the one of the 
extrapolation. That would be interesting. 

ACTION: Table 1 has been updated as follows: 
  
Table 1. Overview of the developed nowcasting models and their computational performance. 
Nowcasting experiments were carried out for one hour lead time in 5 min temporal resolution 
(12 resulting nowcast frames in total) using the RY radar data (spatial resolution of 1 km, grid 
size 900x900) and a standard office PC with an Intel® Core TM i7-2600 CPU (8 cores, 3.4 
GHz). 



Model name ... Computational time 
(tracking/extrapolation/total), s 

Sparse ... 0.2 / 1.1 / 1.3  

SparseSD ... 0.1 / 1.1 / 1.2  

Dense ... 0.2 / 5.5 / 5.7 

DenseRotation ... 3.2 / 5.7 / 8.9 

 
The corresponding sentence “The average time for generating one nowcast for one hour lead 
time (at 5 minute resolution) for the Sparse group is 2-3 s, and for the Dense group is 7-12 s.” 
has been updated as follows: 
 
“The average time for generating one nowcast for one hour lead time (at 5 minute resolution) for 
the Sparse group is 1.5-3 s, and for the Dense group is 6-12 s.” 
 

5. Page 6, line 25: “predictor” -> “model” or “assumption”? 
ACTION: In the corresponding sentence the word “predictor” has been substituted by “model”. 
  

6. Eq. 1: Is the MAE integrated over all pixels or conditioned to where either the nowcast or 
the observations have rain? Please specify. 

ACTION: The corresponding sentence “... where nowi and obsi are nowcast and observed 
rainfall rate in the i-th pixel of the corresponding radar image, and n the number of pixels.” has 
been supplemented by the following sentence: 
“... To compute the MAE, no pixels were excluded based on thresholds of nowcast or observed 
rainfall rate.” 
 

7. Figure 5 and page 8, line 26-27: Please show the power spectral densities down to 
double of the grid resolution, i.e. 2 km. Germann and Zawadzki (2002) made the 
analyses on a 4 km resolution radar grid. That’s why they stopped the spectra at 8 km. 
Now that the “interpolate once” method is implemented in rainymotion, there should be 
basically no numerical diffusion left. 

ACTION: Figure 5 has been updated. 
 
The corresponding part in the text with the analysis of numerical diffusion properties “As had 
been shown in (Germann and Zawadzki, 2002), the most significant loss of power spectra 
(lower PSD values) refers to small-scale precipitation patterns in the range of 8 to 64 km, so we 
constrained the PSD plots to highlight that range. The power spectra show that, compared to 
the observations, the loss of power is small for all lead times, scales, and models (Sparse and 
Dense). At least for this example, it appears that both the warping and the "interpolate only 
once" approaches are successful in limiting the effects of numerical diffusion and thus the loss 
of power at small scales – at least for lead times up to one hour.” has been updated as follows: 
 
“Germann and Zawadzki (2002) showed that the most significant loss of power (lower PSD 
values) occurs at scales between 8 to 64 km. They did not analyse scales below 8 (23) km 
because their original grid resolution was 4 km. We extended the spectral analysis to consider 
scales as small as 21 km. Other than Germann and Zawadzki (2002), we could not observe any 



substantial loss of power between 8 and 64 km, yet Figure 5 shows that both Dense and Sparse 
models consistently start to lose power at scales below 4 km. That loss does not depend much 
on the nowcast lead time, yet, the Sparse group of models loses more power at a lead time of 5 
minutes as compared to the Dense group. Still, these results rather confirm Germann and 
Zawadzki (2002): they show, as would be expected, that any loss of spectral power is most 
pronounced at the smallest scales, and disappears at scales about 2-3 orders above the native 
grid resolution. For the investigated combination of data and models, that implies that our 
nowcasts will not be able to adequately represent rainfall features smaller than 4 km at lead 
times of up to 1 hour.” 

Referee comments by Seppo Pulkkinen 

 
General comments: 
The authors have done a very good and detailed work to address all my previous questions. 
I still have one comment about how the text is organized. 

● The title of Section 2 is "Models" that does not match the content. This is because 
Section 2 also contains description of the library (Section 2.4) and the verification metrics 
(Section 2.6). In my opinion, there should be one section devoted to the models, and the 
above items should be separated from this section. In addition, Sections 3 and 4 are 
very short. Suggestions for improvement: 

● Section 2.4 could be separated into its own main section (e.g. Section 3). 
● Sections 2.6 and 3 could be moved into Section 4 that would describe the 

experiment setup, the used verification metrics, the data and also the results. 
Also change the title accordingly. 

● If Section 2.4 is kept as is, Section 2 could be renamed, for instance, as "Description of 
the models and the library". 

ACTION: We reorganized the manuscript structure by reviewer suggestions as follows: 
2. Description of the models and the library 
2.1 The Sparse group 
2.2 The Dense group 
2.3 Persistence 
2.4 The rainymotion Python library 
2.5 Operational baseline (RADVOR) 
 
3. Verification experiments 
3.1 Radar data and verification events (previously 3) 
3.2 Verification metrics (previously 2.6) 
 
Minor details: 

1. p.1, lines 22-23: Can you add a reference which states that radar-based nowcasting 
outperforms NWP at short lead times? 

ACTION: References have been added:  
Berenguer, M., Surcel, M., Zawadzki, I., Xue, M., Kong, F., Berenguer, M., … Kong, F. (2012). 
The Diurnal Cycle of Precipitation from Continental Radar Mosaics and Numerical Weather 
Prediction Models. Part II: Intercomparison among Numerical Models and with Nowcasting. 
Monthly Weather Review, 140(8), 2689–2705. https://doi.org/10.1175/MWR-D-11-00181.1  

https://doi.org/10.1175/MWR-D-11-00181.1


Jensen, D. G., Petersen, C., & Rasmussen, M. R. (2015). Assimilation of radar-based nowcast 
into a HIRLAM NWP model. Meteorological Applications, 22(3), 485–494. 
https://doi.org/10.1002/met.1479 
Lin, C., Vasić, S., Kilambi, A., Turner, B., & Zawadzki, I. (2005). Precipitation forecast skill of 
numerical weather prediction models and radar nowcasts. Geophysical Research Letters, 
32(14). https://doi.org/10.1029/2005GL023451  
 

2. p. 4, l. 15: More detailed explanation could be added here. Eigenvalues of what? Are the 
eigenvalues computed by using single pixels or a neighborhood around each pixel? 

