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Abstract. AHYSPLIT inverse system that is based on variational dagar@kation and a Lagrangian dispersion transfer coeffi-
cient matrix (TCM) is evaluated using the Cross Appalachigter Experiment (CAPTEX) data collected from six conéal
releases. For simplicity, the initial tests are appliedelease 2 for which the HYSPLIT has the best performance.rBéfidro-
ducing model uncertainty terms, the tests using concéortrdtfferences in the cost function results in severe uesténation
while those using logarithm concentrations differencssilts in overestimation of the release rate. Adding modeéttainty
terms improves results for both choices of the metric vée®in the cost function. A cost function normalization soleels
later introduced to avoid spurious minimal source termtsmhs when using logarithm concentration differences. 3tteeme

is effective in eliminating the spurious solutions and siahelps to improve the release estimates for both choidbe ofietric
variables. The tests also show that calculating logaritbntentration differences generally yield better reshitcalculating
concentration differences and the estimates are more trédoua reasonable range of model uncertainty parameteis.igh
further confirmed with nine ensemble HYSPLIT runs in whicht@aeological fields were generated with varying planetary
boundary layer (PBL) schemes. In addition, it is found thatémission estimate using a combined TCM by taking the geera
or median values of the nine TCMs is similar to the median efrime estimates using each of the TCMs individually. The
inverse system is then applied to the other CAPTEX releasihsanfixed set of observational and model uncertainty param-
eters and the largest relative error among the six releases3%. At last, the system is tested for its capability to find a
single source location as well as its source strength. Isetiests, the location and strength that yield the best nhetivheen
the predicted and the observed concentrations are coedidsrthe inverse modeling results. The estimated releteseare
mostly not as good as the cases in which the exact releag®lugare assumed known, but they are all within a factor @ir3 f

all the six releases. However, the estimated location mag lage errors.
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1 Introduction

The transport and dispersion of gaseous and particulaligtaiois are often simulated to generate pollution forectastemer-
gency responses or produce comprehensive analyses ofgshimphetter understanding of the particular events. Liagjemn
particle dispersion models are particularly suited to mewplume products associated with emergency responsarszcen
While accurate air pollutant source terms are crucial forqhantitative predictions, they are rarely provided in meggpli-
cations and have to be approximated with a lot of assumptiemsinstance, the smoke forecasts over the continental U.S
operated by the National Oceanic and Atmospheric Admatisin (NOAA) using the HYSPLIT model (Draxler and Hess,
1997; Stein et al., 2015) in support of the National Air Qyaiorecast Capability (NAQFC) relies on the outdated foabk-
ings data and a series of assumptions related to smokeedleaghts and strength approximation (Rolph et al., 2009).

Observed concentration, deposition, or other functiorth@ftmospheric pollutants such as aerosol optical thekneea-
sured by satellite instruments can be used to estimate sombigation of source location, strength, and temporalgiah
using various source term estimation (STE) methods (Bjeriet al., 2017; Hutchinson et al., 2017). Among the aptitioa,
the recent Fukushima Dai-ichi Nuclear Power Plant accgleatv the most implementations of the STE methods to esti-
mate the radionuclide releases. The STE methods range froptescomparisons between model outputs and measurements
(e.g. Chino et al., 2011; Katata et al., 2012; Terada et @ll22Hirao et al., 2013; Kobayashi et al., 2013; Oza et al1,320
Katata et al., 2015; Achim et al., 2014) to those sophigtitaines using various dispersion models and inverse madelin
schemes (e.g. Stohl et al., 2012; Winiarek et al., 2012; i8aehal., 2013; Winiarek et al., 2014; Chai et al., 2015)otker
active field for STE applications is the estimation of thecawmlic ash emissions. Many attempts have been made for kevera
major volcano eruptions (Wen and Rose, 1994; Prata and G2@dt; Wilkins et al., 2014, 2016; Chai et al., 2017).

While there are many STE methods applied to reconstruct thes@mn terms, it is still a state of art. Two popular advanced
inverse modeling approaches are cost-function-basethiziatiion methods and those based on Bayesian inferences\téow
it is difficult to evaluate the STE without knowing the actaalirces for most applications. Chai et al. (2015) genegzgeddo
observations using the same dispersion model in theialniiverse experiment tests, which are often called “twipezik
ments”. Such tests allow observational errors to be addaibtieally (e.g. Chai et al., 2015), but it is non-trivial tepresent
the model errors incurred by other model parameters sudieasricertainties of the meteorological field. One way to ©bje
tively evaluate the inverse modeling results is to complaeepredictions with the independent observations or withteta.
However, such indirect comparisons still cannot providerditative error statistics for the source terms.

There have been some tracer experiments conducted to sted@grhospheric transport and dispersion with controlled re
leases. In these experiments, the source terms were waitifigd and comprehensive measurements were made subdgque
over an extended area (e.g. Draxler et al., 1991; Van Dop,e1298). With the known source terms, they provide a unique
opportunity to evaluate the STE methods. Singh and Rani4Ratd Singh et al. (2015) used measurements from a recent
dispersion experiment (Fusion Field Trials 2007) data tduate a least-squares technique for identification of atpelease.
The European Tracer Experiment (ETEX) data set were alsbtostudy the STE methods based on the principle of maximum
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entropy and a least squares cost function (Bocquet, 200, ZD08). However, such formal evaluation of the STE method
is still very limited.

