10

15

20

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

Scientific Workflows Applied to the Coupling of a Continuum
(Elmer v8.3) and a Discrete Element (HIDEM v1.0) Ice Dynamic
Model

Shahbaz Memon'#, Dorothée Vallot?, Thomas Zwinger?, Jan Astrom?®, Helmut Neukirchen®,
Morris Riedel!*, and Matthias Book*

!Jiilich Supercomputing Centre, Forschungszentrum Jiilich, Leo-Brandt StraBe, 52428 Jiilich, Germany
?Department of Earth Sciences, Uppsala University, Uppsala, Sweden

3CSC —IT Center for Science Ltd., Espoo, Finland

“Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland

Correspondence: Shahbaz Memon (m.memon @{z-juelich.de)

Abstract. Scientific computing applications involving complex simulations and data-intensive processing are often composed
of multiple tasks forming a workflow of computing jobs. Scientific communities running such applications on distributed and
heterogeneous computing resources find it cumbersome to manage and monitor the execution of these tasks. Scientific work-
flow management systems (WMS) can be used to automate and simplify complex task structures by providing tooling for the
composition and execution of workflows across distributed and heterogeneous computing environments. As a case study, we
apply the UNICORE workflow management system to a formerly hard-coded coupling of a glacier sliding and calving simu-
lation that contains many tasks and dependencies, ranging from pre-processing and data management to repetitive executions
in heterogeneous high-performance computing (HPC) resource environments. Using the UNICORE workflow management
system, the composition, management, and execution of the glacier modelling workflow becomes easier with respect to usage,

monitoring, maintenance, re-usability, portability, and reproducibility in different environments and by different user groups.

1 Introduction

The complexity of glaciological systems is in an increasing way reflected by the physical models used to describe the processes
acting on different temporal and spatial scales. Addressing those complexities inevitably involves the combination of different
sub-models into a single simulation that encompasses multiple tasks executed in a distributed computing facility. A particularly
good example for such a combination is the simulation of calving behaviour at the front of glaciers that combines continuum
model and discrete element model simulations. These computational tasks are connected to each other to form a scientific
workflow: the composition and execution of multiple data processing steps as defined by the requirements of the concerned
scientific application.

Carrying out the discrete calving and ice flow modelling as one workflow instance becomes very laborious without an
automated mechanism. An analysis of such a workflow in more detail reveals that there are even more steps than just the two

model elements mentioned above: These include, for instance, pre- and post-processing, job dependency management, job

10

15

20

25

30

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

submission, monitoring, conditional invocations, and multi-site data management. These steps can be cumbersome for a user,
in particular if any step may produce an unexpected output, which can cause the whole workflow to fail, and may thus require
to re-run the whole workflow. A Workflow Management System (WMS) allows to automate and ease these steps by means
of abstraction, which not only increases usability, but also enhances portability to and reproducibility on different computing
platforms.

The main contribution of this article is to identify the workflow problems to be solved for coupling a glacier continuum
model and a discrete element model, to elicit corresponding requirements, and to implement an automated workflow based on
the UNICORE (Streit et al., 2010) distributed computing middleware, in particular using the UNICORE workflow management
system (Memon et al., 2007). We demonstrate this by taking a shell script that contains a hard-coded low-level workflow and
turning it into a high-level easy-to-use scientific workflow.

This article is structured as follows: Subsequent to this introduction, foundations on glacier calving modelling and on scien-
tific workflows are provided in Section 2. The targeted glacier modelling use case is presented in Section 3 which describes a
workflow baseline used for model coupling and the applications used for execution. Afterwards, in Section 4, the problems of
this initial workflow are discussed. It is then demonstrated how to create a better solution, by first identifying requirements to
solve these problems (Section 5), followed by creating an improved matching workflow design (Section 6), and finally imple-
menting the workflow (Section 7). The implemented workflow is evaluated in Section 8 from different perspectives, including
a discussion of how the identified requirements from Section 5 have been fulfilled. Finally, a summary and an outlook conclude

the article.