ACTION: The corresponding sentence “This detector determines the most prominent corners in 
the image based on the calculation of the corner quality measure (min(λ 1 , λ 2 ), where λ 1 and 
λ 2 are corresponding eigenvalues) at each image pixel (see Section S1 of the Supplementary 
Information for a detailed description of algorithm parameters);” has been updated as follows: 
 
“This detector determines the most prominent corners in the image based on the calculation of 
the corner quality measure (min(λ 1 , λ 2 ), where λ 1 and λ 2 are corresponding Eigenvalues of 
the covariance matrix of derivatives over the neighborhood of 3 by 3 pixels) at each image pixel 
(see Section S1 of the Supplementary Information for a detailed description of algorithm 
parameters);” 
 
Supplementary material: 
 
S5: It is mentioned that "Results show that the DIS optical flow technique outperforms the 
remaining optical flow techniques while also providing the fastest computation.". However, I 
could not find any graph or table showing the computation times of different optical flow 
methods. Can you add this information? 
ACTION: The corresponding sentence “Results show that the DIS optical flow technique 
outperforms the remaining optical flow techniques while also providing the fastest computation.” 
has been updated with the reference to Table S2. 
 
Table S2. Computational time of different optical flow techniques (mean ± standard deviation of 
100 runs) 

Optical flow technique Computational time 

DIS 19.8 ms ± 1.76 ms 

PCAFlow 287 ms ± 8.67 ms 

Farnebäck 715 ms ± 11.9 ms 

DeepFlow 3.77 s ± 117 ms 

 
 

https://doi.org/10.1002/met.1479
https://doi.org/10.1029/2005GL023451
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Abstract. Quantitative precipitation nowcasting (QPN) has become an essential technique in various application contexts,

such as early warning or urban sewage control. A common heuristic prediction approach is to track the motion of precipi-

tation features from a sequence of weather radar images, and then to displace the precipitation field to the imminent future

(minutes to hours) based on that motion, assuming that the intensity of the features remains constant ("Lagrangian persis-

tence"). In that context, "optical flow" has become one of the most popular tracking techniques. Yet, the present landscape5

of computational QPN models still struggles with producing open software implementations. Focusing on this gap, we have

developed and extensively benchmarked a stack of models based on different optical flow algorithms for the tracking step,

and a set of parsimonious extrapolation procedures based on image warping and advection. We demonstrate that these mod-

els provide skillful predictions comparable with or even superior to state-of-the-art operational software. Our software library

("rainymotion") for precipitation nowcasting is written in the Python programming language, and openly available at GitHub10

(https://github.com/hydrogo/rainymotion). That way, the library may serve as a tool for providing fast, free and transparent

solutions that could serve as a benchmark for further model development and hypothesis testing – a benchmark that is far more

advanced than the conventional benchmark of Eulerian persistence commonly used in QPN verification experiments.

1 Introduction

How much will it rain within the next hour? The term "quantitative precipitation nowcasting" refers to forecasts at high spatio-15

temporal resolution (60-600 seconds, 100-1000 meters) and short lead times of only a few hours. Nowcasts have become

important for broad levels of the population for planning various kinds of activities. Yet, they are particularly relevant in the

context of early warning of heavy convective rainfall events, and their corresponding impacts such as flash floods, landslides,

or sewage overflow in urban areas.

While recent advances in numerical weather prediction (NWP) allow us to forecast atmospheric dynamics at very high reso-20

lution (Bauer et al., 2015), computational costs are typically prohibitive for the requirements of operational nowcasting applica-

tions with frequent update cycles. Furthermore, the heuristic extrapolation of rain field motion and development, as observed by

weather radar, still appears to outperform NWP forecasts at very short lead times
::::::::::::::::::::::::::::::::::::::::::::::::
(Berenguer et al., 2012; Jensen et al., 2015; Lin et al., 2005)

. Today, many precipitation nowcasting systems are operational at regional or national scales, utilizing various radar products,
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algorithms, and blending techniques in order to provide forecasts up to 1-3 hours
:
,
::
for

::::::::
example: ANC (Mueller et al., 2003),

MAPLE (Germann and Zawadzki, 2002), RADVOR (Winterrath et al., 2012), STEPS (Bowler et al., 2006), STEPS-BE (Foresti

et al., 2016), and SWIRLS (Cheung and Yeung, 2012; Woo and Wong, 2017). For an extensive review of existing operational

systems, please refer to Reyniers (2008).

A variety of radar-based precipitation nowcasting techniques can be classified into three major groups based on assumptions5

we make regarding precipitation field characteristics (Germann and Zawadzki, 2002). The first group – climatological persis-

tence – provides nowcasts by using climatological values (mean or median). The second group – Eulerian persistence – is based

on using the latest available observation as a prediction, and is thus independent from the forecast lead time. The third group

– Lagrangian persistence – allows the extrapolation of the most recent observed precipitation field under the assumption that

intensity of precipitation features and the motion field are persistent (Germann and Zawadzki, 2002; Woo and Wong, 2017). In10

addition, we can classify nowcasting methods based on how predictive uncertainty is accounted for: In contrast to deterministic

approaches, ensemble nowcasts attempt to account for predictive uncertainty by including different realizations of the motion

field and the evolution of rainfall intensity itself (Berenguer et al., 2011). In this study, we focus our model development around

the group of Lagrangian persistence models which provide deterministic precipitation nowcasts.

Lagrangian methods consist of two computational steps: tracking and forecasting (extrapolation) (Austin and Bellon, 1974).15

In the tracking step, we compute a velocity field from a series of consecutive radar images, either on a per pixel basis (Germann

and Zawadzki, 2002; Grecu and Krajewski, 2000; Liu et al., 2015; Zahraei et al., 2012), or for contiguous objects (Zahraei et al.,

2013). In the second step, we use that velocity field to advect the most recent rain field, i.e. to displace it to the imminent future

based on its observed motion. That step has been implemented based on semi-Lagrangian schemes (Germann and Zawadzki,

2002), interpolation procedures (Liu et al., 2015), or mesh-based models (Bellerby, 2006; Zahraei et al., 2012). Different20

algorithms can be used for each step, tracking and forecasting, in order to compute an ensemble forecast (Berenguer et al.,

2011; Foresti et al., 2016; Grecu and Krajewski, 2000).

