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Response to Reviewers’ comments
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Responses to Executive Editor comment by Astrid Kerkweg:

Editor comment:

..., please note that for your paper, the following requirement has not been met in the Dis-

cussions paper:

• “The main paper must give the model name and version number (or other unique

identifier) in the title.”

Please provide the version number of HYSPLIT in the title of your revised manuscript.

Additionally, GMD is encouraging authors to upload the program code of models (including

relevant data sets) as supplement or make the code and data of the exact model version

described in the paper accessible through a DOI (digital object identifier). In case your

institution does not provide the possibility to make electronic data accessible through a DOI

you may consider other providers (eg. zenodo.org of CERN) to create a DOI. Please note

that in the code availability section you can still point the reader to how to obtain the newest

version.

The HYSPLIT version number is added to the title. In addition, the version number has

been explicitly given in abstract section and the main text.

The url location (https://www.ready.noaa.gov/HYSPLIT.php ) to obtain the newest

version of the model, has been provided in Code and data availability part.
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Responses to the comments of referee #1:

General comments:

The manuscript addresses an inverse modelling study using CAPTEX data in which the

effect of including model uncertainties is analyzed in the frame of source term estimation.

The manuscript is well written, however, the potential contribution of the study is not clear.

The study is focused on highlighting two major points: (i) advantage in using differences of

logarithm of concentrations in source estimation and (ii) improvement in source estimation

using a hypothetical form of observation and model uncertainty. This is not new and already

established in the literature of parametric estimation problems and in the solution of inverse

problems. Based on result and discussion, the study seems another application of source term

estimation with sensitivity to their hypothetical model uncertainty formulation but there is

no development in view of model, methodology or estimation.

We thank the referee for thoroughly reading the manuscript and providing valuable com-

ments. For the two major points pointed out by the referee, we try to emphasize the second

point, “the effect of including model uncertainties on source term estimation”, as explicitly

stated in the subtitle. Although it is not new to consider model uncertainty in the inverse

problems, the model uncertainties in the literature of parametric estimation problems are

mostly given as static terms and they will not vary with model source terms. n source

estimates This has been clarified in abstract.

In abstract, “Before introducing model uncertainty terms” has been changed to “Before

introducing model uncertainty terms that depend on source estimates”.

Another uniqueness of this source term estimation experiment is that the exact source

terms in CAPTEX field experiment are known. So, the source term estimation methodology

can be thoroughly evaluated, including “the effect of including model uncertainties on source

term estimation” emphasized in this study.

Major comments:

1) A major question is regarding the hypothetical form of the error formulation?. It is not

clarified why this particular form is chosen? Also, what is the evidence or guarantee

that the same formulation with observed coefficients would work in other or similar

source term estimation problems?

The hypothetical error formulation is used mainly for its simplicity. It is clarified when

the formulation is first introduced (see below). The same formulation may or may not
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work in other or similar source term estimation problems, but we believe that does not

affect the demonstration of “the effect of including model uncertainties on source term

estimation”.

The following text,

Firstly, the observational uncertainties are formulated to include a fractional compo-

nent f o
×co and an additive part ao. No model uncertainties are considered to contribute

to ǫ.

has been replaced with,

Firstly, no model uncertainties are considered to contribute to ǫ. The observational

uncertainties are formulated to include a fractional component f o
× co and an additive

part ao. Note that this general formulation is chosen for its simplicity. It should be

replaced when more uncertainty information is available.

2) The Authors did not explain well if their inverse problem is over-determined or under-

determined. By noting their discretized grid and number of measurements, it seems an

over-determined problem, If so, why do you need a smoothing constraint?

The smoothing constraint was not needed for the current over-determined problem.

It was included to make the formulation more general. In the revised version, the

smoothing term was removed from both Equations (1) and (5).

The following statement has been added at the end of Section 2.3 to clarify that all

problems are over-determined.

“Note that the cases presented in this study are all formulated as over-determined

problems”.

3) Authors did not explain why the using concentration difference and logarithmic con-

centration difference results so differently for the estimation of release rate. How could

be the difference is so drastic between table 2 and table 3.

The drastic differences between Table 2 and Table 3 are caused by the distinct bias

directions when using concentration and logarithmic concentration in comparing model

predictions and observations before introducing model uncertainty terms.

Text in the third paragraph of Section 3.1 shown below explains the cause of the

significant underestimation when using concentration differences.

The significant underestimation of the release strength is caused by the implicit assump-

tion of a perfect model when ǫ does not include the model uncertainties. Figure 2 shows
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the comparison between the predicted and measured concentrations when the actual re-

lease rate of 67 kg/hr is applied. Large discrepancies still exist even when the exact

release is known and used in the simulation. For the measured zero concentrations,

most of the predicted values are non-zero and can be above 1000 pg/m3. As ǫm = ao

for these zero concentrations, (ch
m−co

m)2

ǫ2m
will dominate the cost function when ao is not

large enough. This explains that the underestimation is not as severe for ao =50 pg/m3

as that for ao =10 pg/m3. While ǫ do not change with f o for the zero concentrations,

smaller f o values help increase the weighting of the terms (ch
m−co

m)2

ǫ2m
associated with large

measured concentrations. So, the estimated emission strength when f o = 10% is better

than when f o = 50%.

The text in the same section after Equation 2 shown below explained the overestimation

when using logarithmic concentration difference. It is probably not very clear and it

has been revised.

“The ao

co
m

term in Equation 2 makes ǫ
ln(c)
m larger for measured low concentrations than

those measured high concentrations, thus makes the measured zero concentrations have

little effect in the final emission strength estimates”.

In the current version, it is replaced with the following.

“The ao

co
m

term in Equation 2 makes ǫ
ln(c)
m larger for measured low concentrations than

those measured high concentrations. It causes more weighting towards measured high

concentrations and results in overestimation shown in Table 3. The measured zero

concentrations have little effect in the final emission strength estimates”.

4) It is not clear how cost function normalization can avoid spurious solutions in logarithm

concentration difference? Does this spuriousness appear while using only concentration

differences?

We only see the spuriousness problems when using logarithmic concentration differ-

ences. How cost function normalization can avoid spurious solutions is illustrated in

Figure 3. As explained in text, the “smaller cost function when release strength ap-

proaches zero is due to the increasing (ǫ
ln(c)
m )2 in Equation 4 as ch

m gets smaller”. The

normalization in Equation 5 makes the sum of the mismatch weighting terms constant.

To make it clear, we moved Equation 5 and the rewritten preceding text shown below

to the beginning of the section before introducing Figure 3.

To avoid having zero source as a global minimizer in such situations, the total weighted

mismatch between model simulation and observations is normalized by the total weights

when qij = qb
ij, as shown in Equation 5.
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This has been replaced with the following.

To avoid having zero source as a global minimizer in such situations, the sum of the

weights of the mismatch between model simulation and observations is kept unchanged

for varying qij by normalizing it with the weight sum when qij = qb
ij, as shown in

Equation 5.

5) What is the utility of introducing the third part of the equation 1 if coefficient c sm is

always put to zero?.

This third part has been removed from both Equations 1 and 5.

6) The coefficients a0, f0 or ah, fh are chosen arbitrary, there is no justification why a

particular set has been chosen ?

The observation uncertainty parameters f o = 20%, ao =20 pg/m3 are chosen after

introducing the model uncertainty. Other f o and ao values have been tested and they

show quite similar results.

This has been clarified in Section 3.2 by adding the following in the third paragraph.

Additional tests with other chosen f o and ao values show similar but slightly different

results. For brevity, they are not presented here.

A specific combination of fh and ah are not chosen until Table 12, which chooses

fh = 20%, ah =20 pg/m3. Tables 7, 9, and 11 have shown the results are not sensitive

to the fh and ah choices. To clarify this, the following sentence has been added to the

second paragraph of Section 3.5.

When logrithm concentration is taken as the metric variable, the emission estimates

are not sensitive to fh and ah choices, as indicated by the results in Tables 7, 9, and

11,

7) In Figure 2, the scale of obervations and model concentration is not clear? Is it correct?

What are the range of observed and modelled concentrations?

The largest observed and modelled concentrations are 24600 pg/m3 and 25661 pg/m3,

respectively. For release 2, there are four observed 3-hr average concentrations above

10000 pg/m3. To allow logarithm calculation, a constant 1 pg/m3 is added to both

observed and modelled concentrations. So zero observed and modelled concentrations

appear as 1 pg/m3 in the figure.
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8) Adding the model uncertainties to epsilon m are simply an increase of magnitude in

the previously chosen quadratic function based on observed concentration. Did you try

by increasing only the values of f0 or a0 to analyze the same kind of effect?

The constant part of the model uncertainties, ah, has the same kind of effect as its

counterpart of the observational uncertainties, ao. This has been pointed out in section

3.2 when presenting results in Table 4, as shown below.

When fh = 0%, ah = 10, 20, and 50 pg/m3 while ao=20 pg/m3, the q estimates, 7.7,

9.1, and 13.6 kg/hr, are inline with the results shown in Table 2, where q = 7.1 kg/hr

for ao=20 pg/m3 and q = 12.6 kg/hr for ao=50 pg/m3.