2 Foundations
2.1 Modelling and Simulating the Calving of a Glacier

The calving behaviour at the front of glaciers is still a largely unresolved topic in modern theoretical glaciology. The core of the
problem is that ice as a material shows different behaviour, depending on the time scale on which the forces are applied (Greve
and Blatter, 2009). The everyday experience is that ice is a brittle solid body (e.g. breaking icicles). Such behaviour is observed
if the reaction to a force is in the range of seconds to minutes. Theoretical glaciology up to recent years rather dealt with the
long-term (i.e., beyond minutes to millennia) behaviour of glaciers and ice sheets, where ice shows the property of a strong non-
linear, shear thinning fluid (Greve and Blatter, 2009). This leads to a description of long-term ice flow dynamics in classical
ice-sheet and glacier dynamics models (Gagliardini et al., 2013) in terms of thermo-mechanically coupled non-Newtonian
Stokes flow continuum models.

In stark contrast to such a description, the process of cracking or calving (i.e., the complete failure of ice fronts) is an
inherently discontinuous process, that —if addressed in a physically correct way — needs a completely different model approach.
Models adopting a discontinuous approach have been developed throughout the recent years (e.g. Astrom et al., 2013; Bassis
and Jacobs, 2013). These models describe the glacier as discrete particles connected by elastic beams that can be dissolved if

a certain critical strain is exceeded, thus being able to mimic elastic as well as brittle behaviour of ice. The size of these model

10

15

20

25

30

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

particles (in the range of metres) which need to resolve a whole glacier of several cubic kilometres inherently demands large
computational resources. In addition, the characteristic speeds of advancing cracks is close to the speed of sound, which, in
combination with the small spatial resolution, imposes a maximum allowed timestep size of a fraction of a second.

In other words, the combination of a discrete element and a continuum ice flow model is a temporal multi-scale problem,
where the first basically describes an instant change of geometry or rheology for the latter. This means that both models need to
be run in a sequential manner, with several repetitions. This defines a workflow of two model components that strongly differ
in computational demand. In addition, these two model components have to effectively and efficiently exchange data — namely,

the new geometries either changed by flow deformation or by calving as well as damage caused by fraction.
2.2 Scientific Workflows

A scientific workflow can be defined as the composition and execution of multiple data processing steps as required by a
scientific computing application, i.e. e-Science. Such a workflow captures a series of analytical steps of computational exper-
iments to “aid the scientific discovery process through the combination of scientific data management, analysis, simulation,
and visualisation” (Barker and van Hemert, 2008). Conceptually, scientific workflows can be considered (and are typically
visualized) as graphs consisting of nodes representing individual tasks and constructs, and edges representing different types
of associations between nodes, such as sequential or conditional execution.

Carrying out the discrete calving and ice flow model simulations becomes very complex as two (or even more) parallel
High-Performance Computing (HPC) applications are involved, especially if there are tasks in the workflow that consist of pre-
and post-processing phases, and require multi-site and iterative job and data management functions. The overall scenario may
easily become unmanageable, and the workflow management might be prone to errors and failures.

Such a workflow scenario will be even more challenging when some parts are launched on heterogeneous resource manage-
ment systems equipped with different file systems, different data transfer mechanisms, and different job submission systems.
In our case, for example, two different HPC clusters with different characteristics are simultaneously used, one for the ice flow
modelling and another one for the discrete element (i.e., calving) modelling executions.

These workflow challenges can be addressed by a Workflow Management System (WMS) that is capable of managing the
complex dependencies of many job steps with multiple conditional and nested constructs. Several scientific WMSs have been
developed to automate complex applications from multi-disciplinary backgrounds. Ferreira da Silva et al. (2017) comprehen-
sively categorized different workflow management systems according to the type of execution scenario and capabilities they
offer, and also identified their specialised scientific domain. Several WMSs have been developed and are widely used to support
complex scientific scenarios, among them Pegasus (Deelman et al., 2015), Kepler (Ludéscher et al., 2006) and Taverna (Oinn
et al., 2006), to name just a few. These WMSs are also used for specialised scenarios and cater to a specific group of users who
interact with HPC resources.

