
Response to Executive Editor 
 
Dear Astrid, 
 
Thank you for your rightful remark. We have overlooked this point. The work was done with 

the ORCHIDEE model version 1.9.5.2. We now add the reference to the model itself and to the 
version used in the title of the paper. We also put the model version number in the main text. 

 
Best regards, 
Vladislav Bastrikov 
 
 

Response to Anonymous Referee #1 
 
Dear Referee, 
 
Thank you for your review and for your interest in this study. Below we provide the answers 

to your general and specific comments in sequential order. 
 
Referee: There are a couple of key results that could use more discussion (either in the 

appropriate place in Section 3 or at the end in Section 4). For example, why do certain 
parameters have different responses to different optimization methods? What are the 
limitations of multiple-site optimizations? Adding some discussion could really solidify the take 
home points of this paper and provide relevance to other land surface models and parameter 
optimization studies. 

Answer: The major factors influencing the parameter estimates are related to the technical 
implementation of the optimization methods – whereas the gradient-based method mostly looks 
for the optimal parameter set in the vicinity of the prior parameter values, the random search 
algorithm may jump to a completely different parameter state in one step. This is the main reason 
why we obtain significant differences in the estimated parameters between L-BFGS-B (BFGS) and 
Genetic Algorithm (GA), no matter which case, single-site (SS) or multi-site (MS) is selected. The 
differences are pronounced for specific parameters such as C_T_opt, LAI_max, SLA, L_age_crit, 
K_lai_happy, K_GR and K_rsoil mainly. In the particular case of using pseudo-data, the GA 
manages to find the true values for these parameters much more precisely than the BFGS 
algorithm. In most cases, with real data we also see differences between BFGS and GA for these 
parameters, and we can thus speculate that the GA would provide more optimal posterior 
estimates in this case as well. 

On the other side, if we compare SS vs MS, we do not observe specific patterns in the 
posterior parameter values, but the range of parameter values obtained with multiple first 
guesses are significantly lower for MS than for SS. This comes from the fact that for SS cases each 
site is optimized separately, so we can end up with a parameter value that is highly specific of each 
site, whereas for MS cases we optimize all the sites together, so the final estimate has less 
variability for the multi-site optimization. This is illustrated more specifically by the parameters 
Kw_root, Ct_sen, Q10, HRha, HRhb and Kz0.  

Concerning the limitations of the multiple-site optimization, we would like to raise the 
following points. First as discussed in the paper the benefit of assimilating multiple sites of a given 
PFT follows from the need to neglect site peculiarities and to find an optimal set of parameters 
describing the PFT in general. However, the optimization usually does not work efficiently (i.e. 
does not lead to a large decrease of the cost function) if the different sites have very different 



behaviors in terms of carbon/water cycle responses to climate forcing. This informs us on the need 
to reconsider the PFT geographical description (with possible further regional split). This is slightly 
the case for TropEBF and C3 grass. Additionally, the use of multiple-site optimization requires 
more computing time and is slightly more complicated to set up with the need to have coherent 
observation errors between the sites, i.e. with no site that dominates the cost function because of 
a too low error (measurement and model errors grouped in the R term) and thus prevents the 
optimization to fit all sites together. 

 
Overall, we agree that these two points were not detailed enough in the manuscript and we 

have thus included the points discussed above in the main text of the paper (in section 3.2.2 – 
second and fourth paragraphs for the parameters discussion and at the end of the section 3.1.2 for 
the limitations of the multi-site optimizations). 

 
Referee: Though the focus is parametric uncertainty, I think the paper would also benefit 

from a brief discussion of model structural uncertainty, with relevant details specific to 
ORCHIDEE. This addition would provide useful context for discussing the results (e.g., Page 10, 
Line 25). 

Answer: We agree that model structural uncertainties are also a critical part of any data 
assimilation experiment, but they are rather difficult to assess properly. However, from the 
existing knowledge on the different processes that control the land surface carbon, water and 
energy budgets we can list potential missing processes in ORCHIDEE that may have a direct impact 
on the parameter retrieval. For instance, the version used in this study still lacks a description of 
the nitrogen cycle and its potential limitation on photosynthesis (in the context of increasing 
atmospheric CO2), which may bias the retrieval of Vc_max parameter. We also do not describe 
properly forest stand and canopy structure (forest gap, age dependent effects, etc.), which is a 
limitation on the computation of the absorbed light for photosynthesis and of the turbulent fluxes 
exchanged with the atmosphere. The main risk is indeed to over-tune some parameters for wrong 
reasons (i.e., because of missing or incorrect process description) – that some of the structural 
error will be aliased onto the model parameters. However, this is not the focus of this study so we 
do not go into too much detail here. It is described in depth in MacBean et al. (2016). 

Overall we do agree a brief discussion of this issue would be useful in the text, so we have 
slightly extended the model description (section 2.1), to mention the importance of model 
structural uncertainties and listed potential effects of missing processes on the parameter 
retrieval. 

 
Referee: I think it would be useful to include some background on choice of model 

parameters and how their sensitivity was assessed, as this is a key step to narrowing the 
parameter space. 

Answer: The choice of the model parameters was done based on sensitivity tests of the data 
used in the optimization (net CO2 ecosystem exchange (NEE) and latent heat (LE) fluxes) with 
respect to carbon and water cycle related ORCHIDEE parameters. This was done in previous works, 
as already cited in the paper and based on the so-called Morris method (Morris, 1991). As nothing 
new was introduced in this study, we had limited the background description of this choice in 
section 2.2. However, we agree that more information on the subject is useful, so the following 
sentences are added in section 2.2 together with the new reference: 

”Among all ORCHIDEE parameters we selected the ones that primarily drive net CO2 
ecosystem exchange (NEE) and latent heat fluxes (LE) variations on synoptic to seasonal time-
scales, excluding those impacting preferentially decadal time scales (i.e., like tree mortality). A 
preliminary parameter sensitivity analysis was conducted, as in Kuppel et al. (2012), based on the 



“one-at-a-time” Morris method (Morris, 1991), and we restricted the selection to the 28 most 
influencing parameters controlling photosynthesis, respiration fluxes, leaf phenology and 
evapotranspiration.” 

 
Referee: Minor note, but it would be preferable to have the line numbers continuously 

increasing throughout the document so identifying page numbers in the specific comments is 
not necessary. 

Answer: We agree that using a continuous line numbering would facilitate the referencing, 
we will follow this advice in the next revision. 

 
Referee: Page 3, Line 2: “probability distribution function” 
Answer: The typo is corrected. 
 
Referee: Page 3, Line 6: What are the limitations of the Gaussian assumption? Could some 

parameters have different PDFs? 
Answer: The currently implemented data assimilation technique relies on the assumption 

that the errors on both the parameters and the observations have Gaussian PDF. In this case, the 
resolution of the inverse problem, following a Bayesian framework, is equivalent to the 
minimization of a quadratic cost function. This Gaussian hypothesis significantly simplifies the 
interpretation of the minimum of the quadratic cost-function (i.e. being the mean of the posterior 
parameter PDF). If some parameters would have other PDF, the L-BFGS-B minimization procedure 
would not provide a meaningful value to describe the posterior PDF. However, for the GA this 
restriction does not hold, as we could use the ensemble of model trajectories to describe the 
posterior PDF. Additionally, the Gaussian hypothesis is also central to calculate a posterior 
parameter uncertainty that fully describes (together with the mean value) the shape of the PDF, 
and this hypothesis also allows to compute the posterior uncertainty with a simple matrix 
formulation (see for instance Tarantola, 2005). Such hypothesis is used in many inversion 
problems. 

However, we agree that non-Gaussianity may be the case for some parameters and that it 
could thus partially bias the overall parameter optimization with Gaussian assumption. It is 
nevertheless out of the scope of this paper to investigate non Gaussian errors. We have examined 
the issues that may arise when assuming Gaussian PDFs in MacBean et al. (2016). Moreover, in the 
case of ORCHIDEE we have shown in an earlier study (Santaren et al., 2007) that most parameter 
errors follow Gaussian distributions. We have inserted these points at the end of section 2.4.1: 

“Note that using non-Gaussian errors would significantly complicate the application of one 
class (gradient-based) and is thus out of the scope of this study. MacBean et al. (2016) examined 
the issues that may arise when using Gaussian assumptions in gradient-based minimisation 
algorithms; however, they found that the algorithm used in this study could account for quasi non-
linearity. Moreover, in the case of ORCHIDEE we have shown in an earlier study (Santaren et al., 
2007) that most parameter errors follow Gaussian distributions.” 

 
Referee: Page 3, Line 19: What defines “excessive” here? Can you give examples of the 

number of parameters explored in these studies, and how they compare to the dimensionality 
of your problem? 

Answer: In the cited study (Chorin and Morzfeld, 2013), it was shown that the effective 
problem dimension (defined as the Frobenius norm of the steady state posterior covariance) can 
remain moderate for realistic models even when the state dimension (i.e. the number of 
parameter in our case) is large (asymptotically infinite). The precise value of the excessive effective 
dimension varies from one problem to the other and depends on the level of accuracy required. 



However, obviously the effective dimension has to remain bounded. In our study the 
dimensionality of the problem is limited to the few tens of parameters and it can be considered to 
be small as compared to the cited study (going up to a thousand), which supports the main idea 
that the numerical data assimilation can be successful. 

We slightly modified the text to include the definition of the problem dimension as it is 
meant in the cited study and changed the phrasing “not excessive” to “finite” for a clearer 
readability: 

“With idealised models, Chorin and Morzfeld (2013) have shown that the assimilation can be 
optimal with particle filters or variational methods, under the condition that the effective 
dimension of the problem (defined as the Frobenius norm of the steady state posterior 
covariance) is finite”. 

 
Referee: Page 3, Line 33: L-BFGS_B should be L-BFGS-B? 
Answer: The typo is corrected. 
 
Referee: Page 4, Line 9: Word choice “exploited” could be changed to “utilized”. 
Answer: The word “exploited” is changed to the word “used”. 
 
Referee: Page 4, Line 13: Change to “a few”. 
Answer: The missing word is added. 
 
Referee: Page 4, Line 16: ORCHIDEE should be defined at first mention (Page 3, Line 23 and 

in abstract). 
Answer: The ORCHIDEE transcription as it exists (ORganizing Carbon and Hydrology In 

Dynamic Ecosystems) is more a play of words, than the real meaningful definition. So, we decide 
to mention it only in the devoted section (section 2.1) and not in the abstract and earlier 
mentioning of the model in order not to be misleading. 

 
Referee: Page 4, Line 19: Why “possibly”? Has the use of ORCHIDEE on thousand-year 

timescales not been proven? 
Answer: Indeed, the use of ORCHIDEE model is proven on the long timescales basis. The 

word “possibly” was only used to show that it is “possible” to run the model on such timescale. 
The word is now removed for a smoother readability. 

