10

15

20

Scientific Workflows Applied to the Coupling of a Continuum
(Elmer v8.3) and a Discrete Element (HIDEM v1.0) Ice Dynamic
Model

Shahbaz Memon'#, Dorothée Vallot?, Thomas Zwinger?, Jan Astrom?®, Helmut Neukirchen®,
Morris Riedel!*, and Matthias Book*

!Jiilich Supercomputing Centre, Forschungszentrum Jiilich, Leo-Brandt StraBe, 52428 Jiilich, Germany
?Department of Earth Sciences, Uppsala University, Uppsala, Sweden

3CSC - IT Center for Science Ltd., Espoo, Finland

“Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland

Correspondence: Shahbaz Memon (m.memon @f{z-juelich.de)

Abstract. Scientific computing applications involving complex simulations and data-intensive processing are often composed
of multiple tasks forming a workflow of computing jobs. Scientific communities running such applications on computing re-
sources find it often cumbersome to manage and monitor the execution of these tasks and their associated data. These workflow
implementations usually add overheads by introducing unnecessary I/O for coupling the involved models and in the worst case
even lead to sub-optimal CPU utilisation; also running these workflow implementations in different environments requires
significant adaptation efforts, thus hindering reproducibility of the underlying science. High-level scientific workflow manage-
ment systems (WMS) can be used to automate and simplify complex task structures by providing tooling for the composition
and execution of workflows even across distributed and heterogeneous computing environments. The WMS approach allows
to focus on the underlying high-level workflow and to avoid low-level pitfalls that would lead to non-optimal resource usage
while still having the workflow portable between different computing environments. As a case study, we apply the UNICORE
workflow management system to enable the coupling of a glacier flow and calving models that contains many tasks and de-
pendencies, ranging from pre-processing and data management to repetitive executions in heterogeneous high-performance
computing (HPC) resource environments. Using the UNICORE workflow management system, the composition, management,
and execution of the glacier modelling workflow becomes easier with respect to usage, monitoring, maintenance, re-usability,
portability, and reproducibility in different environments and by different user groups. Last but not least, it helped to speed up
the runs by reducing model coupling I/O overhead and it optimised CPU utilisation by avoiding idle CPU cores and running

the involved models in a distributed way on those HPC cluster that fit best the characteristics of each model.

1 Introduction

The complexity of glaciological systems is in an increasing way reflected by the physical models used to describe the processes
acting on different temporal and spatial scales. Addressing those complexities inevitably involves the combination of different

sub-models into a single simulation that encompasses multiple tasks executed in a distributed computing facility. A particularly



10

15

20

25

30

good example for such a combination is the simulation of calving behaviour at the front of glaciers that combines continuum
model and discrete element model simulations. These computational tasks are connected to each other to form a scientific
workflow: the composition and execution of multiple data processing steps as defined by the requirements of the concerned
scientific application.

Carrying out the discrete calving and ice flow modelling dynamically and as one workflow instance becomes very laborious
without an automated mechanism. An analysis of such a workflow in more detail reveals that there are even more steps than just
the two model elements mentioned above. These include, for instance, pre- and post-processing, job dependency management,
job submission, monitoring, conditional invocations, and multi-site data management. These steps can be cumbersome for a
user, for example if any step may produce an unexpected output, which can cause the whole workflow to fail, and may thus
require to re-run the whole workflow. These issues often indicate that workflow implementation is sub-optimal because it
requires coupling overhead (such as unnecessary 1/0), or or because a high number of CPU cores is allocated, which suits the
most CPU-intensive task to be executed, but leaves cores idle when other tasks are executed that are less CPU-intensive or
do not scale well. A Workflow Management System (WMS) allows to automate and ease the workflow managements steps by
means of abstraction, which not only increases usability, but also enhances portability to different computing platforms and
thus reproducibility of the scientific model runs. In our case, it also allowed us to focus on performance aspects, thus enabling
a reduction in coupling I/O overhead and an optimisation the CPU utilisation.

The main contribution of this article is to identify the workflow problems to be solved for coupling a glacier continuum
model and a discrete element model in an optimised way, to elicit corresponding requirements that address — among oth-
ers — portability, performance improvements, and CPU utilisation, and to implement an automated workflow based on the
UNICORE (Streit et al., 2010) distributed computing middleware, in particular using the UNICORE workflow management
system (Memon et al., 2007). We demonstrate this by combining ice flow modelling and discrete calving into a high-level
easy-to-use and performance-optimised scientific workflow.