However, fh is applied to the predicted concentrations which vary with different source

term estimation. Such “dynamic” effect of the “model uncertainty terms that will

depend on source estimates” cannot be replicated with f o which applies to the “static”

measurements. In fact, this is the new aspect we want to emphasize in this paper. As

stated earlier, the abstract has been changed to make it clear.

9) Page 9, line 30, Another aspect ... as the metric variable. What does it mean that

range of release estimates are not as large as those using concentration variable ?

It refers to the results in Tables 4 and 5. This has been clarified with the rewritten

sentence as below.

Another aspect of using logarithm concentration as the metric variable is that the range

of the release estimates listed in Table 5 are not as large as those in Table 4 resulted

from using concentration as the metric variable for the same 12 combinations of ah

and fh.

10) What about uncertainties in the source parameters due to varying nature of model or

observation uncertainties. Is it possible to compute it with given procedure?

The expected error ǫq′ of the estimated release rate when assuming the actual release

location is known has been calculated for each release. They are listed besides q′ as the

last column in Table 12. The following text has been added to the fourth paragraph

in Section 3.5.

The posterior uncertainties of the release rate estimates ǫq′ are also calculated and

listed. They range from 1.8 kg/hr for release 2 to 6.2 kg/hr for release 1. The ap-

parent underestimation is likely due to the model uncertainty assumption, including its

simplified formulation as well as the chosen parameter values.
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Responses to the comments of referee #2:

This study investigates the performance of a source term estimation method using data

from the CAPTEX controlled release experiment. The interest in this experiment is that the

source strength is known, as in OSSEs. However, unlike theoretical OSSE experiments real

data are used, which allows assessing the role of transport model uncertainties and how to

account for them. In principle this is all very interesting, however, the outcome remains on

a very technical level. It is not clear what we learn here that was not known already. There

is little justification of the error assumptions that are used. In OSSEs this is fine as long

as the world is self-consistent (or deliberately not), however, the use of real data calls for a

justification of what is assumed. Almost no attempt is made to test whether the statistics

are self-consistent (e.g. chi-squares, biased residuals, etc.). Hardly any effort is made to

interpret the results: how to explain them, and to what extent are they within expectation.

Furthermore, no attempt is made to relate the outcome to what was done before. These

aspects will need further effort to make this manuscript suitable for publication.

We thank the reviewer for reading the manuscript thoroughly and providing the insightful

comments and constructive suggestions.

Using data from the CAPTEX controlled release experiment, it provides a unique op-

portunity to evaluate the source term estimation more realistically than OSSEs. In the

literature of parametric estimation problems, the model uncertainties are given as static

terms and they will not vary with model source terms. We try to emphasize this by adding

“the effect of including model uncertainties on source term estimation”, as a subtitle.

In abstract, “Before introducing model uncertainty terms” has been changed to “Before

introducing model uncertainty terms that depend on source estimates”.

For simplification, both observation and model errors are assumed to take the linear form

and uncorrelated. This can certainly be improved in the future, they seem to be adequate

to demonstrate the benefit of using the model uncertainty terms that depend on source

estimates.

The self-consistency of the method has been checked. Probability density functions of

ln(ch) − ln(co) for the six CAPTEX releases using the estimated source terms are added

as Figure 5. The following paragraph is also added in Section 3.5 to justify the normal

distribution assumption of ln(ch) − ln(co) and interpret the results.

An assumption made in this inverse modeling algorithm is that the differences between

model and observation have a normal distribution with a zero mean. Figure 5 shows the

probability density function (pdf) of ln(ch) − ln(co) for the six CAPTEX releases using the

estimated release rate q′ listed in Table 12. The pdf distribution of ln(ch)− ln(co) for Release

2 is consistent with the normal distribution assumption, and the pdf for Release 4 shows the
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largest deviation from a normal distribution, while those for the other four releases resembles

normal distribution to some extent. The largest relative error for Release 1 is likely related

to the negative mean of the ln(ch)− ln(co) distribution shown in Figure 5. The overestimated

q′ probably results from the compensation of the model bias. Note that the better performance

using ln(ch)− ln(co) than ch
− co is believed to be caused by the fact that normal distribution

assumption is mostly valid for the former but probably invalid for the latter.

In addition, the expected error ǫq′ of the estimated release rate when assuming the actual

release location is known has been calculated for each release. They are listed as the last

column in Table 12. The following text has been added to the fourth paragraph in Section

3.5.

The posterior uncertainties of the release rate estimates ǫq′ are also calculated and listed.

They range from 1.8 kg/hr for release 2 to 6.2 kg/hr for release 1. The apparent underesti-

mation is likely due to the model uncertainty assumption, including its simplified formulation

as well as the chosen parameter values.

To highlight the difference between this work and what was done before, the following

sentence is added to the Summary section besides the change made in Abstract.

Unlike other STE applications where model uncertainties are either ignored or assumed

static, we introduce the model uncertainty terms that depend on the source term estimates.

Specific comments:

• Abstract, line 12, 13: To me it seems that if the problem is linear, averaging outcomes

of inversions using different models should lead to the same result as using the average

model for in a single inversion. Differences are then due to non-linearity (e.g. using a

logarithmic cost function)

We agree with the reviewer’s statement on the linear systems. As the referee pointed

out, logarithmic cost function will result in non-linearity. For the current inverse system

that minimizes the cost function with a background term, the average of inversion

results using two different models are not identical to the inversion results of using the

average of the two model TCMs even without logarithmic concentration differences in

the cost function.

• Page 5, equation 1: The smoothing part of the cost function is included but not used.

In that case just leave it out.

We removed the smoothing term from both Equations 1 and 5.
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• Page 10, section 3: The explanation of how you normalize the cost function comes only

at the end. To follow the discussion preceding that point it would be clearer to move it

to the beginning of the section.

Following this suggestion, we moved Equation 5 and the rewritten preceding text shown

below to the beginning of the section before introducing Figure 3.

To avoid having zero source as a global minimizer in such situations, the sum of the

weights of the mismatch between model simulation and observations is kept unchanged

for varying qij by normalizing it with the weight sum when qij = qb
ij, as shown in

Equation 5.

• Table 10, 11, 12: What is missing here is an estimate of the posterior uncertainty.

Otherwise there is no references to compare the actual performance to the expected

performance. Without this information it is difficult to judge how important model

uncertainties are. Of course, the outcome will depend on the assumed flux and obser-

vational uncertainties. However, some discussion of the validity of the assumptions

regarding those is needed anyway.

The posterior uncertainty, ǫq′ , has been calculated for each release and they are listed

as the last column in Table 12. The following discussion has been added to the fourth

paragraph in Section 3.5.

The posterior uncertainties of the release rate estimates ǫq′ are also calculated and

listed. They range from 1.8 kg/hr for release 2 to 6.2 kg/hr for release 1. The ap-

parent underestimation is likely due to the model uncertainty assumption, including its

simplified formulation as well as the chosen parameter values.

• Page 17, line 14-15: How significant is the finding of logarithmic inversions giving

better results? Looking at your results it seems to me that they may largely be explained

by a few high measurements that the model cannot really resolve at the resolution that

is used. The logarithmic cost function may allow more flexibility to cope with a few

outlines. This could also explain the dependence of your results on relative observational

error. Would this conclusion be different if you filter for data that the inversion has

difficulty reproducing.

This finding of logarithmic inversions giving better results is not new. Chai et al.

(2015) has more discussion on the choice of both control variables and metric variables

using “twin experiment” settings. Figure 2 shows that there are no apparent outlines

when the exact release terms are applied in the HYSPLIT simulation. We believe
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that the reason the logarithmic inversion works better is due to the large range of

the concentrations and the log-normal distribution of the concentration differences

between model predictions and observations. The newly added Figure 5 and associated

paragraph mentioned earlier have more explanation on this.