 
Referee: Page 5, Line 5ff: A few lines about the choice of parameter ranges and sensitivity 

assessment would be useful here (even if in the supplemental to go along with Table S1). 
Answer: The ranges of variation for the parameter values have been assigned based on 

literature analysis and parameter database such as the TRY database (http://www.try-db.org) as 
well as following expert knowledge of the model equations. We added this point in the revised 
manuscript. 

For the sensitivity assessment, we agree that additional information is useful as already 
discussed/provided in the answer to the third reviewer comment. 

 
Referee: Page 5, Line 13: Repetitive here to again mention land use change in parentheses. 
Answer: The typo is corrected, the first occurrence is deleted and the one at the end of the 

sentence is kept. 
 



Referee: Page 5, Line 20: How useful is 1 year of station data? Only one observed seasonal 
cycle, especially relevant as optimization is on seasonal/annual time scales. Relevant also at 
Page 10, Line 23. 

Answer: Even only one year of data already provides valuable information on the ‘main’ 
seasonal cycle and important information on the ecosystem response to synoptic weather events. 
In general, we thus tried to keep as much data as possible, even if we had only one year of data for 
a specific site. However, in the case of the multiple sites optimizations (MS), this may lead to some 
representativeness issues, with long-record sites dominating the cost function and the overall 
optimization. We have faced this problem and for some sites with a small amount of data the 
optimization could led to a degradation of the model – data fit in few MS cases. Although using 
sites of similar record length would be optimal, we believe that keeping short record sites is still 
crucial to account for the diversity of ecosystem within a given PFT. 

We did not revise the text as this point is already mentioned in page 10 (section on multi-site 
optimization). 

 
Referee: Page 5, Line 27: Please add a sentence explaining why you would expect the 

Bowen ratio to be constant. 
Answer: The correction of the energy balance closure is a difficult task and experts in eddy-

covariance flux measurement have not put into evidence that one of the turbulent heat fluxes 
(latent or sensible) is on average more impacted than the other one. Using a constant Bowen ratio 
is thus a conservative and natural choice that is applied in most studies (Lasslop et al. 2008, Twine 
et al. 2000). We slightly modified the text to include this point: 

“Where possible, the LE fluxes have been corrected to close the energy balance, using 
measurements of the ground heat flux (G) and keeping a constant Bowen ratio to update the 
latent and sensible heat fluxes (i.e., conservative choice without strong evidences that one 
turbulent flux may be more impacted than the other one; Twine et al., 2000).” 

 
Referee: Page 6, Line 19: Should be Tables S3-S4. 
Answer: Corrected. 
 
Referee: Page 6, Line 23: L-BFGS-B acronym should be defined at first mention, in 

introduction Page 3, Line 30 (and abstract). 
Answer: Corrected in the text and added in the abstract. 
 
Referee: Page 7, Line 1: Change “to threshold” to “with threshold”. 
Answer: Corrected. 
 
Referee: Page 9, Line 13: Would be nice to include the equivalent of Figure 1 for LE flux. 

Figure S1 has it broken out by PFT but not a summary figure. 
Answer: We chose initially not to include the equivalent of Figure 1 for the LE flux as we 

mainly focus on the carbon fluxes in this paper. However, we now follow the reviewer’s suggestion 
and we have added it into the Appendix as the ending part of the multi-panel in Figure S1. 

 
Referee: Page 10, Line 25: This is a key point – how do model structural uncertainties get in 

the way of multiple site optimizations? What are the limits to finding an optimal parameter set 
across multiple sites? (Also "degrade" should be "degrades"?) 

Answer: As already discussed above in the response to the general comments, we agree that 
model structural uncertainties are crucial in the optimization process but difficult to assess. 
Multiple sites optimizations are likely to reveal more directly the impact of structural uncertainties 



as the optimization will not be able to fit simultaneously all data streams, while in a single site 
optimization some parameter changes may more easily compensate for model structural errors. 
However, given that the primary objective of the optimization of ORCHIDEE is to improve the 
model for large-scale applications (regional to global), the use of a multiple sites optimization is 
the only way to account for the ‘within PFT’ diversity. The limits arise when the objective is to 
study the response of a specific ecosystem (and not a generic PFT) to external drivers as the 
multiple site parameter set might be sub-optimal for the particular ecosystem. We have thus 
included few sentences in the text to highlight these issues (see end of first paragraph in section 
3.1.2). 

The mentioned typo is corrected. 
 
Referee: Section 3.1.3: This section could be moved earlier in the paper as it is referenced 

in earlier parts of the results. Overall the flow of the results section could be improved. 
Answer: We agree that this section could potentially be moved upfront. However, it would 

then somehow hide the first order message of the paper linked to the comparative performances 
of the two algorithms, gradient-based versus Genetic. We thus propose to keep the section where 
it is but to improve the overall flow of the results section. We have i) dropped the introduction in 
section 3.1.3 as it was redundant with the justification for multiple first-guess tests in the method 
section, ii) improved slightly the method, section 2.5, to better justify the use of several first-guess 
tests and iii) added a sentence at the beginning of the results section (first paragraph in 3.1) to 
explain the flow of results and the different sub-sections. 

 
Referee: Page 11, Line 32: First use of “SG” – replace with S_Genetic? That is the 

abbreviation used in other parts of the text. 
Answer: The typo is corrected. 
 
Referee: Page 12, Line 27: Why does the pseudo-observation experiment perform poorly 

for Z_crit,litter? Why does it perform better for other parameters? 
Answer: The poor performance for Z_crit,litter is likely to be related to the relatively low 

sensitivity of the model outputs (NEE and LE) with respect to that parameter. This is by 
comparison to the other parameters. We have mentioned this reason in the text. 

 
Referee: Page 13, Line 8ff: What drives different parameters to respond better or worse to 

different optimization methods? 
Answer: Overall the main reasons that drive the differences in the parameter response to 

the different optimization methods are linked to the sensitivity of the chosen model output to 
each parameter, the prior parameter errors and error correlations and the overall shape of the 
cost function with respect to parameter sensitivity at any point in parameter space. The two 
algorithms explore parameter space in very different ways, therefore they deal with complicating 
issues (i.e. the existence of local minima) in different ways. We do have model equifinality in our 
results as the result of parameter error correlations and a lack of prior constraint (high prior 
uncertainty). As a result, we will not necessarily obtain the same posterior parameter vector but 
will achieve the same reduction in model-data misfit. The GA in particular is a random walk, 
therefore it is possible that it converges on a different parameter vector than the BFGS but with 
the same reduction in model-data misfit. 

However it is difficult to investigate more deeply why one particular parameter is more 
sensitive to the Genetic or the Gradient-based algorithms in the context and scope of this paper. 
We thus believe that a general explanation of the reasons underlying these differences is the 



appropriate level of detail. We have thus only slightly changed the text in section 3.2.1 to better 
highlight the reasons of these differences. 

 
Referee: Page 13, Line 12: The error in Z_crit,litter was mentioned on the previous page as 

29%, please clarify. 
Answer: It was rounded in the second case. Indeed, it makes no sense to put the numbers 

again here, where we compare the differences between the methods. The sentence has been 
changed to: “A few parameters are not well estimated by both methods, like F_stressh, HR_Hb 
and Z_crit_litter, having the largest difference with respect to the true value.” 

 
Referee: Page 13, Lines 27, 33: Same question as previous section; what drives different 

responses in different parameters? 
Answer: The response is similar to that for the case of the pseudo-data experiment (previous 

section). We have thus referred in this section to the previous one for the explanation of the 
causes of the different responses between the different parameters. 

 
Referee: Page 14, Line 20ff: Some grammar issues in the bullet points, and throughout this 

section (e.g., Page 15, Lines 5, 16 and 23). 
Answer: The bullet point text together with the Summary section has been proofread. 
 
Referee: Page 15, Line 18: I think you should mention this point in Section 2.4.3. 
Answer: Indeed, this could be considered as an additional feature of the minimization 

algorithm. The following sentence is added in the end of Section 2.4.3:  
“Contrary to gradient-based methods, random search algorithms allow to use any form of 

probability distribution functions for the observation and parameter uncertainties, and thus to use 
non-Gaussian PDFs.” 

 
Referee: Figure 1: In legend, use dots instead of lines to help guide the reader. 
Answer: Lines are changed to dots on the figure. 
 
Referee: Figure 3: Add error bars here, the uncertainty on the RMSD reduction is 

referenced in the text (e.g., Page 11, Line 28). 
Answer: It’s not the uncertainty on the RMSD reduction that is referenced in the text (Page 

11, Line 28), but the full range of variation for the single-site Genetic optimization which goes from 
50.5% with only one first guess to 55% with 16 first guesses (see Fig. 3, red line). As the notation 
52±2% happened to be misleading, we change the text and now refer to the range of variation, 
50.5–55.0%. Besides, there is no obvious uncertainty that we can add on Figure 3, because the 
RMSD reduction that we plot corresponds to the average of the “maximum RMSD reductions” 
obtained across all possible groups of N first guesses (X axis). Such measure is thus not directly a 
stochastic variable. Although we could add for each number of first guesses (X axis) the standard 
deviation across all “maximum RMSD reductions”, it does not change much with the number of 
first-guesses, so we choose not to add this information as it would complicate the description of 
the figure and will not add much to the overall message. 

 
Referee: Table S1: Missing units for parameters, as applicable. 
Answer: The missing units for parameters are added. 
 
Referee: Tables S3, S4: PFTs are numbered but not specified by name. 
Answer: PFT names are added in the tables. 



 
Referee: Figure S1: Have the legend in one panel and get rid of them elsewhere, they are 

just distracting/overlapping data points. 
Answer: The legend is now kept only on the first panel and dropped for the others. 
 
Referee: Figures S2, S3: Where in the main text are these figures referenced? 
Answer: These figures were indeed added to support the interpretation of the results but 

not properly referenced in the text. The references have been added. 
 
Referee: Figure S3: Add error bars, same comment as Figure 3. 
Answer: We choose not to add any error bars following the response above for Figure 3. 
 
Referee : Figure S4: If some parameters do not apply to certain PFTs (e.g., K_pheno,crit), 

why are they optimized for that PFT? Is this an error in Table 1 and/or Table S1? 
Answer: This is a mistake in Table S1 and Figures S4. Indeed, there are two specific 

parameters that apply only to selected PFTs (K_pheno,crit applies to deciduous PFTs only and thus 
TempDBF, BorDBF, C3 grass; C_t,sen applies to TempDBF and BorDBF). The corresponding 
table/figures are corrected. 

 
Best regards, 
Vladislav Bastrikov 
 
References 
 
Chorin, A. J., and Morzfeld, M.: Conditions for successful data assimilation, J. Geophys. Res. 

Atmos., 118, 11522-11533, doi:10.1002/2013JD019838, 2013. 
Lasslop, G., Reichstein, M., Kattge, J., and Papale, D.: Influences of observation errors in eddy 

flux data on inverse model parameter estimation, Biogeosciences, 5, 1311-1324, doi:10.5194/bg-
5-1311-2008, 2008. 