Our scenario from the domain of glaciology using HPC technology includes a complex workflow graph, and is therefore
not easily manageable for users having only little expertise concerning HPC environments. Hence it is important to imple-

ment the glacier modelling use case with a WMS that offers a rich graphical front-end and simultaneously offers seamless

10

15

20

25

30

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

execution of involved applications. Considering that, the glacier coupling and calving use case is automated through our
standards-based workflow management system (Memon et al., 2007) that is part of the Uniform Interface to Computing Re-
sources (UNICORE) (Streit et al., 2010) distributed computing middleware. It is specifically designed to support HPC appli-
cations deployed in a massively parallel environment. As described later in Section 7, our WMS for UNICORE provides a rich
graphical interface for the composition, management and monitoring of scientific workflows by users with different levels of

system expertise.

3 Use Case: Kronebreen Glacier Simulation

Coupling a continuum ice flow model and a particle-based calving model of the Kronebreen glacier provides a well-suited
case study for the application of a WMS. In the following, we describe the involved software executables and the underlying
workflow. The challenge is that this workflow was only available as a single shell script that is hard to understand with many

hard-coded aspects.
3.1 Conceptual Scheme

Kronebreen is a tidewater glacier (ice flowing directly into the ocean) that is one of the fastest-flowing glaciers of the Svalbard
archipelago. After a period of stability, it started to retreat in 2011 and continued since then. This glacier has been largely
studied (e.g. Kdib et al., 2005; Luckman et al., 2015; Nuth et al., 2012; van Pelt and Kohler, 2015; Schellenberger et al., 2015),
partly due to its situation close to a research station and its interesting behaviour in terms of sliding and calving. For that reason,
it is a good candidate for the present study. The aim is to reproduce both continuous (ice flow) and discrete (calving) processes

using a Finite Element Model (FEM) and a first-principle ice fracture model, respectively.
3.2 Applications: Meshing Tools, Continuum and Discrete Ice Dynamics Model

Within our application, we use the continuum model Elmer/Ice (Gagliardini et al., 2013), and for the discrete calving model,
the Helsinki Discrete Element Model (HIDEM) (Astr(')m et al., 2013). Both codes can be run on large parallel HPC platforms.
Implied by the physics that have to be addressed and by the modelling tools, the workflow contains three main applications

that are part of the use case implementation:

1. Meshing: Gmsh (Geuzaine and Remacle, 2009) is the applied meshing tool that provides the later-on extruded footprint
mesh for the continuum ice flow model run. Gmsh is an open source versatile and scriptable meshing tool that perfectly
matches the demands of being deployed within a workflow like this one. Gmsh applies a bottom-up geometry and
meshing strategy, starting from outline points of the glacier, building a closed loop of its outline and further creating a

planar surface that is being meshed in two dimensions.

2. Continuum Modelling: Elmer/Ice (Gagliardini et al., 2013) is the open source ice sheet model used to compute the

long-time dynamics of the glacier. EImer/Ice is based on the multi-physics package Elmer (Raback et al., 2018), an open

10

15

20

25

30

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

source Finite Element code developed by CSC — IT Center for Science Ltd. Elmer/Ice is able to utilize parallel processing,
applying the Message Passing Interface (MPI) paradigm (Message Passing Interface Forum) that uses messages to
exchange data between nodes of a distributed parallel processing environment, and — for certain solver implementations
— OpenMP (Dagum and Menon, 1998) for shared-memory parallel processing using multi-threading. Elmer also provides
the E1merGrid executable that can be used to convert the mesh created by Gmsh and at the same time perform a domain
decomposition on the footprint, using the Metis library. The solver executable ElmerSolver has a built-in feature to
internally extrude the given footprint mesh into layered columns of prisms and impose the given surface and bedrock
elevation to form the volume of the glacier. Elmer is built on a shared library concept, meaning all solver modules are

loaded during runtime. This enables the easy deployment of user-written functions and solvers though an APIL

