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Abstract. A HYSPLIT-4 inverse system that is based on variational daimilation and a Lagrangian dispersion transfer
coefficient matrix (TCM) is evaluated using the Cross Apphlan Tracer Experiment (CAPTEX) data collected from six
controlled releases. For simplicity, the initial tests applied to release 2 for which the HYSPLIT has the best peréoice.
Before introducing model uncertainty terms that will changith source estimates, the tests using concentratioereiftes

in the cost function results in severe underestimationewhibse using logarithm concentrations differences resulbveres-
timation of the release rate. Adding model uncertainty teimproves results for both choices of the metric variabhethé
cost function. A cost function normalization scheme isrl@&&oduced to avoid spurious minimal source term soligismen
using logarithm concentration differences. The schemdfésteve in eliminating the spurious solutions and it alsads to
improve the release estimates for both choices of the meriables. The tests also show that calculating logaritbnten-
tration differences generally yield better results thaleudating concentration differences and the estimatesrame robust
for a reasonable range of model uncertainty parameters.ighirther confirmed with nine ensemble HYSPLIT runs in vahic
meteorological fields were generated with varying plarebaundary layer (PBL) schemes. In addition, it is found tifnet
emission estimate using a combined TCM by taking the avesagedian values of the nine TCMs is similar to the median of
the nine estimates using each of the TCMs individually. Tiveiise system is then applied to the other CAPTEX releagés wi
a fixed set of observational and model uncertainty parameted the largest relative error among the six releasgs.38%.

At last, the system is tested for its capability to find a stngpurce location as well as its source strength. In thets ths
location and strength that yield the best match between thdigied and the observed concentrations are considertbe as
inverse modeling results. The estimated release rates@tynmot as good as the cases in which the exact releaséolosat
are assumed known, but they are all within a factor of 3 fothaIsix releases. However, the estimated location may laage |

errors.
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1 Introduction

The transport and dispersion of gaseous and particulaligtgiois are often simulated to generate pollution forecfastemer-
gency responses or produce comprehensive analyses ofgshimphetter understanding of the particular events. Liagjemn
particle dispersion models are particularly suited to mewplume products associated with emergency responsarscen
While accurate air pollutant source terms are crucial forghantitative predictions, they are rarely provided in meggpli-
cations and have to be approximated with a lot of assumptiemsinstance, the smoke forecasts over the continental U.S
operated by the National Oceanic and Atmospheric Admatistin (NOAA) using the HYSPLIT model (Draxler and Hess,
1997; Stein et al., 2015) in support of the National Air Qyaiorecast Capability (NAQFC) relies on the outdated foabk-
ings data and a series of assumptions related to smokeedieaghts and strength approximation (Rolph et al., 2009).

Observed concentration, deposition, or other functiorth@ftmospheric pollutants such as aerosol optical thekneea-
sured by satellite instruments can be used to estimate sombigation of source location, strength, and temporalwgiah
using various source term estimation (STE) methods (Bjeriet al., 2017; Hutchinson et al., 2017). Among the aptitioa,
the recent Fukushima Dai-ichi Nuclear Power Plant accgleatv the most implementations of the STE methods to esti-
mate the radionuclide releases. The STE methods range froplescomparisons between model outputs and measurements
(e.g. Chino et al., 2011; Katata et al., 2012; Terada et @ll22Hirao et al., 2013; Kobayashi et al., 2013; Oza et al,320
Katata et al., 2015; Achim et al., 2014) to those sophigtitaines using various dispersion models and inverse madelin
schemes (e.g. Stohl et al., 2012; Winiarek et al., 2012; i8aehal., 2013; Winiarek et al., 2014; Chai et al., 2015)otker
active field for STE applications is the estimation of thecawlic ash emissions. Many attempts have been made for kevera
major volcano eruptions (Wen and Rose, 1994; Prata and G2@d1; Wilkins et al., 2014, 2016; Chai et al., 2017).

While there are many STE methods applied to reconstruct thes@mn terms, it is still a state of art. Two popular advanced
inverse modeling approaches are cost-function-basethiziatiion methods and those based on Bayesian inferences\téow
it is difficult to evaluate the STE without knowing the actaalirces for most applications. Chai et al. (2015) genegzgeddo
observations using the same dispersion model in theialniverse experiment tests, which are often called “twipezik
ments”. Such tests allow observational errors to be adddibtieally (e.g. Chai et al., 2015), but it is non-trivial tepresent
the model errors incurred by other model parameters sudieasricertainties of the meteorological field. One way to ©bje
tively evaluate the inverse modeling results is to complaeepredictions with the independent observations or withteta.
However, such indirect comparisons still cannot providerditative error statistics for the source terms.

There have been some tracer experiments conducted to steidrhospheric transport and dispersion with controlled re
leases. In these experiments, the source terms were waitifiad and comprehensive measurements were made subdgque
over an extended area (e.g. Draxler et al., 1991; Van Dop,e1298). With the known source terms, they provide a unique
opportunity to evaluate the STE methods. Singh and Rani4Ratd Singh et al. (2015) used measurements from a recent
dispersion experiment (Fusion Field Trials 2007) data tduate a least-squares technique for identification of atpelease.
The European Tracer Experiment (ETEX) data set were alsbtostudy the STE methods based on the principle of maximum
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entropy and a least squares cost function (Bocquet, 200, ZD08). However, such formal evaluation of the STE method
is still very limited.