MacBean, N., Peylin, P., Chevallier, F., Scholze M. and Schürmann, G.: Consistent assimilation 
of multiple data streams in a carbon cycle data assimilation system, Geosci. Model Dev., 9, 3569-
3588, doi: 10.5194/gmd-9-3569-2016, 2016. 

Morris, M.D.: Factorial sampling plans for preliminary computational experiments. 
Technometrics, 33(2), 161-174, 1991. 

Santaren, D., Peylin, P., Viovy, N., and Ciais, P.: Optimizing a process-based ecosystem model 
with eddy-covariance flux measurements: A pine forest in southern France, Global Biogeochem. 
Cycles, 21, GB2013, 2007. 

Tarantola, A.: Inverse problem theory and methods for model parameter estimation, Siam, 
2005. 

  



Response to Anonymous Referee #2 
 
Dear Referee, 
 
We would like to thank you for the review and for your interest in this work. Below we 

provide the answers to your general and specific comments. 
 
Referee: Nevertheless, the introduction could also elaborate on further parameter 

estimation techniques which also could show a better performance than the ones addressed 
here, in particular concerning uncertainty characterization (ensemble methods) and handling 
non-Gaussianity (e.g., particle filter methods or Markov Chain Monte Carlo methods for 
example the work by Post et al., 2017, JGR-Biogeosciences). 

Answer: Indeed it is possible that other methods may provide a better performance than the 
ones addressed here. However, these studies have not been performed, so we do not know which 
method performs the best. It would certainly be a good extension to this study to test other 
methods, and it would be good for the DA community at large to perform these kinds of method 
sensitivity tests across a range of model complexities. We have discussed the differences in 
methods extensively – including MCMC and particle filter methods – in the text (original 
submission P3 lines 7-125). However, we have added a reference to Post et al. (2017) earlier in the 
text when we talk about assumptions of Gaussian PDFs (P3 Line 4) and references to Post et al., 
(2017), Richardson et al. (2010), Pinnington et al. (2016) in this paragraph to highlight, as 
suggested by the reviewer, that there are other methods out there to consider. We further add 
these sentences before listing the key questions we are investigating: 

“Note that this study does not aim to provide an exhaustive examination of all methods 
belonging to both classes of inversion algorithms (as previously described), nor do we presume to 
have chosen the best method belonging to each class. We simply choose to test two methods 
belonging to each class that have already been used to estimate parameters of the ORCHIDEE 
model. A further examination of the benefits of all methods would be beneficial to the LSM and 
DA community, but is outside the scope of this study.” 

 
Referee: P2, L12, L13, L15: These error sources (vegetation and soil spatial information 

versus parameter values in model) are partially the same thing? Please clarify. 
Answer: We believe that these error sources relate to different aspects of the model. The 

vegetation and soil spatial information represents the so-called forcing data sets (like the 
meteorology); they correspond to global maps derived partly from satellite earth observation 
missions and contain the necessary information to cluster the different types of soils and 
vegetation all over the globe. The parameter values correspond to specific and chosen 
formulations of the different processes controlling the carbon, water and energy budgets in the 
model. They are thus internal to the model while the forcing data are external and may easily vary 
depending on the region where the model is applied. It is thus helpful to distinguish these 
different error sources and to classify them into separate groups. 

We have thus only slightly changed the text to be more precise. 
 
Referee: P5, L7: Could you provide more details? How is the sensitivity study conducted? 

Reference? 
Answer: The choice of the model parameters was done based on sensitivity tests of the data 

used in optimization (net CO2 ecosystem exchange (NEE) and latent heat (LE) fluxes) with respect 
to all related ORCHIDEE parameters. This was done in previous works, as already cited in the paper 
and based on the so-called Morris method (Morris, 1991), which ranks the variability of 



“elementary effects” of the sampled parameters with respect to their impact on the model 
outputs. This information together with the new reference has been added to the reviewed text. 

 
Referee: P5, L22: Can you provide more details? How many sites were disregarded? 
Answer: Based on an original list of 252 sites from the La Thuile dataset (Baldocchi, 2001), 

we conducted a screening as described in the paper resulting in the selection of the 78 sites used 
in this study. Thus, we have disregarded around 70% of the sites. The total number of the sites in 
the original database has been added to the reviewed text. Additional reference to the article 
devoted to the PFT refinement subject is also added: “Note that Peaucelle et al. (in review) 
explored with the same model how to account for plant functional trait variability, refining the PFT 
distribution”. 

 
Referee: P6, L31: How automatic was the automatic differentiation? Can you provide more 

details on the additional coding and time which was required? 
Answer: The differentiation has been generated by the TAF automatic differentiation tool 

from the FastOpt company (see http://www.fastopt.com/). However, the success of automatic 
differentiation largely depends on the cleanliness of the model code and to a certain extent on the 
structure of the code. Our group had spent a large effort on cleaning and making the initial 
ORCHIDEE model code, suitable for the TAF software. Note that a specific document with 
recommended coding guidelines has been built as the result of this work. Additionally, some 
input/output peace of code was also inserted to handle the tangent linear variables that are 
differentiated through TAF. Overall, this work required a strong investment of one software 
engineer and it took us around two years to have a working tangent linear model. 

We thus added in the text one sentence to resume the committed effort: “For ORCHIDEE the 
corresponding TL model has been derived with the automatic differentiation tool TAF 
(Transformation of Algorithms in Fortran; see Giering et al., 2005), following code cleaning and 
structural adjustments (without changing the physics) to allow the use of TAF (a significant effort 
that took around two years)” 

 
Referee: P8, Eq. 2: How critical is the Gaussian assumption? Non-Gaussianity of 

parameters can be expected. 
Answer: The currently implemented data assimilation technique relies on the assumption 

that the errors on both the parameters and the observations have Gaussian PDF. In this case, the 
resolution of the inverse problem, following a Bayesian framework, is equivalent to the 
minimization of a quadratic cost function. This Gaussian hypothesis significantly simplifies the 
interpretation of the minimum of the quadratic cost-function (i.e. being the mean of the posterior 
parameter PDF). If some parameters would have other PDF, the L-BFGS-B minimization procedure 
would not provide a meaningful value to describe the posterior PDF. However, for the GA this 
restriction does not hold, as we could use the ensemble of model trajectories to describe the 
posterior PDF. Additionally, the Gaussian hypothesis is also central to calculate a posterior 
parameter uncertainty that fully describes (together with the mean value) the shape of the PDF, 
and this hypothesis also allows to compute the posterior uncertainty with a simple matrix 
formulation (see for instance Tarantola, 2005). Such hypothesis is used in many inversion 
problems. 

However, we agree that non-Gaussianity may be the case for some parameters and that it 
could thus partially bias the overall parameter optimization with Gaussian assumption. It is 
nevertheless out of the scope of this paper to investigate non Gaussian errors. Moreover, in the 
case of ORCHIDEE we have shown in an earlier study (Santaren et al., 2007) that most parameter 
errors follow Gaussian distributions. We have inserted these points at the end of section 2.4.1: 

http://www.fastopt.com/


“Note that using non-Gaussian errors would significantly complicate the application of one 
class (gradient-based) and is thus out of the scope of this study and that Santaren et al. (2007) 
have shown with a previous version of ORCHIDEE that most parameter errors follow Gaussian 
distributions.” 

 
Referee : P14, L30: How do you know whether this number (5) is not case dependent? In 

case of multiple sites, many tests could be carried out, as the parameters need to be determined 
just once (per PFT of course). Why would one need to impose restrictions, and would it not be 
better to use a larger number of initial guesses for cases with parameter estimation for multiple 
sites? 

Answer: We agree with the reviewer that the larger the number of first-guess tests is, the 
more robust the results will be. However, this has to put in regards to the computing time that is 
increasing proportionally to the number of first-guesses. Note that the computing time does not 
vary substantially between the single and the multi-site cases as even for the multi-site case the 
model has to be run at all sites for each iteration. This chosen number (5) comes from a first order 
analysis of the results presented in Figure 3 with our particular model and set of observations. It 
should be seen as a first order and prior suggestion. For any other model and parameter inversion 
exercise it could of course be different. Note that this summary point is primarily to stress the fact 
that using only one first-guess inversion is very risky with a gradient-based method. 

Overall, we agree that this statement needs to be put into a more general context and 
perspective. We have thus changed the text to include the above elements. 

 
Referee: 
P1, L26: trapped instead of trap. 
P10, L25: degrades instead of degrade 
P10, L29: skip “a” 
P10, L32: “reductions” instead of “reduction”. 
P11, L11: “at the same level as” instead of “at the same level than”. 
P11, L25: “maxima” instead of “maximums”. The results are shown in? 
P11, L31: “as” instead of “than”. 
P13, L5: “minima” instead of “minimum”. 
P13, L28: Change to: “the most constraint ones” 
P14, L17: “dependent” 
P14, L30: change to: “ensures”. 
P15, L5: change to “decreased”. 
Answer: All mentioned typos are corrected in the text. We thank very much the referee for 

the thorough and attentive reading. 
 
Best regards, 
Vladislav Bastrikov 
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Abstract. Land surface models (LSMs), used withinwhich form the land component of earth system models, rely on 

numerous processes for describing carbon, water and energy budgets, often associated with highly uncertain parameters. 

Data assimilation (DA) is a useful approach for optimising the most critical parameters in order to improve model accuracy 15 

and refine future climate predictions. In this study, we compare two different DA methods for optimising the parameters of 

seven plant functional types (PFTs) of the ORCHIDEE land surface model using daily averaged eddy-covariance 

observations of net ecosystem exchange and latent heat flux at 78 sites across the globe. We perform a technical 

investigation of two classes of minimisation methods — local gradient-based (the L-BFGS-B algorithm, limited memory 

Broyden-Fletcher-Goldfarb-Shanno algorithm with bound constraints) and global random search (the genetic algorithm) — 20 

by evaluating their relative performance in terms of the model–data fit and the difference in retrieved parameter values. We 

examine the performance of each method for two cases: when optimising parameters at each site independently (―single-site‖ 

approach) and when simultaneously optimising the model at all sites for a given PFT using a common set of parameters 

(―multi-site‖ approach). We find that for the single site case the random search algorithm results in lower values of the cost 

function (i.e. lower model – data root mean square differences) than the gradient-based method; the difference between the 25 

two methods is smaller for the multi-site optimisation due to a smoothing of the cost function shape with a greater number of 

observations. The spread of the cost function, when performing the same tests with 16 random first guess parameters, is 

much larger with the gradient based method, due to the higher likelihood of being trapped in local minima. When using 

pseudo-observations tests the genetic algorithm results in a closer approximation of the true posterior parameter value in the 

L-BFGS-B algorithm. We demonstrate the advantages and challenges of different DA techniques and provide some advice 30 

on using it for the LSM parameters optimisation. 
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1 Introduction 

In the context of climate change and the potentially large impact of global warming on terrestrial ecosystem functioning (and 

vice versawith consequent feedbacks to climate), the development of reliable and robust process-driven land surface models 

(LSMs) to assess the future evolution of carbon, water and energy budgets is of key importance (Field et al., 2004). These 35 

models also represent a major tool for understanding the underlying mechanics and interconnections between the terrestrial 

biosphere, the atmospheric composition and human environmental management practices (Cramer et al., 2001).  