Chai, T., Draxler, R., and Stein, A.: Source term estimation using air concentration

measurements and a Lagrangian dispersion model - Experiments with pseudo and real

cesium-137 observations from the Fukushima nuclear accident, Atmos. Environ., 106,

241–251, 2015.
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Weak-constraint inverse modeling using HYSPLIT
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

HYSPLIT-4

Lagrangian dispersion model and Cross Appalachian Tracer

Experiment (CAPTEX) observations – Effect of including model

uncertainties on source term estimation

Tianfeng Chai1,2, Ariel Stein1, and Fong Ngan1,2

1NOAA Air Resources Laboratory (ARL), NOAA Center for Weather and Climate Prediction, 5830 University Research

Court, College Park, MD 20740, USA
2Cooperative Institute for Climate and Satellites, University of Maryland, College Park, MD 20740, USA

Correspondence: Tianfeng Chai (Tianfeng.Chai@noaa.gov)

Abstract. A HYSPLIT
✿✿✿✿✿✿✿✿✿✿

HYSPLIT-4 inverse system that is based on variational data assimilation and a Lagrangian dispersion

transfer coefficient matrix (TCM) is evaluated using the Cross Appalachian Tracer Experiment (CAPTEX) data collected

from six controlled releases. For simplicity, the initial tests are applied to release 2 for which the HYSPLIT has the best

performance. Before introducing model uncertainty terms
✿✿✿

that
✿✿✿✿

will
✿✿✿✿✿✿

depend
✿✿✿

on
✿✿✿✿✿✿

source
✿✿✿✿✿✿✿✿

estimates, the tests using concentration

differences in the cost function results in severe underestimation while those using logarithm concentrations differences results5

in overestimation of the release rate. Adding model uncertainty terms improves results for both choices of the metric variables

in the cost function. A cost function normalization scheme is later introduced to avoid spurious minimal source term solutions

when using logarithm concentration differences. The scheme is effective in eliminating the spurious solutions and it also

helps to improve the release estimates for both choices of the metric variables. The tests also show that calculating logarithm

concentration differences generally yield better results than calculating concentration differences and the estimates are more10

robust for a reasonable range of model uncertainty parameters. This is further confirmed with nine ensemble HYSPLIT runs

in which meteorological fields were generated with varying planetary boundary layer (PBL) schemes. In addition, it is found

that the emission estimate using a combined TCM by taking the average or median values of the nine TCMs is similar to the

median of the nine estimates using each of the TCMs individually. The inverse system is then applied to the other CAPTEX

releases with a fixed set of observational and model uncertainty parameters and the largest relative error among the six releases15

is 53.3%. At last, the system is tested for its capability to find a single source location as well as its source strength. In these

tests, the location and strength that yield the best match between the predicted and the observed concentrations are considered

as the inverse modeling results. The estimated release rates are mostly not as good as the cases in which the exact release

locations are assumed known, but they are all within a factor of 3 for all the six releases. However, the estimated location may

have large errors.20
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1 Introduction

The transport and dispersion of gaseous and particulate pollutants are often simulated to generate pollution forecasts for emer-

gency responses or produce comprehensive analyses of the past for better understanding of the particular events. Lagrangian

particle dispersion models are particularly suited to provide plume products associated with emergency response scenarios.

While accurate air pollutant source terms are crucial for the quantitative predictions, they are rarely provided in most appli-5

cations and have to be approximated with a lot of assumptions. For instance, the smoke forecasts over the continental U.S.

operated by the National Oceanic and Atmospheric Administration (NOAA) using the HYSPLIT model (Draxler and Hess,

1997; Stein et al., 2015) in support of the National Air Quality Forecast Capability (NAQFC) relies on the outdated fuel load-

ings data and a series of assumptions related to smoke release heights and strength approximation (Rolph et al., 2009).

Observed concentration, deposition, or other functions of the atmospheric pollutants such as aerosol optical thickness mea-10

sured by satellite instruments can be used to estimate some combination of source location, strength, and temporal evolution

using various source term estimation (STE) methods (Bieringer et al., 2017; Hutchinson et al., 2017). Among the applications,

the recent Fukushima Dai-ichi Nuclear Power Plant accidents saw the most implementations of the STE methods to esti-

mate the radionuclide releases. The STE methods range from simple comparisons between model outputs and measurements

(e.g. Chino et al., 2011; Katata et al., 2012; Terada et al., 2012; Hirao et al., 2013; Kobayashi et al., 2013; Oza et al., 2013;15

Katata et al., 2015; Achim et al., 2014) to those sophisticated ones using various dispersion models and inverse modeling

schemes (e.g. Stohl et al., 2012; Winiarek et al., 2012; Saunier et al., 2013; Winiarek et al., 2014; Chai et al., 2015). Another

active field for STE applications is the estimation of the volcanic ash emissions. Many attempts have been made for several

major volcano eruptions (Wen and Rose, 1994; Prata and Grant, 2001; Wilkins et al., 2014, 2016; Chai et al., 2017).

While there are many STE methods applied to reconstruct the emission terms, it is still a state of art. Two popular advanced20

inverse modeling approaches are cost-function-based optimization methods and those based on Bayesian inference. However,

it is difficult to evaluate the STE without knowing the actual sources for most applications. Chai et al. (2015) generated pseudo

observations using the same dispersion model in their initial inverse experiment tests, which are often called “twin experi-

ments”. Such tests allow observational errors to be added realistically (e.g. Chai et al., 2015), but it is non-trivial to represent

the model errors incurred by other model parameters such as the uncertainties of the meteorological field. One way to objec-25

tively evaluate the inverse modeling results is to compare the predictions with the independent observations or withheld data.

However, such indirect comparisons still cannot provide quantitative error statistics for the source terms.

There have been some tracer experiments conducted to study the atmospheric transport and dispersion with controlled re-

leases. In these experiments, the source terms were well-quantified and comprehensive measurements were made subsequently

over an extended area (e.g. Draxler et al., 1991; Van Dop et al., 1998). With the known source terms, they provide a unique30

opportunity to evaluate the STE methods. Singh and Rani (2014) and Singh et al. (2015) used measurements from a recent

dispersion experiment (Fusion Field Trials 2007) data to evaluate a least-squares technique for identification of a point release.

The European Tracer Experiment (ETEX) data set were also used to study the STE methods based on the principle of maximum
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entropy and a least squares cost function (Bocquet, 2005, 2007, 2008). However, such formal evaluation of the STE methods

is still very limited.

A HYSPLIT inverse system based on 4D-Var data assimilation and a transfer coefficient matrix (TCM) was developed and

applied to estimate cesium-137 source from the Fukushima nuclear accident using air concentration measurements (Chai et al.,

2015). The system was further developed to estimate the effective volcanic ash release rates as a function of time and height by

assimilating satellite mass loadings and ash cloud top heights (Chai et al., 2017). In this study, the Cross Appalachian Tracer5

Experiment (CAPTEX) data are used to evaluate the HYSPLIT inverse modeling system. The paper is organized as follows.

Section 2 describes the CAPTEX experiment, HYSPLIT
✿✿✿✿✿✿✿✿✿✿

HYSPLIT-4 model configuration, and the source term inversion

method. Section 3 presents emission inversion results and a summary is given in Section 4.

2 Method

2.1 CAPTEX experiment10

The CAPTEX experiment consisted of seven near-surface releases of the inert tracer perfluro-monomethylcyclohexane (PMCH)

from Dayton, Ohio, U.S. and Sudbury, Ontario, Canada during September and October 1983 (Draxler, 1987). Table 1 lists the

locations, time, amounts, and measurement counts of the seven releases. Samples were collected at 84 different measurement

sites distributed from 300 to 1100 km downwind of the emission source, as either 3- or 6-hour averages up to 60 hours after

each release. Figure 1 shows the distribution of measurement sites and the two source locations. Since there were few measure-15

ments above twice background values for release 6, it will be excluded from the testing as in the earlier studies using CAPTEX

data (e.g. Hegarty et al., 2013; Ngan et al., 2015). Note that 3.4 fl/l has been subtracted from all CAPTEX measurements to

remove background and “noise” in sampling where the ambient background concentration is constant at 3.0 fl/l (Ferber et al.,

1986). At ground level, 1 fl/l is equivalent to 15.6 pg/m3. Duplicate sample analyses showed that the majority data has a mean

standard deviation estimated as 10.8% but contaminated samples may have standard deviation as large as 65% (Ferber et al.,20

1986).

2.2 HYSPLIT

In this study, the tracer transport and dispersion are modeled using the HYSPLIT model
✿✿✿✿✿✿

(Version
✿✿✿

4)
✿

in its particle mode

in which three-dimensional (3D) Lagrangian particles released from the source location passively follow the wind field

(Draxler and Hess, 1997, 1998; Stein et al., 2015). A particle release rate of 50,000 per hour is used for all calculations. Ran-5

dom velocity components based on local stability conditions are added to the mean advection velocity in the three wind

component directions. The meteorological data used to drive the HYSPLIT are time-averaged from the Advanced Research

WRF model (ARW, version 3.2.1) simulation results at 10-km resolution and they are identical to those used by Hegarty et al.

(2013). The 10-km run was nested inside a larger domain at 30-km resolution, over which the simulation was started using the

North American Regional Reanalysis (NARR) at 32-km (Mesinger et al., 2006). In the WRF simulations, 3D grid nudging of10
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Figure 1. Distribution of the 84 measurement sites and two CAPTEX source locations (Dayton, Ohio, U.S. shown as a red diamond, and

Sudbury, Ontario, Canada shown as a green cross).
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Table 1. The locations, time, amounts, and measurement counts (Mobs) of each CAPTEX release from Dayton, Ohio, U.S. and Sudbury,

Ontario, Canada during September and October 1983.

