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Abstract. A HYSPLIT-4 inverse system that is based on variational dataassimilation and a Lagrangian dispersion transfer

coefficient matrix (TCM) is evaluated using the Cross Appalachian Tracer Experiment (CAPTEX) data collected from six

controlled releases. For simplicity, the initial tests areapplied to release 2 for which the HYSPLIT has the best performance.

Before introducing model uncertainty terms that will change with source estimates, the tests using concentration differences

in the cost function results in severe underestimation while those using logarithm concentrations differences results in overes-5

timation of the release rate. Adding model uncertainty terms improves results for both choices of the metric variables in the

cost function. A cost function normalization scheme is later introduced to avoid spurious minimal source term solutions when

using logarithm concentration differences. The scheme is effective in eliminating the spurious solutions and it also helps to

improve the release estimates for both choices of the metricvariables. The tests also show that calculating logarithm concen-

tration differences generally yield better results than calculating concentration differences and the estimates aremore robust10

for a reasonable range of model uncertainty parameters. This is further confirmed with nine ensemble HYSPLIT runs in which

meteorological fields were generated with varying planetary boundary layer (PBL) schemes. In addition, it is found thatthe

emission estimate using a combined TCM by taking the averageor median values of the nine TCMs is similar to the median of

the nine estimates using each of the TCMs individually. The inverse system is then applied to the other CAPTEX releases with

a fixed set of observational and model uncertainty parameters and the largest relative error among the six releases is53.3%.15

At last, the system is tested for its capability to find a single source location as well as its source strength. In these tests, the

location and strength that yield the best match between the predicted and the observed concentrations are considered asthe

inverse modeling results. The estimated release rates are mostly not as good as the cases in which the exact release locations

are assumed known, but they are all within a factor of 3 for allthe six releases. However, the estimated location may have large

errors.20
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1 Introduction

The transport and dispersion of gaseous and particulate pollutants are often simulated to generate pollution forecasts for emer-

gency responses or produce comprehensive analyses of the past for better understanding of the particular events. Lagrangian

particle dispersion models are particularly suited to provide plume products associated with emergency response scenarios.

While accurate air pollutant source terms are crucial for thequantitative predictions, they are rarely provided in mostappli-5

cations and have to be approximated with a lot of assumptions. For instance, the smoke forecasts over the continental U.S.

operated by the National Oceanic and Atmospheric Administration (NOAA) using the HYSPLIT model (Draxler and Hess,

1997; Stein et al., 2015) in support of the National Air Quality Forecast Capability (NAQFC) relies on the outdated fuel load-

ings data and a series of assumptions related to smoke release heights and strength approximation (Rolph et al., 2009).

Observed concentration, deposition, or other functions ofthe atmospheric pollutants such as aerosol optical thickness mea-10

sured by satellite instruments can be used to estimate some combination of source location, strength, and temporal evolution

using various source term estimation (STE) methods (Bieringer et al., 2017; Hutchinson et al., 2017). Among the applications,

the recent Fukushima Dai-ichi Nuclear Power Plant accidents saw the most implementations of the STE methods to esti-

mate the radionuclide releases. The STE methods range from simple comparisons between model outputs and measurements

(e.g. Chino et al., 2011; Katata et al., 2012; Terada et al., 2012; Hirao et al., 2013; Kobayashi et al., 2013; Oza et al., 2013;15

Katata et al., 2015; Achim et al., 2014) to those sophisticated ones using various dispersion models and inverse modeling

schemes (e.g. Stohl et al., 2012; Winiarek et al., 2012; Saunier et al., 2013; Winiarek et al., 2014; Chai et al., 2015). Another

active field for STE applications is the estimation of the volcanic ash emissions. Many attempts have been made for several

major volcano eruptions (Wen and Rose, 1994; Prata and Grant, 2001; Wilkins et al., 2014, 2016; Chai et al., 2017).

While there are many STE methods applied to reconstruct the emission terms, it is still a state of art. Two popular advanced20

inverse modeling approaches are cost-function-based optimization methods and those based on Bayesian inference. However,

it is difficult to evaluate the STE without knowing the actualsources for most applications. Chai et al. (2015) generatedpseudo

observations using the same dispersion model in their initial inverse experiment tests, which are often called “twin experi-

ments”. Such tests allow observational errors to be added realistically (e.g. Chai et al., 2015), but it is non-trivial to represent

the model errors incurred by other model parameters such as the uncertainties of the meteorological field. One way to objec-25

tively evaluate the inverse modeling results is to compare the predictions with the independent observations or withheld data.

However, such indirect comparisons still cannot provide quantitative error statistics for the source terms.

There have been some tracer experiments conducted to study the atmospheric transport and dispersion with controlled re-

leases. In these experiments, the source terms were well-quantified and comprehensive measurements were made subsequently

over an extended area (e.g. Draxler et al., 1991; Van Dop et al., 1998). With the known source terms, they provide a unique30

opportunity to evaluate the STE methods. Singh and Rani (2014) and Singh et al. (2015) used measurements from a recent

dispersion experiment (Fusion Field Trials 2007) data to evaluate a least-squares technique for identification of a point release.

The European Tracer Experiment (ETEX) data set were also used to study the STE methods based on the principle of maximum
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entropy and a least squares cost function (Bocquet, 2005, 2007, 2008). However, such formal evaluation of the STE methods

is still very limited.