One of the most prominent techniques for the tracking step is referred to as "optical flow". The original term was inspired

by the idea of an apparent motion of brightness patterns observed when a camera or the eyeball is moving relative to the

objects (Horn and Schunck, 1981). Today, optical flow is often understood as a group of techniques to infer motion patterns25

or velocity fields from consecutive image frames, e.g. in the field of precipitation nowcasting (Bowler et al., 2004; Liu et al.,

2015; Woo and Wong, 2017). For the velocity field estimation, we need to accept both the brightness constancy assumption

and one of a set of additional optical flow constraints (OFC). The spatial attribution of OFC marks the two main categories

of optical flow models: local (differential) and global (variational) (Cheung and Yeung, 2012; Liu et al., 2015). Local models

try to set an OFC only in some neighborhood, while global models apply an OFC for a whole image. There is also a distinct30

group of spectral methods where the Fourier transform is applied to the inputs, and an OFC resolves
::
is

:::::::
resolved

:
in the spectral

(Fourier) domain (Ruzanski et al., 2011). Bowler et al. (2004) introduced the first local optical flow algorithm for precipitation

nowcasting, and gave rise to a new direction of models. Bowler’s algorithm is the basis of the STEPS (Bowler et al., 2006)

and STEPS-BE (Foresti et al., 2016) operational nowcasting systems. Liu et al. (2015) proposed using a local Lucas–Kanade

optical flow method (Lucas and Kanade, 1981) independently for each pixel of satellite imagery and compared its performance35
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with
:::::::
because

::::
they

:::::
found

::
it
::::::::::::
outperformed a global Horn–Schunck (Horn and Schunck, 1981) optical flow algorithm

::
in

:::
the

::::::
context

::
of

:::::::::::
precipitation

::::::::::
nowcasting

::::
from

:::::::
infrared

:::::::
satellite

::::::
images. Yeung et al. (2009), Cheung and Yeung (2012), and Woo

and Wong (2017) used different global optical flow algorithms (Bruhn et al., 2005a; Wong et al., 2009) for establishing the

SWIRLS product for operational nowcasting in Hong-Kong.

Hence, for around two decades, optical flow algorithms have been doing their best for state-of-the-art operational nowcasting5

systems around the globe. Should research still care about them? It should. . . and the reason is that – despite the abundance of

publications about different flavours of optical flow techniques for nowcasting applications – an open and transparent bench-

mark model is yet not available, except for the most trivial one: Eulerian persistence.

That is all the more surprising since open source implementations of fundamental optical flow algorithms (Brox et al., 2004;

Bruhn et al., 2005b) have been around for up to 20 years – with the OpenCV library (https://opencv.org) just being the most10

widely known. Such libraries provide efficient implementations of various optical flow algorithms for a vast number of research

and application contexts. Yet, none can be applied in the QPN context out of the box – without the need to address additional

and specific challenges such as underlying assumptions and constraints of velocity fields, pre- and postprocessing steps, or

model parameterization and verification.

The aim of this paper is thus to establish a set of benchmark procedures for quantitative precipitation nowcasting as an15

alternative to the trivial case of Eulerian persistence. This study does not aim to improve the standard of precipitation nowcast-

ing beyond the state-of-the-art, but to provide an open, transparent, reproducible and easy-to-use approach that can compete

with the state-of-the-art, and against which future advances can be measured. To that end, we developed a group of mod-

els that are based on two optical flow formulations of algorithms for the tracking step – sparse (Lucas and Kanade, 1981)

and dense (Kroeger et al., 2016) – together with two parsimonious extrapolation techniques based on image warping and20

spatial interpolation. These models are verified against Eulerian persistence, as a trivial benchmark, and against the opera-

tional nowcasting system of the Deutscher Wetterdienst (the German Weather Service, DWD), as a representative of state-

of-the-art models. The different optical flow implementations are published as an open source Python library (rainymotion,

https://github.com/hydrogo/rainymotion) that entirely relies on free and open source dependencies, including detailed docu-

mentation and example workflows (https://rainymotion.readthedocs.io).25

The paper is organized as follows. In Section 2, we describe the algorithmic and technical aspects of the suggested optical

flow models. Section 3 describes the data we used, and provides a short synopsis of events we used for the benchmark exper-

iment. We report the results in Section 4, and discuss them in various contexts in Section 5. Section 6 provides summary and

conclusions.

2 Models
::::::::::
Description

::
of

:::
the

:::::::
models

::::
and

:::
the

::::::
library30

The benchmark models developed in this study consist of different combinations of algorithms for the two major steps of La-

grangian nowcasting frameworks, namely tracking and extrapolation (Austin and Bellon, 1974). Table 1 provides an overview

of the models. The values of model parameters adopted in the benchmark experiment have been heuristically determined and
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not yet been subject to systematic optimization. However, the rainymotion library provides an opportunity to investigate how

different optical flow model parameters can affect nowcasting results, or how they can be tuned to represent, e.g., the typi-

cal range of advection speeds of real precipitation fields. For a description of parameters, please refer to Section S1 in the

Supplementary Information or the rainymotion library documentation (https://rainymotion.readthedocs.io/).

2.1 The Sparse group5

The central idea around this group of methods is to identify distinct features in a radar image that are suitable for tracking.

In this context, a "feature" is defined as a distinct point ("corner") with a sharp gradient of rainfall intensity. That approach

is less arbitrary and scale dependent and thus more universal than classical approaches that track storm cells as contiguous

objects (e.g., Wilson et al., 1998) because it eliminates the need to specify arbitrary and scale dependent characteristics of

"precipitation features" while the identification of "corners" depends only on the gradient sharpness in a cell’s neighborhood.10

Inside this group, we developed two models that slightly differ with regard to both tracking and extrapolation.

The first model (SparseSD, for Sparse Single Delta) uses only the two most recent radar images for identifying, tracking,

and extrapolating features. Assuming that t denotes both the nowcast issue time and the time of the most recent radar image,

the implementation can be summarized as follows:

1. Identify features in a radar image at time t-1 using the Shi–Tomasi corner detector (Shi and Tomasi, 1994). This detector15

determines the most prominent corners in the image based on the calculation of the corner quality measure (min(λ1,λ2),

where λ1 and λ2 are corresponding eigenvalues
::::::::::
Eigenvalues

::
of

:::
the

:::::::::
covariance

:::::
matrix

:::
of

:::::::::
derivatives

:::
over

:::
the

::::::::::::
neighborhood

::
of

::::
3×3

::::::
pixels) at each image pixel (see Section S1 of the Supplementary Information for a detailed description of

algorithm parameters);

2. Track these features at time t using the local Lucas–Kanade optical flow algorithm (Lucas and Kanade, 1981). This20

algorithm tries to identify the location of a feature we previously identified at time t-1 in the radar image at time t, based

on solving a set of optical flow equations in the local feature neighborhood using the least-squares approach (see Section

S1 of the Supplementary Information for a detailed description of algorithm parameters);

3. Linearly extrapolate the features’ motion in order to predict the features’ locations at each lead time n;

4. Calculate the affine transformation matrix for each lead time n based on the locations of all identified features at time25

t and t+n using the least-squares approach (Schneider and Eberly, 2003). This matrix uniquely identifies the required

transformation of the last observed radar image at time t so that the nowcast images at times t+1...t+n provide the

smallest possible difference between the locations of detected features at time t and the extrapolated features at times

t+1...t+n;

5. Extrapolate the radar image at time t by warping: for each lead time, the warping procedure uniquely transforms each30

pixel location of the radar image at time t to its future location in the nowcast radar images at times t+1...t+n, using
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the affine transformation matrix. Remaining discontinuities in the predicted image are linearly interpolated in order to

obtain nowcast intensities on a grid that corresponds to the radar image at time t (Wolberg, 1990).