# Site (latitude, longitude) Release time Amount Mobs

1 Dayton (39.80◦, -84.05◦) 1700-2000Z, Sep. 18, 1983 208 kg 395

2 Dayton (39.90◦, -84.22◦) 1705-2005Z, Sep. 25, 1983 201 kg 400

3 Dayton (39.90◦, -84.22◦) 1900-2200Z, Oct. 02, 1983 201 kg 404

4 Dayton (39.90◦, -84.22◦) 1600-1900Z, Oct. 14, 1983 199 kg 367

5 Sudbury (46.62◦, -80.78◦) 0345-0645Z, Oct. 26, 1983 180 kg 357

6 Dayton (39.90◦, -84.22◦) 1530-1600Z, Oct. 28, 1983 32 kg -

7 Sudbury (46.62◦, -80.78◦) 0600-0900Z, Oct. 29, 1983 183 kg 358

winds was applied in the free troposphere and within the planetary boundary layer (PBL). There are 43 vertical layers with

the lowest one being approximately 33 m thick. Tracer concentrations are computed over each grid cell by summing the mass

of all particles in the cell and dividing the result by the cell’s volume. In this study, the concentration grid cells have 0.25o

resolution in both latitude and longitude directions and vertically they extend 100 m from the ground.

To avoid running the HYSPLIT modeling repeatedly, a TCM is generated similar to the previous HYSPLIT inverse modeling15

studies (Chai et al., 2015, 2017). As described in Draxler and Rolph (2012), independent simulations are performed with a unit

emission rate from each source location and a pre-defined time segment. Each release scenario is simply a linear combination

of the unit emission runs.

2.3 Emission Inversion

Similar to Chai et al. (2015), the unknown releases can be solved by minimizing a cost functional that integrates the differences20

between model predictions and observations, deviations of the final solution from the first guess (a priori), as well as other

relevant information written into penalty terms (Daley, 1991). For the current application, the cost functional F is defined as,

F =
1

2

M∑

i=1

N∑

j=1

(qij − qbij)
2

σ2
ij

+
1

2

M∑

m=1

(chm − com)2

ǫ2m
+
csm
2

·

N−1∑

i=2

(qi−1,j − qbi−1,j)− 2 · (qij − qbij)+ (qi+1,j − qbi+1,j)

qc
2 (1)

where qij is the discretized source term at hour i and location j for which an independent HYSPLIT simulation has been

run and recorded in a TCM. qbij is the first guess or a priori estimate and σ2
ij is the corresponding error variance. Note that25

all tracer sources in this study were at ground level and the release heights in the HYSPLIT were set as 10 m for all the

following test cases. We also assume the uncertainties of the release at each time-location are independent of each other so that

only the diagonal term of the typical a priori error variance σ2
ij appears in Equation 1. ch and co denote HYSPLIT-predicted

and measured concentrations, respectively. The observational errors ǫ2m are assumed to be uncorrelated. As the term ǫ2m is

essentially used to weight (chm− com)2 terms, the uncertainties of the model predictions and the representative errors should be30
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included besides the observational uncertainties. This will be further discussed in Section 3.2. The last term is a smoothness

penalty to make the modified minimization problem better conditioned (Lin et al., 2002). qc is a scale constant and may be

combined with csm to adjust the smoothness term. In this study, the smoothness penalty is turned off by setting csm as zero.

A large-scale bound-constrained limited-memory quasi-Newton code, L-BFGS-B (Zhu et al., 1997) is used to minimize the

cost functional F defined in Equation 1 when multiple parameters need to be determined. As shown by Chai et al. (2015), the

metric variable can be changed from concentration to logarithm concentration. Both choices of metric variable will be tested5

here.
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

cases
✿✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿

this
✿✿✿✿✿

study
✿✿✿

are
✿✿

all
✿✿✿✿✿✿✿✿✿✿

formulated
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿

over-determined
✿✿✿✿✿✿✿✿✿

problems.

3 Results

3.1 Recovering emission strength without model uncertainty

As an initial test, the exact release location and time are both assumed known and the only unknown variable left to be

determined is the release rate, or the total release amount. For this type of one-dimensional problem, an optimal emission10

strength can be easily found without having to use sophisticated minimization routines. For instance, the F may be directly

calculated for a number of emission strength values and the resulting F = F(q) plot will reveal the optimal q strength that is

associated with the minimal F . Note that such an optimal solution not only depends on the chosen parameters in Equation 1,

but also highly depends on the HYSPLIT model setup and the meteorological fields.

Both Hegarty et al. (2013) and Ngan et al. (2015) showed that the HYSPLIT dispersion model performed better for Release15

2 than the other releases. Thus Release 2 is initially chosen to perform a series of inverse modeling tests. Assuming no prior

knowledge of the emission strength, the first guess is given as qb = 0, and σ = 104 kg/hr is assumed. Sensitivity tests show

that when qb is changed to 100 kg/hr the emission strength estimates are nearly unchanged with the same or larger σ.

Firstly, the
✿✿

no
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿

are
✿✿✿✿✿✿✿✿✿

considered
✿✿

to
✿✿✿✿✿✿✿✿

contribute
✿✿

to
✿✿

ǫ.
✿✿✿✿

The observational uncertainties are formulated to include

a fractional component fo
× co and an additive part ao.

✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

this
✿✿✿✿✿✿

general
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

is
✿✿✿✿✿✿

chosen
✿✿✿

for
✿✿

its
✿✿✿✿✿✿✿✿✿

simplicity.
✿✿

It
✿✿✿✿✿✿

should20

✿✿

be
✿✿✿✿✿✿✿

replaced
✿✿✿✿✿

when
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿✿✿✿✿

information
✿✿

is
✿✿✿✿✿✿✿✿

available.
✿

No model uncertainties are considered to contribute to ǫ. Table 2

lists the emission strength q that generates the minimal cost function for a series of fo and ao combinations, where fo ranges

from 10% to 50%, and ao is assigned as 10, 20, and 50 pg/m3. All the emission strength values obtained are significantly

lower than the actual release of 67 kg/hr. It shows that a larger fo value tends to have a smaller q estimate, but a larger ao

results in a larger q. The significant underestimation of the release strength is caused by the implicit assumption of a perfect25

model when ǫ does not include the model uncertainties. Figure 2 shows the comparison between the predicted and measured

concentrations when the actual release rate of 67 kg/hr is applied. Large discrepancies still exist even when the exact release

is known and used in the simulation. For the measured zero concentrations, most of the predicted values are non-zero and can

be above 1000 pg/m3. As ǫm = ao for these zero concentrations,
(chm−com)2

ǫ2m
will dominate the cost function when ao is not

large enough. This explains that the underestimation is not as severe for ao =50 pg/m3 as that for ao =10 pg/m3. While ǫ do30

not change with fo for the zero concentrations, smaller fo values help increase the weighting of the terms
(chm−com)2

ǫ2m
associated

with large measured concentrations. So, the estimated emission strength when fo = 10% is better than when fo = 50%.
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Figure 2. Comparison between the predicted and measured concentrations for Release 2 during the CAPTEX experiment. In the HYSPLIT

simulation, at the exact release location, an emission rate of 67 kg/hr was applied from 17Z to 20Z on September 25, 1983. A constant 1

pg/m3 is added to both predicted and measured concentrations to allow logarithm calculation.
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As stated in Chai et al. (2015), the metric variable in Equation 1 can be changed to ln(c), i.e. replacing (chm − com) with

ln(chm)−ln(com). A constant 0.001 pg/m3 is added to both chm and com to allow the logarithm operation for zero concentrations.

In such a case, ǫ
ln(c)
m can be calculated as

ǫln(c)m = ln(1+ fo +
ao

com
) (2)

Note that 0.001 pg/m3 is also added to com in the second term to avoid dividing by zero. The ao

com
term in Equation 2 makes

ǫ
ln(c)
m larger for measured low concentrations than those measured high concentrations, thus makes the measured .

✿✿

It
✿✿✿✿✿✿

causes5

✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

weighting
✿✿✿✿✿✿✿

towards
✿✿✿✿✿✿✿✿

measured
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿✿✿✿✿

concentrations
✿✿✿

and
✿✿✿✿✿✿

results
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿

overestimation
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿

Table
✿✿

3.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿

measured zero

concentrations have little effect in the final emission strength estimates. Table 3 shows that the emission strengths are overes-

timated, but are within a factor of 2 over the actual release of 67 kg/hr, for all fo and ao combinations. The similar trends of

how q changes with fo and ao are also observed here, i.e., a larger ao or a smaller fo tends to have a larger q estimate.

Table 2. Emission strength of release 2 that minimizes F for different observational errors, defined as ǫ= fo
× co + ao. Concentration is

used as the metric variable.

Emission (kg/hr) ao =10 pg/m3 ao =20 pg/m3 ao =50 pg/m3

fo = 10% 7.1 11.1 17.4

fo = 20% 4.1 7.1 12.6

fo = 30% 2.9 5.2 10.0

fo = 50% 1.8 3.4 7.1

Table 3. Emission strength of release 2 that minimizes F for different observational errors, defined as ǫ= fo
× c+ ao. Logarithm concen-

tration is chosen as the metric variable, i.e. (chm − com) in Equation 1 is replaced with ln(chm)− ln(com).