A HYSPLIT inverse system based on 4D-Var data assimilatimhatransfer coefficient matrix (TCM) was developed and
applied to estimate cesium-137 source from the Fukushirolgauaccident using air concentration measurements @2 ladi,
2015). The system was further developed to estimate thetiotesolcanic ash release rates as a function of time arghhby
assimilating satellite mass loadings and ash cloud tophteighai et al., 2017). In this study, the Cross Appalachiater
Experiment (CAPTEX) data are used to evaluate the HY SPLV&rse modeling system. The paper is organized as follows.
Section 2 describes the CAPTEX experiment, HYSPLIT modefigaration, and the source term inversion method. Section 3
presents emission inversion results and a summary is givBadtion 4.

2 Method
2.1 CAPTEX experiment

The CAPTEX experiment consisted of seven near-surfacaseseof the inert tracer perfluro-monomethylcyclohexaMR)

from Dayton, Ohio, U.S. and Sudbury, Ontario, Canada dusiegtember and October 1983 (Draxler, 1987). Table 1 lists th
locations, time, amounts, and measurement counts of tlemseleases. Samples were collected at 84 different measute
sites distributed from 300 to 1100 km downwind of the emissiource, as either 3- or 6-hour averages up to 60 hours after
each release. Figure 1 shows the distribution of measuresites and the two source locations. Since there were fevgunea
ments above twice background values for release 6, it wighmbuded from the testing as in the earlier studies using TE2P
data (e.g. Hegarty et al., 2013; Ngan et al., 2015). Note3Hatfl/l has been subtracted from all CAPTEX measurements to
remove background and “noise” in sampling where the amltiaokground concentration is constant at 3.0 fl/l (Ferbek. et a
1986). At ground level, 1 fl/l is equivalent to 1506/m?>. Duplicate sample analyses showed that the majority data n@ean
standard deviation estimated EHs8% but contaminated samples may have standard deviationgesda65% (Ferber et al.,
1986).

2.2 HYSPLIT

In this study, the tracer transport and dispersion are neddesing the HYSPLIT model in its particle mode in which three
dimensional (3D) Lagrangian particles released from thew®location passively follow the wind field (Draxler andgde
1997, 1998; Stein et al., 2015). A particle release rate @i@Dper hour is used for all calculations. Random veloaitypo-
nents based on local stability conditions are added to tleradvection velocity in the three wind component diredidrhe
meteorological data used to drive the HYSPLIT are time-ayed from the Advanced Research WRF model (ARW, version
3.2.1) simulation results at 10-km resolution and they deafical to those used by Hegarty et al. (2013). The 10-knwas
nested inside a larger domain at 30-km resolution, over fvtiie simulation was started using the North American Redion
Reanalysis (NARR) at 32-km (Mesinger et al., 2006). In the WiRRulations, 3D grid nudging of winds was applied in the
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Figure 1. Distribution of the 84 measurement sites and two CAPTEX source locatimgdn, Ohio, U.S. shown as a red diamond, and

Sudbury, Ontario, Canada shown as a green cross).
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Table 1. The locations, time, amounts, and measurement counds, JMf each CAPTEX release from Dayton, Ohio, U.S. and Sudbury,

Ontario, Canada during September and October 1983.

Site (latitude, longitude) Release time Amount | Mgps
Dayton (39.80, -84.05) | 1700-2000Z, Sep. 18, 1983 208 kg 395
Dayton (39.90, -84.22) | 1705-2005Z, Sep. 25, 1983 201 kg | 400
Dayton (39.90, -84.22) | 1900-2200Z, Oct. 02, 1983 201 kg 404
Dayton (39.90, -84.22) | 1600-1900Z, Oct. 14, 1983 199 kg 367
Sudbury (46.62, -80.78) | 0345-0645Z, Oct. 26, 1983 180 kg 357
Dayton (39.90, -84.22) | 1530-1600Z, Oct. 28, 1983 32 kg -
Sudbury (46.62, -80.78) | 0600-0900Z, Oct. 29, 1988 183 kg 358

~N|o|lga|lh~wWw|N|FP|H#H

free troposphere and within the planetary boundary layBL{PThere are 43 vertical layers with the lowest one beingrag-
imately 33 m thick. Tracer concentrations are computed eaeh grid cell by summing the mass of all particles in the cell
and dividing the result by the cell’'s volume. In this studhe toncentration grid cells have 0%2%solution in both latitude and
longitude directions and vertically they extend 100 m frdva ¢jround.