This article is structured as follows: Subsequent to this introduction, foundations on glacier calving modelling and on scien-
tific workflows are provided in Section 2. The targeted glacier modelling use case is presented in Section 3, which describes
a workflow baseline used for model coupling and the applications used for execution. It is then demonstrated how to create
a good solution, by first identifying requirements to solve these problems (Section 4.1), followed by creating an improved
matching workflow design (Section 4.2), and finally implementing the workflow (Section 4.3). The implemented workflow is
evaluated in Section 5 from different perspectives, including a discussion of how the identified requirements from Section 4.1

have been fulfilled. Finally, a summary and an outlook conclude the article.

2 Foundations

2.1 Modelling and Simulating the Calving of a Glacier

The calving behaviour at the front of glaciers is still a largely unresolved topic in modern theoretical glaciology. The core of the

problem is that ice as a material shows different behaviour, depending on the time scale on which the forces are applied (Greve



10

15

20

25

30

and Blatter, 2009). The everyday experience is that ice is a brittle solid body (e.g. breaking icicles). Such behaviour is observed
if the reaction to a force is in the range of seconds to minutes. Theoretical glaciology up to recent years rather dealt with the
long-term (i.e., beyond minutes to millennia) behaviour of glaciers and ice sheets, where ice shows the property of a strong non-
linear, shear thinning fluid (Greve and Blatter, 2009). This leads to a description of long-term ice flow dynamics in classical
ice-sheet and glacier dynamics models (Gagliardini et al., 2013) in terms of thermo-mechanically coupled non-Newtonian
Stokes flow continuum models.

In stark contrast to such a description, the process of cracking or calving (i.e., the complete failure of ice fronts) is an
inherently discontinuous process, that — if addressed in a physically correct way — needs a completely different model approach.
Models adopting a discontinuous approach have been developed throughout the recent years (e.g. Astrom et al., 2013; Bassis
and Jacobs, 2013; Astrom et al., 2014). These models describe the glacier as discrete particles connected by elastic beams that
can be dissolved if a certain critical strain is exceeded, thus being able to mimic elastic as well as brittle behaviour of ice.
The size of these model particles (in the range of metres), which need to resolve a whole glacier of several cubic kilometres,
inherently demands large computational resources. In addition, the characteristic speeds of advancing cracks is close to the
speed of sound, which, in combination with the small spatial resolution, imposes a maximum allowed timestep size of a
fraction of a second.

In other words, the combination of a discrete element and a continuum ice flow model is a temporal multi-scale problem,
where the first basically describes an instant change of geometry or rheology for the latter. This means that both models need to
be run in a sequential manner, with several repetitions. This defines a workflow of two model components that strongly differ
in computational demand. In addition, these two model components have to effectively and efficiently exchange data — namely,

the new geometries either changed by flow deformation or by calving as well as damage caused by fraction.
2.2 Scientific Workflows

A scientific workflow can be defined as the composition and execution of multiple data processing steps as required by a
scientific computing application, i.e. e-Science. Such a workflow captures a series of analytical steps of computational exper-
iments to “aid the scientific discovery process through the combination of scientific data management, analysis, simulation,
and visualisation” (Barker and van Hemert, 2008). Conceptually, scientific workflows can be considered (and are typically
visualized) as graphs consisting of nodes representing individual tasks and constructs, and edges representing different types
of associations between nodes, such as sequential or conditional execution.

Carrying out the discrete calving and ice flow model simulations becomes very complex as two (or even more) parallel
High-Performance Computing (HPC) applications are involved, especially if there are tasks in the workflow that consist of
pre- and post-processing phases, and require multi-site and iterative job and data management functions. The overall scenario
may easily become unmanageable, and the workflow management might be prone to errors, failures, poor reproducibility, and
sub-optimal HPC resource usage.

Such a workflow scenario will be even more challenging when some parts are launched on heterogeneous resource manage-

ment systems equipped with different file systems, different data transfer mechanisms, and different job submission systems.



10

15

20

25

30

In our case, for example, two different HPC clusters with different characteristics are simultaneously used, one for the ice flow
modelling and another one for the discrete element (i.e., calving) modelling executions.