State of the art LSMs include hundreds of processes describing energy and mass (water and carbon) transfers in the soil – 

plant – atmosphere continuum on a wide range of temporal and spatial scales. This inevitably leads to high model 

complexity due to interactions between biophysical and biogeochemical processes. The simulated carbon, water and energy 40 

fluxes and stocks thus remain highly uncertain (Anav et al., 2013; Friedlingstein et al., 2014; Sitch et al., 2015). These 

uncertainties typically arise from three main sources: 

 errors in the input data: uncertainty of the meteorological forcing and/or the vegetation and soil spatial information 

used to drive the model; 

 errors in the model structure: insufficient or erroneous description of biogeochemical and biophysical processes; 45 

 errors in the model parameterisation: uncertain or incorrect values of the fixed values (parameters) used in the 

equations representing these processes. 

The latter source of uncertainty is the focus of this study. Model parameter error can be due to insufficient availability or 

inadequacy of observations and experiments used to derive the model parameter values, or because the parameters 

themselves are ―effective‖ and not directly observable in reality. In the former case, observations were usually limited to 50 

only a few experiments carried out at spatial/temporal scales that were not always relevant for larger scale simulations. For 

instance, the observations correspond to experiments using only a few plant species, soil types or climatic regions, and thus 

typically did not encompass all the variability required of the vegetation classification used in LSMs based on the concept of 

plant functional types (PFTs). Parameter uncertainty can therefore lead to significant uncertainty in simulations of carbon, 

water and energy fluxes and stocks (Luo et al., 2016; Peylin et al., 2016; Raoult et al., 2016; Schürmann et al., 2016; Thum 55 

et al., 2017). 

Fortunately, there are a growing number of observations as well as new types of measurements that should aid us in 

significantly reducing model parameter uncertainty. Among these observations, eddy-covariance measurements of net CO2 

flux (net ecosystem exchange – NEE), water and energy fluxes at specific FLUXNET sites represent an unprecedented 

source of information on the diurnal to seasonal and inter-annual processes (Williams et al., 2009). More than 650 sites, 60 

operating on a long-term and continuous basis and covering major ecosystem of the world, are available (Baldocchi et al., 

2001; http://fluxnet.fluxdata.org). A large number of studies have used these flux measurements to optimise ecosystem 

model parameters, either using the data from one single site (SS) (Reichstein et al., 2003; Braswell et al., 2005; Moore et al., 

2008; Ricciuto et al., 2011; Santaren et al., 2014; Kato et al., 2015; Bacour et al., 2015) or from multiple sites (MS) 
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simultaneously – usually at the level of PFT (Groenendijk et al., 2011; Kuppel et al., 2014; Raoult et al., 2016). These 65 

studies have employed various data assimilation (DA) techniquesinversion approaches, but they all rely on a Bayesian 

framework that allows the update of a priori information on the parameters (i.e., the parameter prior probably probability 

distribution functions – PDFs) with using the new information contained in the observations, leading towhich results in the 

posterior PDFs. While some methods do not require any assumption as to the shape of the different PDFs (see for example 

Van Oijen et al., 2005 and Post et al., 2017, who use Markov Chain Monte Carlo (MCMC) methods), most of themmany 70 

inversion methods use Gaussian error assumptions (for both parameters and observations), which simplifies the 

characterisation of the posterior parameter PDFs and leads to the minimisation of a cost function (Dietze et al., 2013). Our 

study uses such Gaussian hypothesis.  

The optimisation requires the minimisation of a cost function that describes the difference between the model and the 

observations, taking into account their respective uncertainties. There is a wide variety of mathematical algorithms that can 75 

be used to explore the parameter space (in the case of DA for parameter estimation), and therefore for locateing the 

minimum of a cost function. and tThese methods can be broadly divided into two classes:, i) local gradient-based methods 

(i.e., gradient-descent or conjugate gradient algorithms for example) also referred to as variational, or 4D-Var, methods; and 

ii) global random search method (i.e., Markov Chain Monte Carlo (MCMC), genetic and particle filter algorithms for the 

most common onesare commonly used examples). There are various advantages and disadvantages for the different 80 

algorithms of each class, depending on the complexity of the model being optimisedcomplexity (mainly the degree of model 

non-linearity), the simulation computational time of each model simulations, and the number of parameters to be optimised. 

Random search methods (as used in Van Oijen et al., 2005; Richardson et al., 2010; and Post et al., 2017 for example) have 

been proven to be efficient in finding the correct parameter values with highly non-linear models but at the expense of 

potentially prohibitive computing cost. On the other hand, gradient-based methods (as used in Kuppel et al., 2014; Raoult et 85 

al., 2016; Pinnington et al., 2016; and Schürmann et al., 2016 for example) are more prone to getting stuck in local minima 

and, furthermore, they require the complex calculation of the gradient of the cost function with respect to all parameters. 

With idealised models, Chorin and Morzfeld (2013) have shown that the assimilation can be optimal with particle filters or 

variational methods, under the condition that the effective dimension of the problem (defined as the Frobenius norm of the 

steady state posterior covariance) is not excessivefinite. The choice of the minimisation method was shown to have little 90 

impact on the overall optimisation efficiency for relatively simple ecosystem models (Trudinger et al., 2007; Fox et al., 

2009). Ziehn et al. (2012) showed similar performances between a MCMC and a variational method in terms of locating the 

minimum of the cost function for the BETHY ecosystem model (using atmospheric CO2 data as constraint), except for the 

difference in computational time (much longer using MCMC). However, with the more complex ORCHIDEE LSM, 

Santaren et al. (2014) showed that the genetic algorithm was superior to a gradient-based method in reducing the cost-95 

function to the correct minimum at one FLUXNET site (using water and carbon fluxes as constraint), as the gradient method 

was often stuck in local minima. Our study further expands their analysis to multiple-sites and across multiple PFTs.  
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The overall objective of this study therefore is to investigate the trade-off between these two classes of method in terms of 

their computational efficiency versus their ability to constrain the parameters to the correct value. To achieve this goal, we 

performed experiments using i) a global state of the art process-based land surface model (ORCHIDEE, Krinner et al. 2005), 100 

ii) a large ensemble of CO2 and water flux measurement at FluxNet sites and iii) one particular variant for each class of 

method, the gradient-based L-BFGS-B algorithm (limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm with 

bound constraints, Byrd et al., 1995) and a genetic algorithm (GA) for the random search method. Note that this study does 

not aim to provide an exhaustive examination of all methods belonging to both classes of inversion algorithms (as previously 

described), nor do we presume to have chosen the best method belonging to each class. We simply choose to test the two 105 

abovementioned methods belonging to each class (L-BFGS-B and GA) that have already been used to estimate parameters 

of the ORCHIDEE model (Kuppel et al., 2014; Santaren et al., 2014; MacBean et al., 2015; Bacour et al., 2015; Peylin et al., 

2016). A further examination of the benefits of all methods would be beneficial to the LSM and DA community, but is 

outside the scope of this study. 

The key questions that we investigate are the following: 110 

i) Does the random search algorithm (GA) result in a lower spread inposterior cost function minimum value than the 

L-BFGS_-B gradient-based method (BFGS) for the single site (SS) tests? 

ii) Are the differences in cost function minimum between the GA and BFGS methods smaller for multi-site (MS) 

optimisations than for single sites (SS), following a potential smoothing of the cost function shape with a greater 

number of observations? 115 

iii)  What is the spread of the posterior parameter values with the BFGS and the GA methods when performing the 

same tests with multiple first guesses in parameter space? Is the spread different between the two methods? aAnd 

how many first guesses are needed for each method to improve the location of the cost function minimum? 

iv) Does one method result in a closer approximation of the true posterior parameter value in the pseudo-observation 

tests, for both the SS and MS experiments? 120 

Section 2 presents the ORCHIDEE model and its configuration, describes the observational data exploited used in the study 

and gives a detailed explanation of the two data assimilation methods as well as the setup of the experiments. A comparison 

of the performances of the two optimisation methods and of the differences between the single and multiple sites approaches 

is done detailed in Section 3, including the analysis of model–data misfit (Sect. 3.1) and estimated parameter values (Sect. 

3.2). The last section summarises the main findings and proposesvides a few perspectives to how this work may be extended 125 

in the future. 
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2 Materials and methods 

2.1 The ORCHIDEE land surface model 

We used the process-based land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic Ecosystems) 

version 1.9.5.2 that has been developed at the IPSL (Institut Pierre Simon Laplace, France). It simulates the carbon, water 130 

and energy exchanges between the land surface and the atmosphere (Krinner et al., 2005). The model is applicable over a 

wide range of spatial scales (from ―grid-point‖ to regional or global) and covers timescales from 30 minutes to possibly 

thousands of years. ORCHIDEE may be deployed as a stand-alone terrestrial biosphere model using meteorological forcing 

(observational data or model reanalysis) or as part of the IPSL Earth System Model (Dufresne et al., 2013) used for climate 

predictions. The version that we use corresponds to the one used for the CMIP5 simulations for the IPCC 5th Assessment 135 

Report. 

The hydrological and photosynthesis processes as well as the energy balance are treated at a half-hourly time step, while the 

slower components linked to the carbon allocation within the plants, the autotrophic respiration, leaf onset and senescence, 

plant mortality and soil organic matter decomposition are processed at a daily time step. The soil hydrology model used in 

this study corresponds to a simple double-bucket scheme (Ducoudré et al., 1993). The land surface is represented by 13 plant 140 

functional types (PFT), including bare soil, that can co-exist in any grid cell. Except for the phenology, the processes are 

described by generic equations but with different parameters that are PFT-specific. For the main model equations, the reader 

is referred to numerous previous publications (e.g. Krinner et al., 2005) that are reported on the ORCHIDEE web-site 

(http://orchidee.ipsl.fr). 

For this study we applied the model at site level (see section 2.3) using gap-filled half-hourly meteorological data measured 145 

at each site (air temperature, humidity, pressure, wind speed, rainfall and snowfall rates, shortwave and longwave incoming 

radiation; see Vuichard et al. 2015). The soil carbon pools have been brought to equilibrium (spin-up procedure) by cycling 

the available meteorological forcing over several millennia (with present day CO2 concentration) in order to ensure that the 

long-term net carbon flux is close to zero. 