Emission (kg/hr) ao =10 pg/m3 ao =20 pg/m3 ao =50 pg/m3

fo = 10% 115.2 119.8 124.7

fo = 20% 106.3 112.9 119.8

fo = 30% 101.2 108.5 116.3

fo = 50% 94.4 101.2 109.6

While using logarithm concentration as the metric variable yields better emission estimates than using concentration as the10

metric variable, the results in Table 3 are apparently systematically overestimated, comparing to the systematically underesti-

mated results in Table 2. In addition, the fo and ao combinations associated with the best emission estimates in Tables 2 and

3 appear to be in the opposite corners of the tables.
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3.2 Recovering emission strength with model uncertainty

To consider the model uncertainties in a simplified way, ǫ2 will be formulated as

ǫ2m = (fo
× com + ao)2 +(fh

× chm + ah)2 (3)

As ao and ah affect the ǫ2 in a similar way, the representative errors caused by comparing the measurements with the predicted

concentrations averaged in a grid can be included in either ah or ao.

With logarithm concentration as the metric variable, (ǫ
ln(c)
m )2 is comprised of two parts, as5

(ǫln(c)m )2 = [ln(1+ fo +
ao

com
)]2 + [ln(1+ fh +

ah

chm
)]2 (4)

Note that a constant small number 0.001 pg/m3 is added to denominators com and chm to avoid dividing by zero.

Using concentration and logarithm concentration as the metric variable, respectively, Tables 4 and 5 show the emission

strength estimates with different fh and ah, while keeping fo = 20%, ao =20 pg/m3.
✿✿✿✿✿✿✿✿✿

Additional
✿✿✿✿

tests
✿✿✿✿

with
✿✿✿✿✿

other
✿✿✿✿✿✿

chosen
✿✿✿

fo

✿✿✿

and
✿✿

ao
✿✿✿✿✿✿

values
✿✿✿✿✿

show
✿✿✿✿✿✿

similar
✿✿✿

but
✿✿✿✿✿✿✿

slightly
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

results.
✿✿✿

For
✿✿✿✿✿✿✿

brevity,
✿✿✿✿

they
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

presented
✿✿✿✿✿

here. It should be noted that the10

model uncertainties are not equivalent to model errors. Although dispersion model simulations can have large errors due to

various reasons including the source term uncertainties, the model uncertainties are used to indicate that the model is not

perfect even with the “optimal” model parameters. Similar to weak constraint applied in operational 4D-Var data assimilation

systems (Zupanski, 1997; Tremolet, 2006), introducing model uncertainties is mainly intended to relax the model constraint

for imperfect models. Here the fh and ah parameters are given similar ranges as those given to the observational uncertainty15

parameters.

When concentration is used as the metric variable, the emission strength estimates with model uncertainties considered

are improved over those without model uncertainties. The estimates of emission strength generally increases with the model

uncertainty, either through ah or fh except for fh = 50%, when the q estimates slowly decreases with ah. When fh = 0%,

ah = 10, 20, and 50 pg/m3 while ao=20 pg/m3, the q estimates, 7.7, 9.1, and 13.6 kg/hr, are inline with the results shown in20

Table 2, where q = 7.1 kg/hr for ao=20 pg/m3 and q = 12.6 kg/hr for ao=50 pg/m3. However, the trend of how q estimates

change with fh is opposite to how q estimates change with fo. Table 4 shows that the emission strength increases with the

model uncertainty factor fh. With fh = 20%, the release estimates of 48.5, 50.4, and 53.5 kg/hr are all within 30% of the

actual release rate of 67 kg/hr. Instead of underestimation shown in Table 2, the release estimates are overestimated when

fh = 50% is assumed.25

With logarithm concentration as the metric variable, larger ah or fh results in slightly smaller q estimates. While how q

estimates change with fh is similar to how they change with fa in Table 3, how q estimates change with ah is opposite to

how q estimates change with ao before introducing model uncertainties. Equation 4 shows that fo and fh affect (ǫ
ln(c)
m )2 in a

simple monotonic way, while the effect of ahm is complicated as it is divided by the chm value that varies with the source terms.

Table 5 shows that the source terms are no longer overestimated as those in Table 3. In fact, all cases have slight to moderate30

underestimation, with the worst results being q = 42.6 kg/hr when fh = 50% and ah =50 pg/m3. Another aspect of using
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logarithm concentration as the metric variable is that the range of the release estimates
✿✿✿✿✿

release
✿✿✿✿✿✿✿✿

estimates
✿✿✿✿✿

listed
✿✿

in
✿✿✿✿✿

Table
✿✿

5 are

not as large as those
✿✿

in
✿✿✿✿✿

Table
✿

4
✿✿✿✿✿✿✿

resulted
✿✿✿✿✿

from using concentration as the metric variable
✿✿

for
✿✿✿

the
✿✿✿✿✿

same
✿✿

12
✿✿✿✿✿✿✿✿✿✿✿✿

combinations
✿✿

of
✿✿✿

ah

✿✿✿

and
✿✿✿

fh.

Table 4. Emission strength of release 2 that minimizes F for different fh and ah. Concentration is taken as the metric variable. ǫ2 =

(fo
× co + ao)2 +(fh

× ch + ah)2. fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 7.7 9.1 13.6

fh = 10% 15.9 22.1 32.9

fh = 20% 48.5 50.4 53.5

fh = 50% 114.0 111.8 104.3

Table 5. Emission strength of release 2 that minimizes F for different fh and ah. Logarithm concentration is taken as the metric variable.

(ǫ
ln(c)
m )2 = [ln(1+ fo + ao

com
)]2 + [ln(1+ fh + ah

chm
)]2. fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 64.7 58.5 53.5

fh = 10% 61.5 55.7 49.4

fh = 20% 58.5 53.0 46.6

fh = 50% 55.1 49.4 42.6

3.3 Cost function normalization

Without model uncertainties, the weighting terms for each model-observation pair do not change with emission estimates.5

When ǫ2m and (ǫ
ln(c)
m )2 are formulated as in Equations 3 and 4, respectively, they vary with emission estimates. This may cause

complication in some circumstances when logarithm concentration is used as the metric variable.
✿✿

To
✿✿✿✿✿

avoid
✿✿✿✿✿✿

having
✿✿✿✿

zero
✿✿✿✿✿✿

source

✿✿

as
✿

a
✿✿✿✿✿✿

global
✿✿✿✿✿✿✿✿

minimizer
✿✿✿

in
✿✿✿✿

such
✿✿✿✿✿✿✿✿

situations,
✿✿✿

the
✿✿✿✿

sum
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

weights
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

mismatch
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

observations

✿

is
✿✿✿✿

kept
✿✿✿✿✿✿✿✿✿

unchanged
✿✿✿

for
✿✿✿✿✿✿✿

varying
✿✿✿

qij
✿✿

by
✿✿✿✿✿✿✿✿✿✿

normalizing
✿✿

it
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

weight
✿✿✿✿

sum
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿

qij = qbij ,
✿✿

as
✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿✿

Equation
✿✿

5.
✿

F =
1

2

M∑

i=1

N∑

j=1

(qij − qbij)
2

σ2
ij

+
1

2

M∑

m=1

(chm − com)2

ǫ2m
×

∑M

m=1
1

ǫbm
2

∑M

m=1
1
ǫ2m

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(5)10

Figure 3 shows the cost function as a function of source strength when (ǫ
ln(c)
m )2 is defined as in Equation 4, with fh = 0, ah

=50 pg/m3, fo = 10%, ao =20 pg/m3. Before introducing cost function normalization, a global minimal cost function appears

10



when release strength approaches zero while a local minimal cost function exists at 56.8 kg/hr. Several such instances were

found when ah = 50 pg/m3 and when fh is 0 or 10%, while both fo and ao are relatively small. The smaller cost function

when release strength approaches zero is due to the increasing (ǫ
ln(c)
m )2 in Equation 4 as chm gets smaller. While the model-

observation differences are not smaller for lower release strength, the drastic increase of (ǫ
ln(c)
m )2 when ah = 50 pg/m3 and fh

is 0 or 10% results in smaller cost function with decreasing source strength. To avoid having zero source as a global minimizer5

in such situations, the total weighted mismatch between model simulation and observations is normalized by the total weights

when qij = qbij , as shown in Equation 5.

F =
1

2

M∑

i=1

N∑

j=1

(qij − qbij)
2

σ2
ij

+
1

2

M∑

m=1

(chm − com)2

ǫ2m
×

∑M

m=1
1

ǫbm
2

∑M

m=1
1
ǫ2m

+
csm
2

·

N−1∑

i=2

[
(qi−1,j − qbi−1,j)− 2 · (qij − qbij)+ (qi+1,j − qbi+1,j)

qc
]2

Figure 3 shows that the cost function has the minimum at q=67.3 kg/hr after normalization. Note that the dramatic difference10

of the cost function magnitude before and after the normalization is due to the extreme small value of
∑

m=1
1

ǫbm
2 calculated at

qb = 0. Tables 6 and 7 show the emission strength estimates after cost function normalization with different fh and ah, while

keeping fo = 20%, ao =20 pg/m3, using concentration and logarithm concentration as the metric variables, respectively. Note

that fo = 20% was chosen for the cases listed in Table 7, while fo = 10% was chosen in Figure 3 to illustrate the potential

problem. How estimates change with fh and ah in Tables 6 and 7 is similar to what is shown in Tables 4 and 5. The estimates15

are generally closer to the actual release than those obtained without the cost function normalization.