To avoid running the HYSPLIT modeling repeatedly, a TCM iag@ated similar to the previous HYSPLIT inverse modeling
studies (Chai et al., 2015, 2017). As described in DraxldrRolph (2012), independent simulations are performed avithit
emission rate from each source location and a pre-definedldggment. Each release scenario is simply a linear coridinat

of the unit emission runs.
2.3 Emission Inversion

Similar to Chai et al. (2015), the unknown releases can heddly minimizing a cost functional that integrates theati#hces
between model predictions and observations, deviatiotBeofinal solution from the first guesa priori), as well as other

relevant information written into penalty terms (Daley913. For the current application, the cost functiofails defined as,

M N ) 2 M 2 N-1 . . b - b . . b
1 (Qz qz“ 1 21 Csm (%—1, - qz‘fl7 ) -2 (Qz —q; ) + (Q1+1, —q; 1, )
F=32 2" 52 D e L
i=1j=1 l] n=1 =2 ¢

whereg;; is the discretized source term at hawand location; for which an independent HYSPLIT simulation has been
run and recorded in a TCM] is the first guess oa priori estimate andr is the corresponding error variance. Note that
all tracer sources in this study were at ground level and ¢hease helghts in the HYSPLIT were set as 10 m for all the
following test cases. We also assume the uncertaintieeotthase at each time-location are independent of eachsauttleat
only the diagonal term of the typicalpriori error varlancey appears in Equation " andc® denote HYSPLIT-predicted
and measured concentrations, respectively. The obsmnmterror&fn are assumed to be uncorrelated. As the tefms
essentially used to weiglit” — c,)? terms, the uncertainties of the model predictions and theegentative errors should be
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included besides the observational uncertainties. THisoeifurther discussed in Section 3.2. The last term is a $hmass
penalty to make the modified minimization problem betterditoned (Lin et al., 2002)q. is a scale constant and may be
combined withey,, to adjust the smoothness term. In this study, the smootipesaty is turned off by setting,,, as zero.

A large-scale bound-constrained limited-memory quasifda code, L-BFGS-B (Zhu et al., 1997) is used to minimize the
cost functionalF defined in Equation 1 when multiple parameters need to berdeted. As shown by Chai et al. (2015), the
metric variable can be changed from concentration to Itiyarconcentration. Both choices of metric variable will bsted
here.

3 Results
3.1 Recovering emission strength without model uncertairyt

As an initial test, the exact release location and time até bssumed known and the only unknown variable left to be
determined is the release rate, or the total release amBonthis type of one-dimensional problem, an optimal eroissi
strength can be easily found without having to use sophigtt minimization routines. For instance, themay be directly
calculated for a number of emission strength values andethdtingF = F(¢) plot will reveal the optimal; strength that is
associated with the minima. Note that such an optimal solution not only depends on tlosex parameters in Equation 1,
but also highly depends on the HYSPLIT model setup and theonelbgical fields.

Both Hegarty et al. (2013) and Ngan et al. (2015) showed HeaHtY SPLIT dispersion model performed better for Release
2 than the other releases. Thus Release 2 is initially chimsparform a series of inverse modeling tests. Assuming i pr
knowledge of the emission strength, the first guess is gigefi & 0, ando = 10* kg/hr is assumed. Sensitivity tests show
that wheng® is changed to 10@¢/hr the emission strength estimates are nearly unchangedhwitseime or larger.

Firstly, the observational uncertainties are formulatedihtlude a fractional componerff x ¢° and an additive par°.
No model uncertainties are considered to contribute T@ble 2 lists the emission strengthihat generates the minimal cost
function for a series of° anda® combinations, wherg? ranges fromi0% to 50%, anda® is assigned as 10, 20, and 50
pg/m?>. All the emission strength values obtained are signifigaiotiver than the actual release of &y/hr. It shows that
a larger f° value tends to have a smallgrestimate, but a larger® results in a largey. The significant underestimation of
the release strength is caused by the implicit assumptienpefifect model wheadoes not include the model uncertainties.
Figure 2 shows the comparison between the predicted anduneelbsoncentrations when the actual release rate dtg/hr
is applied. Large discrepancies still exist even when tleeEselease is known and used in the simulation. For the medsu
zero concentrations, most of the predicted values are som-and can be above 1099/m?>. As e,, = a° for these zero
concentrationsfcﬁlE_fj")2 will dominate the cost function whei? is not large enough. This explains that the underestimation
is not as severe far° =50pg/m? as that for® =10pg/m3. While ¢ do not change witlf° for the zero concentrations, smaller
f¢ values help increase the weighting of the teﬁ%:%:’i)2 associated with large measured concentrations. So, tineedst!

emission strength wheff = 10% is better than whepf"’ =50%.
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Figure 2. Comparison between the predicted and measured concentrationddas®e during the CAPTEX experiment. In the HYSPLIT
simulation, at the exact release location, an emission rate df§/Ar was applied from 17Z to 20Z on September 25, 1983. A constant 1

pg/m? is added to both predicted and measured concentrations to allow logarittutatan.
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As stated in Chai et al. (2015), the metric variable in Ecprati can be changed fa(c), i.e. replacing(c?, —c2,) with
In(ch)—In(c,). A constand.001 pg/m? is added to bothk”, andc?, to allow the logarithm operation for zero concentrations.
In such a case:” can be calculated as

o

@ = tn(1+ f+ ) @

m

Note that).001 pg/m? is also added te2, in the second term to avoid dividing by zero. Tge term in Equation 2 makeg;
larger for measured low concentrations than those meakigkaoncentrations, thus malzLes the measured zero coatiensr
have little effect in the final emission strength estimaledle 3 shows that the emission strengths are overestifraiedre
within a factor of 2 over the actual release of &¢/hr, for all f° anda® combinations. The similar trends of haepchanges
with f° anda® are also observed here, i.e., a largeor a smallerf° tends to have a larggrestimate.