It is important to note that model structural errors, due to missing or poorly described processes may directly impact the 150 

parameter retrieval. For example, the ORCHIDEE version used in this study lacks a description of the nitrogen cycle and its 

potential limitation on photosynthesis (in the context of increasing atmospheric CO2) and a proper description of forest stand 

and canopy structure (forest gap, age dependent effects, etc.) which is a limitation on the computation of the absorbed light 

for photosynthesis and of the turbulent fluxes exchanged with the atmosphere. These missing processes (that will integrate 

future model versions) may lead to over-tuning some parameters and potentially decrease the predictive skill of the model. 155 

Nonetheless, it does not change the main outcomes of the study, which refer to optimisation method comparison rather than 

effective model improvement. 



6 

 

2.2 Optimised parameters 

The ORCHIDEE parameters selected for the optimisation are described in Table 1 along with their default values. They have 

been chosen based on the sensitivity of the simulated daily net CO2 ecosystem exchange (NEE) and latent heat fluxes (LE) to 160 

all related model parameters (not shown). Overall, the 28 most sensitive parameters were selected, as in recent optimisation 

studies with ORCHIDEE (e.g. Santaren et al., 2014 and Kuppel et al., 2014). The parameters control photosynthesis, 

respiration fluxes, leaf phenology, plant water stress and energy balance. Among all ORCHIDEE parameters we selected the 

ones that primarily drive net CO2 ecosystem exchange (NEE) and latent heat fluxes (LE) variations on synoptic to seasonal 

time-scales, excluding those impacting preferentially decadal time scales (i.e., like tree mortality). A preliminary parameter 165 

sensitivity analysis was conducted, as in Kuppel et al. (2012), based on the ―one-at-a-time‖ Morris method (Morris, 1991), 

and we restricted the selection to the 28 most influencing parameters controlling photosynthesis, respiration fluxes, leaf 

phenology and evapotranspiration. 16 parameters are PFT-dependent, 11 parameters are PFT-independent and 1 parameter 

(KsoilC) is site-specific, which results in a total number of 192 parameters. KsoilC scales the initial values (after spin up) of the 

slow and passive soil carbon pools in order to account for the historical effects (e.g. land use change) that are not accounted 170 

for in the model spin-up that would result in a disequilibrium of these pools in reality (e.g. changes in land use and 

management). The parameter bounds and uncertainties used in this study were derived from literature analysis and parameter 

database such as the TRY database (http://www.try-db.org) as well as expert knowledge of the model equations; they are 

reported in the Supplement (Table S1). The prior uncertainty is set to 40% of the range of variation for each parameter, 

following previous studies (Kuppel et al., 2012; MacBean et al., 2015). 175 

2.3 Assimilated data: carbon and water fluxes 

We use eddy covariance measurements of net surface CO2 fluxes (referred as NEE) and latent heat flux (LE) from the 

FLUXNET global network (La Thuile database, Baldocchi, 2001). Based on an original list of the 252 sites Wwe selected 78 

sites, representing 7 PFTs of ORCHIDEE (from the total number of 13) with the number of sites in each PFT varying from 2 

(temperate evergreen broadleaf forests (TempEBF)) to 24 (C3 grasses) and the length of each observation record varying 180 

from 1 to 10 years. We only kept sites where the main dominant PFT represents at least 70% of the footprint of the flux 

tower so that we could restrict the optimisation to the parameters of one PFT per site. Also, wWe disregarded sites that had a 

large discrepancy with respect to the prior ORCHIDEE simulation (in terms of seasonal cycle) which suggests large model 

structural errors that prevent meaningful parameter optimisations. Note that Peaucelle et al. (in review) explored with the 

same model how to account for plant functional trait variability, refining the PFT distribution. Finally, we only use 185 

continuous flux time series that do not contain gaps of more than few days. This subset of FLUXNET sites corresponds to 

the one used by Kuppel et al. (2014). The selected sites (geographical location, data period and references) are described in 

the Supplement (Table S2). Where possible, the LE fluxes have been corrected to close the energy balance, using 

measurements of the ground heat flux (G) and keeping a constant Bowen ratio (to update the latent and sensible heat fluxes 

http://www.try-db.org/
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(i.e., conservative choice without strong evidences that one turbulent flux may be more impacted than the other one; Twine 190 

et al., 2000). Individual days with less than 80% of data coverage have not been used. 

For the assimilation, the half-hourly observations have been averaged on a daily basis and smoothed with a 15-days running 

mean, following Bacour et al. (2015). This allows us to focus the optimisation on the seasonal and annual time scales, 

excluding the influence of short-term flux variations. In order to test the influence of smoothing the data on the optimisation 

performance, preliminary assimilation experiments were run with different smoothing configurations (10-days running 195 

mean, 5-days running mean and without smoothing). Overall the choice of the smoothing configuration had little impact on 

the outcome of this study. A slight decrease of the ability to find the minimum is observed with the gradient-based method 

when narrowing the smoothing interval for the NEE/LE fluxes. With the random search algorithm the impact is even 

smaller. The reader is referred to the Supplement for the illustration of the smoothing influence on the fit to the data (Figure 

S1, example for TempDBF PFT, last columns). From the results of this test we determined that the key messages of the 200 

results are not impacted by the smoothing window; therefore, the results are based on the 15-day running mean. 

2.4 Data assimilation framework 

2.4.1 The principle of minimisation 

The optimisation methodology used in this study relies on a Bayesian statistical formalism (see for instance Tarantola, 2005, 

chapter 3). Assuming that the errors associated with the parameters, the observations and the model outputs follow Gaussian 205 

distributions, the optimal parameter set corresponds to the minimum of a cost function, J(x), that measures the mismatch 

between i) the observations (y) and the corresponding model outputs, H(x), (where H is the model operator), and ii) the a 

priori (xb) and optimised parameters (x), weighted by their error covariance matrices: 

 ( )  ( ( )   )    ( ( )   )  (    )
   

  (    )       (1) 

R and Pb are the prior covariance matrices for the observation and parameter errors, respectively. The error covariance 210 

matrices are difficult to assess and thus neglected here, as in most studies (i.e. R and Pb are diagonal). The observation errors 

(variances) have been defined as the mean-squared difference between the observations and the prior model simulations. 

This reflects not only the measurement errors, but includes possibly significant model errors. The exact error values assumed 

for NEE and LE for each site can be found in Tables S2S3-S4. 

As explained in the introduction, two classes of method to minimise the function J(x) are compared; both are described 215 

below. Note that using non-Gaussian errors would significantly complicate the application of one class (gradient-based) and 

is thus out of the scope of this study. MacBean et al. (2016) examined the issues that may arise when using Gaussian 

assumptions in gradient-based minimisation algorithms; however, they found that the algorithm used in this study could 

account for quasi non-linearity. Moreover, in the case of ORCHIDEE we have shown in an earlier study (Santaren et al., 

2007) that most parameter errors follow Gaussian distributions. 220 
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2.4.2 Gradient-based minimisation algorithm 

For the gradient-based approach we chose the quasi-Newton algorithm L-BFGS-B to iteratively minimise the cost function 

(limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm with bound constraints, see Byrd et al., 1995), referred as 

BFGS. It was developed specifically for quasi nonlinear optimisation problems and allows direct assignment of bounds to 

each parameter. 225 

Each iteration requires the evaluation of the cost function and its gradient with respect to each parameter. Generally, the 

gradient can be calculated with a finite-difference approximation (i.e. the ratio of the model outputs change to the value of 

the parameter perturbation that caused this change). However, it can be done more precisely using the tangent linear (TL) 

model (linear derivative of the forward model). For ORCHIDEE the corresponding TL model has been derived with the 

automatic differentiation tool TAF (Transformation of Algorithms in Fortran; see Giering et al., 2005), following code 230 

cleaning and structural adjustments (without changing the physics) to allow the use of TAF (a significant effort that took 

around two years). It was used to calculate the gradient for all parameters except for two phenology parameters, Kpheno,crit and 

CTsen, associated to with threshold functions. For these two parameters, the finite difference method is more appropriate and 

was used here.  

The search is terminated when the relative change in the cost function becomes smaller than 10
–4

 during five consecutive 235 

iterations. On average the iterative process stopped within 30 iterations. Given that the computation of a TL model run is 

about twice as long as the standard run of ORCHIDEE, the total computation time for one BFGS optimisation for one site 

with 30 parameters is equivalent to around 1800 standard model runs. 

Gradient-based algorithms have a potential drawback with non-linear models as they are more likely to converge to a local 

minima of the cost function instead of the global one. In order to assess the extent of this problem we performed a set of 240 

independent assimilations starting with 16 different random initial first-guesses for the parameter vector, as in Santaren et al. 

(2014) (see section 2.5). 

2.4.3 Random search minimisation algorithm 

For the random search approach, we chose the genetic algorithm (GA). The GA is a meta-heuristic optimisation algorithm, 

belonging to a larger class of evolutionary algorithms that follows the principles of genetics and natural selection (Goldberg, 245 

1989; Haupt and Haupt, 2004). It considers the vector of parameters as a chromosome with each gene corresponding to a 

given parameter. The algorithm works iteratively, filling a pool of n chromosomes at each iteration. The starting pool is 

created with randomly perturbed parameters. The chromosomes at each following iteration are created from the randomly 

chosen chromosomes of the previous iteration by one of the two processes: 

 exchange of the gene sequences of two parental chromosomes (―crossover‖ process), 250 

 random perturbation of the selected genes of one parental chromosome (―mutation‖ process). 
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The resulting pool is then filled with n best chromosomes from both parental and offspring pools, corresponding to the n 

lowest cost function values. Furthermore at each step the chromosomes are ranked in the ascending order of the 

corresponding cost function values and random selection of the new parents is weighted by those ranks in order to guarantee 

that the best chromosomes produce more descendants (―selection‖ principle). 255 

The genetic algorithm performance is sensitive to its particular configuration. In this study, we use the same GA 

configuration as in Santaren et al. (2014) who tested different GA configurations and chose one, based on computational 

efficiency (to locate the cost function minimum) : 

 number of chromosomes in the pool – 30; 

 number of iterations – 40; 260 

 crossover/mutation ratio – 4 : 1; 

 number of gene blocks exchanged during crossover – 2; 

 number of genes perturbed during mutation – 1. 

For a better convergence of the cost function we reduce the ranges of parameter variations after the 30th iteration by a factor 

of 0.25 with the centre point at the current best guess value. 265 

The GA does not require any gradient calculations; therefore, one chromosome rank estimate requires one standard model 

run and the total computational time for the GA assimilation for one site equals to 1200 runs. Contrary to gradient-based 

methods, random search algorithms allow to use any form of probability distribution functions for the observation and 

parameter uncertainties, and thus to use non-Gaussian PDFs. 

2.4.4 Posterior uncertainty 270 

Assuming Gaussian prior errors and linearity of the model in the vicinity of the solution, the posterior error covariance 

matrix of the parameters, A, can be approximated by: 

  [         
  ]              (2) 

where H is the model sensitivity (Jacobian) at the minimum of J(x) (see for instance Tarantola, 1987). From A we can 

compute error correlations between parameters, a diagnostic that is used to evaluate the information content brought by the 275 

observations to discriminate each parameter. 