A HYSPLIT inverse system based on 4D-Var data assimilatimhatransfer coefficient matrix (TCM) was developed and
applied to estimate cesium-137 source from the Fukushirolgauaccident using air concentration measurements @2 ladi,
2015). The system was further developed to estimate thetiwtevolcanic ash release rates as a function of time arghhei
by assimilating satellite mass loadings and ash cloud toghtee (Chai et al., 2017). In this study, the Cross Appalachi
Tracer Experiment (CAPTEX) data are used to evaluate theLYBinverse modeling system. The paper is organized as
follows. Section 2 describes the CAPTEX experiment, HY SPAmodel configuration, and the source term inversion neetho
Section 3 presents emission inversion results and a sunimgien in Section 4.

2 Method
2.1 CAPTEX experiment

The CAPTEX experiment consisted of seven near-surfacaseseof the inert tracer perfluro-monomethylcyclohexaMR)

from Dayton, Ohio, U.S. and Sudbury, Ontario, Canada dusiegtember and October 1983 (Draxler, 1987). Table 1 lists th
locations, time, amounts, and measurement counts of tlemseleases. Samples were collected at 84 different measute
sites distributed from 300 to 1100 km downwind of the emissiource, as either 3- or 6-hour averages up to 60 hours after
each release. Figure 1 shows the distribution of measuresites and the two source locations. Since there were fevgunea
ments above twice background values for release 6, it wightmbuded from the testing as in the earlier studies using TE2P
data (e.g. Hegarty et al., 2013; Ngan et al., 2015). Note3Hatfl/l has been subtracted from all CAPTEX measurements to
remove background and “noise” in sampling where the amltiaokground concentration is constant at 3.0 fl/l (Ferbek. et a
1986). At ground level, 1 fl/l is equivalent to 15,6/m?>. Duplicate sample analyses showed that the majority data n@ean
standard deviation estimated H&8% but contaminated samples may have standard deviationgesda6é5% (Ferber et al.,
1986).

2.2 HYSPLIT

In this study, the tracer transport and dispersion are neodesing the HYSPLIT model (Version 4) in its particle mode
in which three-dimensional (3D) Lagrangian particles askd from the source location passively follow the wind field
(Draxler and Hess, 1997, 1998; Stein et al., 2015). A partielease rate of 50,000 per hour is used for all calculatiRas-
dom velocity components based on local stability cond#iane added to the mean advection velocity in the three wind
component directions. The meteorological data used tedhe HYSPLIT are time-averaged from the Advanced Research
WRF model (ARW, version 3.2.1) simulation results at 10-kisotetion and they are identical to those used by Hegarty. et al
(2013). The 10-km run was nested inside a larger domain &h80esolution, over which the simulation was started usieg t
North American Regional Reanalysis (NARR) at 32-km (Mesiref al., 2006). In the WRF simulations, 3D grid nudging of
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Figure 1. Distribution of the 84 measurement sites and two CAPTEX source locatimgdn, Ohio, U.S. shown as a red diamond, and
Sudbury, Ontario, Canada shown as a green cross).
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Table 1. The locations, time, amounts, and measurement courgs JMf each CAPTEX release from Dayton, Ohio, U.S. and Sudbury,
Ontario, Canada during September and October 1983.

Site (latitude, longitude) Release time Amount | Mgps
Dayton (39.80, -84.05) | 1700-2000Z, Sep. 18, 1983 208 kg 395
Dayton (39.90, -84.22) | 1705-2005Z, Sep. 25, 1983 201 kg | 400
Dayton (39.90, -84.22) | 1900-2200Z, Oct. 02, 1983 201 kg 404
Dayton (39.90, -84.22) | 1600-1900Z, Oct. 14, 1983 199 kg 367
Sudbury (46.62, -80.78) | 0345-0645Z, Oct. 26, 1983 180 kg 357
Dayton (39.90, -84.22) | 1530-1600Z, Oct. 28, 1983 32 kg -
Sudbury (46.62, -80.78) | 0600-0900Z, Oct. 29, 1988 183 kg 358

~N|lo|la|lb~wWw|N|FP|H#H

winds was applied in the free troposphere and within thegikay boundary layer (PBL). There are 43 vertical layer$wit
the lowest one being approximately 33 m thick. Tracer cotmaéions are computed over each grid cell by summing the mass
of all particles in the cell and dividing the result by thelsebolume. In this study, the concentration grid cells h&va3
resolution in both latitude and longitude directions andigeally they extend 100 m from the ground.

To avoid running the HYSPLIT modeling repeatedly, a TCM iag@ted similar to the previous HYSPLIT inverse modeling
studies (Chai et al., 2015, 2017). As described in DraxldrRolph (2012), independent simulations are performed avithit
emission rate from each source location and a pre-definelgggment. Each release scenario is simply a linear coridinat

of the unit emission runs.
2.3 Emission Inversion

Similar to Chai et al. (2015), the unknown releases can heddly minimizing a cost functional that integrates theatiéhces
between model predictions and observations, deviatiotBeofinal solution from the first guesa priori), as well as other

relevant information written into penalty terms (Daley913. For the current application, the cost functiofails defined as,

M
ZZ S ?” %Z )

i=1j=1
whereg;; is the discretized source term at hawand location; for which an independent HYSPLIT simulation has been
run and recorded in a TCMI is the first guess oa priori estimate anajr2 is the corresponding error variance. Note that
all tracer sources in this study were at ground level and ¢hease heights in the HYSPLIT were set as 10 m for all the
following test cases. We also assume the uncertaintieseofdlease at each time-location are independent of each sihe
that only the diagonal term of the typicalpriori error variance;fj appears in Equation " andc® denote HYSPLIT-
predicted and measured concentrations, respectively.obkervational errors?, are assumed to be uncorrelated. As the
term ¢2, is essentially used to weiglit” — 2 )? terms, the uncertainties of the model predictions and tpeegentative
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errors should be included besides the observational wicges. This will be further discussed in Section 3.2. Ay&ascale
bound-constrained limited-memory quasi-Newton code HGB-B (Zhu et al., 1997) is used to minimize the cost funetion
F defined in Equation 1 when multiple parameters need to berdieted. As shown by Chai et al. (2015), the metric variable
can be changed from concentration to logarithm conceatraBoth choices of metric variable will be tested here. Nba#

the cases presented in this study are all formulated asd®termined problems.