Table 2. Emission strength of release 2 that minimizédor different observational errors, definedas f° x ¢° 4+ a°. Concentration is

used as the metric variable.

Emission kg/hr) | a® =10pg/m?> | a® =20pg/m> | a® =50pg/m®
f°=10% 7.1 11.1 17.4
f°=20% 4.1 7.1 12.6
f°=30% 2.9 5.2 10.0
f°=50% 1.8 3.4 7.1

Table 3. Emission strength of release 2 that minimizeédor different observational errors, definedeas f° x ¢+ a°. Logarithm concen-

tration is chosen as the metric variable, (&, — ¢2,) in Equation 1 is replaced with(c?,) — In(c%,).

Emission kg/hr) | a® =10pg/m?> | a® =20pg/m? | a® =50pg/m®
f°=10% 115.2 119.8 124.7
o =20% 106.3 112.9 119.8
f°=30% 101.2 108.5 116.3
f°=50% 94.4 101.2 109.6

While using logarithm concentration as the metric varialigddg better emission estimates than using concentratiohea
metric variable, the results in Table 3 are apparently syatieally overestimated, comparing to the systematiaatigeresti-
mated results in Table 2. In addition, tlfié¢ anda® combinations associated with the best emission estimatéstiles 2 and
3 appear to be in the opposite corners of the tables.
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3.2 Recovering emission strength with model uncertainty
To consider the model uncertainties in a simplified waywill be formulated as
em = (f*x e, +a®)? + (f" x cp, +a")? €)

As a° anda” affect thee? in a similar way, the representative errors caused by cangpére measurements with the predicted
concentrations averaged in a grid can be included in either a°.

With logarithm concentration as the metric varialcﬁ%(c))2 is comprised of two parts, as

(ln(c) 2 _ o io 2 h ﬁ 2
em )" = (L O+ )7+ (14 f* + )] 4)

m m

Note that a constant small numk601 pg/m? is added to denominator§, andc”, to avoid dividing by zero.
Using concentration and logarithm concentration as theicmeariable, respectively, Tables 4 and 5 show the emission
strength estimates with differeyfit anda”, while keepingf°® = 20%, a® =20pg/m?. It should be noted that the model uncer-

tainties are not equivalent to model errors. Although disjpe model simulations can have large errors due to varieasons
including the source term uncertainties, the model uncei¢s are used to indicate that the model is not perfect extmthe
“optimal” model parameters. Similar to weak constraintlegzpin operational 4D-Var data assimilation systems (Zigbé
1997; Tremolet, 2006), introducing model uncertaintiannly intended to relax the model constraint for imperfacdels.
Here thef” anda” parameters are given similar ranges as those given to tleevai®nal uncertainty parameters.

When concentration is used as the metric variable, the emisgtrength estimates with model uncertainties considered
are improved over those without model uncertainties. Thienases of emission strength generally increases with thdain
uncertainty, either through” or f" except forf" = 50%, when theqg estimates slowly decreases with. When f" = 0%,

a" =10, 20, and50 pg/m? while a°=20 pg/m?, theq estimates, 7.7, 9.1, and 13kg/hr, are inline with the results shown in
Table 2, wherey = 7.1 kg/hr for a®°=20 pg/m? andq = 12.6 kg/hr for a°=50 pg/m?>. However, the trend of how estimates
change withf" is opposite to how; estimates change witfi°. Table 4 shows that the emission strength increases with the
model uncertainty factof”. With " = 20%, the release estimates of 48.5, 50.4, and 58¢3hr are all within30% of the
actual release rate of 6%g/hr. Instead of underestimation shown in Table 2, the releaimates are overestimated when
= 50% is assumed.

With logarithm concentration as the metric variable, large or f” results in slightly smalle estimates. While howy
estimates change witfi" is similar to how they change witfi* in Table 3, howq estimates change with is opposite to
how ¢ estimates change witif before introducing model uncertainties. Equation 4 shdwas t° and f" af'fect(eﬁlf(c))2 in
a simple monotonic way, while the effect af, is complicated as it is divided by th&, value that varies with the source
terms. Table 5 shows that the source terms are no longerstiveated as those in Table 3. In fact, all cases have slight to
moderate underestimation, with the worst results beirgi2.6 kg/hr when f* = 50% anda” =50 pg/m?. Another aspect
of using logarithm concentration as the metric variabléé& the range of the release estimates are not as large asuiog

concentration as the metric variable.
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Table 4. Emission strength of release 2 that minimizesfor different f* anda”. Concentration is taken as the metric variabfe=
(Foxc®+a°)? + (f" x " +a™)% f°=20%, a® =20 pg/m>.