These workflow challenges can be addressed by a Workflow Management System (WMS) that is capable of managing the
complex dependencies of many job steps with multiple conditional and nested constructs. Several scientific WMSs have been
developed to automate complex applications from multi-disciplinary backgrounds. Ferreira da Silva et al. (2017) comprehen-
sively categorized different workflow management systems according to the type of execution scenario and capabilities they
offer, and also identified their specialised scientific domain. WMSs are widely used to facilitate complex scientific scenarios,
among them Pegasus (Deelman et al., 2015), Kepler (Ludischer et al., 2006) and Taverna (Oinn et al., 2006), to name just a few.
These WMSs are also used for specialised scenarios and cater to a specific group of users who interact with HPC resources.

Our scenario from the domain of glaciology using HPC technology includes a complex workflow graph, and is therefore
not easily manageable for users having only little expertise concerning HPC environments. Hence it is important to implement
the glacier modelling use case with a WMS that offers a rich graphical front-end and simultaneously offers seamless execution
and monitoring of involved applications. Considering that, the glacio-coupling use case is automated through our standards-
based workflow management system (Memon et al., 2007) that is a part of the Uniform Interface to Computing Resources
(UNICORE) (Streit et al., 2010) distributed computing middleware. It is specifically designed to support HPC applications
deployed in a massively parallel environment. As described later in Section 4.3, our WMS for UNICORE provides a rich
graphical interface for the composition, management and monitoring of scientific workflows by users with different levels of

system expertise.

3 Use Case: Kronebreen Glacier Simulation

Coupling a continuum ice flow model and a particle-based calving model of the Kronebreen glacier provides a well-suited case
study for the application of a WMS. More details on the scientific background of such a coupling and on models description
are presented in (Vallot et al., 2018). In that study, a series of key processes (ice flow, surface and subglacial hydrology, ocean
water mixing, undercutting at the front and finally ice calving in the ocean) were simulated by different models in an offline
coupling. The aim was to show the feasibility of the coupling by comparing observations and historical data to simulation
results and to identify the resulting interactions through this global approach. In this article, we introduce a full coupling that
can be used for prognostic simulations. To simplify the problem we only use two models: the ice flow model (Elmer/Ice)
and the discrete particle model (HiDEM). In the following, we describe the involved software executables and the underlying

workflow.
3.1 Conceptual Scheme

Kronebreen is a tidewater glacier (ice flowing directly into the ocean) that is one of the fastest-flowing glaciers of the Svalbard
archipelago. After a period of stability, it started to retreat in 2011 and continued since then. This glacier has been extensively
studied (e.g. Kiib et al., 2005; Luckman et al., 2015; Nuth et al., 2012; van Pelt and Kohler, 2015; Schellenberger et al., 2015;



10

15

20

25

30

Vallot et al., 2017), partly due to its situation close to a research station and its interesting behaviour in terms of sliding and
calving. For that reason, it is a good candidate for the present study. The aim is to reproduce both continuous (ice flow) and

discrete (calving) processes using a Finite Element Model (FEM) and a first-principle ice fracture model, respectively.
3.2 Applications: Meshing Tools, Continuum and Discrete Ice Dynamics Model

Within our application, we use the continuum model Elmer/Ice (Gagliardini et al., 2013), and for the discrete calving model,
the Helsinki Discrete Element Model (HIDEM) (Astrém et al., 2013). Both codes can be run on large parallel HPC platforms.
Implied by the physics that have to be addressed and by the modelling tools, the workflow contains three main applications

that are part of the use case implementation:

1. Meshing: Gmsh (Geuzaine and Remacle, 2009) is the applied meshing tool used to provide the updated mesh for the
continuum ice flow model run. It creates an updated footprint mesh in the horizontal plane that further is extruded and
reshaped using the bedrock as well as free surface elevation to form the three-dimensional computing mesh for the ice
dynamic simulation. Gmsh is an open source versatile and scriptable meshing tool that perfectly matches the demands
of being deployed within a workflow like this one. Gmsh applies a bottom-up geometry and meshing strategy, starting
from outline points of the glacier, building a closed loop of its outline and further creating a planar surface that is being

meshed in two dimensions.