3 Results
3.1 Recovering emission strength without model uncertairyt

As an initial test, the exact release location and time até bssumed known and the only unknown variable left to be
determined is the release rate, or the total release ambanthis type of one-dimensional problem, an optimal eroissi
strength can be easily found without having to use sophisttt minimization routines. For instance, themay be directly
calculated for a number of emission strength values andethdting.F = F(¢) plot will reveal the optimal; strength that is
associated with the minim&. Note that such an optimal solution not only depends on tlesen parameters in Equation 1,
but also highly depends on the HYSPLIT model setup and theonelbgical fields.

Both Hegarty et al. (2013) and Ngan et al. (2015) showed HeattY SPLIT dispersion model performed better for Release
2 than the other releases. Thus Release 2 is initially chimsparform a series of inverse modeling tests. Assuming i pr
knowledge of the emission strength, the first guess is gisefi & 0, ando = 10* kg/hr is assumed. Sensitivity tests show
that wheny® is changed to 10@¢g/hr the emission strength estimates are nearly unchangedhwitseime or larger.

Firstly, no model uncertainties are considered to conteilboic. The observational uncertainties are formulated to irelad
fractional componenf?® x ¢® and an additive part®. Note that this general formulation is chosen for its siwipli It should
be replaced when more uncertainty information is availabdle 2 lists the emission strengihhat generates the minimal
cost function for a series gf° anda® combinations, wherg® ranges froml.0% to 50%, anda?® is assigned as 10, 20, and 50
pg/m3. All the emission strength values obtained are signifigaliotiver than the actual release of & /hr. It shows that
a larger f° value tends to have a smallgrestimate, but a larget® results in a largeg. The significant underestimation of
the release strength is caused by the implicit assumptienpefifect model wheadoes not include the model uncertainties.
Figure 2 shows the comparison between the predicted anduneglbsoncentrations when the actual release rate dt@/hr
is applied. Large discrepancies still exist even when tteeeselease is known and used in the simulation. For the megsu
zero concentrations, most of the predicted values are aom-and can be above 109Q/m3. As ¢,, = a° for these zero
concentrationsfclﬂll;fcgﬂ)2 will dominate the cost function wheif is not large enough. This explains that the underestimation
is not as severe fmgL:SOpg/m?’ as that for® =10pg/m?3. While e do not change witlf° for the zero concentrations, smaller
f¢ values help increase the weighting of the terﬁ%;:ﬁ associated with large measured concentrations. So, tineststl
emission strength wheff = 10% is better than wherfi® = 50%.

As stated in Chai et al. (2015), the metric variable in Equratl can be changed fa(c), i.e. replacing(c?, —c2,) with
In(ch)—In(c,). A constand.001 pg/m? is added to both”, andc?, to allow the logarithm operation for zero concentrations.
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Figure 2. Comparison between the predicted and measured concentrationddas®e during the CAPTEX experiment. In the HYSPLIT
simulation, at the exact release location, an emission rate df§/Ar was applied from 17Z to 20Z on September 25, 1983. A constant 1

pg/m? is added to both predicted and measured concentrations to allow logarittutatan.



In such a casee,lrﬁ(c) can be calculated as

) =tn(1+ f°+ ) @)

m
Note that).001 pg/m? is also added te?, in the second term to avoid dividing by zero. Tffe term in Equation 2 maked;
larger for measured low concentrations than those measighdconcentrations. It causeg more weighting towards ureds

5 high concentrations and results in overestimation shovifable 3. The measured zero concentrations have littletafféhe
final emission strength estimates. Table 3 shows that thesémni strengths are overestimated, but are within a fat®ower
the actual release of 6%g/hr, for all f° anda® combinations. The similar trends of hapchanges withf° anda® are also

observed here, i.e., a larget or a smallerf° tends to have a largerestimate.

Table 2. Emission strength of release 2 that minimizEdor different observational errors, definedas f° x ¢° 4+ a°. Concentration is

used as the metric variable.

Emission kg/hr) | a® =10pg/m?® | a® =20pg/m>® | a° =50pg/m*
f°=10% 7.1 11.1 17.4
7o =20% 4.1 7.1 12.6
f°=30% 2.9 5.2 10.0
£ =50% 18 3.4 7.1

Table 3. Emission strength of release 2 that minimiZédor different observational errors, definedeas f° x ¢+ a°. Logarithm concen-
tration is chosen as the metric variable, (€, — c,) in Equation 1 is replaced withu(cl’,) — In(c3,).