To our knowledge, this study is the first to apply image warping directly as a simple and fast algorithm to represent advective

motion of a precipitation field. In Section S2 of the Supplementary Information, you can find a simple synthetic example which

shows the potential of the warping technique to replace an explicit advection formulation for temporal extrapolation.5

For a visual representation of the SparseSD model, please refer to Fig. 1.

The second model (Sparse) uses the 24 most recent radar images, and we consider only features that are persistent over the

whole period (of 24 time steps). The implementation can be summarized as follows:

1. Identify features on a radar image at time t-23 using the Shi–Tomasi corner detector (Shi and Tomasi, 1994);

2. Track these features in the radar images from t-22 to t using the local Lucas–Kanade optical flow algorithm (Lucas and10

Kanade, 1981);

3. Build linear regression models which independently parameterize changes in coordinates through time (from t-23 to t)

for every successfully tracked feature;

4. Continue with steps 3-5 of SparseSD.

For a visual representation of the Sparse model, please refer to Fig. 2.15

2.2 The Dense group

The Dense group of models uses, by default, the Dense Inverse Search algorithm (DIS) – a global optical flow algorithm pro-

posed by Kroeger et al. (2016) – which allows us to explicitly estimate the velocity of each image pixel based on an analysis

of two consecutive radar images. The DIS algorithm was selected as the default optical flow method for motion field retrieval

because it showed, in our benchmark experiments, a higher accuracy and also a higher computational efficiency in comparison20

with other global optical flow algorithms such as DeepFlow (Weinzaepfel et al., 2013), and PCAFlow (Wulff and Black, 2015).

We also tested the local Farnebäck algorithm (Farnebäck, 2003), which we modified by replacing zero velocities by interpo-

lation, and by smoothing the obtained velocity field based on a variational refinement procedure (Brox et al., 2004) (please

refer to Section S5 in the Supplementary Information for verification results of the corresponding benchmark experiment with

various dense optical flow models). However, the rainymotion library provides the option to choose any of the specified above25

optical flow methods for precipitation nowcasting.

The two models in this group differ only with regard to the extrapolation (or advection) step. The first model (Dense) uses

a constant-vector advection scheme (Bowler et al., 2004), while the second model (DenseRotation) uses a semi-Lagrangian

advection scheme (Germann and Zawadzki, 2002). The main difference between both approaches is that a constant-vector

scheme does not allow for the representation of rotational motion (Bowler et al., 2004); a semi-Lagrangian scheme allows for30

the representation of large-scale rotational movement while assuming the motion field itself to be persistent (Fig. 3).
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There are two possible options of how both advection schemes may be implemented: forward in time (and downstream in

space) or backward in time (and upstream in space) (Fig. 3). It is yet unclear which scheme can be considered as the most

appropriate and universal solution for radar-based precipitation nowcasting, regarding the conservation of mass on the one

hand and the attributed loss of power at small scales on the other hand (e.g., see discussion in Bowler et al., 2004; Germann

and Zawadzki, 2002). Thus, we conducted a benchmark experiment with any possible combination of forward vs. backward5

and constant-vector vs. semi-Lagrangian advection. Based on the results (see Section S6 in the Supplementary Information),

we use the backward scheme as the default option for both the Dense and DenseRotation models. However, the rainymotion

library still provides the option to use the forward scheme, too.

Both the Dense and DenseRotation models utilize a linear interpolation procedure in order to interpolate advected rainfall

intensities at their predicted locations to the native radar grid. The interpolation procedure "distributes" the value of a rain pixel10

to its neighborhood, as proposed in different modifications by Bowler et al. (2004), Liu et al. (2015), and Zahraei et al. (2012).

The Dense group models’ implementation can be summarized as follows:

1. Calculate a velocity field using the global DIS optical flow algorithm (Kroeger et al., 2016), based on the radar images

at time t-1 and t;

2. Use a backward constant-vector (Bowler et al., 2004) or a backward semi-Lagrangian scheme (Germann and Zawadzki,15

2002) to extrapolate (advect) each pixel according to the displacement (velocity) field, in one single step for each lead

time t+n. For the semi-Lagrangian scheme, we update the velocity of the displaced pixels at each prediction time step n

by linear interpolation of the velocity field to a pixel’s location at that time step;

3. As a result of the advection step, we basically obtain an irregular point cloud that consists of the original radar pixels

displaced from their original location. We use the intensity of each displaced pixel at its predicted location at time t+n20

in order to interpolate the intensity at each grid point of the original (native) radar grid (Liu et al., 2015; Zahraei et al.,

2012), using the inverse distance weighting interpolation technique. It is important to note that we minimize numerical

diffusion by first advecting each pixel over the target lead time before applying the interpolation procedure (as in the

"interpolate once" approach proposed by Germann and Zawadzki (2002)). That way, we avoid rainfall features to be

smoothed in space by the effects of interpolation.25

2.3 Persistence

The (trivial) benchmark model of Eulerian persistence assumes that for any lead time n, the precipitation field is the same as

for time t. Despite its simplicity, it is quite a powerful predictor
:::::
model

:
for very short lead times, and, at the same time, its

verification performance is a good measure of temporal decorrelation for different events.

2.4 The rainymotion Python library30

We have developed the rainymotion Python library to implement the above models. Since the rainymotion uses standard

format of numpy arrays for data manipulation, there is no restriction in using different data formats which can be read, trans-
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formed, and converted to numpy arrays using any tool from the set of available open software libraries for radar data ma-

nipulation (the list is available on https://openradarscience.org). The source code is available in a Github repository (https:

//github.com/hydrogo/rainymotion), and has a documentation page (https://rainymotion.readthedocs.io) which includes instal-

lation instructions, model description, and usage examples. The library code and accompanying documentation are freely

distributed under the MIT software license which allows unrestricted use. The library is written in the Python 3 programming5

language (https://python.org) and its core is entirely based on open source software libraries (Fig. 4): ωradlib (Heistermann

et al., 2013), OpenCV (Bradski and Kaehler, 2008), SciPy (Jones et al., 2018), NumPy (Oliphant, 2006), Scikit-learn (Pedregosa

et al., 2011), and Scikit-image (Van der Walt et al., 2014). For generating figures we use the Matplotlib library (Hunter, 2007),

and we use the Jupyter notebook (https://jupyter.org) interactive development environment for code and documentation devel-

opment and distribution. For managing the dependencies without any conflicts, we recommend to use the Anaconda Python10

distribution (https://anaconda.com) and follow rainymotion installation instructions (https://rainymotion.readthedocs.io).