A HYSPLIT inverse system based on 4D-Var data assimilation and a transfer coefficient matrix (TCM) was developed and

applied to estimate cesium-137 source from the Fukushima nuclear accident using air concentration measurements (Chaiet al.,

2015). The system was further developed to estimate the effective volcanic ash release rates as a function of time and height5

by assimilating satellite mass loadings and ash cloud top heights (Chai et al., 2017). In this study, the Cross Appalachian

Tracer Experiment (CAPTEX) data are used to evaluate the HYSPLIT inverse modeling system. The paper is organized as

follows. Section 2 describes the CAPTEX experiment, HYSPLIT-4 model configuration, and the source term inversion method.

Section 3 presents emission inversion results and a summaryis given in Section 4.

2 Method10

2.1 CAPTEX experiment

The CAPTEX experiment consisted of seven near-surface releases of the inert tracer perfluro-monomethylcyclohexane (PMCH)

from Dayton, Ohio, U.S. and Sudbury, Ontario, Canada duringSeptember and October 1983 (Draxler, 1987). Table 1 lists the

locations, time, amounts, and measurement counts of the seven releases. Samples were collected at 84 different measurement

sites distributed from 300 to 1100 km downwind of the emission source, as either 3- or 6-hour averages up to 60 hours after15

each release. Figure 1 shows the distribution of measurement sites and the two source locations. Since there were few measure-

ments above twice background values for release 6, it will beexcluded from the testing as in the earlier studies using CAPTEX

data (e.g. Hegarty et al., 2013; Ngan et al., 2015). Note that3.4 fl/l has been subtracted from all CAPTEX measurements to

remove background and “noise” in sampling where the ambientbackground concentration is constant at 3.0 fl/l (Ferber et al.,

1986). At ground level, 1 fl/l is equivalent to 15.6pg/m3. Duplicate sample analyses showed that the majority data has a mean20

standard deviation estimated as10.8% but contaminated samples may have standard deviation as large as65% (Ferber et al.,

1986).

2.2 HYSPLIT

In this study, the tracer transport and dispersion are modeled using the HYSPLIT model (Version 4) in its particle mode

in which three-dimensional (3D) Lagrangian particles released from the source location passively follow the wind field25

(Draxler and Hess, 1997, 1998; Stein et al., 2015). A particle release rate of 50,000 per hour is used for all calculations. Ran-

dom velocity components based on local stability conditions are added to the mean advection velocity in the three wind

component directions. The meteorological data used to drive the HYSPLIT are time-averaged from the Advanced Research

WRF model (ARW, version 3.2.1) simulation results at 10-km resolution and they are identical to those used by Hegarty et al.

(2013). The 10-km run was nested inside a larger domain at 30-km resolution, over which the simulation was started using the30

North American Regional Reanalysis (NARR) at 32-km (Mesinger et al., 2006). In the WRF simulations, 3D grid nudging of
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Figure 1. Distribution of the 84 measurement sites and two CAPTEX source locations (Dayton, Ohio, U.S. shown as a red diamond, and

Sudbury, Ontario, Canada shown as a green cross).
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Table 1. The locations, time, amounts, and measurement counts (Mobs) of each CAPTEX release from Dayton, Ohio, U.S. and Sudbury,

Ontario, Canada during September and October 1983.

# Site (latitude, longitude) Release time Amount Mobs

1 Dayton (39.80◦, -84.05◦) 1700-2000Z, Sep. 18, 1983 208 kg 395

2 Dayton (39.90◦, -84.22◦) 1705-2005Z, Sep. 25, 1983 201 kg 400

3 Dayton (39.90◦, -84.22◦) 1900-2200Z, Oct. 02, 1983 201 kg 404

4 Dayton (39.90◦, -84.22◦) 1600-1900Z, Oct. 14, 1983 199 kg 367

5 Sudbury (46.62◦, -80.78◦) 0345-0645Z, Oct. 26, 1983 180 kg 357

6 Dayton (39.90◦, -84.22◦) 1530-1600Z, Oct. 28, 1983 32 kg -

7 Sudbury (46.62◦, -80.78◦) 0600-0900Z, Oct. 29, 1983 183 kg 358

winds was applied in the free troposphere and within the planetary boundary layer (PBL). There are 43 vertical layers with

the lowest one being approximately 33 m thick. Tracer concentrations are computed over each grid cell by summing the mass

of all particles in the cell and dividing the result by the cell’s volume. In this study, the concentration grid cells have0.25o

resolution in both latitude and longitude directions and vertically they extend 100 m from the ground.

To avoid running the HYSPLIT modeling repeatedly, a TCM is generated similar to the previous HYSPLIT inverse modeling5

studies (Chai et al., 2015, 2017). As described in Draxler and Rolph (2012), independent simulations are performed witha unit

emission rate from each source location and a pre-defined time segment. Each release scenario is simply a linear combination

of the unit emission runs.

2.3 Emission Inversion

Similar to Chai et al. (2015), the unknown releases can be solved by minimizing a cost functional that integrates the differences10

between model predictions and observations, deviations ofthe final solution from the first guess (a priori), as well as other

relevant information written into penalty terms (Daley, 1991). For the current application, the cost functionalF is defined as,

F =
1

2

M∑

i=1

N∑

j=1

(qij − qb
ij)

2

σ2
ij

+
1

2

M∑

m=1

(ch
m − co

m)2

ǫ2m
(1)

whereqij is the discretized source term at houri and locationj for which an independent HYSPLIT simulation has been

run and recorded in a TCM.qb
ij is the first guess ora priori estimate andσ2

ij is the corresponding error variance. Note that15

all tracer sources in this study were at ground level and the release heights in the HYSPLIT were set as 10 m for all the

following test cases. We also assume the uncertainties of the release at each time-location are independent of each other so

that only the diagonal term of the typicala priori error varianceσ2
ij appears in Equation 1.ch and co denote HYSPLIT-

predicted and measured concentrations, respectively. Theobservational errorsǫ2m are assumed to be uncorrelated. As the

term ǫ2m is essentially used to weight(ch
m − co

m)2 terms, the uncertainties of the model predictions and the representative20
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errors should be included besides the observational uncertainties. This will be further discussed in Section 3.2. A large-scale

bound-constrained limited-memory quasi-Newton code, L-BFGS-B (Zhu et al., 1997) is used to minimize the cost functional