Emission gg/hr) | a" =10pg/m® | a" =20pg/m?® | a" =50pg/m?>
ff=o0 7.7 9.1 13.6

" =10% 15.9 22.1 32.9

" =20% 48.5 50.4 53.5
f=50% 114.0 111.8 104.3

Table 5. Emission strength of release 2 that minimizésor different f* anda”. Logarithm concentration is taken as the metric variable.

h

(e N2 = [In(1+ £+ 22 + [In(1 + " + 222, £ =20%, a® =20pg/m®.

o h
Cm Cm

Emission gg/hr) | a" =10pg/m® | a" =20pg/m? | a" =50pg/m?>
=0 64.7 58.5 53.5

" =10% 61.5 55.7 49.4

" =20% 58.5 53.0 46.6

" =50% 55.1 49.4 42.6

3.3 Cost function normalization

Without model uncertainties, the weighting terms for eaddet-observation pair do not change with emission estisnate
Whene2, and(ef;”(“))2 are formulated as in Equations 3 and 4, respectively, thgywdh emission estimates. This may cause
complication in some circumstances when logarithm comagah is used as the metric variable. Figure 3 shows the cost
function as a function of source strength wieli'“)2 is defined as in Equation 4, with = 0, a”* =50 pg/m?, f° = 10%,

a® =20pg/m3. Before introducing cost function normalization, a globahimal cost function appears when release strength
approaches zero while a local minimal cost function exists6a8 kg/hr. Several such instances were found wiaén=

50 pg/m? and whenf” is 0 or10%, while both f° anda® are relatively small. The smaller cost function when retesteength
approaches zero is due to the increas{i(ﬁ,é(c))2 in Equation 4 as”, gets smaller. While the model-observation differences
are not smaller for lower release strength, the drasticass of(eﬁlf(c))Q whena” = 50 pg/m?3 and f" is 0 or10% results in
smaller cost function with decreasing source strength.vbidahaving zero source as a global minimizer in such situnasti

the total weighted mismatch between model simulation aisgéations is normalized by the total weights wign= q,ﬁ’j, as

shown in Equation 5.

10
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Figure 3 shows that the cost function has the minimum at @467/ /r after normalization. Note that the dramatic difference

of the cost function magnitude before and after the norratiin is due to the extreme small value)f,, b — calculated at
q» = 0. Tables 6 and 7 show the emission strength estimates afefwwtion normalization with dlfferery{ﬁ anda”, while

keepingf° = 20%, a® =20pg/m?, using concentration and logarithm concentration as theieneariables, respectively. Note
that f° = 20% was chosen for the cases listed in Table 7, wifite= 10% was chosen in Figure 3 to illustrate the potential
problem. How estimates change with anda” in Tables 6 and 7 is similar to what is shown in Tables 4 and & dstimates
are generally closer to the actual release than those ebtaiithout the cost function normalization.

When having concentration as the metric variable and With= 50%, the emission strength estimates are 64.7, 64.7, and
65.3kg/hr for a"=10, 20, 50pg/m?, respectively. They are all within 5% of the actual releaste.rHoweverf" less than
or equal ta20% results in significant underestimation. When having loganitoncentration as the metric variable, the source
term estimates are not very sensitivefto anda” values and the results listed in Table 7 are all with20§: of the actual
release rate. Among those estimates, a result of&7/8r when f* = 10% anda"=10pg/m? is almost identical to the actual
release rate.

Table 6. Emission strength of release 2 that minimizes normaliZedefined in Equation 5 for different” anda”. Concentration is taken
as the metric variable? = (f° x ¢® +a°)? + (f" x " + a")?. f° = 20%, a® =20pg/m>.

Emission kg/hr) | o™ =10pg/m* | " =20pg/m® | a" =50pg/m?>
=0 7.7 9.1 13.6
fr=10% 10.9 15.1 26.4

1 =20% 32.9 35.6 41.3
f=50% 64.7 64.7 65.3

3.4 Ensemble

Ngan and Stein (2017) simulated CAPTEX releases using atyast planetary boundary layer (PBL) schemes. In their con-
figuration, WRF version 3.5.1 was used with 27-km grid spaeind 33 vertical layers. The NARR data set was used for the
initial conditions and lateral boundary conditions. The WiRBdel was initialized every day at 0600 UTC, and the first 18
hours of spin-up time in the 42-hour simulation were disedrdrhe PBL schemes used to create the WRF ensemble were
the Yonsei University (Hong et al., 2006, YSU)), Mellor-Yada-Janijic (Janjic, 1994, MYJ), Quasi-Normal Scale Elation
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=

= Before normalization //
= ——— After normalization

Cost function

Ol

1 10° 10°
Source Strength (kg/hr)

Figure 3. Cost function as a function of source strength Whéﬁ(c))Q is defined as in Equation 4 before and after cost function normaliza-
tion, with f* =0, a" =50pg/m?, f° = 10%, anda® =20 pg/m>.
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Table 7.Emission strength of release 2 that minimizes normaliZattfined in Equation 5 for different” anda”. Logarithm concentration
is taken as the metric variablgl, ‘)% = [In(1+ f° + )2 + [In(1 + f" + j,—f’)]?. [0 =20%, a® =20pg/m?.

Emission kg/hr) | o™ =10pg/m* | " =20pg/m® | a" =50pg/m?
fh=o0 69.3 64.0 62.1

" =10% 67.3 63.4 60.9
fh=20% 65.3 61.5 59.1
f=50% 61.5 58.0 55.1

(Pergaud et al., 2009, QNSE), MYNN 2.5 level TKE (Nakanistd &liino, 2006, MYNN), ACM2 (Pleim, 2007, ACM2),
Bougeault and Lacarrere (Bougeault and Lacarrere, 198aL&zx), University of Washington (Bretherton and Park, 2009
UW), Total energy mass flux (Angevine et al., 2010, TEMF), amdr&r Bretherton MaCaa (Grenier and Bretherton, 2001,
GBM) schemes. Nine simulations were conducted with the P@lemses and their associated surface layer schemes, except
for the YSU, BoulLac, UW, and GBM cases in which the MM5 Monibt®hov surface scheme was applied. The land-surface
model was Noah land-surface model (Chen and Dudhia, 20@&¢pe ACM2 case in which Pleim-Xiu land-surface model
was used.