Emission kg/hr) | a® =10pg/m?® | a® =20pg/m® | a® =50pg/m*
f°=10% 115.2 119.8 124.7
7o =20% 106.3 112.9 119.8
f°=30% 101.2 108.5 116.3
f°=50% 94.4 101.2 109.6

While using logarithm concentration as the metric varialiddg better emission estimates than using concentratiohea
10 metric variable, the results in Table 3 are apparently syatieally overestimated, comparing to the systematiaatigeresti-
mated results in Table 2. In addition, tlié¢ anda® combinations associated with the best emission estimatéshles 2 and

3 appear to be in the opposite corners of the tables.
3.2 Recovering emission strength with model uncertainty

To consider the model uncertainties in a simplified waywill be formulated as

15 €0, =(f" x5, +a°)*+(f" xcf +a")? )
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As a° anda” affect thee? in a similar way, the representative errors caused by cangpére measurements with the predicted
concentrations averaged in a grid can be included in either a°.
With logarithm concentration as the metric variatﬂé;‘(c))2 is comprised of two parts, as
h

(m)2 = [In(1+ fo+ L2 1 [tn(1+ "+ 22 ()

m m

Note that a constant small numke601 pg/m? is added to denominator§, andc”, to avoid dividing by zero.

Since the predicted concentratioefs in Equations 3 and 4 will vary when source term estimates @hathe model un-
certainties will depend on the current release paramelérss the model uncertainty terms are not static during therge
modeling and they change along with the source estimateagldencentration and logarithm concentration as the metri
variable, respectively, Tables 4 and 5 show the emissiemgth estimates with differerf* anda”, while keepingf® = 20%,
a® =20pg/m?>. Additional tests with other chosefif anda® values show similar but slightly different results. Fonbtg they
are not presented here. It should be noted that the modettaimties are not equivalent to model errors. Although €lisfpn
model simulations can have large errors due to various nsdaoluding the source term uncertainties, the model uaicgies
are used to indicate that the model is not perfect even wiHidptimal” model parameters. Similar to weak constrairylezol
in operational 4D-Var data assimilation systems (Zupari®k®7; Tremolet, 2006), introducing model uncertaint&emainly
intended to relax the model constraint for imperfect madetre thef anda” parameters are given similar ranges as those
given to the observational uncertainty parameters.

When concentration is used as the metric variable, the emnisgrength estimates with model uncertainties considered
are improved over those without model uncertainties. Thienages of emission strength generally increases with thdah
uncertainty, either through” or f* except forf" = 50%, when theq estimates slowly decreases with. When f"* = 0%,

a" =10, 20, and50 pg/m? while a°=20 pg/m?, theq estimates, 7.7, 9.1, and 13kg/hr, are inline with the results shown in
Table 2, wherey = 7.1 kg/hr for a°=20 pg/m? andq = 12.6 kg/hr for a°=50 pg/m>. However, the trend of how estimates
change withf" is opposite to how; estimates change witfi°. Table 4 shows that the emission strength increases with the
model uncertainty factof”. With " = 20%, the release estimates of 48.5, 50.4, and 5843hr are all within30% of the
actual release rate of 6%.g/hr. Instead of underestimation shown in Table 2, the releasmaes are overestimated when
" =50% is assumed.

With logarithm concentration as the metric variable, large or f” results in slightly smalle estimates. While howy
estimates change witfi" is similar to how they change witfi* in Table 3, howg estimates change with* is opposite to
how ¢ estimates change wittf before introducing model uncertainties. Equation 4 shdasf° and f" af“l‘ect(eﬁ,’nf(c))2 ina
simple monotonic way, while the effect of, is complicated as it is divided by thé, value that varies with the source terms.
Table 5 shows that the source terms are no longer overestinaatthose in Table 3. In fact, all cases have slight to mtalera
underestimation, with the worst results beipg- 42.6 kg/hr when f* = 50% anda” =50 pg/m?>. Another aspect of using
logarithm concentration as the metric variable is that #mge of the release estimates listed in Table 5 are not asdarthose

in Table 4 resulted from using concentration as the metri@kie for the same 12 combinations@f and f".
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Table 4. Emission strength of release 2 that minimizEsfor different f* anda”. Concentration is taken as the metric varialafe=
(Ffoxc®+a°)? + (f" x " +a™)% f°=20%, a® =20pg/m>.

Emission gg/hr) | a" =10pg/m® | a" =20pg/m?® | a" =50pg/m?>
ff=o0 7.7 9.1 13.6

" =10% 15.9 22.1 32.9

' =20% 48.5 50.4 53.5
f=50% 114.0 111.8 104.3

Table 5. Emission strength of release 2 that minimizesor different f* anda”. Logarithm concentration is taken as the metric variable.

()2 = [In(L+ f2+ 202+ [In(L+ " + &0)J2. f2 = 20%, a° =20pg/m*.

h
Cm

Emission gg/hr) | a" =10pg/m® | a" =20pg/m? | a" =50pg/m?>
=0 64.7 58.5 53.5

" =10% 61.5 55.7 49.4

" =20% 58.5 53.0 46.6

" =50% 55.1 49.4 42.6

3.3 Cost function normalization

Without model uncertainties, the weighting terms for eaddet-observation pair do not change with emission estisnate
Whene2, and(eff{’(c))2 are formulated as in Equations 3 and 4, respectively, thgywdh emission estimates. This may cause
complication in some circumstances when logarithm comagan is used as the metric variable. To avoid having zeuncso

as a global minimizer in such situations, the sum of the wsighthe mismatch between model simulation and obsengtion

is kept unchanged for varying; by normalizing it with the weight sum whep; = qu, as shown in Equation 5.

y M
M N h o )2 Zm:l E?},,z

1 (Qi‘fq?’y 1 - m —_ “m
f25227]03j3 +§Z(C ezc

S
i=1j=1 m=1 m m=1 €2,

®)

Figure 3 shows the cost function as a function of source gthewhen(eiﬁ(”))2 is defined as in Equation 4, witfl* = 0, a”
=50pg/m?3, f° = 10%, a® =20pg/m3. Before introducing cost function normalization, a glotv@himal cost function appears
when release strength approaches zero while a local mimiosaifunction exists at 56.8¢/hr. Several such instances were
found whena” = 50 pg/m? and whenf" is 0 or 10%, while both f° anda® are relatively small. The smaller cost function
when release strength approaches zero is due to the irnuye{aféfi(c))2 in Equation 4 ag gets smaller. While the model-
observation differences are not smaller for lower relea®mngth, the drastic increase @ﬁﬁ(c))Q whena = 50 pg/m? and

f"is 0 or10% results in smaller cost function with decreasing souraangfih.