3. Discrete Modelling: HIDEM (Helsinki Discrete Element Model) (Astrdm et al., 2013) is a discrete element model
that represents the glacier as mass-points connected by massless beams that are allowed to break if exceeding a given
threshold. An additionally applied repelling potential based on distance guarantees a non-intersection of compressed
loose particles. Solving Newton’s equation on such a setup, it is possible to realistically reproduce the behaviour of
fracturing. The downside of this approach is the high demand of computational power, as the several cubic kilometres
large glacier is discretised in pieces of a few tens of cubic metres. Furthermore, the time scales for the simulation are
imposed by the ratio of the speed of sound to the typical length of the discretised particles, which falls clearly below
seconds. Hence, despite the fact that the code is utilizing massive parallel computing using the MPI paradigm, only a few
minutes to hours of physical time can be computed even on a huge HPC cluster. HIDEM receives the initial geometry
from Elmer/Ice, in form of gridded data over a limited area at the tongue of the glacier, and also receives the basal friction

coefficient distribution computed within the continuum ice flow model.
3.3 Initial Base Workflow

The continuum ice flow model and the discrete calving model need to be coupled, thus leading to a scientific workflow. A
baseline version of the workflow was initially realised by a Bash shell script that calls the above executables as well as addi-
tional Python helper code, and performs all the needed management operations using shell script commands. The underlying

workflow is as follows:
Step 1: Generate the Mesh for Elmer/Ice

At t =t;, the front position F; and the contour C'ont are given as input to create the mesh M;. This determines the domain
of the glacier for the ice flow model Elmer/Ice. A Python script invokes the meshing executable gmsh to build the mesh from
the contour and the front position, and invokes ElmerGrid (Raback, 2015) to convert it into Elmer format. In this particular
application, the mesh is then split into 16 partitions. Figure 1 provides an example of the mesh generated in the case of
our Kronebreen case study. This step runs as a single-threaded application, as with respect to resource requirements, mesh

generation is not very CPU-intensive (serial, i.e. 1 CPU core), but it consumes some storage space.

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

Surface elevation (m a.s.l.)

80 160 240 320 400 480 560

2 km
Figure 1. Mesh example of Kronebreen. Colors represent the surface elevation.
PLAN VIEW SIDE VIEW
N /S,
s,
1
z

Figure 2. Conceptual plan and side view of an Elmer/Ice transient run. The initial front F; and surface S; are evolved to a new position of

the front F; cimer and a new surface elevation S;1.

Step 2: Ice Flow Modelling and Conversion to HIDEM Domain

The continuum ice flow model is executed using the ElmerSolver application which is an MPI-based implementation and
part of the Elmer application suite. The number of time steps (/V;) depends on the studied glacier and process as well as the
spatial resolution. Here, we simulate N; = 11 days in one run, which — using a time-step size of one day — corresponds to the
5 update frequency of remote sensing satellite data which was used for model validation.

As the basal boundary condition (BC), we assume a no-penetration condition with no basal melting nor accumulation and
a basal friction law of any type (currently a Weertman friction law). The upper BC is defined as a stress-free surface and is
able to evolve during the simulation following an advection equation forced by a surface mass balance. As the BC in contact
with the ocean, the normal component of the stress vector is equal to the hydrostatic water pressure exerted by the ocean

10 where ice is below sea level. The front is also able to evolve, using a Lagrangian scheme (i.e., mesh velocity equal to ice flow

10

15

20

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

— Cont T 640
- Fu

560

i.elmer

480

400

320

240

160

Surface elevation (m a.s.l.)

o]
o

Figure 3. Surface elevation for the HIDEM (minimum bed elevation equal to 0), initial contour C; and new position of the front F; ciner.

velocity corrected by melting). The temperature profile in the ice and lateral BC are prescribed but can be changed easily. The
ice is flowing as a non-linear isotropic viscous fluid following Glen’s flow law (Cuffey and Paterson, 2010) and the Stokes
equations for an incompressible fluid are solved over the ice volume. Elmer/Ice executes a solver input file, SIF;, with the
above-mentioned parameters.