F defined in Equation 1 when multiple parameters need to be determined. As shown by Chai et al. (2015), the metric variable

can be changed from concentration to logarithm concentration. Both choices of metric variable will be tested here. Notethat

the cases presented in this study are all formulated as over-determined problems.5

3 Results

3.1 Recovering emission strength without model uncertainty

As an initial test, the exact release location and time are both assumed known and the only unknown variable left to be

determined is the release rate, or the total release amount.For this type of one-dimensional problem, an optimal emission

strength can be easily found without having to use sophisticated minimization routines. For instance, theF may be directly10

calculated for a number of emission strength values and the resultingF = F(q) plot will reveal the optimalq strength that is

associated with the minimalF . Note that such an optimal solution not only depends on the chosen parameters in Equation 1,

but also highly depends on the HYSPLIT model setup and the meteorological fields.

Both Hegarty et al. (2013) and Ngan et al. (2015) showed that the HYSPLIT dispersion model performed better for Release

2 than the other releases. Thus Release 2 is initially chosento perform a series of inverse modeling tests. Assuming no prior15

knowledge of the emission strength, the first guess is given as qb = 0, andσ = 104 kg/hr is assumed. Sensitivity tests show

that whenqb is changed to 100kg/hr the emission strength estimates are nearly unchanged with the same or largerσ.

Firstly, no model uncertainties are considered to contribute toǫ. The observational uncertainties are formulated to include a

fractional componentfo
× co and an additive partao. Note that this general formulation is chosen for its simplicity. It should

be replaced when more uncertainty information is available. Table 2 lists the emission strengthq that generates the minimal20

cost function for a series offo andao combinations, wherefo ranges from10% to 50%, andao is assigned as 10, 20, and 50

pg/m3. All the emission strength values obtained are significantly lower than the actual release of 67kg/hr. It shows that

a largerfo value tends to have a smallerq estimate, but a largerao results in a largerq. The significant underestimation of

the release strength is caused by the implicit assumption ofa perfect model whenǫ does not include the model uncertainties.

Figure 2 shows the comparison between the predicted and measured concentrations when the actual release rate of 67kg/hr25

is applied. Large discrepancies still exist even when the exact release is known and used in the simulation. For the measured

zero concentrations, most of the predicted values are non-zero and can be above 1000pg/m3. As ǫm = ao for these zero

concentrations,(c
h
m−co

m)2

ǫ2m
will dominate the cost function whenao is not large enough. This explains that the underestimation

is not as severe forao =50pg/m3 as that forao =10pg/m3. While ǫ do not change withfo for the zero concentrations, smaller

fo values help increase the weighting of the terms(ch
m−co

m)2

ǫ2m
associated with large measured concentrations. So, the estimated30

emission strength whenfo = 10% is better than whenfo = 50%.

As stated in Chai et al. (2015), the metric variable in Equation 1 can be changed toln(c), i.e. replacing(ch
m − co

m) with

ln(ch
m)−ln(co

m). A constant0.001 pg/m3 is added to bothch
m andco

m to allow the logarithm operation for zero concentrations.
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Figure 2. Comparison between the predicted and measured concentrations for Release 2 during the CAPTEX experiment. In the HYSPLIT

simulation, at the exact release location, an emission rate of 67kg/hr was applied from 17Z to 20Z on September 25, 1983. A constant 1

pg/m3 is added to both predicted and measured concentrations to allow logarithm calculation.
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In such a case,ǫln(c)
m can be calculated as

ǫln(c)
m = ln(1+ fo +

ao

co
m

) (2)

Note that0.001 pg/m3 is also added toco
m in the second term to avoid dividing by zero. Theao

co
m

term in Equation 2 makesǫln(c)
m

larger for measured low concentrations than those measuredhigh concentrations. It causes more weighting towards measured

high concentrations and results in overestimation shown inTable 3. The measured zero concentrations have little effect in the5

final emission strength estimates. Table 3 shows that the emission strengths are overestimated, but are within a factor of 2 over

the actual release of 67kg/hr, for all fo andao combinations. The similar trends of howq changes withfo andao are also

observed here, i.e., a largerao or a smallerfo tends to have a largerq estimate.

Table 2. Emission strength of release 2 that minimizesF for different observational errors, defined asǫ = fo
× co + ao. Concentration is

used as the metric variable.

Emission (kg/hr) ao =10pg/m3 ao =20pg/m3 ao =50pg/m3

fo = 10% 7.1 11.1 17.4

fo = 20% 4.1 7.1 12.6

fo = 30% 2.9 5.2 10.0

fo = 50% 1.8 3.4 7.1

Table 3.Emission strength of release 2 that minimizesF for different observational errors, defined asǫ = fo
× c + ao. Logarithm concen-

tration is chosen as the metric variable, i.e.(ch
m − co

m) in Equation 1 is replaced withln(ch
m)− ln(co

m).

Emission (kg/hr) ao =10pg/m3 ao =20pg/m3 ao =50pg/m3

fo = 10% 115.2 119.8 124.7

fo = 20% 106.3 112.9 119.8

fo = 30% 101.2 108.5 116.3

fo = 50% 94.4 101.2 109.6

While using logarithm concentration as the metric variable yields better emission estimates than using concentration as the

metric variable, the results in Table 3 are apparently systematically overestimated, comparing to the systematicallyunderesti-10

mated results in Table 2. In addition, thefo andao combinations associated with the best emission estimates in Tables 2 and

3 appear to be in the opposite corners of the tables.