10



105 B /
otk /
. /_
c 10 g
O -
O i
S 10°L Before normalization //
= - —— After normalization
"(7') B
@) i /
O 10°E /
10" \‘\\\\\\\__,,,,//’/////’
10'1 | Ll 1 1] | Ll L 1]/ | Ll 111 ]] | Ll L 1]/

||
10° 10" 10° 10° 10*

Source Strength (kg/hr)

Figure 3. Cost function as a function of source strength Whéﬁ(c))Q is defined as in Equation 4 before and after cost function normaliza-
tion, with f* =0, a" =50pg/m?, f° = 10%, anda® =20 pg/m>.

11



10

Figure 3 shows that the cost function has the minimum at @467/ /r after normalization. Note that the dramatic difference
of the cost function magnitude before and after the norratitin is due to the extreme small value)f,, _, 6%2 calculated at
q» = 0. Tables 6 and 7 show the emission strength estimates afefwwtion normalization with differery{z anda”, while
keepingf© = 20%, a® =20pg/m?, using concentration and logarithm concentration as theieneariables, respectively. Note
that f° = 20% was chosen for the cases listed in Table 7, wifite= 10% was chosen in Figure 3 to illustrate the potential
problem. How estimates change with anda” in Tables 6 and 7 is similar to what is shown in Tables 4 and & &stimates
are generally closer to the actual release than those eltaiithout the cost function normalization.

When having concentration as the metric variable and With= 50%, the emission strength estimates are 64.7, 64.7, and
65.3kg/hr for a"=10, 20, 50pg/m?, respectively. They are all within 5% of the actual release.rHowever,f" less than
or equal ta20% results in significant underestimation. When having loganitoncentration as the metric variable, the source
term estimates are not very sensitivefto anda” values and the results listed in Table 7 are all with20§: of the actual
release rate. Among those estimates, a result of&7/8r when f* = 10% anda"=10pg/m? is almost identical to the actual
release rate.

Table 6. Emission strength of release 2 that minimizes normaliZedifined in Equation 5 for different” anda”. Concentration is taken
as the metric variable? = (f° x ¢® +a°)? + (f" x " +a")2. f° = 20%, a® =20pg/m>.

Emission kg/hr) | o™ =10pg/m* | " =20pg/m® | a" =50pg/m?>
=0 7.7 9.1 13.6

" =10% 10.9 15.1 26.4

" =20% 32.9 35.6 41.3

i =50% 64.7 64.7 65.3

Table 7.Emission strength of release 2 that minimizes normaliZatefined in Equation 5 for differenft” anda”. Logarithm concentration
is taken as the metric variablgel, ‘)% = [In(1+ f° + %)) + [In(1 + f" + fTh)]Q. [0 =20%, a® =20pg/m?.

Emission kg/hr) | o™ =10pg/m* | a" =20pg/m® | a" =50pg/m?
fh=o0 69.3 64.0 62.1

" =10% 67.3 63.4 60.9
' =20% 65.3 61.5 59.1

i =50% 61.5 58.0 55.1

12



10

15

20

25

30

3.4 Ensemble

Ngan and Stein (2017) simulated CAPTEX releases using atyast planetary boundary layer (PBL) schemes. In their con-
figuration, WRF version 3.5.1 was used with 27-km grid spaeing 33 vertical layers. The NARR data set was used for the
initial conditions and lateral boundary conditions. The WiRBdel was initialized every day at 0600 UTC, and the first 18
hours of spin-up time in the 42-hour simulation were disedrdlrhe PBL schemes used to create the WRF ensemble were
the Yonsei University (Hong et al., 2006, YSU)), Mellor-Yada-Janjic (Janjic, 1994, MYJ), Quasi-Normal Scale Elation
(Pergaud et al., 2009, QNSE), MYNN 2.5 level TKE (Nakanisid &liino, 2006, MYNN), ACM2 (Pleim, 2007, ACM2),
Bougeault and Lacarrere (Bougeault and Lacarrére, 198al.&x), University of Washington (Bretherton and Park, 2009
UW), Total energy mass flux (Angevine et al., 2010, TEMF), amdr@&r Bretherton MaCaa (Grenier and Bretherton, 2001,
GBM) schemes. Nine simulations were conducted with the R&leses and their associated surface layer schemes, except
for the YSU, BoulLac, UW, and GBM cases in which the MM5 Monibt®hov surface scheme was applied. The land-surface
model was Noah land-surface model (Chen and Dudhia, 20@&¢pe ACM2 case in which Pleim-Xiu land-surface model
was used.