2. Continuum Modelling: Elmer/Ice (Gagliardini et al., 2013) is the open source ice sheet model used to compute the
long-term dynamics of the glacier. Elmer/Ice is based on the multi-physics package Elmer (Raback et al., 2018), an
open source Finite Element code developed by CSC — IT Center for Science Ltd. Elmer/Ice is able to utilize parallel
processing, applying the Message Passing Interface (MPI) paradigm (Message Passing Interface Forum, 2012) that uses
messages to exchange data between nodes of a distributed parallel processing environment, and — for certain solver
implementations — OpenMP (Dagum and Menon, 1998) for shared-memory parallel processing using multi-threading.
Elmer also provides the ElmerGrid executable that can be used to convert the mesh created by Gmsh and at the same
time perform a domain decomposition on the footprint, using the Metis library. The solver executable ElmerSolver
has a built-in feature to internally extrude the given footprint mesh into layered columns of prisms and impose the given
surface and bedrock elevation to form the volume of the glacier. Elmer is built on a shared library concept, meaning
all solver modules are loaded during runtime. This enables the easy deployment of user-written functions and solvers

through an APL.

3. Discrete Modelling: HIDEM (Helsinki Discrete Element Model) (Astrom et al., 2013) is a discrete element model
that represents the glacier as mass-points connected by massless beams that are allowed to break if exceeding a given
threshold. An additionally applied repelling potential based on distance guarantees a non-intersection of compressed
loose particles. Solving Newton’s equation on such a setup, it is possible to realistically reproduce the behaviour of
fracturing. The downside of this approach is the high demand of computational power, as the several cubic kilometres

large glacier is discretised in pieces of a few tens of cubic metres. Furthermore, the time scales for the simulation are



10

15

PLAN VIEW SIDE VIEW

‘\Fi’clmcr “ :/ Si
. F. ~S,

1

Figure 1. Conceptual plan and side view of an Elmer/Ice transient run. The initial front F; and surface S; are evolved to a new position of

the front F; cimer and a new surface elevation S;4 1.

imposed by the ratio of the speed of sound to the typical length of the discretised particles, which falls clearly below
seconds. Hence, despite the fact that the code is utilizing massive parallel computing using the MPI paradigm, only a few
minutes to hours of physical time can be computed even on a huge HPC cluster. HIDEM receives the initial geometry
from Elmer/Ice, in form of gridded data over a limited area at the tongue of the glacier, and also receives the basal friction

coefficient distribution computed within the continuum ice flow model.
3.3 Initial Base Workflow

The continuum ice flow model and the discrete calving model need to be coupled, thus leading to a scientific workflow. A
baseline version of the workflow was initially realised by a Bash shell script that calls the above executables as well as addi-
tional Python helper code, and performs all the needed management operations using shell script commands. The underlying

workflow is as follows:
Step 1: Generate the Mesh for Elmer/Ice

At t =;, the front position F; and the contour Cont are given as input to create the mesh M;. This determines the domain
of the glacier for the ice flow model Elmer/Ice. A Python script invokes the meshing executable gmsh to build the mesh from
the contour and the front position, and invokes ElmerGrid (Raback, 2015) to convert it into Elmer format. In this particular
application, the mesh is then split into 16 partitions. This step runs as a single-threaded application, as with respect to resource

requirements, mesh generation is not very CPU-intensive (serial, i.e. 1 CPU core), but it consumes some storage space.
Step 2: Ice Flow Modelling and Conversion to HIDEM Domain

The continuum ice flow model is executed using the ElmerSolver application which is an MPI-based implementation and

part of the Elmer application suite. The number of time steps (/V;) depends on the studied glacier and process as well as the



10

15

20

25

30

spatial resolution. Here, we simulate N; = 11 days in one run, which — using a time-step size of one day — corresponds to the
update frequency of remote sensing satellite data which was used for model validation.

As the basal boundary condition (BC), we assume a no-penetration condition with no basal melting nor accumulation and
a basal friction law of any type (currently a Weertman friction law). The upper BC is defined as a stress-free surface and is
able to evolve during the simulation following an advection equation forced by a surface mass balance. As the BC in contact
with the ocean, the normal component of the stress vector is equal to the hydrostatic water pressure exerted by the ocean
where ice is below sea level. The front is also able to evolve, using a Lagrangian scheme (i.e., mesh velocity equal to ice flow
velocity corrected by melting). The temperature profile in the ice and lateral BC are prescribed but can be changed easily. The
ice is flowing as a non-linear isotropic viscous fluid following Glen’s flow law (Cuffey and Paterson, 2010) and the Stokes
equations for an incompressible fluid are solved over the ice volume. Elmer/Ice executes a solver input file, STF;, with the
above-mentioned parameters.