3.2 Recovering emission strength with model uncertainty

To consider the model uncertainties in a simplified way,ǫ2 will be formulated as

ǫ2m = (fo
× co

m + ao)2 +(fh
× ch

m + ah)2 (3)15
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As ao andah affect theǫ2 in a similar way, the representative errors caused by comparing the measurements with the predicted

concentrations averaged in a grid can be included in eitherah or ao.

With logarithm concentration as the metric variable,(ǫ
ln(c)
m )2 is comprised of two parts, as

(ǫln(c)
m )2 = [ln(1+ fo +

ao

co
m

)]2 + [ln(1+ fh +
ah

ch
m

)]2 (4)

Note that a constant small number0.001 pg/m3 is added to denominatorsco
m andch

m to avoid dividing by zero.5

Since the predicted concentrationsch
m in Equations 3 and 4 will vary when source term estimates change, the model un-

certainties will depend on the current release parameters.Thus the model uncertainty terms are not static during the inverse

modeling and they change along with the source estimates. Using concentration and logarithm concentration as the metric

variable, respectively, Tables 4 and 5 show the emission strength estimates with differentfh andah, while keepingfo = 20%,

ao =20pg/m3. Additional tests with other chosenfo andao values show similar but slightly different results. For brevity, they10

are not presented here. It should be noted that the model uncertainties are not equivalent to model errors. Although dispersion

model simulations can have large errors due to various reasons including the source term uncertainties, the model uncertainties

are used to indicate that the model is not perfect even with the “optimal” model parameters. Similar to weak constraint applied

in operational 4D-Var data assimilation systems (Zupanski, 1997; Tremolet, 2006), introducing model uncertainties is mainly

intended to relax the model constraint for imperfect models. Here thefh andah parameters are given similar ranges as those15

given to the observational uncertainty parameters.

When concentration is used as the metric variable, the emission strength estimates with model uncertainties considered

are improved over those without model uncertainties. The estimates of emission strength generally increases with the model

uncertainty, either throughah or fh except forfh = 50%, when theq estimates slowly decreases withah. Whenfh = 0%,

ah = 10, 20, and50 pg/m3 while ao=20 pg/m3, theq estimates, 7.7, 9.1, and 13.6kg/hr, are inline with the results shown in20

Table 2, whereq = 7.1 kg/hr for ao=20 pg/m3 andq = 12.6 kg/hr for ao=50 pg/m3. However, the trend of howq estimates

change withfh is opposite to howq estimates change withfo. Table 4 shows that the emission strength increases with the

model uncertainty factorfh. With fh = 20%, the release estimates of 48.5, 50.4, and 53.5kg/hr are all within30% of the

actual release rate of 67kg/hr. Instead of underestimation shown in Table 2, the release estimates are overestimated when

fh = 50% is assumed.25

With logarithm concentration as the metric variable, larger ah or fh results in slightly smallerq estimates. While howq

estimates change withfh is similar to how they change withfa in Table 3, howq estimates change withah is opposite to

how q estimates change withao before introducing model uncertainties. Equation 4 shows thatfo andfh affect(ǫln(c)
m )2 in a

simple monotonic way, while the effect ofah
m is complicated as it is divided by thech

m value that varies with the source terms.

Table 5 shows that the source terms are no longer overestimated as those in Table 3. In fact, all cases have slight to moderate30

underestimation, with the worst results beingq = 42.6 kg/hr whenfh = 50% andah =50 pg/m3. Another aspect of using

logarithm concentration as the metric variable is that the range of the release estimates listed in Table 5 are not as large as those

in Table 4 resulted from using concentration as the metric variable for the same 12 combinations ofah andfh.
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Table 4. Emission strength of release 2 that minimizesF for different fh and ah. Concentration is taken as the metric variable.ǫ2 =

(fo
× co + ao)2 + (fh

× ch + ah)2. fo = 20%, ao =20pg/m3.

Emission (kg/hr) ah =10pg/m3 ah =20pg/m3 ah =50pg/m3

fh = 0 7.7 9.1 13.6

fh = 10% 15.9 22.1 32.9

fh = 20% 48.5 50.4 53.5

fh = 50% 114.0 111.8 104.3

Table 5. Emission strength of release 2 that minimizesF for differentfh andah. Logarithm concentration is taken as the metric variable.

(ǫ
ln(c)
m )2 = [ln(1+ fo + ao

co
m

)]2 + [ln(1+ fh + ah

ch
m

)]2. fo = 20%, ao =20pg/m3.

Emission (kg/hr) ah =10pg/m3 ah =20pg/m3 ah =50pg/m3

fh = 0 64.7 58.5 53.5

fh = 10% 61.5 55.7 49.4

fh = 20% 58.5 53.0 46.6

fh = 50% 55.1 49.4 42.6

3.3 Cost function normalization

Without model uncertainties, the weighting terms for each model-observation pair do not change with emission estimates.

Whenǫ2m and(ǫ
ln(c)
m )2 are formulated as in Equations 3 and 4, respectively, they vary with emission estimates. This may cause

complication in some circumstances when logarithm concentration is used as the metric variable. To avoid having zero source

as a global minimizer in such situations, the sum of the weights of the mismatch between model simulation and observations5

is kept unchanged for varyingqij by normalizing it with the weight sum whenqij = qb
ij , as shown in Equation 5.