When having concentration as the metric variable and with fh = 50%, the emission strength estimates are 64.7, 64.7, and

65.3 kg/hr for ah=10, 20, 50 pg/m3, respectively. They are all within 5% of the actual release rate. However, fh less than

or equal to 20% results in significant underestimation. When having logarithm concentration as the metric variable, the source

term estimates are not very sensitive to fh and ah values and the results listed in Table 7 are all withing 20% of the actual20

release rate. Among those estimates, a result of 67.3 kg/hr when fh = 10% and ah=10 pg/m3 is almost identical to the actual

release rate.

Table 6. Emission strength of release 2 that minimizes normalized F defined in Equation 5 for different fh and ah. Concentration is taken

as the metric variable. ǫ2 = (fo
× co + ao)2 +(fh

× ch + ah)2. fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 7.7 9.1 13.6

fh = 10% 10.9 15.1 26.4

fh = 20% 32.9 35.6 41.3

fh = 50% 64.7 64.7 65.3
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Figure 3. Cost function as a function of source strength when (ǫ
ln(c)
m )2 is defined as in Equation 4 before and after cost function normaliza-

tion, with fh = 0, ah =50 pg/m3, fo = 10%, and ao =20 pg/m3.
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Table 7. Emission strength of release 2 that minimizes normalized F defined in Equation 5 for different fh and ah. Logarithm concentration

is taken as the metric variable. (ǫ
ln(c)
m )2 = [ln(1+ fo + ao

com
)]2 + [ln(1+ fh + ah

chm
)]2. fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 69.3 64.0 62.1

fh = 10% 67.3 63.4 60.9

fh = 20% 65.3 61.5 59.1

fh = 50% 61.5 58.0 55.1

3.4 Ensemble

Ngan and Stein (2017) simulated CAPTEX releases using a variety of planetary boundary layer (PBL) schemes. In their con-

figuration, WRF version 3.5.1 was used with 27-km grid spacing and 33 vertical layers. The NARR data set was used for the5

initial conditions and lateral boundary conditions. The WRF model was initialized every day at 0600 UTC, and the first 18

hours of spin-up time in the 42-hour simulation were discarded. The PBL schemes used to create the WRF ensemble were

the Yonsei University (Hong et al., 2006, YSU)), Mellor-Yamada-Janjic (Janjic, 1994, MYJ), Quasi-Normal Scale Elimination

(Pergaud et al., 2009, QNSE), MYNN 2.5 level TKE (Nakanishi and Niino, 2006, MYNN), ACM2 (Pleim, 2007, ACM2),

Bougeault and Lacarrere (Bougeault and Lacarrère, 1989, BouLac), University of Washington (Bretherton and Park, 2009,10

UW), Total energy mass flux (Angevine et al., 2010, TEMF), and Grenier Bretherton MaCaa (Grenier and Bretherton, 2001,

GBM) schemes. Nine simulations were conducted with the PBL schemes and their associated surface layer schemes, except

for the YSU, BouLac, UW, and GBM cases in which the MM5 Monin-Obukhov surface scheme was applied. The land-surface

model was Noah land-surface model (Chen and Dudhia, 2001), except ACM2 case in which Pleim-Xiu land-surface model

was used.15

An individual TCM is generated using each of the nine simulations. The nine TCMs can be used to estimate the emission

strengths independently following the same procedure as described previously. Tables 8 and 9 show the 3rd (25th percentile),

5th (median), and 7th (75th percentile) emission strength of the nine estimates that minimize the normalized F defined in

Equation 5 with different fh and ah, while keeping fo = 20%, ao =20 pg/m3, using concentration and logarithm concentra-

tion as the metric variables, respectively. The 25th percentile and 75th percentile values are mostly within 5% of the median20

estimates. While the median estimates show the same trends with fh and ah as the results in Tables 6 and 7, they are signif-

icantly larger due to the meteorological model differences. Apparently the differences among the simulations with different

PBL schemes are smaller than the differences between the ensemble simulations here and the simulation used in the earlier

sections. This suggests that uncertainties of the emission strength are probably larger than the ranges indicated by the 25th and

75th percentile values. The results using logarithm concentration as the metric variable are quite robust with the listed model25

uncertainty parameters. However, the estimates using concentration as the metric variable are very sensitive to fh and ah. This

is consistent with results shown in Sections 3.2 and 3.3.

13



Instead of using each individual TCM generated from nine simulations independently, the nine TCMs can be combined

into one matrix by taking the median or average values. The combined TCM can then be used to estimate the source terms.

The results for concentration and logarithm concentration metric variables are listed in Tables 10 and 11, respectively. They5

show that the emission estimate using the median transfer coefficients of the nine TCMs are very close to the median of the

nine estimates using the nine simulations individually. For the cases with logarithm concentration as the metric variable, the

emission estimates using the median value of the nine TCMs are all within 3.1% of the median values of the nine estimates

obtained with each individual TCM. For the cases with concentration as the metric variable, the average relative differences

are 6.4%, with the maximum relative difference being 10.8% when fh = 10% and ah=50 pg/m3. Combining the TCMs by10

taking the median value generates slightly better results than combining the TCMs by taking the average value does.

Similar to what was found in earlier sections and also in Chai et al. (2015), the cases having logarithm concentration as

the metric variable generally yield better results than those having concentration as the metric variable. It is probably due to

the large range of the concentrations. When having concentration as the metric variable, certain model uncertainty parameters

yield good source terms, but the estimates are quite sensitive to the choices of the model uncertainty parameters. However,

it is not easy to find such model uncertainty parameters that would yield satisfactory results for applications when the actual

releases are indeed unknown. The results here and in the previous sections show that the estimates when having logarithm

concentration as the metric variable are quite robust for a reasonable range of model uncertainty parameters. For these reasons,

logarithm concentration is chosen as the metric variable for the later tests.5

Table 8. The 3rd (25th percentile), 5th (median), and 7th (75th percentile) emission strength of nine simulations of release 2 that minimizes

the normalized F defined in Equation 5 for different fh and ah. Concentration is taken as the metric variable. ǫ2 = (fo
×co+ao)2+(fh

×

ch + ah)2. fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 6.0, 7.0, 7.2 7.4, 8.8, 8.8 13.4, 15.1, 15.3

fh = 10% 20.0, 21.0, 21.9 23.9, 26.1, 27.2 33.2, 35.2, 37.4

fh = 20% 48.5, 49.9, 59.1 53.0, 54.6, 62.8 58.5, 62.8, 68.6

fh = 50% 191, 205, 274 186, 197, 258 158, 168, 207

3.5 Source location and other releases

In addition to the source strength, the source location and its temporal variation can be retrieved with adequate accuracy

using the HYSPLIT inverse system described here if there are sufficient measurements available. For instance, Chai et al.

(2015) estimated 99 6-hr emission rates of the radionuclide Cesium-137 from the Fukushima nuclear accident using 1296 daily

average air concentration measurements at 115 stations around the globe. Here the system’s capability to locate a single source10

location will be tested using a straightforward approach. In these tests, the release time is assumed known, but its location and

strength are left to be determined. A region of suspect is first gridded at certain spatial resolution to form a limited number of

14



Table 9. The 3rd (25th percentile), 5th (median), and 7th (75th percentile) emission strength of nine simulations of release 2 that minimizes

normalized F defined in Equation 5 for different fh and ah. Logarithm concentration is taken as the metric variable. (ǫ
ln(c)
m )2 = [ln(1+

fo + ao

com
)]2 + [ln(1+ fh + ah

chm
)]2. fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 102, 106, 113 93.4, 100, 105 83.8, 88.9, 97.2

fh = 10% 97.2, 102, 108 88.9, 96.3, 101 80.5, 85.4, 94.4

fh = 20% 93.4, 98.2, 105 86.3, 92.5, 98.2 78.1, 82.9, 91.6

fh = 50% 88.9, 93.4, 101 82.9, 88.0, 94.4 75.8, 81.3, 87.2

Table 10. Emission strength estimates by using average and median value of nine simulations for release 2. The cost function is normalized

F as in Equation 5. Concentration is taken as the metric variable. ǫ2 = (fo
× co + ao)2 +(fh