2.5 Numerical experiments and performance metrics 

For each data assimilation experiment we performed 16 independent runs, one of which has been performed with the 

standard model parameters as a first-guess and the other 15 with different first-guesses randomly selected within the range of 

variation of the parameters. We choose 16 sets based on the available computing resources but we verified for one case that 280 

increasing this number does not change the overall message. The set of 15 random first-guesses was kept identical for all 

experiments in order to guarantee the same first-guess values. However, for the GA such procedure is not essential, as the 
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GA relies on a random generation process at each iteration; specific choices related to the random exploration of the 

parameter space by the algorithm (see section 2.4.3) become crucial and the use of different first-guesses is only an 

additional degree of freedom to explore the parameter space. Both minimisation methods have been tested for two cases: an 285 

independent optimisation of the parameters at each site (―single-site‖ approach, SS) and a simultaneous optimisation of one 

common set of parameters at all sites belonging to the same PFT (―multi-site‖ approach, MS). 

Overall, we defined the following set of numerical experiments: 

 16 single-site assimilation runs for each of the 78 sites that encompass all 7 PFTs with the gradient-based algorithm 

(BFGS) (noted below as SBFGS); 290 

 16 single-site assimilation runs for each of the 78 sites that encompass all 7 PFTs with the genetic algorithm 

(SGenetic); 

 16 multi-site assimilation runs for each of the 7 PFTs with the BFGS algorithm (MBFGS); 

 16 multi-site assimilation runs for each of the 7 PFTs with the genetic algorithm (MGenetic). 

We address the impact of different first guesses for both the SS and MS optimisations for both methods in each section of the 295 

results. Additionally, for one PFT (Temperate Deciduous Broadleaf Forest – TempDBF) we performed the same four 

numerical experiments using pseudo-observations generated from outputs of the model with random parameters, in order to 

verify if the assimilation methods were finding the correct minima of the cost function. Such pseudo data are not biased by 

observation uncertainties (no added uncertainties) or model discrepancies, and thus allow us to directly assess the 

performance and convergence properties of the optimisation schemes. Note that for these pseudo-data experiments the 300 

second term of the cost function (Eq. 1) was excluded. 

The performances of the optimisation methods are compared using the reduction of the model–data root mean square 

difference (RMSD) between the prior and the posterior, expressed as: (                   ⁄ )      , as well as the 

range of posterior parameter values and their difference with the true value as estimated from the pseudo-observation tests. 

3 Results and discussion 305 

3.1 Model fit to the data 

In order to investigate the differences between the minimisation schemes, Figure 1 presents a comparison of the overall 

optimisation performances, as a summary diagnostic. It displays the prior and median posterior model–data RMSD for all 

sites used in the study (i.e., the median across the 16 first-guess tests). Additionally, the reader is referred to figure S1 in the 

Supplement for the results obtained at each site for each first guess with the prior and posterior model–data RMSD. We first 310 

note that both gradient-based and genetic algorithms successfully optimised the simulated NEE flux (for LE flux, see figure 

S1), reducing significantly the model–data misfit, in line with the results obtained by Kuppel et al. (2014) with the same 

modelling framework. Below, we first compare the performance of the two methods for the single site (3.1.1) and multi-site 
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(3.1.2) cases using global statistics across first-guess tests and we then discuss more quantitatively the benefit of multiple 

first-guess tests in section 3.1.3. 315 

3.1.1 Single site optimisation: comparative performance of the methods (SBFGS vs SGenetic) 

The first objective of the study is to assess which method performs best for a single site optimisation. Figure 2 (top panels) 

compares the performance of the two methods for all sites in terms of model–data RMSD reduction for the NEE fluxes. The 

similar comparison for the LE fluxes can be found in the Supplement (Figure S2). The RMSD reductions are expressed in 

percentage; they correspond to the median value (left plot) and the 5
th

-95
th

 percentile range (R90) (right plot) across the 16 320 

random first guess tests. 

At all sites of all PFTs the single-site genetic algorithm (SGenetic) provides better fit to the data (median across all 16 first 

guess tests) than the single-site gradient-based algorithm (SBFGS), with only a few exceptions (see Figure S1 and Figure 2, 

upper left panel). The SGenetic leads up to 40% of additional model–data RMSD reduction compared to the SBFGS algorithm, 

with a mean improvement across all sites of 10%. In most cases the worst posterior RMSD value achieved with the SGenetic 325 

algorithm is better than the median value for the SBFGS method. The SBFGS approach is slightly better only at 8 sites with no 

more than 4% of additional RMSD reduction. 

The spread of the results obtained with the use of different first guess parameters (16 tests) is also much lower for the SGenetic 

compared to the SBFGS method, for nearly all sites (Figure 2, upper right panel). On average the R90 values are 3.6 times 

lower with the genetic algorithm – the SGenetic method is only slightly disadvantageous for 3 sites out of 78, although the 330 

spread across the 16 first guesses remains low (<10%). Overall, the mean spread of the RMSD reduction for the SGenetic case 

is around 10%. This clearly indicates that the genetic algorithm, following the set up described in section 2.4.3, is able to 

find nearly the same minimum of the cost function independently from the choice of the first guess parameters (with a 

significant improvement of the model-data misfit, see Figure 1). On the contrary, the results of the SBFGS method are highly 

dependent on the first guess model parameters, with a spread above 22% for half of the sites. Finally, if we compare the best 335 

achieved RMSD reduction within the 16 first guess tests (see Tables S3 and S4 in the Supplement), we obtain similar 

performances for most of the sites of 5 PFTs out of 7, excluding TropEBF and BorDBF, where the SGenetic method still 

produces better results than the SBFGS method. 

With the gradient-based method (SBFGS), using the standard ORCHIDEE model parameters as a first guess does not 

guarantee an optimal reduction of the cost function – the corresponding posterior RMSD could be either the lowest or the 340 

highest one of the 16 tests (these cases are shown by a circle, as opposed to a cross, in Figure S1 that displays the posterior 

RMSD for all sites and all 16 tests). Although we have used the same random parameter sets for each site of a given PFT, the 

―optimal‖ first-guess parameter set (i.e., the one providing the largest cost function reduction) differs between sites. It 

indicates that the shape of the cost function varies between sites and that there is no optimal prior first guess with the SBFGS 

gradient method, which is prone to getting caught in local-minima if the assumption of model quasi-linearity is not met. 345 
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Overall, this highlights one weakness of gradient-based methods and the need to perform several independent assimilations 

starting from different first-guess parameter values (see section 3.1.4). 

3.1.2 Multi-site optimisation: comparative performances of the methods (MBFGS vs MGenetic) 

The reduction in NEE RMSD for the multiple site optimisations (MBFGS for the gradient-based method and MGenetic for the 

Genetic algorithm) is illustrated in the lower panels of Figure 2. First, the multi-site optimisations provide lower RMSD 350 

reduction than the single-site optimisations (lower vs upper panels of Figure 2). This is the trade-off between fitting a 

specific site versus fitting an ensemble of sites representing more accurately the diversity of plant, soil and climate for a 

given PFT. We then notice that for few sites the RMSD is increasing after the optimisation (i.e. negative value of the RMSD 

reduction): 1 site for TropEBF and C3grass PFTs and 3 sites for TempENF and BorENF. On average these sites have only 

one or two years of data with large prior observation errors and thus a smaller weight in the cost function compared to the 355 

other sites of the same PFT. This could thus explain that the optimisation degrades the model-data fit at these sites but it 

could also indicate that there is no optimal parameter set improving the model-data fit at all sites, suggesting the need to 

refine the PFT description and/or to improve the model structure (see a list of potential impacts of missing processes in the 

ORCHIDEE model in section 2.1). Note that multi-site optimisations are likely to be more impacted by model structural 

errors than single site optimisation, as these errors may have different impacts at each site. Limits arise when the objective is 360 

to study the response of a specific ecosystem (and not a generic PFT) to external drivers as the multi-site parameter set might 

be sub-optimal. 

The performance of the two methods differs between the PFTs. For TropEBF, TempENF and C3grass PFTs the genetic 

algorithm still provides on average significantly larger RMSD reduction than the gradient method, with a ratios between the 

two of 2.0, 1.8 and 1.4, respectively. For the other four PFTs both methods show much smaller differences and for 365 

TempDBF the average RMSD reduction is exactly the same. Overall, at 50 sites (from 78) the MBFGS method provides 

performances comparable to the MGenetic method (RMSD reductions differ by less than 25%) or even slightly better (see 

Tables S3/S4 in the Supplement for all numbers) and the mean additional RMSD reduction for the MGenetic method is only 

6%. 

The spread across random first guesses between the two methods is much more comparable than for the single-site 370 

optimisations. The R90 values for the gradient-based method are only considerably larger for half of the sites than the genetic 

algorithm method (with values up to 2 times larger), except for two PFTs (TempENF and TempDBF) where they are similar 

on average (Figure 2, lower right panel). This suggests that increasing the number of observations and/or capturing a greater 

range of sensitivity to the parameters acts to linearise or smooth the cost function, thereby ensuring that the gradient-based 

method does not get as caught in local minima as in the SS optimisations.  375 

The last point to notice is that using the standard ORCHIDEE parameter set as a first guess with the MBFGS method always 

leads to significant improvement of the model-data fit (see Figure S1) with RMSD reduction at the same level than as the 

median RMSD reduction for the MGenetic method. This was not the case for the single-site optimisation (see Section 3.1.1). 
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With a multiple-site optimisation the gradient-based scheme is less dependent on the first-guess, likely due to the smoothing 

of the cost function as discussed above and therefore performing several random first-guess tests is less needed. Overall for 380 

the multiple sites optimisations the choice of the minimisation algorithm seems thus less crucial than for the single site cases. 

Nonetheless, the multi-site method conceals certain limitations. The optimisation may not perform well (i.e. not lead to a 

large minimisation of the cost function) if the different sites have very different behaviours in terms of the carbon and water 

cycle responses to climate forcing. This case points to the need to reconsider the PFT geographical description with possible 

further regional split; it is suggested for TropEBF and C3 grass PFTs. Additionally, multiple-site optimisations, that requires 385 

large computing time, are more complicated to set up, with the need to have coherent observation errors between sites. We 

need to avoid that one or few sites dominate the cost function because of a too low observation error (measurement and 

model errors grouped in the R term) and thus prevent the optimisation to fit all the other sites. 

3.1.3 Benefit of multiple first guesses for a gradient-based approach 

We now investigate more precisely quantitatively the benefit of using several first guess tests (16), especially for the 390 

gradient-based algorithm (see section 2.5). For a highly non-linear model the shape of J may be complex and the gradient-

based algorithm can easily get stuck in a local minima (as mentioned above). Therefore it is useful or necessary to perform a 

set of independent assimilation runs starting with different first-guesses. On the opposite side, a global search method is 

much less sensitive to the first-guess parameter values; specific choices related to the random exploration of the parameter 

space by the algorithm (i.e. the mutation rate, the number of chromosome and the number of iteration in the case of the 395 

Genetic Algorithm; see section 2.4.3) become crucial and the use of different first-guesses is only an additional degree of 

freedom to explore the parameter space. 