An individual TCM is generated using each of the nine simalet. The nine TCMs can be used to estimate the emission
strengths independently following the same procedure saritbed previously. Tables 8 and 9 show the 3rd (25th peitegnt
5th (median), and 7th (75th percentile) emission strenftfhe nine estimates that minimize the normalizEddefined in
Equation 5 with differentf” anda”, while keepingf® = 20%, a® =20 pg/m?, using concentration and logarithm concentra-
tion as the metric variables, respectively. The 25th pdileeand 75th percentile values are mostly withir of the median
estimates. While the median estimates show the same trettigfvanda” as the results in Tables 6 and 7, they are signif-
icantly larger due to the meteorological model differendggparently the differences among the simulations witlfiegént
PBL schemes are smaller than the differences between tleenbies simulations here and the simulation used in the earlie
sections. This suggests that uncertainties of the emissiength are probably larger than the ranges indicatedé®%th and
75th percentile values. The results using logarithm comagon as the metric variable are quite robust with theetisnodel
uncertainty parameters. However, the estimates usingeotration as the metric variable are very sensitivgt@nda”. This
is consistent with results shown in Sections 3.2 and 3.3.

Instead of using each individual TCM generated from nineusitions independently, the nine TCMs can be combined
into one matrix by taking the median or average values. Tinebomed TCM can then be used to estimate the source terms.
The results for concentration and logarithm concentrati@tric variables are listed in Tables 10 and 11, respeygtildiey
show that the emission estimate using the median transédfidents of the nine TCMs are very close to the median of the
nine estimates using the nine simulations individually. #he cases with logarithm concentration as the metric kbejehe
emission estimates using the median value of the nine TCk¥Ialawithin 3.1% of the median values of the nine estimates
obtained with each individual TCM. For the cases with com@dion as the metric variable, the average relative difiees
are6.4%, with the maximum relative difference being.8% when f* = 10% anda”=50 pg/m?3. Combining the TCMs by
taking the median value generates slightly better reshdts tombining the TCMs by taking the average value does.
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Similar to what was found in earlier sections and also in @hai. (2015), the cases having logarithm concentration as
the metric variable generally yield better results thars¢éhbaving concentration as the metric variable. It is prbdbe to
the large range of the concentrations. When having condamtras the metric variable, certain model uncertainty petars
yield good source terms, but the estimates are quite sensitithe choices of the model uncertainty parameters. Hexvev
it is not easy to find such model uncertainty parameters tloaldwield satisfactory results for applications when theual
releases are indeed unknown. The results here and in theopsesections show that the estimates when having logarithm
concentration as the metric variable are quite robust feaaagnable range of model uncertainty parameters. For thasens,
logarithm concentration is chosen as the metric variabléi® later tests.

Table 8. The 3rd (25th percentile), 5th (median), and 7th (75th percentile) emisgiength of nine simulations of release 2 that minimizes
the normalizedF defined in Equation 5 for different” anda”. Concentration is taken as the metric variabfe= (f° x ¢® +a°)? + (f" x
" a™)? fo =20%, a® =20pg/m?.

Emission kg/hr) | a" =10pg/m® | a" =20pg/m® | a" =50pg/m?>
=0 6.0,7.0,7.2 7.4,8.8,8.8| 134,15.1,15.3
fr=10% 20.0,21.0,21.9| 23.9,26.1, 27.2| 33.2,35.2,37.4
" =20% 48.5, 49.9,59.1| 53.0, 54.6, 62.8| 58.5, 62.8, 68.6)
" =50% 191, 205, 274| 186, 197, 258| 158, 168, 207

Table 9. The 3rd (25th percentile), 5th (median), and 7th (75th percentile) emisgiength of nine simulations of release 2 that minimizes
normalizedF defined in Equation 5 for different” anda”. Logarithm concentration is taken as the metric varia(aslléf.(c>)2 =[In(1+
£+ SN2 4 [In(1+ f7 4 202, £ = 20%, a® =20 pg/m®.

Emission kg/hr) | o™ =10pg/m® | a" =20pg/m® | o =50pg/m®
=0 102, 106, 113| 93.4, 100, 105| 83.8, 88.9, 97.2
f=10% 97.2,102,108| 88.9,96.3, 101 80.5,85.4,94.4
" =20% 93.4,98.2, 105| 86.3,92.5,98.2| 78.1, 82.9, 91.6
1 =50% 88.9,93.4,101] 82.9,88.0,94.4 75.8,81.3,87.2

3.5 Source location and other releases

In addition to the source strength, the source location &demporal variation can be retrieved with adequate acgura
using the HYSPLIT inverse system described here if theresafiicient measurements available. For instance, Chai et al
(2015) estimated 99 6-hr emission rates of the radionu€lieigum-137 from the Fukushima nuclear accident using 128% d
average air concentration measurements at 115 statiomsditioe globe. Here the system’s capability to locate a sisglrce
location will be tested using a straightforward approantthese tests, the release time is assumed known, but itoloead
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Table 10. Emission strength estimates by using average and median value of nidatsmaufor release 2. The cost function is normalized
F as in Equation 5. Concentration is taken as the metric variable.(f° x ¢® +a®)? + (f" x ¢ +a")?. f° =20%, a® =20pg/m>.

Emission kg/hr) | o™ =10pg/m* | " =20pg/m® | a" =50pg/m?>
ff=o0 72,75 8.9,9.1 15.6, 15.9
" =10% 22.3,23.4 22.2,28.0 37.0,37.0
" =20% 55.1, 53.0 59.7,58.0 66.6, 64.7
fr=50% 213, 227 205, 213 178, 177

Table 11. Emission strength estimates by using average and median value of niratgimifor release 2. The cost function is normalized
F asin Equation 5. Logarithm concentration is taken as the metric var(afj}léc.))2 =[In(1+f°+ %)]2+ [In(14 f" 4+ 22, £ = 20%,

ol

h
Cm

a® =20pg/m>.