2.5 Operational baseline (RADVOR)

The DWD operationally runs a stack of models for radar-based nowcasting and provides precipitation forecasts for a lead time

up to 2 hours. The operational QPN is based on the RADVOR module (Bartels et al., 2005; Rudolf et al., 2012). The tracking

algorithm estimates the motion field from the latest sequential clutter-filtered radar images using a pattern recognition technique15

on different spatial resolutions (Winterrath and Rosenow, 2007; Winterrath et al., 2012). The focus of the tracking algorithm

is on the meso-β scale (spatial extent: 25–250 km) to cover mainly large-scale precipitation patterns, but the meso-γ scale

(spatial extension: 2.5–25 km) is also incorporated to allow the detection of smaller-scale convective structures. The resulting

displacement field is interpolated to a regular grid, and a weighted averaging with previously derived displacement fields is

implemented to guarantee a smooth displacement over time. The extrapolation of the most recent radar image according to the20

obtained velocity field is performed using a semi-Lagrangian approach. The described operational model is updated every 5

minutes and produces precipitation nowcasts at a temporal resolution of 5 minutes and a lead time of 2 hours (RV product). In

this study we used the RV product data as an operational baseline and did not re-implement the underlying algorithm itself.

3
::::::::::
Verification

:::::::::::
experiments

3.1
:::::
Radar

::::
data

::::
and

::::::::::
verification

::::::
events25

:::
We

:::
use

::
the

::::::::
so-called

:::
RY

:::::::
product

::
of

::
the

::::::
DWD

::
as

::::
input

::
to

:::
our

::::::::::
nowcasting

::::::
models.

::::
The

:::
RY

::::::
product

:::::::::
represents

:
a
:::::::::::::::
quality-controlled

::::::
rainfall

:::::
depth

::::::
product

::::
that

::
is

:
a
:::::::::
composite

::
of

:::
the

:::
17

:::::::::
operational

:::::::
Doppler

::::::
radars

:::::::::
maintained

:::
by

:::
the

:::::
DWD.

::
It

:::
has

::
a

:::::
spatial

::::::
extent

::
of

::::::::
900×900

:::
km

::::
and

:::::
covers

::::
the

:::::
whole

::::
area

::
of
:::::::::

Germany.
::::::
Spatial

::::
and

::::::::
temporal

::::::::
resolution

:::
of

:::
the

:::
RY

:::::::
product

::
is

::::
1×1

:::
km

::::
and

:
5
::::::::
minutes,

::::::::::
respectively.

::::
This

:::::::::
composite

:::::::
product

::::::::
includes

::::::
various

::::::::::
procedures

:::
for

::::::::
correction

::::
and

::::::
quality

:::::::
control

::::
(e.g.

::::::
clutter

::::::::
removal).

:::
We

::::
used

:::
the

:::::::
ωradlib

::::::::::::::::::::::
(Heistermann et al., 2013)

:::::::
software

::::::
library

::
for

:::::::
reading

:::
the

:::::
DWD

:::::
radar

::::
data.30
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:::
For

:::
the

::::::::
analysis,

:::
we

::::
have

::::::::
selected

::
11

::::::
events

::::::
during

::::
the

:::::::
summer

:::::::
periods

::
of

:::::
2016

:::
and

::::::
2017.

:::::
These

::::::
events

:::
are

::::::::
selected

::
for

::::::::
covering

::
a

:::::
range

::
of

:::::
event

::::::::::::
characteristics

::::
with

::::::::
different

:::::::
rainfall

:::::::
intensity,

::::::
spatial

:::::::::
coverage,

:::
and

::::::::
duration.

:::::
Table

::
2
::::::
shows

::
the

:::::::
studied

::::::
events.

::::
You

::::
can

::::
also

::::
find

::::
links

::
to
::::::::::

animations
::
of

:::::
event

::::::::
intensity

::::::::
dynamics

:::
in

::::::
Section

:::
S3

:::
of

:::
the

:::::::::::::
Supplementary

::::::::::
Information.

:

3.2 Verification
::::::
metrics5

For the verification we use two general categories of scores: continuous (based on the differences between nowcast and ob-

served rainfall intensities) and categorical (based on standard contingency tables for calculating matches between boolean

values which reflect the exceedance of specific rainfall intensity thresholds). We use the mean absolute error (MAE) as a

continuous score:

MAE =

∑n
i=1 |nowi− obsi|

n
(1)10

where nowi and obsi are nowcast and observed rainfall rate in the i-th pixel of the corresponding radar image, and n the number

of pixels.
::
To

:::::::
compute

:::
the

::::::
MAE,

::
no

:::::
pixels

:::::
were

::::::::
excluded

:::::
based

::
on

:::::::::
thresholds

::
of

:::::::
nowcast

::
or

::::::::
observed

::::::
rainfall

::::
rate.

:

And we use the critical success index (CSI) as a categorical score:

CSI =
hits

hits+ false alarms+misses
(2)

where hits, false alarms, and misses are defined by the contingency table and the corresponding threshold value (for details see15

Section S4 of the Supplementary Information).

Following studies of Bowler et al. (2006) and Foresti et al. (2016) we have applied threshold rain rates of 0.125, 0.25, 0.5, 1

and 5 mm h−1 for calculating the CSI.

These two metrics inform us about the models’ performance from the two perspectives: MAE captures errors in rainfall

rate prediction (the less the better), and CSI captures model accuracy (the fraction of the forecast event that was correctly20

predicted; does not distinguish the source of errors; the higher the better). You can find results represented in terms of addi-

tional categorical scores (false alarm rate, probability of detection, equitable threat score) in Section S4 of the Supplementary

Information.

4 Radar data and verification events

We use the so-called RY product of the DWD as input to our nowcasting models. The RY product represents a quality-controlled25

rainfall depth product that is a composite of the 17 operational Doppler radars maintained by the DWD. It has a spatial extent

of 900×900 km and covers the whole area of Germany. Spatial and temporal resolution of the RY product is 1×1 km and

5 minutes, respectively. This composite product includes various procedures for correction and quality control (e.g. clutter

removal). We used the ωradlib (Heistermann et al., 2013) software library for reading the DWD radar data.