In order to analyse the influence of the number of first guess tests on the optimisation performance, for each configuration 

we bin the 16 first-guess optimisations in all possible groups of n elements and defined for each group the maximum RMSD 

reduction. We then take the mean values of all these maximumsmaxima. The results are shown on in Figure 3 for all 400 

configurations (SBFGS, SGenetic, MBFGS and MGenetic) as a function of the number of first guesses (n) for the NEE fluxes (with 

the similar results in Appendix, Figure S3 for the LE fluxes). Only the mean across all PFTs is displayed and analysed. This 

illustrates the gain of adding more first-guess tests in the different configurations.  

On average for the single-site configurations, the genetic algorithm (SGenetic) with any number of first-guesses leads to 

52±250.5-55% of RMSD reduction for the NEE fluxes; the increase in RMSD reduction between 1 and 16 first-guesses is 405 

small ( 4%). However, the gradient-based method (SBFGS) needs 15 independent first-guess optimisations in order to reach 

the same level of RMSD reduction than as with one first-guess of SGenetic and there is a substantial increase in the RMSD 

reduction from one to five first-guesses ( 9%), while the improvement afterward is much smaller. For the SGenetic SG 

method, the increase of the RMSD reduction is only significant from one to two first-guess tests. 

For the multiple-site configurations, the performances of the gradient-based method are more similar to that of the genetic 410 

algorithm (although both with smaller RMSD reduction, as discussed in previous section). On average, the MBFGS method 
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needs three first-guess tests to reach the performance of the MGenetic method obtained with one test. Like with the single-site 

configuration the increase of the RMSD reduction is substantial for the MBFGS method between 1 and 5 first-guesses (10%) 

and much smaller afterwards. 

Overall this analysis reveals highlights that using several first-guesses is crucial for the gradient-based method and that at 415 

least 3 to 5 tests are required to obtain a RMSD within 5% of the optimal value obtained with 16 tests (for both SBFGS and 

MBFGS). The genetic algorithm is much less sensitive to the number of first-guess tests performed. Using a multiple site 

configuration reduces the difference between the two algorithms and requires less random first-guess tests for the MBFGS 

method to achieve performances comparable to the MGenetic method. Note finally that, increasing the number of first guess 

tests to much larger values would lead to a convergence of the method performances. 420 

3.2 Estimated parameter values 

We now investigate how the choice of the minimisation method impacts the retrieved parameters. We only discuss the 

results of one PFT, temperate deciduous broadleaf forest (TempDBF), for a more in-depth investigation. We obtained similar 

findings for the other PFTs (see figure S4 in the Supplement). We selected TempDBF given that the RMSD reduction for 

this PFT is significant and that it includes a large number of sites (11). Before investigating the standard optimisations with 425 

real data, we discuss the results of the pseudo-observation experiments (see section 2.5) in order to analyse the ability of the 

different methods to retrieve ―true‖ parameter values. 

3.2.1 Estimating the correct posterior parameter value – pseudo-observation experiments 

Figure 4 shows the estimated parameter values, the standard prior values and the ―true‖ values for the pseudo-observation 

experiments with TempDBF. We display the mean and standard deviation across the 16 first-guess tests and for the single-430 

site assimilations we take the mean across all sites. 

On average both gradient-based and genetic algorithms are not able to retrieve exactly the true value for all parameters (i.e. 

values used to generate the pseudo data), although many of the parameters are relatively well estimated by the optimisation 

schemes. Out of 28 parameters, on average across all methods and all first-guesses, 14 have posterior values that are within 

5% of the true value, using the physical parameter range to define the percentage (i.e., true value +/- 5% of the allowed range 435 

of variation), 6 parameters are between 5 and 10%, 7 between 10 and 20%, and one parameter (Zcrit,litter) is 29% far from the 

true value. These differences are mainly related to differences in the sensitivity of the model outputs (NEE and LE) with 

respect to the different parameters (with lower sensitivity for Zcrit,litter). The most constrained parameters (5% range with the 

small deviation around true value) are Gs,slope, cTopt, Kpheno,crit, CTsen, Lage,crit, τleafinit, KsoilC and Q10. We can thus expect more 

robust results with these parameters using real data. However, the uncertainties associated to the real data, and the fact that 440 

these uncertainties may not be adequately described in the observation error covariance matrix, will complicate the 

parameter retrieval (see MacBean et al. 2016). Note that for many other parameters the error bars (standard deviation across 
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all first-guess tests) encompass the true values (Vcmax, cTmin, cTmax, SLA, KGR, MRoffset, MRslope, HRHc, HRHmin, Zdecomp, 

Kalbedo,veg, Krsoil). 

As it was already outlined in Santaren et al. (2014), the differences obtained between the true and optimised parameter 445 

values are likely due to equifinality problems (i.e., multiple solutions achieving the same overall global minimum of the cost 

function) or the existence of local minimum minima where the algorithm is trapped. These issues vary between parameters 

and are related to the sensitivity of the model outputs to each parameter, the prior parameter uncertainty and the level of error 

correlation between parameters. Given eExisting correlations and anti-correlations between the impacts of different 

parameters, it is not possible to retrieve prevents from retrieving all of them with the chosen set of observations (daily means 450 

of NEE and LE) and the optimisation frameworks that are used. 

Differences between the methods exist but are not systematic. There are a few parameters that perform well only with one of 

the methods, both for single and multiple sites optimisations. For example, cTopt, τleafinit and Zdecomp are correctly estimated 

with only the gradient-based approach. On the contrary, the generic algorithm performs much better for parameters like 

LAImax, SLA, Lage,crit, KLAIhappy, Krsoil. A few parameters are not well estimated by both methods, like : the posterior values for 455 

Fstressh ,and HRHb differ from the true value by 20% of the physical range and Zcrit,litter by 30%, having the largest difference 

with respect to the true value. The estimated errors (Eq. 2) associated to these poorly retrieved parameters are relatively large 

and for Fstressh and HRHb they are highly correlated with other parameters; we should thus be very cautious when interpreting 

their value with real data optimisations. Overall, we observe that 19 parameters out of 28 are better estimated on average by 

the genetic algorithm (SGenetic, MGenetic) than by the gradient-based method (SBFGS, MBFGS). This is coherent with the results on 460 

the fit to the data (section 3.1), indicating that the gradient method is more likely stuck in local minima than the genetic 

algorithm. 

3.2.2 Spread in parameter values across methods and first guess tests – real data experiments 

Using real data, figure 5 displays the mean posterior estimates of the TempDBF parameters across all first-guess tests for the 

four optimisation methods (SBFGS, SGenetic, MBFGS and MGenetic). For most of the parameters the mean optimised values are 465 

relatively similar between the gradient-based and the genetic algorithms, with some exceptions. 12 parameters (Gs,slope, cTopt, 

cTmin, Kpheno,crit, CTsen, LAImax, KLAIhappy, Q10, MRoffset, KGR, HRHc, Kz0) out of 28 show posterior differences between SGenetic 

and SBFGS methods that are lower than 5% of the physical range for each parameter, while 7 (cTmax, Fstressh, Kwroot, SLA, τleafinit, 

HRHmin, Kalbedo,veg) show differences between 10 and 20%, whereas Krsoil goes up to 36%. For MGenetic and MBFGS methods, 

only 7 parameters are within the 5% variation range (Gs,slope, CTsen, LAImax, Kz0 as for the single-site approaches, plus HRHa, 470 

Zdecomp, Zcrit,litter), and 14 parameters have differences over 10% (same list as for the single-site methods excluding cTmax, plus 

cTopt, cTmin, Kpheno,crit, Lage,crit, KLAIhappy, KsoilC and MRslope). Note that most parameters that are well constrained (i.e. small 

spread across the optimisation methods) correspond also to the most constraint ones in the pseudo-observation experiments 

(like Gs,slope, cTopt, Kpheno,crit, CTsen, Q10, HRHc). However, few parameters demonstrate different behaviour between the real 

and pseudo data tests (like KLAIhappy, MRoffset, LAImax). 475 
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For certain parameters (cTopt, LAImax, SLA, Lage,crit, KLAIhappy, KGR, Krsoil) we obtain significant differences in the estimated 

values between BFGS and GA, for both single-site and multi-site cases. Whereas the gradient-based methods looks for the 

optimal parameter set in the vicinity of the first-guess setup, the random search algorithm may jump to a completely different 

parameter state during one iteration. Given that with pseudo-data the GA manages to find the true values for these 

parameters much more precisely than the BFGS, we can speculate that the GA provides more optimal posterior estimates in 480 

the real data experiments as well. 

A secondAnother feature is that for the single-site and the multiple-site cases, both algorithms (BFGS and GA) lead for most 

parameters to a similar dispersion of the posterior estimates from the ensemble of 16 first-guesses (see figure 5). However, 

for some parameters (Fstressh, SLA, MRoffset, MRslope, HRHa, HRHb, HRHc, HRHmin, Zcrit,litter, Kalbedo,veg, Krsoil) the GA method 

gives, surprisingly, much higher distribution of the posterior values. It corresponds to the parameters that have also not been 485 

correctly estimated in the pseudo-observation tests (see section above) with estimated value outside the 10% range around 

the true value. Although not intuitive, the random sampling over the parameter space with the genetic algorithm could 

explain that for each first guess the GA method may end up exploring a larger domain of the parameter space and thus 

converge to more different parameter sets than the gradient-based method. 

For each parameter, the dispersion obtained with the different first-guesses is lower for the multiple-site case compared to 490 

the single-site case, for both algorithms. On average the mean dispersion for the single-site approaches is 25% of the 

parameter range (with minimum and maximum spreads of 7.3% and 42%, respectively), and for the multiple-site approaches 

it is only 14% (between 3.4% and 32%). This reflects that with the multiple-site approach the shape of the cost function is 

more smooth due to the combination of different NEE/LE responses to the parameter variations (differences induce mainly 

by different climate, soil type and plant species) which in turns facilitate the convergence to the global minimum. For the 495 

single-site case, the shape of the cost function may differ significantly between sites leading to a larger parameter spread in 

response to multiple first guesses (compared to the multi-site case). This is specifically illustrated with the parameters Kwroot, 

CTsen, Q10, HRHa, HRHb and Kz0. The only exception is for KsoilC, a parameter that is specific to each site even in the multiple-

site approach (see section 2.2). 