After the simulation, the glacier has a new position of the front F; .., a new surface elevation .S;; (see Fig. 1) and a map
of basal friction coefficients (determined by a linear sliding law). These form the output of Elmer/Ice and input to HIDEM.
Elmer/Ice can be sped up by parallel processing, but is not as CPU-intensive as HIDEM, hence only 16 CPU cores are used for
a relatively small glacier, like Kronebreen, in this part of the workflow.

The output format of Elmer/Ice does not match the input format of HIDEM, and HiDEM does not need to process the whole
glacier, but only the front that is relevant for calving. Hence, a conversion step runs a set of helper scripts (“Elmer to HIDEM”)
implemented in Python. This step is performing a conversion of the output of ElmerSolver to the HIDEM grid (10 m x 10 m
in our case) that is used for the calving front of the glacier. Elevations are offset so that the minimum bed elevation is equal to
0. It also includes places with no ice where the surface elevation is equal to the bed elevation. This conversion step creates a
text input file for HIDEM, Pin;, with coordinates, surface, bed and basal friction coefficient. This conversion is performed on

a single CPU.
Step 3: Discrete Particle Modelling and Conversion to Elmer/Ice Domain

The converted output from Elmer/Ice is passed to HIDEM. The implementation of HIDEM requires an MPI environment
(560 cores running the MPI processes in our case), because in comparison to the other steps, it consumes the biggest share of
CPU hours due to the high spatial and temporal resolution. In order to avoid excess computations, HIDEM scales down the
obtained friction parameters it receives from Elmer/Ice (in our case using the factor 10~%) so as to increase the sliding speeds
and thereby reduce the physical time (in our case 100 s) needed to evaluate the resulting fractures. This can be justified because
the distribution of the friction parameters and hence the instantaneous fracture pattern does not change, and the time scales of
ice flow (represented by the continuum model) and fracturing are separate anyhow. A new front position, £, is modelled
after the simulation. Because of the high spatial resolution, the involved text files are rather large.

Once a HIDEM run is completed, the next step is to re-convert this data set to the Elmer/Ice format, so that the next iteration
of the coupled glaciology models’ workflow can begin. Again, a Python script (“HiDEM to Elmer”) is used to convert the
HiDEM output into a format that can be read by Gmsh and ElmerGrid. For this purpose, the new front position F;; (after



10

15

20

25

30

calving) and surface elevation S; 11 are re-introduced into Step 1 at ¢ =¢,,1. Again, the conversion is performed in serial

execution. After this step, the workflow is begins again, starting from Step 1.

4 Workflow
4.1 Requirements Analysis

The problem analysis of the initial shell script-based workflow led to a set of requirements that aim at improving the work-
flow with respect to usability, adaptability, maintainability, portability, robustness, resource usage (I/O and CPU), and overall
runtime. Based on the weaknesses of the initial workflow implementation, we focused in particular on reducing the overhead
associated with the initial coupling approach by improving overall runtime, optimising the CPU resource usage and coupling-
related I/O, as well as the factors stated in the beginning on enabling a uniform access to widen the scientific community
adoption of this glaciology workflow.

The requirements elicitation phase yielded the following requirements, which led to an improved design and implementation
of the workflow (a summary of the requirements is provided in Table 1 together with a description of the UNICORE-based
implementation.):

R1: Readability and Understandability To continuously develop, maintain, and disseminate a scientific application for
collaboration requires the implementation to have a clean, clearly modularized and error-free code. Since our case study
consists of many independent applications related to each workflow task, it is important that the identified tasks are well-
segregated and do not overlap each other. A well-segregated workflow not only helps the application developer to further
enhance the application, but also to distribute the code in order to collaborate with a larger scientific community.

R2: Sequential Pipeline The execution of jobs in the workflow should be orchestrated in a sequential manner such that one
job step should not commence unless all previous steps are completed. This requirement envisages the whole scenario as a
sequence of jobs that should connect all the involved applications in a batch system-agnostic manner.