An individual TCM is generated using each of the nine siniaket. The nine TCMs can be used to estimate the emission
strengths independently following the same procedure ssritbed previously. Tables 8 and 9 show the 3rd (25th pefegnt
5th (median), and 7th (75th percentile) emission strenftime nine estimates that minimize the normalizEddefined in
Equation 5 with differenff” anda”, while keepingf® = 20%, a® =20 pg/m?, using concentration and logarithm concentra-
tion as the metric variables, respectively. The 25th pdileeand 75th percentile values are mostly withify of the median
estimates. While the median estimates show the same trettiig*vanda” as the results in Tables 6 and 7, they are signif-
icantly larger due to the meteorological model differendgsparently the differences among the simulations witledént
PBL schemes are smaller than the differences between tleenbies simulations here and the simulation used in the earlie
sections. This suggests that uncertainties of the emissiength are probably larger than the ranges indicatedeég%th and
75th percentile values. The results using logarithm coimagaon as the metric variable are quite robust with theetisnodel
uncertainty parameters. However, the estimates usingeotration as the metric variable are very sensitivgt@anda”. This
is consistent with results shown in Sections 3.2 and 3.3.

Instead of using each individual TCM generated from nineutitions independently, the nine TCMs can be combined
into one matrix by taking the median or average values. Tiebomed TCM can then be used to estimate the source terms.
The results for concentration and logarithm concentrati@tric variables are listed in Tables 10 and 11, respeytildiey
show that the emission estimate using the median transédficgents of the nine TCMs are very close to the median of the
nine estimates using the nine simulations individually. the cases with logarithm concentration as the metric labgjahe
emission estimates using the median value of the nine TCBlalawithin 3.1% of the median values of the nine estimates
obtained with each individual TCM. For the cases with comadion as the metric variable, the average relative difiees
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are6.4%, with the maximum relative difference being.8% when f* = 10% anda”=50 pg/m?3. Combining the TCMs by
taking the median value generates slightly better reshdts tombining the TCMs by taking the average value does.

Similar to what was found in earlier sections and also in @hai. (2015), the cases having logarithm concentration as
the metric variable generally yield better results tharséhbaving concentration as the metric variable. It is prijbdbe to
the large range of the concentrations. When having condemtras the metric variable, certain model uncertainty peaters
yield good source terms, but the estimates are quite semsitithe choices of the model uncertainty parameters. Hexvev
it is not easy to find such model uncertainty parameters tioaldwield satisfactory results for applications when theial
releases are indeed unknown. The results here and in thepsesections show that the estimates when having logarithm
concentration as the metric variable are quite robust feaagnable range of model uncertainty parameters. Forithasens,
logarithm concentration is chosen as the metric variabl¢hi later tests.

Table 8. The 3rd (25th percentile), 5th (median), and 7th (75th percentile) emissiength of nine simulations of release 2 that minimizes
the normalizedF defined in Equation 5 for different” anda”. Concentration is taken as the metric variabfe= (f° x c® +a°)? + (f" x
a2 fo =20%, a® =20pg/m?.

Emission kg/hr) | o =10pg/m® | o™ =20pg/m® | a" =50pg/m?
fh=o0 6.0,7.0,7.2 7.4,8.8,8.8| 13.4,15.1,15.3
" =10% 20.0,21.0,21.9| 23.9, 26.1, 27.2| 33.2,35.2,37.4
1 =20% 48.5,49.9,59.1| 53.0,54.6, 62.8 58.5, 62.8, 68.6
' =50% 191, 205, 274| 186, 197,258| 158, 168, 207

Table 9. The 3rd (25th percentile), 5th (median), and 7th (75th percentile) emissiength of nine simulations of release 2 that minimizes
normalizedF defined in Equation 5 for different” anda”. Logarithm concentration is taken as the metric varia(:ﬂ’é.(c))2 =[in(l1+
PO EOP (1 + "+ 20))2. f° =20%, a® =20pg/m®.

Emission gg/hr) | a" =10pg/m> | a" =20pg/m® | a" =50pg/m>
=0 102, 106, 113] 93.4, 100, 105| 83.8, 88.9,97.2
fr=10% 97.2, 102, 108| 88.9,96.3, 101 80.5,85.4,94.4
f=20% 93.4,98.2,105| 86.3,92.5,98.2 78.1,82.9,91.6
f=50% 88.9,93.4, 101 82.9, 88.0,94.4| 75.8,81.3,87.2

3.5 Source location and other releases

In addition to the source strength, the source location &demporal variation can be retrieved with adequate acgura
using the HYSPLIT inverse system described here if theresafficient measurements available. For instance, Chai et al
(2015) estimated 99 6-hr emission rates of the radionu€@egum-137 from the Fukushima nuclear accident using 128% d
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Table 10. Emission strength estimates by using average and median value of ninatginaifor release 2. The cost function is normalized
F as in Equation 5. Concentration is taken as the metric variable.(f° x ¢® + a®)? + (f" x ¢ +a")2. f° =20%, a® =20pg/m>.