For the analysis, we have selected 11 events during the summer periods of 2016 and 2017. These events are selected30

for covering a range of event characteristics with different rainfall intensity, spatial coverage, and duration. Table 2 shows
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the studied events. You can also find links to animations of event intensity dynamics in Section S3 of the Supplementary

Information.

4 Results

For each event, all models (Sparse, SparseSD, Dense, DenseRotation, Persistence) were used to compute nowcasts with lead

times from 5 to 60 minutes (in 5 minute steps). Operational nowcasts generated by the RADVOR system were provided by the5

DWD with the same temporal settings. An example of nowcasts for lead times 0, 5, 30, and 60 minutes is shown in Fig. 5.

To investigate the effects of numerical diffusion, we calculated, for the same example, the power spectral density (PSD)

of the nowcasts and the corresponding observations (bottom panel in Figure 5) using Welch’s method (Welch, 1967). As had

been shown in (Germann and Zawadzki, 2002),
::::::::::::::::::::::::::
Germann and Zawadzki (2002)

::::::
showed

:::
that

:
the most significant loss of power

spectra (lower PSD values) refers to small-scale precipitation patterns in the range of
::::::
occurs

::
at

:::::
scales

:::::::
between

:
8 to 64 km,10

so we constrained the PSD plots to highlight that range. The power spectra show that, compared to the observations, the loss

of power is small for all lead times, scales, and models (Sparse and Dense ). At least for this example, it appears that both

the warping and the "interpolate only once" approaches are successful in limiting the effects of numerical diffusion and thus

the loss of power at small scales – at least for lead times up to one .
:::::
They

:::
did

:::
not

:::::::
analyze

::::::
scales

:::::
below

::
8

::::
(23)

:::
km

:::::::
because

::::
their

:::::::
original

:::
grid

:::::::::
resolution

::::
was

:
4
::::

km.
:::
We

::::::::
extended

:::
the

:::::::
spectral

:::::::
analysis

:::
to

:::::::
consider

:::::
scales

:::
as

:::::
small

::
as

:::
21

:::
km.

::::::
Other

::::
than15

:::::::::::::::::::::::::
Germann and Zawadzki (2002),

:::
we

:::::
could

:::
not

:::::::
observe

:::
any

::::::::::
substantial

:::
loss

::
of

::::::
power

:::::::
between

::
8

:::
and

::
64

::::
km,

:::
yet

::::::
Figure

:
5
::::::
shows

:::
that

::::
both

::::::
Dense

:::
and

::::::
Sparse

:::::::
models

::::::::::
consistently

::::
start

::
to
::::

lose
::::::

power
::
at

::::::
scales

:::::
below

::
4

:::
km.

:::::
That

::::
loss

::::
does

:::
not

:::::::
depend

:::::
much

::
on

:::
the

:::::::
nowcast

::::
lead

:::::
time,

:::
yet,

:::
the

::::::
Sparse

::::::
group

::
of

::::::
models

:::::
loses

:::::
more

:::::
power

::
at
::
a
::::
lead

::::
time

::
of

::
5

:::::::
minutes

::
as

::::::::
compared

:::
to

:::
the

:::::
Dense

::::::
group.

::::
Still,

:::::
these

:::::
results

:::::
rather

:::::::
confirm

::::::::::::::::::::::::::
Germann and Zawadzki (2002):

::::
they

:::::
show,

::
as

::::::
would

::
be

::::::::
expected,

::::
that

:::
any

::::
loss

::
of

:::::::
spectral

:::::
power

::
is

:::::
most

::::::::::
pronounced

::
at

:::
the

:::::::
smallest

::::::
scales,

:::
and

::::::::::
disappears

::
at

:::::
scales

:::::
about

:::
2-3

::::::
orders

:::::
above

:::
the

::::::
native

::::
grid20

::::::::
resolution.

::::
For

:::
the

::::::::::
investigated

::::::::::
combination

:::
of

::::
data

:::
and

:::::::
models,

:::
that

:::::::
implies

:::
that

::::
our

:::::::
nowcasts

::::
will

:::
not

:::
be

:::
able

:::
to

:::::::::
adequately

:::::::
represent

:::::::
rainfall

::::::
features

:::::::
smaller

::::
than

:
4
:::
km

::
at
::::
lead

:::::
times

::
of

:::
up

::
to

:
1
:
hour.

Figure 6 shows the model performance (in terms of MAE) as a function of lead time. For each event, the Dense group

of models is superior to the other ones. The RV product achieves an efficiency that is comparable to the Dense group. The

SparseSD model outperforms the Sparse model for short lead times (up to 10-15 minutes), and vice versa for longer lead times.25

For some events (1-4, 6, 10, 11), the performance of the RV product appears to be particularly low in the first 10 minutes,

compared to the other models. These events are characterized by particularly fast rainfall field movement.

Figure 7 has the same structure as Fig. 6, but shows the CSI with a threshold value of 1 mm h−1. For two events (7 and 10)

the RV product achieves a comparable efficiency with the Dense group for lead times beyond 30 minutes. For the remaining

events, the Dense group tends to outperform all other methods and the RV product achieves an average rank between models30

of the Sparse and Dense groups. For the Dense group of models, it appears that accounting for field rotation does not affect

the results of the benchmark experiment much – the Dense and DenseRotation models perform very similarly, at least for the

selected events and the analyzed lead times. The behavior of the Sparse group models is mostly consistent with the MAE.
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Figure 8 shows the model performance using the CSI with a threshold value of 5 mm h−1. For the majority of events, the

resulting ranking of models is the same as for the CSI with a threshold of 1 mm h−1. For events #2 and #3, the performance of

the RV product relative to the Dense models is a little bit better, while for other events (e.g. #7), the Dense models outperform

the RV product more clearly than for the CSI of 1 mm h−1.

Table 3 summarizes the results of the Dense group models in comparison to the RV product for different verification metrics5

averaged over all the selected events and two lead time periods: 5–30, and 35–60 minutes. Results show that the Dense group

always slightly outperforms the RV model in terms of CSI metric for both lead time periods and all analyzed rainfall intensity

threshold used for CSI calculation. In terms of MAE, differences between model performances are less pronounced. For the

CSI metric, the absolute differences between all models tend to be consistent with increasing rainfall thresholds.

You can find more figures illustrating the models’ efficiency for different thresholds and lead times in Section S4 of the10

Supplementary Information.