After the simulation, the glacier has a new position of the front F; ¢, a new surface elevation S; 1 (see Fig. 2) and a map
of basal friction coefficients (determined by a linear sliding law). These form the output of Elmer/Ice and input to HIDEM.
Elmer/Ice can be sped up by parallel processing, but is not as CPU-intensive as HIDEM, hence only 16 CPU cores are used for
a relatively small glacier, like Kronebreen, in this part of the workflow.

The output format of Elmer/Ice does not match the input format of HIDEM, and HIDEM does not need to process the
whole glacier, but only the front that is relevant for calving. Hence, a conversion step runs a set of helper scripts (“Elmer to
HiDEM”) implemented in Python. This step is performing a conversion of the output of ElmerSolver to the HIDEM grid
(10 m x 10 m in our case) that is used for the calving front of the glacier. Elevations are offset so that the minimum bed
elevation is equal to 0. It also includes places with no ice where the surface elevation is equal to the bed elevation (see Fig. 3).
This conversion step creates a text input file for HIDEM, Pin;, with coordinates, surface, bed and basal friction coefficient.

This conversion is performed on a single CPU.
Step 3: Discrete Particle Modelling and Conversion to Elmer/Ice Domain

The converted output from Elmer/Ice is passed to HIDEM. The implementation of HiDEM requires an MPI environment
(560 cores running the MPI processes in our case), because in comparison to the other steps, it consumes the biggest share of
CPU hours due to the high spatial and temporal resolution. In order to avoid excess computations, HIDEM scales down the
obtained friction parameters it receives from Elmer/Ice (in our case using the factor 10~%) so as to increase the sliding speeds
and thereby reduce the physical time (in our case 100 s) needed to evaluate the resulting fractures. This can be justified because

the distribution of the friction parameters and hence the instantaneous fracture pattern does not change, and the time scales of

10

15

20

25

30

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

ice flow (represented by the continuum model) and fracturing are separate anyhow. A new front position, F; 1, is modelled
after the simulation. Because of the high spatial resolution, the involved text files are rather large.

Once a HIDEM run is completed, the next step is to re-convert this data set to the Elmer/Ice format, so that the next iteration
of the coupled glaciology models’ workflow can begin. Again, a Python script (“HiDEM to Elmer”) is used to convert the
HiDEM output into a format that can be read by Gmsh and ElmerGrid. For this purpose, the new front position F;,; (after
calving) and surface elevation S;;1 are re-introduced into Step 1 at ¢t =¢;,1. Again, the conversion is performed in serial

execution. After this step, the workflow is begins again, starting from Step 1.

4 Issues of Initial Workflow

While the above workflow and its implementation using a shell script worked, both its design and its implementation had a
couple of issues that are discussed in the following.

The initial version of the workflow was implemented using a single shell script called simu_coupling. sh that contained
more than 400 lines of code and invoked multiple applications. This single script encompassed all the workflow execution steps
and monitoring assignments on a low level, making any extension and debugging extremely difficult for the script’s author and
almost impossible for anyone not familiar with the shell script.

As the complete coupling and calving workflow is implemented inside simu_coupling. sh, all the workflow-related
multi-job iterations and error handling were realised in this central script. The individual tasks of the workflow, either paramet-
ric or atomic, incarnated as separate jobs in the used HPC batch system. Identifying failures or troubleshooting on any of the
running and completed jobs required significant efforts.

The simu_coupling. sh script supported only a limited set of computational resources, i.e. it was low-level hard-coded
to the particular HPC cluster on which the implementation was intended to run. For example, the type of parallel execution
environments, such as the MPI implementation to be used, were statically defined. Because of this, any updates of the de-
pendent environment at the site level required changes at various locations in the shell script. Listing 1 shows part of the
simu_coupling.sh script: Lines 12—14 contain the manual job command script specification, and lines 25-34 load re-
quired environment modules. Having the HPC environment set in very static manner in the form of job submission command
scripts and the related environment settings, as shown here, was a limitation: The main simu_coupling. sh script and the
accompanying Python helper routines could not be easily ported to another computation environment that very likely has, e.g.,
a different HPC batch job submission system or file system layout. This resulted in a low degree of reproducibility due to
a lack of portability: If other scientists wanted to take the files and run the application on a different resource environment
or perform the simulation using a different data set, such a hard-coded workflow implementation would have to be adjusted
significantly, which requires high effort and bears a high risk of introducing bugs. Therefore, missing portability together with
bad readability and low flexibility inhibited scientific reproducibility and re-use.