F =
1

2

M∑

i=1

N∑

j=1

(qij − qb
ij)

2

σ2
ij

+
1

2

M∑

m=1

(ch
m − co

m)2

ǫ2m
×

∑M

m=1
1

ǫb
m

2

∑M

m=1
1

ǫ2m

(5)

Figure 3 shows the cost function as a function of source strength when(ǫln(c)
m )2 is defined as in Equation 4, withfh = 0, ah

=50pg/m3, fo = 10%, ao =20pg/m3. Before introducing cost function normalization, a globalminimal cost function appears

when release strength approaches zero while a local minimalcost function exists at 56.8kg/hr. Several such instances were10

found whenah = 50 pg/m3 and whenfh is 0 or10%, while bothfo andao are relatively small. The smaller cost function

when release strength approaches zero is due to the increasing (ǫ
ln(c)
m )2 in Equation 4 asch

m gets smaller. While the model-

observation differences are not smaller for lower release strength, the drastic increase of(ǫ
ln(c)
m )2 whenah = 50 pg/m3 and

fh is 0 or10% results in smaller cost function with decreasing source strength.
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Figure 3. Cost function as a function of source strength when(ǫ
ln(c)
m )2 is defined as in Equation 4 before and after cost function normaliza-

tion, with fh = 0, ah =50pg/m3, fo = 10%, andao =20pg/m3.
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Figure 3 shows that the cost function has the minimum at q=67.3kg/hr after normalization. Note that the dramatic difference

of the cost function magnitude before and after the normalization is due to the extreme small value of
∑

m=1
1

ǫb
m

2 calculated at

qb = 0. Tables 6 and 7 show the emission strength estimates after cost function normalization with differentfh andah, while

keepingfo = 20%, ao =20pg/m3, using concentration and logarithm concentration as the metric variables, respectively. Note

thatfo = 20% was chosen for the cases listed in Table 7, whilefo = 10% was chosen in Figure 3 to illustrate the potential5

problem. How estimates change withfh andah in Tables 6 and 7 is similar to what is shown in Tables 4 and 5. The estimates

are generally closer to the actual release than those obtained without the cost function normalization.

When having concentration as the metric variable and withfh = 50%, the emission strength estimates are 64.7, 64.7, and

65.3kg/hr for ah=10, 20, 50pg/m3, respectively. They are all within 5% of the actual release rate. However,fh less than

or equal to20% results in significant underestimation. When having logarithm concentration as the metric variable, the source10

term estimates are not very sensitive tofh andah values and the results listed in Table 7 are all withing20% of the actual

release rate. Among those estimates, a result of 67.3kg/hr whenfh = 10% andah=10pg/m3 is almost identical to the actual

release rate.

Table 6.Emission strength of release 2 that minimizes normalizedF defined in Equation 5 for differentfh andah. Concentration is taken

as the metric variable.ǫ2 = (fo
× co + ao)2 + (fh

× ch + ah)2. fo = 20%, ao =20pg/m3.

Emission (kg/hr) ah =10pg/m3 ah =20pg/m3 ah =50pg/m3

fh = 0 7.7 9.1 13.6

fh = 10% 10.9 15.1 26.4

fh = 20% 32.9 35.6 41.3

fh = 50% 64.7 64.7 65.3

Table 7.Emission strength of release 2 that minimizes normalizedF defined in Equation 5 for differentfh andah. Logarithm concentration

is taken as the metric variable.(ǫ
ln(c)
m )2 = [ln(1+ fo + ao

co
m

)]2 + [ln(1+ fh + ah

ch
m

)]2. fo = 20%, ao =20pg/m3.

Emission (kg/hr) ah =10pg/m3 ah =20pg/m3 ah =50pg/m3

fh = 0 69.3 64.0 62.1

fh = 10% 67.3 63.4 60.9

fh = 20% 65.3 61.5 59.1

fh = 50% 61.5 58.0 55.1
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3.4 Ensemble

Ngan and Stein (2017) simulated CAPTEX releases using a variety of planetary boundary layer (PBL) schemes. In their con-

figuration, WRF version 3.5.1 was used with 27-km grid spacingand 33 vertical layers. The NARR data set was used for the

initial conditions and lateral boundary conditions. The WRFmodel was initialized every day at 0600 UTC, and the first 18

hours of spin-up time in the 42-hour simulation were discarded. The PBL schemes used to create the WRF ensemble were5

the Yonsei University (Hong et al., 2006, YSU)), Mellor-Yamada-Janjic (Janjic, 1994, MYJ), Quasi-Normal Scale Elimination

(Pergaud et al., 2009, QNSE), MYNN 2.5 level TKE (Nakanishi and Niino, 2006, MYNN), ACM2 (Pleim, 2007, ACM2),

Bougeault and Lacarrere (Bougeault and Lacarrère, 1989, BouLac), University of Washington (Bretherton and Park, 2009,

UW), Total energy mass flux (Angevine et al., 2010, TEMF), and Grenier Bretherton MaCaa (Grenier and Bretherton, 2001,

GBM) schemes. Nine simulations were conducted with the PBL schemes and their associated surface layer schemes, except10

for the YSU, BouLac, UW, and GBM cases in which the MM5 Monin-Obukhov surface scheme was applied. The land-surface

model was Noah land-surface model (Chen and Dudhia, 2001), except ACM2 case in which Pleim-Xiu land-surface model

was used.