Emission kg/hr) | o™ =10pg/m?* | a" =20pg/m® | a" =50pg/m?
fh=o0 72,75 8.9,9.1 15.6, 15.9
' =10% 22.3,23.4 22.2,28.0 37.0,37.0
I =20% 55.1, 53.0 59.7,58.0 66.6, 64.7
' =50% 213, 227 205, 213 178,177

Table 11. Emission strength estimates by using average and median value of ninatgimsifor release 2. The cost function is normalized
N2 £ =20%,

ol

JF asin Equation 5. Logarithm concentration is taken as the metric var(afj]éc.))2 =[In(1+f°+ %)]2—% [In(1+f"+

h
Cm

a® =20pg/m>.

Emission kg/hr) | o™ =10pg/m?* | a" =20pg/m® | a" =50pg/m?>
ff=o0 115,108 105, 100 95.3,90.7
fr=10% 110, 103 100, 95.3 91.6, 87.2
' =20% 105, 100 97.2,92.5 88.9,854
1 =50% 100, 96.3 93.4,88.9 86.3,82.1

average air concentration measurements at 115 statiomsditioe globe. Here the system’s capability to locate a sisglrce
location will be tested using a straightforward approanhihkese tests, the release time is assumed known, but it®loead
strength are left to be determined. A region of suspect isdiidded at certain spatial resolution to form a limited fugmof
candidate source locations. An optimal strength is thendat each candidate source location following the methsdriteed
earlier. The location that results in the best match betvieempredicted and the observed concentrations is consdidearéhe
likely source location.

In the following tests, a 1211 grid with 0.2° resolution in both longitude and latitude directions isdis® generate 121
candidate source locations. They are centered at {M0.84.5W) for releases 1-4, and centered at (46L680.8°W) for
releases 5 and 7. Using the normalizEdiefined in Equation 5 and assumiyfigg= 20%, a® =20 pg/m?, f"* = 20%, anda”
=20pg/m?, a minimal cost function associated with an optimal relesisength can be found at each location. Figure 4 shows
the 121 candidate locations and their respective minimst ftmction values for release 2. No candidate locationglaosen
to collocate with the actual source location which will bé&known for the future applications that need to locate thecasi
A global minimal point is found at (39°®, 84.5"), with F,,.;,, = 3.14 achieved when g48.5 kg/hr. This grid point is taken as
the estimated source location and it is 26.4 km away from¢hesérelease site (39.98, 84.22W). The neighboring location
(39.8N, 84.3W) which is the closest to the actual release site yields atbjitarger’F = 3.17 with an optimal release rate of
60.9 kg/hr. If the exact source location is known as in the testsg@mted earlier, the cost functighreaches 1.59 at its minimal
point wheng = 61.5 kg/hr. Apparently, compared with those cases when theselsi@ength is the only unknown, finding both
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the source location and its strength with the same amourtissreations is expected to be more difficult. Note that thallem
normalizedF values in Figure 3 are for a case with different observatimhraodel uncertainty parameters, whe¢fe= 10%,
a® =20pg/m3, f* = 0%, anda” =50 pg/m?>.

Table 12 lists the source location and strength estimafionthe six releases following the same procedure as destrib
here, where the uncertainty parametersffre- 20%, a® =20 pg/m?, f* = 20%, anda” =20pg/m?. Releases 1 and 4 have
the minimal cost functior#,,;,, occur at the north boundary and the west boundary, respéctin such scenarios, it might
be necessary to expand the suspected source region fotttine &pplications to find the source locations. Howeveifrse
locations are known to reside in the suspected region, tiness can definitely be near the boundaries. In such casgsoitit
with F,,.;.. should be considered as the estimated source locationageale3, 5, and 7 have i5,,;,, occurred at inner grid
points, similar to release 2 shown in Figure 4. None of theeb candidate source locations yield the best match betwee
model simulation and observations quantified by the cositfon 7. Among the six releases, the estimated source location for
release 2 is the closest to its actual release site, withtandis of 26.4 km.

The release rates obtained along with the likely sourcetiloes are underestimated by a factor of 3 for release 1, and
overestimated by a factor of 3 for releases 4 and 7, while stienates for releases 2, 3, and 5 are much better, withvelati
errors as-27.6%, —5.4%, and21.5%, respectively. Table 12 also lists the release rates ethveth the exact source location
assumed known. These estimates for all releases are wifdihca of two compared with the actual release rates andtigest
relative error i53.3% for release 1. Either with the source location known or umkmaelease 2 has one of the best emission
estimates among the six releases, probably because thelHY#Pward model has the best performance for the sameselea
(Hegarty et al., 2013). The significant model errors wherugiting the transport and dispersion even with the exaatcgou
terms are mostly caused by the meteorological uncertaintigle the HYSPLIT physical schemes and parameters, asawell
the numerical discretization also contribute.