× ch + ah)2. fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 7.2, 7.5 8.9, 9.1 15.6, 15.9

fh = 10% 22.3, 23.4 22.2, 28.0 37.0, 37.0

fh = 20% 55.1, 53.0 59.7, 58.0 66.6, 64.7

fh = 50% 213, 227 205, 213 178, 177

candidate source locations. An optimal strength is then found at each candidate source location following the method described

earlier. The location that results in the best match between the predicted and the observed concentrations is considered as the

likely source location.15

In the following tests, a 11×11 grid with 0.2◦ resolution in both longitude and latitude directions is used to generate 121

candidate source locations. They are centered at (40.0◦N, 84.5◦W) for releases 1–4, and centered at (46.6◦N, 80.8◦W) for

releases 5 and 7. Using the normalized F defined in Equation 5 and assuming fo = 20%, ao =20 pg/m3, fh = 20%, and ah

=20 pg/m3, a minimal cost function associated with an optimal release strength can be found at each location.
✿✿✿✿✿

When
✿✿✿✿✿✿✿✿

logarithm

✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿

is
✿✿✿✿✿

taken
✿✿

as
✿✿✿

the
✿✿✿✿✿

metric
✿✿✿✿✿✿✿✿

variable,
✿✿✿

the
✿✿✿✿✿✿✿

emission
✿✿✿✿✿✿✿✿

estimates
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿

fh
✿✿✿✿

and
✿✿

ah
✿✿✿✿✿✿✿

choices,
✿✿

as
✿✿✿✿✿✿✿✿

indicated
✿✿✿

by
✿✿✿

the

✿✿✿✿✿

results
✿✿

in
✿✿✿✿✿✿

Tables
✿✿

7,
✿✿

9,
✿✿✿

and
✿✿✿

11.
✿

Figure 4 shows the 121 candidate locations and their respective minimal cost function values for

release 2. No candidate locations are chosen to collocate with the actual source location which will be unknown for the future5

applications that need to locate the sources. A global minimal point is found at (39.8◦N, 84.5◦), with Fmin = 3.14 achieved

when q=48.5 kg/hr. This grid point is taken as the estimated source location and it is 26.4 km away from the actual release site

(39.90◦N, 84.22◦W). The neighboring location (39.8◦N, 84.3◦W) which is the closest to the actual release site yields a slightly

larger F = 3.17 with an optimal release rate of 60.9 kg/hr. If the exact source location is known as in the tests presented earlier,

the cost function F reaches 1.59 at its minimal point when q = 61.5 kg/hr. Apparently, compared with those cases when the10

release strength is the only unknown, finding both the source location and its strength with the same amount of observations is

15



Table 11. Emission strength estimates by using average and median value of nine simulations for release 2. The cost function is normalized

F as in Equation 5. Logarithm concentration is taken as the metric variable. (ǫ
ln(c)
m )2 = [ln(1+fo+ ao

com
)]2+[ln(1+fh+ ah

chm
)]2. fo = 20%,

ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 115, 108 105, 100 95.3, 90.7

fh = 10% 110, 103 100, 95.3 91.6, 87.2

fh = 20% 105, 100 97.2, 92.5 88.9, 85.4

fh = 50% 100, 96.3 93.4, 88.9 86.3, 82.1

expected to be more difficult. Note that the smaller normalized F values in Figure 3 are for a case with different observation

and model uncertainty parameters, where fo = 10%, ao =20 pg/m3, fh = 0%, and ah =50 pg/m3.

Table 12 lists the source location and strength estimations for the six releases following the same procedure as described

here, where the uncertainty parameters are fo = 20%, ao =20 pg/m3, fh = 20%, and ah =20 pg/m3. Releases 1 and 4 have15

the minimal cost function Fmin occur at the north boundary and the west boundary, respectively. In such scenarios, it might

be necessary to expand the suspected source region for the future applications to find the source locations. However, if source

locations are known to reside in the suspected region, the sources can definitely be near the boundaries. In such cases, the point

with Fmin should be considered as the estimated source location. Releases 3, 5, and 7 have its Fmin occurred at inner grid

points, similar to release 2 shown in Figure 4. None of the closest candidate source locations yield the best match between20

model simulation and observations quantified by the cost function F . Among the six releases, the estimated source location for

release 2 is the closest to its actual release site, with a distance of 26.4 km.

The release rates obtained along with the likely source locations are underestimated by a factor of 3 for release 1, and

overestimated by a factor of 3 for releases 4 and 7, while the estimates for releases 2, 3, and 5 are much better, with relative

errors as −27.6%, −5.4%, and 21.5%, respectively. Table 12 also lists the release rates
✿

q′
✿

estimated with the exact source25

location assumed known. These estimates for all releases are within a factor of two compared with the actual release rates and

the largest relative error is 53.3% for release 1.
✿✿✿

The
✿✿✿✿✿✿✿✿

posterior
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

release
✿✿✿✿

rate
✿✿✿✿✿✿✿✿

estimates
✿✿

ǫq′
✿✿✿

are
✿✿✿✿

also
✿✿✿✿✿✿✿✿✿

calculated

✿✿✿

and
✿✿✿✿✿

listed.
✿✿✿✿✿

They
✿✿✿✿✿

range
✿✿✿✿✿

from
✿✿✿

1.8
✿✿✿✿✿

kg/hr
✿✿✿

for
✿✿✿✿✿✿

release
✿✿

2
✿✿

to
✿✿✿

6.2
✿✿✿✿✿

kg/hr
✿✿✿

for
✿✿✿✿✿✿

release
✿✿

1.
✿✿✿✿

The
✿✿✿✿✿✿✿

apparent
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

underestimation
✿✿

is
✿✿✿✿✿

likely
✿✿✿✿

due
✿✿

to

✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿✿✿✿✿✿

assumption,
✿✿✿✿✿✿✿✿

including
✿✿

its
✿✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿✿✿✿

formulation
✿✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

chosen
✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿✿

values.
✿

Either with the

source location known or unknown, release 2 has one of the best emission estimates among the six releases, probably because30

the HYSPLIT forward model has the best performance for the same release (Hegarty et al., 2013). The significant model

errors when simulating the transport and dispersion even with the exact source terms are mostly caused by the meteorological

uncertainties while the HYSPLIT physical schemes and parameters, as well as the numerical discretization also contribute.

✿✿

An
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿✿✿✿

made
✿✿

in
✿✿✿

this
✿✿✿✿✿✿

inverse
✿✿✿✿✿✿✿✿

modeling
✿✿✿✿✿✿✿✿

algorithm
✿✿

is
✿✿✿✿

that
✿✿

the
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿✿

between
✿✿✿✿✿

model
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿

have
✿✿

a
✿✿✿✿✿✿

normal

✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿

with
✿✿

a
✿✿✿✿

zero
✿✿✿✿✿

mean.
✿✿✿✿✿✿

Figure
✿✿

5
✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿✿✿

density
✿✿✿✿✿✿✿

function
✿✿✿✿✿

(pdf)
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

ln(ch)− ln(co)
✿✿✿

for
✿✿✿

the
✿✿✿

six
✿✿✿✿✿✿✿✿✿

CAPTEX35

✿✿✿✿✿✿

releases
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿

release
✿✿✿✿

rate
✿✿

q′
✿✿✿✿

listed
✿✿

in
✿✿✿✿✿

Table
✿✿✿

12.
✿✿✿✿

The
✿✿✿

pdf
✿✿✿✿✿✿✿✿✿

distribution
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ln(ch)− ln(co)
✿✿

for
✿✿✿✿✿✿✿

Release
✿

2
✿✿

is
✿✿✿✿✿✿✿✿✿

consistent
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✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

normal
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿✿✿✿

assumption,
✿✿✿✿

and
✿✿✿

the
✿✿✿

pdf
✿✿✿

for
✿✿✿✿✿✿✿

Release
✿✿

4
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿✿✿✿✿

deviation
✿✿✿✿

from
✿✿

a
✿✿✿✿✿✿

normal
✿✿✿✿✿✿✿✿✿✿✿

distribution,

✿✿✿✿

while
✿✿✿✿✿

those
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

other
✿✿✿

four
✿✿✿✿✿✿✿

releases
✿✿✿✿✿✿✿✿✿

resembles
✿✿✿✿✿✿

normal
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿

to
✿✿✿✿✿

some
✿✿✿✿✿

extent.
✿✿✿✿

The
✿✿✿✿✿✿

largest
✿✿✿✿✿✿

relative
✿✿✿✿✿

error
✿✿✿

for
✿✿✿✿✿✿

Release
✿✿

1
✿✿

is

✿✿✿✿✿

likely
✿✿✿✿✿

related
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

negative
✿✿✿✿✿

mean
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

ln(ch)− ln(co)
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿

Figure
✿✿

5.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

overestimated
✿✿

q′
✿✿✿✿✿✿✿✿

probably
✿✿✿✿✿✿

results

✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

compensation
✿✿

of
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿

bias.
✿✿✿✿

Note
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿✿✿✿

ln(ch)− ln(co)
✿✿✿✿

than
✿✿✿✿✿✿

ch − co
✿✿

is
✿✿✿✿✿✿✿✿

believed
✿✿

to5

✿✿

be
✿✿✿✿✿✿

caused
✿✿

by
✿✿✿

the
✿✿✿✿

fact
✿✿✿

that
✿✿✿✿✿✿

normal
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿

is
✿✿✿✿✿

mostly
✿✿✿✿✿

valid
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

former
✿✿✿

but
✿✿✿✿✿✿✿

probably
✿✿✿✿✿✿

invalid
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

latter.