5 Discussion

5.1 Model comparison

All tested models show significant skill over the trivial Eulerian persistence over a lead time of at least one hour. Yet, a

substantial loss of skill over lead time is present for all analyzed events, as expected. We have not disentangled the causes of15

that loss, but predictive uncertainty will always result from errors in both the representation of field motion and the total lack

of representing precipitation formation, dynamics, and dissipation in a framework of Lagrangian persistence. Many studies

specify a lead time of 30 minutes as a predictability limit for convective structures with fast dynamics of rainfall evolution

(Foresti et al., 2016; Grecu and Krajewski, 2000; Thorndahl et al., 2017; Wilson et al., 1998; Zahraei et al., 2012). Our study

confirms these findings.20

For the majority of analyzed events, there is a clear pattern that the Dense group of optical flow models outperforms the oper-

ational RV nowcast product. For the analyzed events and lead times, the differences between the Dense and the DenseRotation

models (or, in other words, between constant-vector and semi-Lagrangian schemes), are negligible. The absolute difference in

performance between the Dense group models and the RV product appears to be independent from rainfall intensity threshold

and lead time (Table 3), which implies that the relative advance of the Dense group models over the RV product increases both25

with lead time and rainfall intensity threshold. A gain in performance for longer lead times by taking into account more time

steps from the past can be observed when comparing the SparseSD model (looks back five minutes in time) against the Sparse

model (looks back two hours in time).

Despite their skill over Eulerian persistence, the Sparse group models are significantly outperformed by the Dense group

models for all the analyzed events and lead times. The reason for this behaviour remains yet unclear. It could, in general, be30

a combination of errors introduced in corner-tracking and extrapolation as well as image warping as a surrogate for formal

advection. While the systematic identification of error sources will be subject to future studies, we suspect that the the local

features ("corners") identified by the Shi–Tomasi corner detector might not be representative for the overall motion of the
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precipitation field: the detection focuses on features with high intensities and gradients, the motion of which might not represent

the dominant meso-γ scale motion patterns.

There are a couple of possible directions for enhancing the performance for longer lead times using the Dense group of

models. A first is to use a weighted average of velocity fields derived from radar images three (or more) steps back in time (as

done in RADVOR to compute the RV product). A second option is to calculate separate velocity fields for low and high intensity5

subregions of the rain field, and advect these subregions separately (like proposed in Golding (1998)), or find an optimal

weighting procedure. A third approach could be to optimize the use of various optical flow constraints in order to improve

the performance for longer lead times, as proposed in Germann and Zawadzki (2002), Bowler et al. (2004), or Mecklenburg

et al. (2000). The flexibility of the rainymotion software library allows users to incorporate such algorithms for benchmarking

any hypothesis, and e.g. implement different models or parameterizations for different lead times. Bowler et al. (2004) also10

showed a significant performance increase for longer lead times by using NWP model winds for the advection step. However,

Winterrath and Rosenow (2007) did not obtain any improvement compared to RADVOR for longer lead times by incorporating

NWP model winds into the nowcasting procedure.

5.2 Advection schemes properties and effectiveness

Within the Dense group of models, we could not find any significant difference between the performance and PSD of the15

constant-vector (Dense model) and the Semi-Lagrangian scheme (DenseRotation). That confirms findings presented by Ger-

mann and Zawadzki (2002) who found that the constant vector and the modified semi-Lagrangian schemes have very sim-

ilar power spectra, presumably since they share the same interpolation procedure. The theoretical superiority of the Semi-

Lagrangian scheme might, however, materialize for other events with substantial, though persistent rotational motion. A more

comprehensive analysis should thus be subject to future studies.20

Interpolation is included in both the post-processing of image warping (Sparse models) and in the computation of gridded

nowcasts as part of the Dense models. In general, such interpolation steps can lead to numerical diffusion and thus to the

degradation or loss of small-scale features (Germann and Zawadzki, 2002). Yet, we were mostly able to contain such adverse

effects for both the Sparse and the Dense group of models by carrying out only one interpolation step for any forecast at a

specific lead time. We showed that numerical diffusion was negligible for lead times up to one hour for any model, however,25

as had been shown in Germann and Zawadzki (2002), for longer lead times these effects can be significant, depending on the

implemented extrapolation technique.

5.3 Computational performance

Computational performance might be an important criterion for end users aiming at frequent update cycles. We ran our now-

casting models on a standard office PC with an Intel® CoreTM i7-2600 CPU (8 cores, 3.4 GHz), and on a standard laptop30

with an Intel® CoreTM i5-7300HQ CPU (4 cores, 2.5 GHz). The average time for generating one nowcast for one hour lead

time (at 5 minute resolution) for the Sparse group is 2-3
::::
1.5–3

:
s, and for the Dense group is 7-12

::::
6–12 s. The Dense group is

11



computationally more expensive due to interpolation operations implemented for large grids (900×900 pixels). There is also

potential for increasing the computational performance of the interpolation.

6 Summary and conclusions

Optical flow is a technique for deriving a velocity field from consecutive images. It is widely used in image analysis, and

became increasingly popular in meteorological applications over the past 20 years. In our study, we examined the performance5

of optical flow based models for radar-based precipitation nowcasting, as implemented in the open-source rainymotion library,

for a wide range of rainfall events using radar data provided by the DWD.

Our benchmark experiments, including an operational baseline model (the RV product provided by the DWD), show a firm

basis for using optical flow in radar-based precipitation nowcasting studies. For the majority of the analyzed events, models

from the Dense group outperform the operational baseline. The Sparse group of models showed significant skill, yet they10

performed generally poorer than both the Dense group and the RV product. We should, however, not prematurely discard

the group of Sparse models before we have not gained a better understanding of error sources with regard to the tracking,

extrapolation and warping steps. It might also be considered to combine the warping procedure for the extrapolation step with

the Dense optical flow procedure for the tracking step (i.e. to advect "corners" based on a "Dense" velocity field obtained by

implementing one of the dense optical flow techniques). This opens the way for merging two different model development15

branches in the future releases of the rainymotion library.

There is a clear and rapid model performance loss over lead time for events with high rainfall intensities. This issue continues

to be unresolved by standard nowcasting approaches, but some improvement in this field may be achieved with using strategies

such as merging with NWP results and stochastic modelling of rainfall field evolution. Admittedly, deterministic nowcasts

in a Lagrangian framework do neither account for precipitation intensity dynamics nor for the uncertainties in representing20

precipitation field motion. At least for the latter, the rainymotion library provides ample opportunities to experiment with

forecast ensembles, based on various tracking and extrapolation techniques. Furthermore, we suppose that using new data-

driven models based on machine and deep learning may increase the performance by utilizing and structuring common patterns

in the massive archives of radar data.