An individual TCM is generated using each of the nine simulations. The nine TCMs can be used to estimate the emission

strengths independently following the same procedure as described previously. Tables 8 and 9 show the 3rd (25th percentile),15

5th (median), and 7th (75th percentile) emission strength of the nine estimates that minimize the normalizedF defined in

Equation 5 with differentfh andah, while keepingfo = 20%, ao =20pg/m3, using concentration and logarithm concentra-

tion as the metric variables, respectively. The 25th percentile and 75th percentile values are mostly within5% of the median

estimates. While the median estimates show the same trends with fh andah as the results in Tables 6 and 7, they are signif-

icantly larger due to the meteorological model differences. Apparently the differences among the simulations with different20

PBL schemes are smaller than the differences between the ensemble simulations here and the simulation used in the earlier

sections. This suggests that uncertainties of the emissionstrength are probably larger than the ranges indicated by the 25th and

75th percentile values. The results using logarithm concentration as the metric variable are quite robust with the listed model

uncertainty parameters. However, the estimates using concentration as the metric variable are very sensitive tofh andah. This

is consistent with results shown in Sections 3.2 and 3.3.25

Instead of using each individual TCM generated from nine simulations independently, the nine TCMs can be combined

into one matrix by taking the median or average values. The combined TCM can then be used to estimate the source terms.

The results for concentration and logarithm concentrationmetric variables are listed in Tables 10 and 11, respectively. They

show that the emission estimate using the median transfer coefficients of the nine TCMs are very close to the median of the

nine estimates using the nine simulations individually. For the cases with logarithm concentration as the metric variable, the30

emission estimates using the median value of the nine TCMs are all within 3.1% of the median values of the nine estimates

obtained with each individual TCM. For the cases with concentration as the metric variable, the average relative differences

are6.4%, with the maximum relative difference being10.8% whenfh = 10% andah=50 pg/m3. Combining the TCMs by

taking the median value generates slightly better results than combining the TCMs by taking the average value does.
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Similar to what was found in earlier sections and also in Chaiet al. (2015), the cases having logarithm concentration as

the metric variable generally yield better results than those having concentration as the metric variable. It is probably due to

the large range of the concentrations. When having concentration as the metric variable, certain model uncertainty parameters

yield good source terms, but the estimates are quite sensitive to the choices of the model uncertainty parameters. However,

it is not easy to find such model uncertainty parameters that would yield satisfactory results for applications when the actual5

releases are indeed unknown. The results here and in the previous sections show that the estimates when having logarithm

concentration as the metric variable are quite robust for a reasonable range of model uncertainty parameters. For thesereasons,

logarithm concentration is chosen as the metric variable for the later tests.

Table 8. The 3rd (25th percentile), 5th (median), and 7th (75th percentile) emission strength of nine simulations of release 2 that minimizes

the normalizedF defined in Equation 5 for differentfh andah. Concentration is taken as the metric variable.ǫ2 = (fo
×co +ao)2 +(fh

×

ch + ah)2. fo = 20%, ao =20pg/m3.

Emission (kg/hr) ah =10pg/m3 ah =20pg/m3 ah =50pg/m3

fh = 0 6.0, 7.0, 7.2 7.4, 8.8, 8.8 13.4, 15.1, 15.3

fh = 10% 20.0, 21.0, 21.9 23.9, 26.1, 27.2 33.2, 35.2, 37.4

fh = 20% 48.5, 49.9, 59.1 53.0, 54.6, 62.8 58.5, 62.8, 68.6

fh = 50% 191, 205, 274 186, 197, 258 158, 168, 207

Table 9. The 3rd (25th percentile), 5th (median), and 7th (75th percentile) emission strength of nine simulations of release 2 that minimizes

normalizedF defined in Equation 5 for differentfh andah. Logarithm concentration is taken as the metric variable.(ǫ
ln(c)
m )2 = [ln(1+

fo + ao

co
m

)]2 + [ln(1+ fh + ah

ch
m

)]2. fo = 20%, ao =20pg/m3.

Emission (kg/hr) ah =10pg/m3 ah =20pg/m3 ah =50pg/m3

fh = 0 102, 106, 113 93.4, 100, 105 83.8, 88.9, 97.2

fh = 10% 97.2, 102, 108 88.9, 96.3, 101 80.5, 85.4, 94.4

fh = 20% 93.4, 98.2, 105 86.3, 92.5, 98.2 78.1, 82.9, 91.6

fh = 50% 88.9, 93.4, 101 82.9, 88.0, 94.4 75.8, 81.3, 87.2

3.5 Source location and other releases

In addition to the source strength, the source location and its temporal variation can be retrieved with adequate accuracy10

using the HYSPLIT inverse system described here if there aresufficient measurements available. For instance, Chai et al.

(2015) estimated 99 6-hr emission rates of the radionuclideCesium-137 from the Fukushima nuclear accident using 1296 daily

average air concentration measurements at 115 stations around the globe. Here the system’s capability to locate a single source

location will be tested using a straightforward approach. In these tests, the release time is assumed known, but its location and
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Table 10. Emission strength estimates by using average and median value of nine simulations for release 2. The cost function is normalized

F as in Equation 5. Concentration is taken as the metric variable.ǫ2 = (fo
× co + ao)2 + (fh

× ch + ah)2. fo = 20%, ao =20pg/m3.

Emission (kg/hr) ah =10pg/m3 ah =20pg/m3 ah =50pg/m3

fh = 0 7.2, 7.5 8.9, 9.1 15.6, 15.9

fh = 10% 22.3, 23.4 22.2, 28.0 37.0, 37.0

fh = 20% 55.1, 53.0 59.7, 58.0 66.6, 64.7

fh = 50% 213, 227 205, 213 178, 177

Table 11. Emission strength estimates by using average and median value of nine simulations for release 2. The cost function is normalized

F as in Equation 5. Logarithm concentration is taken as the metric variable.(ǫ
ln(c)
m )2 = [ln(1+fo+ ao

co
m

)]2+[ln(1+fh+ ah

ch
m

)]2. fo = 20%,

ao =20pg/m3.