Another problem was inefficient resource usage: The script-based workflow implementation performed two data conversion

tasks in every iteration, namely the previously mentioned Python scripts “Elmer to HIDEM” and “HiDEM to Elmer”. These

21

22

23

24

2!

G

26

2

N

28

29

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

nb_array=‘awk ' {print $1}’ n_list.txt®

Loop over runs
for nb in $nb_array
do

@ChO M*kkkkkkkhkrkhkrhkhkkkkkkkkkx"

Run the MeshToParticle.py
mkdir -p S$outputfolder/Python_particle_n/DateS$nb

echo ' #!/bin/csh
#SBATCH -J MeshToElmer_’$nb’
#SBATCH —e t_MeshToElmer. ’$nb’.err
#SBATCH -o t_MeshToElmer_’S$nb’.log
#SBATCH —-mem—-per—-cpu=’Susemem’
##SBATCH —-n ’Snoproc’
#SBATCH -t ’Susetimel’ ’ > S{outputfolder}/Python_particle_n/DateS{nb}/MeshToEImer_S{nb}.sh

if [Snb -gt $first]
then
echo ' #SBATCH --dependency=afterOK:’Sjobid4” ’ >> S{outputfolder}/Python_particle_n/DateS{nb}/
MeshToElmer_${nb}.sh
fi
echo ' ##SBATCH -p ’$queue’
module purge
module load intel/13.1.0
module load intelmpi/4.1.0
module load mkl/11.0.2
module load hypre/2.9.0b
module load mumps/4.10.0
module load trilinos/11.0.3
module load elmer/latest

module load python-enwv

3 module load gmsh

python ’$inputfolder’ /Python_particle/MeshToElmer.py ’$nb’ ’\’’’Soutputfolder’’\’’
’ >> S${outputfolder}/Python_particle_n/Date${nb}/MeshToElmer_S${nb}.sh

cd $Soutputfolder/Python_particle_n/Date$nb
echo sbatch ${outputfolder}’/Python_particle_n/Date’${nb}’/MeshToElmer_’${nb}.sh
Jjobid0O=‘'sbatch S$outputfolder/Python_particle_n/Date$nb/MeshToElmer_S$nb.sh | awk ’{print $4}’*

echo "submitted ’$jobid4’ instance= ’S$nb’"

Listing 1. Excerpt from Bash shell script

10

15

20

25

30

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

scripts had been implemented as serial code and thus make use of one CPU core only, however, the submission code in
simu_coupling.sh used same number of compute resources as for the other compute-intensive tasks, i.e. many CPU
cores. Hence, while many CPU cores were reserved in the HPC cluster, only one CPU core was in fact used during these
tasks while all the other reserved CPU cores were idle. The resource assignment was hence not optimal, in particular when
taking into account that these resource-wasting data conversion tasks occured in every iteration. Another example of inefficient
resource usage is that the output files of one step — that were to be used immediately as input for the next step — were physically
copied from the output folder of the current step to input folder of the next step, thus generating unnecessary I/O activity and
consuming unnecessary storage space on the file system.

The initial workflow also required users to be acquainted with the target system tools and technologies: Firstly, they had
to understand the underlying batch system commands, i.e. how to craft the job submission scripts. Secondly, they had to
manually trace the job status after the whole workflow execution came to an end. Thirdly, the simu_coupling. sh script was
implemented using the Bash shell script language, whose knowledge was necessary to understand and enhance the application.