R3: Dynamic Data Injection The data injection for any workflow job should be transparent and easy to express. This
requirement refers to the provisioning of data sets to individual workflow steps: Before a job is started, the required data needs
to be available. Furthermore, dynamic data injection allows to import data from various sources using different protocols. A
data-transfer-agnostic access is an add-on to this requirement.

R4: Minimise Coupling I/0 The cost of data sharing across the jobs of the workflow steps becomes high when the data is
unnecessarily replicated across each of the job steps. This increases the used storage space and negatively impacts the overall
workflow footprint in terms of resource consumption, in particular with respect to I/O performance. Therefore, an adequate data
sharing mechanism that minimises the coupling-related I/O of all the tasks should be available, which allows at the same time a
simplified integration of data at application runtime. It will also facilitate optimal storage resource usage (e.g. of a parallel file
system) in the target system. This is of particular importance when dealing with two different HPC clusters running different

steps of the workflow, where data needs to be exchanged between the HPC clusters.



10

15

20

25

30

R5: Minimise CPU Resource Consumption The continuum ice flow model (Elmer/Ice) is less CPU resource-intensive than
the calving model (HiDEM). This is due to very different spatial and temporal resolutions but also the models themselves,
which require different amounts of computational resources (16 cores for the continuous ice flow model, but 560 cores for the
discrete particle model). Getting access to CPU time on a small HPC cluster is typically easier than on big clusters, hence the
workflow shall support the possibility to run these two significantly different steps on two different computing resources, thus
reducing the amount of CPU and queueing time needed on the larger cluster. If the executions are running on heterogeneous
clusters, a layer of abstraction is needed that encapsulates the intricacies of different resource management systems (see R11).
If the executions are running on the same cluster, it needs to be avoided that more cores are allocated than actually used (e.g.
do not allocate 560 cores for running a 16 core Elmer/Ice job or even for executing a serial data conversion script).

R6: Parametric Execution In our case study, most of the job steps need to be executed in an iterative way. Every new
iteration takes input from a plain ASCII text file, called n_11ist . txt, that records the surface velocity data of some days of
ice flow simulation. The requirement is to take the input data from the file and use it as a parameter for the iteration of the tasks.
It means that the parameter value is shared by all the tasks involved. Furthermore, the iteration should not exceed a certain
threshold.

R7: Workflow Composition and Visual Editing It will be more robust for users to have a graphical interface that allows
them to visually program and manage scientific workflows. In the glacier modelling scenario there are six main steps, each
with different shell scripts and resource configurations, therefore a Graphical User Interface (GUI) can be very useful for
visual editing, composition and automation of all the steps.

R8: Workflow Tracing and Monitoring It should be possible to trace and monitor the whole workflow, including its sub-
elements such as individual jobs. The extensive process of calving simulation may have to be aborted at some stage due to data
or parameter anomalies. Therefore, it must be possible to interrupt the workflow at any point. Apart from that, real-time status
of the jobs managed by the workflow should be provided.

RY9: Workflow Reproducibility The workflow needs to support reproducing results both by the original researchers and
by third parties. If the created workflow is carefully designed and validated against any errors, it can be exported for re-use
by a larger community. This includes not only exposing that workflow to a wider community on the same computational
resource, but also running it in a completely different hardware or software environment (re-usability, adaptability, portability,
and maintainability).

R10: Secure Access The workflow management system should be capable of providing an interface to let users run scientific
workflows in a secure manner. This implies that adequate authentication and authorization need to be in place. This requirement
further mandates the workflow system to be compatible with back-end computing clusters and existing production computing
infrastructures.

R11: Execution Platform Independence This requirement supports a scenario which allows scientists to submit computa-
tions without knowledge of the parallel execution environment installed at the target computing resource. In our case, there are

at least two different MPI execution environments involved, and thus two different MPI implementations. Another aspect is to



10

15

20

25

30

abstract from the batch system used for job submission to the HPC cluster(s). The intended middleware abstraction should not
require a user to know the target environment that is providing the actual execution.