The meteorological field and the observations are the twomni@puts to the current inverse modeling. As discussedebov
better model performance of release 2 helps to lead to hetterse results than the other releases. However, it is $giple
to eliminate the model uncertainties. In practice, ensemiohs can be used to quantify the uncertainties and redacadbdel
errors by taking the average or median values of the ensemntde On the other hand, increasing the number of obsengtio
is effective to improve the inverse modeling results andicedhe result uncertainty. In principle, when the releasmgth is
the only value to be determined, each measurement withiprédicted plume can provide an independent estimate. Hawev
relying on a single observation to estimate the strengthrablpmatic since a particular model output can be very ifie
from the observation and thus leading to an erroneous e#imaf the source strength when used in isolation. For imsa
although the HYSPLIT predictions of release 2 with exacteeterms are very good, compared with individual measunésne
it has severe underestimation, 0;77/m?> predicted versus 686g/m?> measured, as well as significant overestimation, 2033
pg/m? predicted versus 3142y/m? measured. Therefore, similar to a regression techniquegaising the sampling number
can improve the final results, as exemplified by the very gootce term estimation for release 2 when using all the availa
measurements. Also note that the samples outside preditigtes do not contribute to the inverse modeling. Tablets lis
the total measurement counts for each release, but the muhbeeasurements actually contributing to the inverse rilogle
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are those inside the HYSPLIT plumes, including those witlo & background concentrations. The number of such effecti

measurements inside the plumes generated by HYSPLIT fremthct source location and time period are reduced to 148,

237,211, 68, 46, and 53, for releases 1-5, and 7, respegcfived largest number of effective measurements, 237, eésel

2, also indicates the best performance of the HYSPLIT sitimiiaamong those of the six releases. The effectiveness of

the measurements will change when source location or eleéa® is changed. The measurements that are not active in

determining the source strength with a known source looatia release time may be effective to locate the sourcedosat

Table 12.The source location (latitude, longitude) and releaseqgate identified by the minimal normalized cost functidn,.., for each

CAPTEX release. A total of 121 candidate locations are prescribeddthresolution in both longitude and latitude directions, centered
at (40.0N, 84.5W) for releases 1-4, and at (468, 80.8 W) for releases 5 and 7 is the distance between the point wif.;,, and the
actual release sit@’ is the estimated release rate by assuming that the actual release locatiowiis Kor all the cased,” = 20%, a® =20

pg/m?, f' = 20%, anda” =20 pg/m®.

‘ ‘ Source location (latitude, Iongitude+) A(km) ‘

Release rate (kg/hr)

# Actual Estimated Actual | gmin q
1| 39.8¢,-84.05 41.0°,-83.9 134.2 69.3 23.9 | 106.3
2 | 39.90,-84.22 39.8’,-84.5 26.4 67.0| 48.5 61.5
3 | 39.90,-84.22 40.8°,-85.3 135.8 67.0 63.4 | 41.7
4 | 39.90,-84.22 40.2,-85.5 114.1 66.3 | 185.7| 75.1
5 | 46.62,-80.78 46.2,-81.C 49.7 60.0 729 | 42.6
7 | 46.62,-80.78 47.4,-81.2 92.5 61.0 | 201.0| 66.0

4  Summary

A HYSPLIT inverse system developed to estimate the soumte parameters has been evaluated using the CAPTEX data

collected from six controlled releases. In the HYSPLIT mseesystem, a cost function is used to measure the diffesence

between model predictions and observations weighted bglibervational uncertainties. Inverse modeling tests vatious

observational uncertainties show that calculating cotmagan differences results in severe underestimatiorenddlculating

logarithm concentrations differences results in ovengatiion. Introducing model uncertainty terms improves igeeresults

for both choices of the metric variables in the cost functiois also found that cost function normalization can aspdrious

minimal source terms when using logarithm concentratioasnetric variable. The inverse tests show that havingitga

concentration as the metric variable generally yieldsebe#sults than having concentration as the metric varidiile esti-

mates having logarithm concentration as the metric vagiate robust for a reasonable range of model uncertaintyrjaeas.

Such conclusions are further confirmed with nine ensemlris where meteorological fields were generated using a €lifter

version of WRF meteorological model with varying PBL schemes
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Figure 4. Distribution of 121 candidate source locations for release 2. The minimsafanction at each location associated with an optimal

release strength is indicated by color. The cost function defined in Equaticalculated withf® = 20%, a® =20pg/m?, f* = 20%, and

a" =20pg/m?. The actual source location , Dayton, Ohio, U.S., is shown as a recbdim
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With a fixed set of observational and model uncertainty patars, the inverse method with logarithm concentratiomas t
metric variable is then applied to all the six releases. Thession rates are well recovered with the largest relativeras
53.3% for release 1. The system is later tested for its capabditp¢ate a single source location as well as its source dtieng
The location and strength that result in the best match kestilee predicted and the observed concentrations are evedids
the inverse results. The estimated location is close todhmbrelease site for release 2 of which the forward HY SRhbdel
has the best performance. The strength estimates are lithwaifactor of 3 for the six releases.

Code and data availability. The HYSPLIT model is publicly available at https://www.ready.noaa.g¥8HLIT.php. The CAPTEX data

can be downloaded from https://www.arl.noaa.gov/wp_arl/wp-contdnddp/documents/datem/exp_data/captex/.
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