We do not claim that the developed models will compete with well-established and excessively tuned operational models25

for radar-based precipitation nowcasting. Yet, we hope our models may serve as an essential tool for providing a fast, free and

open source solution that can serve as a benchmark for further model development and hypothesis testing – a benchmark that

is far more advanced than the conventional benchmark of Eulerian persistence.

Recent studies show that open source community-driven software advances the field of weather radar science (Heistermann

et al., 2015a, b). Just a few months ago, the pySTEPS (https://pysteps.github.io) initiative was introduced "to develop and30

maintain an easy to use, modular, free and open source python framework for short-term ensemble prediction systems." As

another evidence of the dynamic evolution of QPN research over the recent years, these developments could pave the way for

12
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future synergies between the pySTEPS and rainymotion projects – towards the availability of open, reproducible, and skillful

methods in quantitative precipitation nowcasting.

Code and data availability. The rainymotion library is free and open source. It is distributed under the MIT software license which allows

unrestricted use. The source code is provided through a GitHub repository https://github.com/hydrogo/rainymotion, the snapshot of the

rainymotion v0.1 is also available on Zenodo: https://doi.org/10.5281/zenodo.2561583, and the documentation is available on a website https:5

//rainymotion.readthedocs.io. The DWD provided the sample data of the RY product, and it is distributed with the rainymotion repository to

provide a real case and reproducible example of precipitation nowcasting.
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Figure 1. Scheme of the SparseSD model
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LukasKanade (sparse) optical flow 
cv2.calcOpticalFlowPyrLK()

Optical flow methods 
cv2.optflow.createOptFlow_DIS()

cv2.optflow.createOptFlow_DeepFlow()
cv2.optflow.createOptFlow_PCAFlow()
cv2.optflow.createOptFlow_Farneback() 

cv2.optflow.createVariationalFlowRefinement() 
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Affine transformation 
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Linear regression 
sklearn.linear_model.LinearRegression()

Polynomial features creation 
sklearn.preprocessing.PolynomialFeatures()
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Basic matrix manipulation 
numpy.concatenate(), numpy.min() etc.
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Inverse distance weighting interpolation 
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Figure 4. Key Python libraries for rainymotion library development
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Figure 5. Example of the nowcasting models output (SparseSD and Dense models) for the timestep "2016-05-29 19:15" and corresponding

level of numerical diffusion (the last row)
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Figure 6. Verification of the different optical flow based nowcasts in terms of MAE for 11 precipitation events over Germany
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Figure 7. Verification of the different optical flow based nowcasts in terms of CSI for the threshold of 1 mm h−1 for 11 precipitation events

over Germany
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Figure 8. Verification of the different optical flow based nowcasts in terms of CSI for the threshold of 5 mm h−1 for 11 precipitation events

over Germany
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Table 1. Overview of the developed
:::::::::
nowcasting models

::
and

::::
their

:::::::::::
computational

::::::::::
performance.

:::::::::
Nowcasting

:::::::::
experiments

::::
were

:::::
carried

:::
out

:::
for

:::
one

:::
hour

::::
lead

::::
time

::
in

:
5
:::
min

:::::::
temporal

::::::::
resolution

:::
(12

:::::::
resulting

::::::
nowcast

:::::
frames

::
in
:::::

total)
::::
using

:::
the

:::
RY

::::
radar

:::
data

::::::
(spatial

::::::::
resolution

::
of

:
1
::::

km,

:::
grid

:::
size

::::::::
900×900)

:::
and

:
a
:::::::
standard

::::
office

:::
PC

::::
with

::
an

:::::
Intel®

::::::
CoreTM

::::::
i7-2600

::::
CPU

::
(8

::::
cores,

:::
3.4

:::::
GHz)

Model name Input radar

images

Default tracking algorithm Extrapolation Computational

time

:::::::
(tracking/

::::::::::
extrapolation/

::::
total), s

SparseSD 2 Shi–Tomasi corner detector,

Lucas–Kanade optical flow

Constant delta-change,

affine warping ∼2-3
::
0.2

:
/
:::
1.1

:
/
::
1.3

:

Sparse 3-24 Shi–Tomasi corner detector,

Lucas–Kanade optical flow

Linear regression, affine

warping ∼2-3
::
0.1

:
/
:::
1.1

:
/
::
1.2

:

Dense 2 DIS optical flow Backward constant-vector

advection scheme ∼7-9
::
0.2

:
/
:::
5.5

:
/
::
5.7

:

DenseRotation 2 DIS optical flow Backward semi-Lagrangian

advection scheme ∼10-12
:::
3.2

:
/

::
5.7

:
/
:::
8.9
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Table 2. Characteristics of the selected events

Event # Start End Duration, hours Maximum extent, km2 Extent >1 mm h−1, %

Event 1 2016-05-23 2:00 2016-05-23 8:00 6 159318 42

Event 2 2016-05-23 13:00 2016-05-24 2:30 13.5 135272 56

Event 3 2016-05-29 12:05 2016-05-29 23:55 12 160095 72

Event 4 2016-06-12 7:00 2016-06-12 19:00 12 150416 53

Event 5 2016-07-13 17:30 2016-07-14 1:00 7.5 145501 62

Event 6 2016-08-04 18:00 2016-08-05 7:00 13 168407 74

Event 7 2017-06-29 3:00 2017-06-29 5:05 2 140021 70

Event 8 2017-06-29 17:00 2017-06-29 21:00 4 182561 60

Event 9 2017-06-29 22:00 2017-06-30 21:00 23 160822 75

Event 10 2017-07-21 19:00 2017-07-21 23:00 4 63698 77

Event 11 2017-07-24 8:00 2017-07-25 23:55 16 253666 63
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Table 3. Mean model metrics for different lead time periods

Lead time (from–to), min

Model 5–30 35–60

MAE, mm h−1

Dense 0.30 0.45

DenseRotation 0.30 0.45

RV 0.31 0.45

CSI, threshold=0.125 mm h−1

Dense 0.78 0.64

DenseRotation 0.78 0.64

RV 0.76 0.61

CSI, threshold=0.25 mm h−1

Dense 0.76 0.61

DenseRotation 0.76 0.61

RV 0.74 0.59

CSI, threshold=0.5 mm h−1

Dense 0.73 0.57

DenseRotation 0.73 0.57

RV 0.70 0.55

CSI, threshold=1 mm h−1

Dense 0.68 0.52

DenseRotation 0.68 0.51

RV 0.65 0.49

CSI, threshold=5 mm h−1

Dense 0.42 0.24

DenseRotation 0.42 0.23

RV 0.39 0.22
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