R12: Data and Variable Configuration Configuring required data elements such as workflow-centric input and output
locations, and shared applications’ environment variables or constants across many job steps can reduce much workflow man-
agement and development overhead. This may allow carrying out the design, execution, and debugging phases of many tasks
in a more efficient manner. Therefore, in terms of overall usability and application maintenance, this requirement is considered
important for realising the complex structure of connected tasks.

Any solution that addresses this set of requirements will make the scientific workflow usable for a wider set of communities

working in Glaciology.
4.2 Workflow Design

Using the initial shell script-based workflow as a starting point and taking the requirements R1-R12 into account, this section
discusses the design of the glacio-coupling workflow implementation. Figure 2 shows the workflow composition.

The data conversion tasks, such as “Elmer to HHDEM” and “HiDEM to Elmer” existed in the initial workflow implementation
as part of the respective ElmerSolver and HIDEM jobs. As the latter are both resource-intensive (i.e., they run on multiple
cores), while the data conversion tasks are serial and require less resources, it is inappropriate to reserve (and thus waste)
parallel resources for the serial data conversion. The separation of tasks in the workflow’s design enables them to use only a
single core, which is sufficient for their serial execution.

The step “shared preprocessing” is introduced as an additional task to manage the initialisation phase of the workflow.
It mainly provides the involved applications with the required initial input data sets and prepares shared output directories
where the subsequent individual workflow steps accumulate intermediate and final results. In this step, the shared workflow
variables are also initialized, and the required intermediate working directories are created. Without input and output storage
management and shared variables, our workflow implementation would stall. Therefore, this step is a necessary prerequisite

for all further iterations.
4.3 Workflow Implementation

This section describes the workflow implementation and its realisation through Uniform Interface to Computing Resources
(UNICORE) (which includes a workflow engine). The UNICORE middleware is not only used for the developement and
automation, but for the processing and management of the entire workflow on deployed HPC resources. We have contributed
to the creation of both UNICORE in general (Memon et al., 2007) and the workflow engine in particular (Memon et al., 2013b).
This section briefly details the UNICORE foundations, the workflow implementation and it concludes with resource setup and

interaction.

10



Figure 2. Whole workflow with blocks representing steps.

4.3.1 UNICORE Foundations

UNICORE (Streit et al., 2010) is a distributed computing middleware that provides abstractions for job submission and man-
agement on different kinds of job scheduling systems. Hence, jobs can be submitted to a cluster without needing to know about
the job scheduling system internally used by that cluster. The abstraction is achieved through a unified set of interfaces that
enable scientists to submit computation jobs without considering any intricacies of the underlying batch system. UNICORE
takes care of automatic translation of job requests to multiple target resource environments.

UNICORE provides a workflow system based on the Service Oriented Architecture (SOA), i.e., all the main functional
interfaces of the workflow system are exposed as web services. Figure 3 gives a holistic view of UNICORE’s multi-layered

architecture that is composed of Client, Server, and Target System tiers. The Client tier has two main variants, the UNICORE

11



10

15

Tier

Tier

UNICORE

]
1
]
1
1
]
1
1
]
1
]
1
1
]
:
Server i
1
1
]
1
i
1
1
]
1
1
i
core services !

Target
System

] L e e Tier |

B

Sisu(SLURM)

Figure 3. Multi-tiered UNICORE architecture.

Command-line Client (UCC) and UNICORE Rich Client (URC). However, other third party client applications such as scientific
gateways, science portals and client APIs can also be integrated, if they comply with the provided server-side interfaces.

To address the goal of usability, we put emphasis on the URC, which is an Eclipse-based (Eclipse Foundation, 2013) client
application implemented in Java. It provides users with a wide range of functionalities such as workflow management and
monitoring, data down- and upload to a remote cluster, a GUI for workflow editing and resource and environment selection
panels. An example screenshot of the URC workbench is shown in Fig. 4. For more details about the URC we refer to (Demuth

et al., 2010).
4.3.2 Workflow Realisation using UNICORE

Considering the complexity of the compute and data aspects, satisfying our requirements R1-R12 would take tremendous
effort if no abstractions and high-level concepts (such as those provided by UNICORE) were used. We therefore employ the
UNICORE workflow management system to automate the workflow of our use case in a high-level way.

To improve usability, the new, improved workflow was designed using the visual editor provided by the URC. The editor
allows scientists to visually drag and drop different task types for different application types that may be enclosed in conditiona<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>