Emission (kg/hr) ah =10pg/m3 ah =20pg/m3 ah =50pg/m3

fh = 0 115, 108 105, 100 95.3, 90.7

fh = 10% 110, 103 100, 95.3 91.6, 87.2

fh = 20% 105, 100 97.2, 92.5 88.9, 85.4

fh = 50% 100, 96.3 93.4, 88.9 86.3, 82.1

strength are left to be determined. A region of suspect is first gridded at certain spatial resolution to form a limited number of

candidate source locations. An optimal strength is then found at each candidate source location following the method described

earlier. The location that results in the best match betweenthe predicted and the observed concentrations is considered as the

likely source location.

In the following tests, a 11×11 grid with0.2◦ resolution in both longitude and latitude directions is used to generate 1215

candidate source locations. They are centered at (40.0◦N, 84.5◦W) for releases 1–4, and centered at (46.6◦N, 80.8◦W) for

releases 5 and 7. Using the normalizedF defined in Equation 5 and assumingfo = 20%, ao =20pg/m3, fh = 20%, andah

=20pg/m3, a minimal cost function associated with an optimal releasestrength can be found at each location. When logarithm

concentration is taken as the metric variable, the emissionestimates are not sensitive tofh andah choices, as indicated by the

results in Tables 7, 9, and 11. Figure 4 shows the 121 candidate locations and their respective minimal cost function values for10

release 2. No candidate locations are chosen to collocate with the actual source location which will be unknown for the future

applications that need to locate the sources. A global minimal point is found at (39.8◦N, 84.5◦), with Fmin = 3.14 achieved

when q=48.5 kg/hr. This grid point is taken as the estimated source location and it is 26.4 km away from the actual release site

(39.90◦N, 84.22◦W). The neighboring location (39.8◦N, 84.3◦W) which is the closest to the actual release site yields a slightly

largerF = 3.17 with an optimal release rate of60.9 kg/hr. If the exact source location is known as in the tests presented earlier,15

the cost functionF reaches 1.59 at its minimal point whenq = 61.5 kg/hr. Apparently, compared with those cases when the

release strength is the only unknown, finding both the sourcelocation and its strength with the same amount of observations is
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expected to be more difficult. Note that the smaller normalizedF values in Figure 3 are for a case with different observation

and model uncertainty parameters, wherefo = 10%, ao =20pg/m3, fh = 0%, andah =50pg/m3.

Table 12 lists the source location and strength estimationsfor the six releases following the same procedure as described

here, where the uncertainty parameters arefo = 20%, ao =20pg/m3, fh = 20%, andah =20pg/m3. Releases 1 and 4 have

the minimal cost functionFmin occur at the north boundary and the west boundary, respectively. In such scenarios, it might5

be necessary to expand the suspected source region for the future applications to find the source locations. However, if source

locations are known to reside in the suspected region, the sources can definitely be near the boundaries. In such cases, the point

with Fmin should be considered as the estimated source location. Releases 3, 5, and 7 have itsFmin occurred at inner grid

points, similar to release 2 shown in Figure 4. None of the closest candidate source locations yield the best match between

model simulation and observations quantified by the cost functionF . Among the six releases, the estimated source location for10

release 2 is the closest to its actual release site, with a distance of 26.4 km.

The release rates obtained along with the likely source locations are underestimated by a factor of 3 for release 1, and

overestimated by a factor of 3 for releases 4 and 7, while the estimates for releases 2, 3, and 5 are much better, with relative

errors as−27.6%, −5.4%, and21.5%, respectively. Table 12 also lists the release ratesq′ estimated with the exact source

location assumed known. These estimates for all releases are within a factor of two compared with the actual release rates and15

the largest relative error is53.3% for release 1. The posterior uncertainties of the release rate estimatesǫq′ are also calculated

and listed. They range from 1.8 kg/hr for release 2 to 6.2 kg/hr for release 1. The apparent underestimation is likely due to

the model uncertainty assumption, including its simplifiedformulation as well as the chosen parameter values. Either with the

source location known or unknown, release 2 has one of the best emission estimates among the six releases, probably because

the HYSPLIT forward model has the best performance for the same release (Hegarty et al., 2013). The significant model20

errors when simulating the transport and dispersion even with the exact source terms are mostly caused by the meteorological

uncertainties while the HYSPLIT physical schemes and parameters, as well as the numerical discretization also contribute.

An assumption made in this inverse modeling algorithm is that the differences between model and observation have a normal

distribution with a zero mean. Figure 5 shows the probability density function (pdf) ofln(ch)− ln(co) for the six CAPTEX

releases using the estimated release rateq′ listed in Table 12. The pdf distribution ofln(ch)− ln(co) for Release 2 is consistent25

with the normal distribution assumption, and the pdf for Release 4 shows the largest deviation from a normal distribution,

while those for the other four releases resembles normal distribution to some extent. The largest relative error for Release 1 is

likely related to the negative mean of theln(ch)− ln(co) distribution shown in Figure 5. The overestimatedq′ probably results

from the compensation of the model bias. Note that the betterperformance usingln(ch)− ln(co) thanch
−co is believed to be

caused by the fact that normal distribution assumption is mostly valid for the former but probably invalid for the latter.30