The meteorological field and the observations are the two major inputs to the current inverse modeling. As discussed above,

better model performance of release 2 helps to lead to better inverse results than the other releases. However, it is impossible

to eliminate the model uncertainties. In practice, ensemble runs can be used to quantify the uncertainties and reduce the model

errors by taking the average or median values of the ensemble runs. On the other hand, increasing the number of observations10

is effective to improve the inverse modeling results and reduce the result uncertainty. In principle, when the release strength is

the only value to be determined, each measurement within the predicted plume can provide an independent estimate. However,

relying on a single observation to estimate the strength is problematic since a particular model output can be very different

from the observation and thus leading to an erroneous estimation of the source strength when used in isolation. For instance,

although the HYSPLIT predictions of release 2 with exact source terms are very good, compared with individual measurements,15

it has severe underestimation, 0.77 pg/m3 predicted versus 686 pg/m3 measured, as well as significant overestimation, 2033

pg/m3 predicted versus 31.2 pg/m3 measured. Therefore, similar to a regression technique, increasing the sampling number

can improve the final results, as exemplified by the very good source term estimation for release 2 when using all the available

measurements. Also note that the samples outside predicted plumes do not contribute to the inverse modeling. Table 1 lists

the total measurement counts for each release, but the number of measurements actually contributing to the inverse modeling

are those inside the HYSPLIT plumes, including those with zero or background concentrations. The number of such effective

measurements inside the plumes generated by HYSPLIT from the exact source location and time period are reduced to 148,5

237, 211, 68, 46, and 53, for releases 1–5, and 7, respectively. The largest number of effective measurements, 237, of release

2, also indicates the best performance of the HYSPLIT simulation among those of the six releases. The effectiveness of

the measurements will change when source location or release time is changed. The measurements that are not active in

determining the source strength with a known source location and release time may be effective to locate the source locations.

4 Summary10

A HYSPLIT inverse system developed to estimate the source term parameters has been evaluated using the CAPTEX data

collected from six controlled releases. In the HYSPLIT inverse system, a cost function is used to measure the differences

between model predictions and observations weighted by the observational uncertainties. Inverse modeling tests with various

observational uncertainties show that calculating concentration differences results in severe underestimation while calculating

logarithm concentrations differences results in overestimation. Introducing model uncertainty terms improves15

✿✿✿✿✿

Unlike
✿✿✿✿✿

other
✿✿✿✿✿

STE
✿✿✿✿✿✿✿✿✿✿

applications
✿✿✿✿✿✿

where
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿

are
✿✿✿✿✿

either
✿✿✿✿✿✿✿

ignored
✿✿

or
✿✿✿✿✿✿✿✿

assumed
✿✿✿✿✿

static,
✿✿✿

we
✿✿✿✿✿✿✿✿✿

introduce
✿✿✿

the
✿✿✿✿✿✿

model

✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿

terms
✿✿✿✿

that
✿✿✿✿✿✿

depend
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

source
✿✿✿✿✿

term
✿✿✿✿✿✿✿✿

estimates.
✿✿✿✿

The
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿

terms
✿✿✿✿✿✿✿

improve
✿

inverse results for both
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Figure 4. Distribution of 121 candidate source locations for release 2. The minimal cost function at each location associated with an optimal

release strength is indicated by color. The cost function defined in Equation 5 is calculated with fo = 20%, ao =20 pg/m3, fh = 20%, and

ah =20 pg/m3. The actual source location , Dayton, Ohio, U.S., is shown as a red diamond.
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Figure 5.
✿✿✿✿✿✿✿✿

Probability
✿✿✿✿✿✿

density
✿✿✿✿✿✿

function
✿✿✿✿

(pdf)
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

ln(ch)− ln(co)
✿✿

for
✿✿✿

the
✿✿

six
✿✿✿✿✿✿✿✿

CAPTEX
✿✿✿✿✿✿

releases.
✿✿✿✿

Units
✿✿

of
✿✿

ch
✿✿✿

and
✿✿

co
✿✿✿

are
✿✿✿✿✿✿

pg/m3.
✿✿✿✿✿

Model
✿✿✿✿✿✿✿✿

prediction

✿✿

ch
✿

is
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿

release
✿✿✿

rate
✿✿

q′
✿✿✿✿

listed
✿✿

in
✿✿✿✿

Table
✿✿✿

12.
✿✿✿✿✿✿✿✿✿✿✿✿

ln(ch)− ln(co)
✿

is
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿

when
✿✿✿✿

both
✿✿

ch
✿✿✿

and
✿✿

co
✿✿✿

are
✿✿✿✿✿✿

nonzero.
✿✿✿✿✿✿✿

Number

✿

of
✿✿✿✿

data
✿✿✿✿✿

points
✿✿✿✿

used
✿✿

for
✿✿✿

pdf
✿✿✿✿✿✿✿✿

calculation
✿✿✿

are
✿✿✿

70,
✿✿✿

184,
✿✿✿

77,
✿✿✿

49,
✿✿

29,
✿✿✿

and
✿✿✿

30,
✿✿✿

for
✿✿✿✿✿✿

Releases
✿✿

1,
✿✿

2,
✿✿

3,
✿✿

4,
✿

5,
✿✿✿

and
✿✿

7,
✿✿✿✿✿✿✿✿✿✿

respectively.
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Table 12. The source location (latitude, longitude) and release rate qmin identified by the minimal normalized cost function Fmin for

each CAPTEX release. A total of 121 candidate locations are prescribed with 0.2◦ resolution in both longitude and latitude directions,

centered at (40.0◦N, 84.5◦W) for releases 1-4, and at (46.6◦N, 80.8◦W) for releases 5 and 7. ∆ is the distance between the point with

Fmin and the actual release site. q′ is the estimated release rate by assuming that the actual release location is known.
✿✿

ǫq′
✿✿

is
✿✿✿✿✿✿✿

calculated
✿✿✿✿✿

using

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

1
(ǫq′ )

2 = 1
(ǫ

qb
)2

+
∑M

m=1
1

(q′)2×(ǫ
ln(c)
m )2

,
✿✿✿✿✿

where
✿✿✿✿

ǫ
ln(c)
m

✿✿

is
✿✿✿✿✿✿

obtained
✿✿✿✿

using
✿✿✿✿✿✿✿

Equation
✿✿

4. For all the cases, fo = 20%, ao =20 pg/m3, fh = 20%,

and ah =20 pg/m3.
✿✿✿✿✿✿✿

Logarithm
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿

is
✿✿✿✿✿

taken
✿✿

as
✿✿

the
✿✿✿✿✿

metric
✿✿✿✿✿✿✿

variable.

Source location (latitude, longitude) ∆(km) Release rate (kg/hr)

# Actual Estimated Actual qmin q′
✿✿

ǫq′

1 39.80◦, -84.05◦ 41.0◦,-83.9◦ 134.2 69.3 23.9 106.3
✿✿

6.2
✿

2 39.90◦, -84.22◦ 39.8◦,-84.5◦ 26.4 67.0 48.5 61.5
✿✿

1.8

3 39.90◦, -84.22◦ 40.8◦,-85.3◦ 135.8 67.0 63.4 41.7
✿✿

2.6

4 39.90◦, -84.22◦ 40.2◦,-85.5◦ 114.1 66.3 185.7 75.1
✿✿

4.6
✿

5 46.62◦, -80.78◦ 46.2◦,-81.0◦ 49.7 60.0 72.9 42.6
✿✿

3.0

7 46.62◦, -80.78◦ 47.4◦,-81.2◦ 92.5 61.0 201.0 66.0
✿✿

3.9
✿

choices of the metric variables in the cost function. It is also found that cost function normalization can avoid spurious min-

imal source terms when using logarithm concentration as the metric variable. The inverse tests show that having logarithm

concentration as the metric variable generally yields better results than having concentration as the metric variable. The esti-20

mates having logarithm concentration as the metric variable are robust for a reasonable range of model uncertainty parameters.

Such conclusions are further confirmed with nine ensemble runs where meteorological fields were generated using a different

version of WRF meteorological model with varying PBL schemes.

With a fixed set of observational and model uncertainty parameters, the inverse method with logarithm concentration as the

metric variable is then applied to all the six releases. The emission rates are well recovered with the largest relative error as25

53.3% for release 1. The system is later tested for its capability to locate a single source location as well as its source strength.

The location and strength that result in the best match between the predicted and the observed concentrations are considered as

the inverse results. The estimated location is close to the actual release site for release 2 of which the forward HYSPLIT model

has the best performance. The strength estimates are all within a factor of 3 for the six releases.

Code and data availability. The HYSPLIT model is publicly available at https://www.ready.noaa.gov/HYSPLIT.php. The CAPTEX data5

can be downloaded from https://www.arl.noaa.gov/wp_arl/wp-content/uploads/documents/datem/exp_data/captex/.
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