Emission kg/hr) | o™ =10pg/m?* | a" =20pg/m® | a" =50pg/m?>
ff=o0 115,108 105, 100 95.3,90.7
fr=10% 110, 103 100, 95.3 91.6, 87.2
" =20% 105, 100 97.2,92.5 88.9,85.4
1 =50% 100, 96.3 93.4,88.9 86.3,82.1

strength are left to be determined. A region of suspect isdiidded at certain spatial resolution to form a limited fogmof
candidate source locations. An optimal strength is thendai each candidate source location following the methsdrieed
earlier. The location that results in the best match betwieemredicted and the observed concentrations is considaréhe
likely source location.

In the following tests, a 111 grid with0.2° resolution in both longitude and latitude directions isdig® generate 121
candidate source locations. They are centered at (M0.84.5W) for releases 1-4, and centered at (46L680.8°W) for
releases 5 and 7. Using the normalizEdiefined in Equation 5 and assumifigg= 20%, a® =20 pg/m3, f* = 20%, anda”
=20pg/m?, a minimal cost function associated with an optimal relesissngth can be found at each location. When logarithm
concentration is taken as the metric variable, the emissitimates are not sensitive f6 anda” choices, as indicated by the
results in Tables 7, 9, and 11. Figure 4 shows the 121 cardioledtions and their respective minimal cost function galfor
release 2. No candidate locations are chosen to colloc#tethva actual source location which will be unknown for theufe
applications that need to locate the sources. A global nahpoint is found at (39.8N, 84.5), with F,,,;,, = 3.14 achieved
when g=18.5 kg/hr. This grid point is taken as the estimated source locand it is 26.4 km away from the actual release site
(39.90'N, 84.22W). The neighboring location (398!, 84.3W) which is the closest to the actual release site yields atlig
largerF = 3.17 with an optimal release rate 60.9 kg/hr. If the exact source location is known as in the tess@nted earlier,
the cost functionF reaches 1.59 at its minimal point when= 61.5 kg/hr. Apparently, compared with those cases when the
release strength is the only unknown, finding both the sdoagion and its strength with the same amount of obsemsii®
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expected to be more difficult. Note that the smaller norneali# values in Figure 3 are for a case with different observation
and model uncertainty parameters, whgte= 10%, a® =20 pg/m?, f* = 0%, anda” =50pg/m?.

Table 12 lists the source location and strength estimafionthe six releases following the same procedure as destrib
here, where the uncertainty parametersfre- 20%, a® =20 pg/m?, f* = 20%, anda" =20 pg/m?. Releases 1 and 4 have
the minimal cost functior¥,,;,, occur at the north boundary and the west boundary, respéctin such scenarios, it might
be necessary to expand the suspected source region forttine &pplications to find the source locations. Howeveifrse
locations are known to reside in the suspected region, tiness can definitely be near the boundaries. In such casgsoiit
with F,,.;,, should be considered as the estimated source locationageasle, 5, and 7 have if5,,;,, occurred at inner grid
points, similar to release 2 shown in Figure 4. None of theadb candidate source locations yield the best match betwee
model simulation and observations quantified by the cogttfan 7. Among the six releases, the estimated source location for
release 2 is the closest to its actual release site, withtantis of 26.4 km.

The release rates obtained along with the likely sourcetilmts are underestimated by a factor of 3 for release 1, and
overestimated by a factor of 3 for releases 4 and 7, while stienates for releases 2, 3, and 5 are much better, withvelati
errors as—27.6%, —5.4%, and21.5%, respectively. Table 12 also lists the release ratesstimated with the exact source
location assumed known. These estimates for all releasesitirin a factor of two compared with the actual releasesrated
the largest relative error i$3.3% for release 1. The posterior uncertainties of the releaseastimates, are also calculated
and listed. They range from 1.8 kg/hr for release 2 to 6.2 kfphrelease 1. The apparent underestimation is likely due t
the model uncertainty assumption, including its simplifi@anulation as well as the chosen parameter values. Eithbrtiae
source location known or unknown, release 2 has one of thesh@ssion estimates among the six releases, probably $ecau
the HYSPLIT forward model has the best performance for theeseelease (Hegarty et al., 2013). The significant model
errors when simulating the transport and dispersion evémtive exact source terms are mostly caused by the mete@allog
uncertainties while the HYSPLIT physical schemes and paters, as well as the numerical discretization also carnttib

An assumption made in this inverse modeling algorithm istthedifferences between model and observation have a horma
distribution with a zero mean. Figure 5 shows the probabdinsity function (pdf) ofn(c") — In(c®) for the six CAPTEX
releases using the estimated releaseq/dtsted in Table 12. The pdf distribution &f (c) —In(c°) for Release 2 is consistent
with the normal distribution assumption, and the pdf fordsk 4 shows the largest deviation from a normal distributio
while those for the other four releases resembles normildition to some extent. The largest relative error foreRek 1 is
likely related to the negative mean of the{c") — In(c®) distribution shown in Figure 5. The overestimatégrobably results
from the compensation of the model bias. Note that the bpétigormance usingn(c”) —In(c®) thanc” — ¢° is believed to be
caused by the fact that normal distribution assumption isttp@alid for the former but probably invalid for the latter