Finally, the script-based workflow enforced the sequencing of tasks through so-called job chaining (Line 21 in Listing 1),
which is an intrinsic feature of the used batch system. However, there are two drawbacks when using this approach. Firstly,
while job chaining is provided by most HPC batch systems, the syntax and semantics vary from one batch job submission
system to the other. Therefore, the implementation is tightly bound to the specific batch system environment and cannot be
easily ported to other batch systems. Secondly, while all the jobs of the workflow, whether simple or iterative, can be easily
controlled through job chaining when executing on one computing resource (e.g. one HPC cluster), this approach fails when
more than one resource management system is involved in that workflow execution, e.g. by running the different steps on
different HPC clusters that reflect the different HPC characteristics of Elmer/Ice and HIDEM (with HIDEM benefiting from
fast inter-connection needed for the MPI communication between the many CPU nodes, whereas the OpenMP implementation

of Elmer/Ice benefits from many cores sharing memory on the same node).

5 Requirements Analysis

The problem analysis of the initial shell script-based workflow led to a set of requirements that aim at improving the workflow
with respect to usability, adaptability, maintainability, portability, robustness, resource usage, and overall runtime. Based on
the weaknesses of the initial workflow implementation, we focused in particular on improving overall runtime, usability,
portability and re-usability, and on enabling a uniform access in order to widen the scientific community that can use this
glaciology workflow.

The requirements elicitation phase yielded the following requirements, which led to an improved design and implementation
of the workflow. (A summary of the requirements is provided in Table 1 together with a description of how each requirement
is addressed and realised in our improved workflow.)

RI1: Readability and Understandability To continuously develop, maintain, and disseminate a scientific application for

collaboration requires the implementation to have a clean, clearly modularized and error-free code. Since our case study

10

10

15

20

25

30

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

consists of many independent applications related to each workflow task, it is important that the identified tasks are well-
segregated and do not contain overlapping tasks. A well-segregated workflow not only helps the application developer to
further enhance the application, but also to distribute the code in order to collaborate with a larger scientific community.

R2: Sequential Pipeline The execution of jobs in the workflow should be orchestrated in a sequential manner such that one
job step should not commence unless all previous steps are completed. Section 4 describes the side effects of the job chaining
provided. This requirement envisages the whole scenario as a sequence of jobs that should connect all the involved applications
in a batch-system-agnostic manner.

R3: Dynamic Data Injection The data injection for any workflow job should be transparent and easy to express. This
requirement refers to the provisioning of data sets to individual workflow steps: Before a job is started, the required data needs
to be available. Furthermore, dynamic data injection allows to import data from various sources using different protocols. A
data-transfer-agnostic access is an add-on to this requirement.

R4: Data Sharing Across Job Steps The cost of data sharing across the jobs of the workflow steps becomes high when the
data is replicated across each of the job steps. This unnecessarily consumes storage space and ultimately increases the overall
workflow footprint in terms of resource consumption. Therefore, an adequate data sharing mechanism across the workflow
should be available, which allows the simplified integration of data at application runtime; it will also facilitate optimal storage
resource usage (e.g. of a parallel file system) in the target system. This is of particular importance when dealing with two
different HPC clusters running different steps of the workflow, where data needs to be exchanged between the HPC clusters.

R5: Resource-Agnostic Access The continuum ice flow model (Elmer/Ice) is less resource-intensive than the calving model
(HiDEM). This is due to very different spatial and temporal resolutions but also the models themselves, which require different
amounts of computational resources (16 cores for the continuous ice flow model, but 560 cores for the discrete particle model).
Getting access to CPU time on a small HPC cluster is typically easier than on big clusters, hence the workflow shall support
the possibility to run these two significantly different steps on two different computing resources, thus reducing the amount of
CPU and queueing time needed on the more powerful cluster. If the executions are running on heterogeneous clusters, there
should be a layer of abstraction that encapsulates the intricacies of different resource management systems.

R6: Parametric Execution In our case study, most of the job steps need to be executed in an iterative way. Every new
iteration takes input from a plain ASCII text file, called n_11ist . txt, that records the surface velocity data of some days of
ice flow simulation. The requirement is to take the input data from the file and use it as a parameter for the iteration of the tasks.
It means that the parameter value is shared by all the tasks involved. Furthermore, the iteration should not exceed a certain
threshold.