The meteorological field and the observations are the two major inputs to the current inverse modeling. As discussed above,

better model performance of release 2 helps to lead to betterinverse results than the other releases. However, it is impossible

to eliminate the model uncertainties. In practice, ensemble runs can be used to quantify the uncertainties and reduce the model

errors by taking the average or median values of the ensembleruns. On the other hand, increasing the number of observations

is effective to improve the inverse modeling results and reduce the result uncertainty. In principle, when the release strength is35
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the only value to be determined, each measurement within thepredicted plume can provide an independent estimate. However,

relying on a single observation to estimate the strength is problematic since a particular model output can be very different

from the observation and thus leading to an erroneous estimation of the source strength when used in isolation. For instance,

although the HYSPLIT predictions of release 2 with exact source terms are very good, compared with individual measurements,

it has severe underestimation, 0.77pg/m3 predicted versus 686pg/m3 measured, as well as significant overestimation, 20335

pg/m3 predicted versus 31.2pg/m3 measured. Therefore, similar to a regression technique, increasing the sampling number

can improve the final results, as exemplified by the very good source term estimation for release 2 when using all the available

measurements. Also note that the samples outside predictedplumes do not contribute to the inverse modeling. Table 1 lists

the total measurement counts for each release, but the number of measurements actually contributing to the inverse modeling

are those inside the HYSPLIT plumes, including those with zero or background concentrations. The number of such effective10

measurements inside the plumes generated by HYSPLIT from the exact source location and time period are reduced to 148,

237, 211, 68, 46, and 53, for releases 1–5, and 7, respectively. The largest number of effective measurements, 237, of release

2, also indicates the best performance of the HYSPLIT simulation among those of the six releases. The effectiveness of

the measurements will change when source location or release time is changed. The measurements that are not active in

determining the source strength with a known source location and release time may be effective to locate the source locations.15

Table 12. The source location (latitude, longitude) and release rateqmin identified by the minimal normalized cost functionFmin for

each CAPTEX release. A total of 121 candidate locations are prescribedwith 0.2◦ resolution in both longitude and latitude directions,

centered at (40.0◦N, 84.5◦W) for releases 1-4, and at (46.6◦N, 80.8◦W) for releases 5 and 7.∆ is the distance between the point withFmin

and the actual release site.q′ is the estimated release rate by assuming that the actual release location is known. ǫq′ is calculated using
1

(ǫq′ )
2 = 1

(ǫ
qb )2

+
PM

m=1
1

(q′)2×(ǫ
ln(c)
m )2

, whereǫln(c)
m is obtained using Equation 4. For all the cases,fo = 20%, ao =20pg/m3, fh = 20%,

andah =20pg/m3. Logarithm concentration is taken as the metric variable.

Source location (latitude, longitude) ∆(km) Release rate (kg/hr)

# Actual Estimated Actual qmin q′ ǫq′

1 39.80◦, -84.05◦ 41.0◦,-83.9◦ 134.2 69.3 23.9 106.3 6.2

2 39.90◦, -84.22◦ 39.8◦,-84.5◦ 26.4 67.0 48.5 61.5 1.8

3 39.90◦, -84.22◦ 40.8◦,-85.3◦ 135.8 67.0 63.4 41.7 2.6

4 39.90◦, -84.22◦ 40.2◦,-85.5◦ 114.1 66.3 185.7 75.1 4.6

5 46.62◦, -80.78◦ 46.2◦,-81.0◦ 49.7 60.0 72.9 42.6 3.0

7 46.62◦, -80.78◦ 47.4◦,-81.2◦ 92.5 61.0 201.0 66.0 3.9
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Figure 4. Distribution of 121 candidate source locations for release 2. The minimal cost function at each location associated with an optimal

release strength is indicated by color. The cost function defined in Equation 5 is calculated withfo = 20%, ao =20pg/m3, fh = 20%, and

ah =20pg/m3. The actual source location , Dayton, Ohio, U.S., is shown as a red diamond.
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Figure 5.Probability density function (pdf) ofln(ch)−ln(co) for the six CAPTEX releases. Units ofch andco arepg/m3. Model prediction

ch is calculated using the estimated release rateq′ listed in Table 12.ln(ch)− ln(co) is calculated when bothch andco are nonzero. Number

of data points used for pdf calculation are 70, 184, 77, 49, 29, and 30,for Releases 1, 2, 3, 4, 5, and 7, respectively.
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4 Summary

A HYSPLIT inverse system developed to estimate the source term parameters has been evaluated using the CAPTEX data

collected from six controlled releases. In the HYSPLIT inverse system, a cost function is used to measure the differences

between model predictions and observations weighted by theobservational uncertainties. Inverse modeling tests withvarious

observational uncertainties show that calculating concentration differences results in severe underestimation while calculating5

logarithm concentrations differences results in overestimation.

Unlike other STE applications where model uncertainties are either ignored or assumed static, we introduce the model un-

certainty terms that depend on the source term estimates. The model uncertainty terms improve inverse results for both choices

of the metric variables in the cost function. It is also foundthat cost function normalization can avoid spurious minimal source

terms when using logarithm concentration as the metric variable. The inverse tests show that having logarithm concentration as10

the metric variable generally yields better results than having concentration as the metric variable. The estimates having loga-

rithm concentration as the metric variable are robust for a reasonable range of model uncertainty parameters. Such conclusions

are further confirmed with nine ensemble runs where meteorological fields were generated using a different version of WRF

meteorological model with varying PBL schemes.

With a fixed set of observational and model uncertainty parameters, the inverse method with logarithm concentration as the15

metric variable is then applied to all the six releases. The emission rates are well recovered with the largest relative error as

53.3% for release 1. The system is later tested for its capability to locate a single source location as well as its source strength.

The location and strength that result in the best match between the predicted and the observed concentrations are considered as

the inverse results. The estimated location is close to the actual release site for release 2 of which the forward HYSPLITmodel

has the best performance. The strength estimates are all within a factor of 3 for the six releases.20

Code and data availability. The HYSPLIT model is publicly available at https://www.ready.noaa.gov/HYSPLIT.php. The CAPTEX data
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