The meteorological field and the observations are the twomni@puts to the current inverse modeling. As discussed@bov
better model performance of release 2 helps to lead to betterse results than the other releases. However, it is $siple
to eliminate the model uncertainties. In practice, ensemiohs can be used to quantify the uncertainties and redacaddel
errors by taking the average or median values of the ensemnide On the other hand, increasing the number of obsengtio
is effective to improve the inverse modeling results andicedhe result uncertainty. In principle, when the releasmngth is
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the only value to be determined, each measurement withipredicted plume can provide an independent estimate. Hawev
relying on a single observation to estimate the strengthrablpmatic since a particular model output can be very wdffe
from the observation and thus leading to an erroneous d#imaf the source strength when used in isolation. For imsta
although the HYSPLIT predictions of release 2 with exactseterms are very good, compared with individual measunésne

it has severe underestimation, 0;77/m? predicted versus 686g/m? measured, as well as significant overestimation, 2033
pg/m? predicted versus 3142y/m? measured. Therefore, similar to a regression techniquegaising the sampling number
can improve the final results, as exemplified by the very gootce term estimation for release 2 when using all the availa
measurements. Also note that the samples outside preditigtes do not contribute to the inverse modeling. Tablets lis
the total measurement counts for each release, but the mwhireasurements actually contributing to the inverse riogle
are those inside the HYSPLIT plumes, including those witlo z# background concentrations. The number of such effecti
measurements inside the plumes generated by HYSPLIT fremexthct source location and time period are reduced to 148,
237, 211, 68, 46, and 53, for releases 1-5, and 7, respegciived largest number of effective measurements, 237, eésel

2, also indicates the best performance of the HYSPLIT sittmilaamong those of the six releases. The effectiveness of
the measurements will change when source location or eléa® is changed. The measurements that are not active in

determining the source strength with a known source looaia release time may be effective to locate the sourceidosat

Table 12. The source location (latitude, longitude) and release ¢ate, identified by the minimal normalized cost functicf,,.., for
each CAPTEX release. A total of 121 candidate locations are presanilted).2° resolution in both longitude and latitude directions,
centered at (40°W, 84.5 W) for releases 1-4, and at (4618, 80.8 W) for releases 5 and 7 is the distance between the point with,;,,
and the actual release sitg.is the estimated release rate by assuming that the actual release locatiowis & is calculated using

1 _ 1 M 1
@7 = e T

m=1 T a e wherec'?() is obtained using Equation 4. For all the cas@s= 20%, a® =20pg/m?, f* = 20%,
q')% X (em
anda” =20pg/m?®. Logarithm concentration is taken as the metric variable.

’ ‘ Source location (latitude, Iongitud#) A(km) ‘ Release rate (kg/hr) ‘
# Actual Estimated Actual | gmin qd | ey
1 | 39.80,-84.05 41.0°,-83.9 134.2 69.3| 239 106.3| 6.2
2 | 39.90,-84.22 39.8°,-84.5° 26.4 67.0| 485| 615| 1.8
3| 39.90, -84.22 40.8,-85.3 135.8 67.0| 63.4| 41.7| 26
4 | 39.90, -84.22 40.2,-85.5 114.1 66.3 | 185.7| 75.1| 4.6
5 | 46.62,-80.78 46.2,-81.0 49.7 60.0| 729 | 426 | 3.0
7 | 46.62,-80.78 47.4,-81.2 92.5 61.0 | 201.0| 66.0| 3.9
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Figure 4. Distribution of 121 candidate source locations for release 2. The minimsafanction at each location associated with an optimal
release strength is indicated by color. The cost function defined in Equaticalculated withf® = 20%, a® =20pg/m?, f* = 20%, and
a" =20pg/m?. The actual source location , Dayton, Ohio, U.S., is shown as a recbdihm
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4  Summary

A HYSPLIT inverse system developed to estimate the soumte parameters has been evaluated using the CAPTEX data
collected from six controlled releases. In the HYSPLIT mseesystem, a cost function is used to measure the diffesence
between model predictions and observations weighted bglibervational uncertainties. Inverse modeling tests vatious
observational uncertainties show that calculating cotmagan differences results in severe underestimatiorenddlculating
logarithm concentrations differences results in ovengstion.

Unlike other STE applications where model uncertaintiesegther ignored or assumed static, we introduce the model un
certainty terms that depend on the source term estimatesmnolel uncertainty terms improve inverse results for bbtiices
of the metric variables in the cost function. It is also fouhdt cost function normalization can avoid spurious milisoarce
terms when using logarithm concentration as the metri@iéei The inverse tests show that having logarithm conagotras
the metric variable generally yields better results thanraconcentration as the metric variable. The estimatespdoga-
rithm concentration as the metric variable are robust f@e@onable range of model uncertainty parameters. Suchusmts
are further confirmed with nine ensemble runs where metegiadl fields were generated using a different version of WRF
meteorological model with varying PBL schemes.

With a fixed set of observational and model uncertainty patars, the inverse method with logarithm concentratiomas t
metric variable is then applied to all the six releases. Thession rates are well recovered with the largest relativeres
53.3% for release 1. The system is later tested for its capabditpctate a single source location as well as its source gtreng
The location and strength that result in the best match ketwlee predicted and the observed concentrations are evedids
the inverse results. The estimated location is close todh&kbrelease site for release 2 of which the forward HYSPhbdel
has the best performance. The strength estimates are laithwaifactor of 3 for the six releases.

Code and data availability. The HYSPLIT model is publicly available at https://www.ready.noaa.g¥8HLIT.php. The CAPTEX data
can be downloaded from https://www.arl.noaa.gov/wp_arl/wp-contdntdp/documents/datem/exp_data/captex/.
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