4 Summary and conclusion 500 

Throughout this study, we compared the performances of two algorithms for the optimisation of the ORCHIDEE land 

surface model parameters. The two algorithms belong to two different classes of method – L-BFGS-B algorithm for theis a 

gradient-based methods (BFGS) and the Genetic Algorithm (GA) for is a global random search methods. The two methods 

were used to optimise 28 parameters (16 being of which are PFT dependantdependent), using daily NEE and LE fluxes from 

78 eddy covariance flux measurement sites. Both methods were run either independently at each site (single-site approach) 505 

or simultaneously at all sites of for each PFT (multiple-site approach), running. fFor each configuration we ran 16 different 

tests where in which the prior parameter values are selected randomly. The main findings are: 
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 For the single site (SS) optimisations (SS), the random search algorithm (GA) results in lower values of the 

posterior cost function than the gradient-based method (BFGS) for nearly all sites. 

 The difference between results derived from the GA and BFGS methods are smaller for multiple-site (MS) 510 

optimisations (MS) than at single sites (SS)., We suggest that smaller difference between GA and BFGS for MS 

optimisations is due to a smoothing of the cost function shape in the MS optimisations given with a greater number 

of observations are included in assimilation. 

 The GA results in a closer approximation of the true posterior parameter value than BFGS with the pseudo-

observation tests, for both the SS and MS experiments. 515 

 When performing the same optimisation with multiple first guesses in parameter space (16 random first guesses), 

For the single-site tests, the spread in posterior cost function minimum value when performing the same tests with 

multiple first guesses in parameter space (16 random first guesses) is much larger for the BFGS than the GA 

methods for SS optimisations, due to the higher likelihood that gradient based methods get stuck in local minima. 

The spread in posterior cost function value from 16 first guesses is  520 

 For the multiple-site tests, the spread in the cost function from 16 first guesses are closer for the MS optimisations, 

although still higher for the BFGS than the GA methods. Again, we suggest this is because the cost function is 

smoother in MS optimisations; therefore, the BFGS algorithm is less likely to get stuck in local minima. 

 With If using the BFGS method, our results suggest that performing the same tests with at least 5 differentseveral 

first guess parameters may ensure a reduction of the cost function that is comparable to the one obtained with 525 

random search GA method. This is important, because running a random search method may be computationally 

unfeasible for some modelling groups; therefore, the BFGS method can be used as a reliable alternative, provided a 

number of first guess parameters are used. 

 The GA results in a closer approximation of the true posterior parameter value than BFGS with the pseudo-

observation tests, for both the SS and MS experiments. 530 

The computing cost of the BFGS and GA algorithms were on average relatively similar, when considering all experiments, 

although slightly higher for the BFGS algorithm. With BFGS, the cost depends at which iteration the convergence criterion 

is met (see section 2.4.2). For the random search GA method, the value of the cost function may be further decreased by 

increasing the number of iterations (currently at 40). We choose a set up for the random search method that led to similar 

computing cost than the gradient-based method, but this could be revised depending on the cost of a single-site model 535 

simulation (currently around 20-30 seconds with ORCHIDEE for one year using one standard processor depending on the 

number of output variables). 

Most of the differences between the BFGS and GA algorithms are related to the shape of the cost function, in part controlled 

by the non-linearity of the model. Our results can thus be extrapolated to other land surface models, provided that they have 

similar complexity and level of non-linearity. With single-siteSS optimisations, we advise to use a random search method –, 540 
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the Genetic Algorithm being just one possibility. If a gradient-based method was is preferred, we strongly recommend 

performing at least several tests (5 or more) withusing different random first guess parameter values. Our study suggests that 

for the chosen model and inversion set up we should use at least 5 tests; however, this number will depend on the model 

complexity and particular set up of the DA experiment (e.g. type and number of observations included in the assimilation). 

With multiple-siteMS optimisations, the use of a gradient-based method is less critical, due to a smoother cost function with 545 

the addition of dataobservations from many sites. In this case, pseudo data experiments, with known true parameter values, 

help to assessing the strength of the method with the selected model and observations.; Tthey reveal how many, and which, 

parameters may are likely to be poorly constrained because of the existence of local minima and/or a broad flat minimum of 

the cost function. Finally, note that with a random search method, we can use more easily any assumption for the probability 

distribution function of the prior observation/parameter uncertainties.  550 

The results obtained in this study with eddy covariance flux measurements are likely to hold with other, site-specific, in situ 

or remote sensing observations (i.e., satellite vegetation activity data, carbon pool measurements, etc.), although similar 

investigations are needed to quantify precisely the differences between methods for other types of observations. On the other 

hand, using global simulations (i.e. all grid cells) is likely to produce smoother cost functions and thus to favour gradient-

based methods, at least from a computational point of view (especially if an adjoint model is available to derive efficiently 555 

the gradient of the cost function with respect to all parameters). This is illustrated in Ziehn et al. (2012) with the assimilation 

of atmospheric CO2 data in BETHY LSM. Additional studies to characterise the level of smoothness of the cost function as a 

function of model complexity, data types, approach (from single-site to global optimisation) would nevertheless be 

beneficial and provide other additional practical guidanceelines to newcomers modelers carrying out DA experiments in 

their choice of parameter optimisation method. 560 

Code availability 

The ORCHIDEE model code and the run environment are open source and available at http://orchidee.ipsl.fr. The tangent 

linear version of the ORCHIDEE model has been generated using commercial software (TAF; 

http://www.fastopt.com/products/taf), thus only the ―forward‖ version of the ORCHIDEE model is available for sharing. The 

optimisation tool is available through a dedicated web site for data assimilation with ORCHIDEE 565 

(http://orchidas.lsce.ipsl.fr). Nevertheless readers interested in running ORCHIDEE and/or optimisation tool are encouraged 

to contact the corresponding author for full details and latest bug fixes. 
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Table 1: List of optimised parameters with description and default model values. 700 

Parameter Description 

Plant functional type* 

Trop 

EBF 

Temp 

ENF 

Temp 

EBF 

Temp 

DBF 

Bor 

ENF 

Bor 

DBF 

C3 

grass 

Photosynthesis        

Vcmax Maximum carboxylation rate (μmol m
–2

 s
–1

) 65 35 45 55 35 45 70 

Gs,slope Slope of the Ball-Berry relationship 9 9 9 9 9 9 9 

cTopt Optimal photosynthesis temperature (ºC) 37 25 32 26 25 25 27.25 

cTmin Minimal photosynthesis temperature (ºC) 2 –4 –3 –2 –4 –4 –3.25 

cTmax Maximal photosynthesis temperature (ºC) 55 38 48 38 38 38 41.13 

Soil water availability        

Fstressh 
Parameter reducing the hydric limitation of 

photosynthesis 
6 6 6 6 6 6 6 

Kwroot 
Parameter describing exponential root profile 

(m
–1

) 
0.8 1 0.8 0.8 1 1 4 

Phenology        

Kpheno,crit 
Parameter controlling the start of growing 

season 
— — — 1 — 1 1 

CTsen 
Offset controlling the start of senescence 

(ºC) 
— — — 12 — 7 — 

LAImax Maximum leaf area index (m
2
 m

–2
) 7 5 5 5 4.5 4.5 4.5 

SLA Specific leaf area (m
2
 g

–1
) 0.0154 0.0093 0.02 0.026 0.0093 0.026 0.026 

Lage_crit Mean critical leaf lifetime (days) 730 910 730 180 910 180 120 

KLAIhappy 
Minimum fraction of LAImax below which 

the carbohydrate reserve is used 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 

τleafinit Time to attain initial foliage (days) 10 10 10 10 10 10 10 

Respirations        

KsoilC 
Multiplicative factor for initial soil carbon 

stocks 
1 (site dependant) 

Q10 
Parameter determining the temperature 

dependency of the heterotrophic respiration 
1.99372 

MRoffset Offset and slope of the linear relationship 

between temperature and maintenance 

respiration 

1 

MRslope 0.12 0.16 0.16 0.16 0.16 0.16 0.16 

KGR 
Fraction of biomass available for growth 

respiration 
0.28 0.28 0.28 0.28 0.28 0.28 0.28 
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Respirations responses on water availability        

HRHa Parameters of the quadratic function 

determining the moisture control of the 

heterotrophic respiration (HR) 

–1.1 

HRHb 2.4 

HRHc –0.29 

HRHmin Minimum value of the HR function 0.25 

Zdecomp 
Scaling depth determining the effect of soil 

water on litter decomposition (m) 
0.2 

Zcrit_litter 
Scaling depth determining the litter 

humidity (m) 
0.08 

Energy balance        

Kz0 Reference rugosity length (m) 0.0625 

Kalbedo_veg Multiplicative factor of vegetation albedo 1 

Krsoil Resistance to bare soil evaporation 3.3 

* TropEBF — tropical evergreen broadleaf forest; TempENF — temperate evergreen needleleaf Forest; TempEBF — 

temperate evergreen broadleaf forest; TempDBF — temperate deciduous broadleaf forest; BorENF — boreal evergreen 

needleleaf forest; BorDBF — boreal deciduous broadleaf forest; C3 grass — C3 grassland. 



25 

 

 

Figure 1: Model–data RMSD for the daily NEE time series at each site grouped by PFT. The prior RMSD values are shown in 705 
grey, followed by the median posterior RMSD values obtained within 16 optimisation tests with random first-guess parameter 

values for each optimisation method. Black horizontal bars show the mean value across the sites for each PFT. 
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Figure 2: Comparison of the performances between the gradient-based and genetic methods in terms of model–data RMSD 

reduction (%) obtained for the daily NEE fluxes. The left panels show the medians across the results obtained within 16 710 
optimisation tests with random first-guess parameter values for each site; the right panels – the spreads between the 5th and 95th 

percentiles (R90) of the same distributions. 
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Figure 3: Model–data RMSD reduction (in %) obtained for the NEE fluxes as a function of the number of runs performed with 

random first guess parameter values (for each configuration, SBFGS, SGenetic, MBFGS and MGenetic). For each number of first guesses 715 
(X-axis) all possible combinations across the 16 optimisation tests (i.e. 16 first-guesses) are considered and the maximum RMSD 

reductions are calculated; the mean of these maximums maxima is reported on the Y-axis. The results are averaged across all sites 

for each configuration. 
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Figure 4: Parameter estimates from a pseudo-data experiment for the temperate deciduous broadleaf forest PFT. Result for the 720 
four different methods: SBFGS (SB), SGenetic (SG), MBFGS (MB) and MGenetic (MG) are displayed: mean value and standard deviation 

across 16 random first guess tests. The thick horizontal purple lines correspond to the “true” parameter values (defined 

randomly); the thin grey horizontal lines correspond to the prior value, which is equal to the default ORCHIDEE model value. 

The vertical axis limits represent the range of parameter variation. 
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 725 

Figure 5: Mean posterior model parameter values for temperate deciduous broadleaf forest PFT. Result for the four different 

methods: SBFGS (SB), SGenetic (SG), MBFGS (MB) and MGenetic (MG) are displayed: mean value and standard deviation across 16 

random first-guess tests. Grey horizontal lines represent prior values, which are equal to the default ORCHIDEE model values. 

The vertical axis limits represent the range of parameter variation. 
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