R7: Workflow Composition and Visual Editing Many scientists are more comfortable with visual interfaces when linking
many applications for one scenario, such as the presented glacier modelling workflow. It will be more robust for users to
have a graphical interface that allows them to visually program and manage scientific workflows. In the glacier modelling
scenario there are six main steps, each with different shell scripts and resource configurations, therefore a Graphical User

Interface (GUI) can be very useful for visual editing, composition and automation of all the steps.

11

10

15

20

25

30

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 20 July 2018

(© Author(s) 2018. CC BY 4.0 License.

R8: Workflow Tracing and Monitoring 1t should be possible to trace and monitor the whole workflow, including its sub-
elements such as individual jobs. The extensive process of calving simulation may have to be aborted at some stage due to data
or parameter anomalies. Therefore, it must be possible to interrupt the workflow at any point. Apart from that, real-time status
of the jobs managed by the workflow should be provided.

R9: Workflow Reproducibility The workflow needs to support reproducing results by the original researchers and by third
parties. If the created workflow is carefully designed and validated against any errors, it can be exported for re-use by a
larger community. This includes not only exposing that workflow to a wider community on the same computational resource,
but also running it in a completely different hardware or software environment (re-usability, adaptability, portability, and
maintainability).

R10: Secure Access The workflow management system should be capable of providing an interface to let users run scientific
workflows in a secure manner. This implies that adequate authentication and authorization need to be in place. This requirement
further mandates the workflow system to be compatible with back-end computing clusters and existing production computing
infrastructures.

R11: Execution Environment Independence This requirement supports a scenario which allows scientists to submit compu-
tations without knowledge of the parallel execution environment installed at the target computing resource. In our case, there
are at least two different MPI execution environments involved, and thus two different MPI implementations. The intended
middleware abstraction should not require a user to know the target environment that is providing the actual execution.

R12: Data and Variable Configuration Configuring required data elements such as workflow-centric input and output
locations, and shared applications’ environment variables or constants across many job steps can reduce much workflow man-
agement and development overhead. This may allow carrying out the design, execution, and debugging phases of many tasks
in a more efficient manner. Therefore, in terms of overall usability and application maintenance, this requirement is considered
important for realising the complex structure of connected tasks.

Any solution that addresses this set of requirements will make the scientific workflow usable for a wider set of communities

working in glaciology.

6 Workflow Design

Using the initial shell script-based workflow as a starting point and taking the requirements R1-R12 into account, this section
discusses the improvements and modifications to the initial workflow implementation.

Figure 4 shows the modified workflow composition. The steps are in fact very similar to the structure described in Section 3.3,
and our design and implementation of an improved workflow is based on it. However, an important difference is that, initially,
there was one big shell script containing the whole workflow. Each of the steps shown in Fig. 4 has been extracted to obtain
separate job scripts. In this manner, every step can separately specify different resource requirements and software capabilities.
Furthermore, the number of lines of code in the scripts of each of the individual steps has been significantly reduced, thus

addressing the general goals of improving adaptability and maintainability.

12

10

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-158

Manuscript under review for journal Geosci. Model
Discussion started: 20 July 2018
(© Author(s) 2018. CC BY 4.0 License.

Dev.

Shared
preprocessing

-

Python script

_" Gmesh
ElmerGrid

Generate
Mesh

Mesh M, (Elmer format - 10" Mb)

-~

~
Parallel run

ElmerSolver T|:n3|ent (16 cores)
advance A
Advanced front Fﬂe,me, (ASCII - 10> Mb)

Surface elevation S, , (ASCII - 10> Mb)
Friction coefficient Bi+1 (ASCII - 10> Mb)

=N

Python script

Loop until i

Elmer to
HIiDEM

Interpolated matrix input (ASCII - 10> Mb)

+

HIDEM

Calving
and fracture

HIDEM outputs (ASCII - 105 Mb)

N
Parallel run

(560 cores)

)

Python script

HIDEM
to Elmer

Calved front F,,, (ASCII - 102 Mb)

J

Figure 4. Whole workflow with blocks representing steps.

The data conver<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>