
In this response phase we have revised the last submitted manuscript according to the recent               
review. We are very grateful for your time in reviewing our manuscript and the valuable               
feedback for improving the presentation of our research.  
 
I still am not fully convinced by the idea of first listing the steps in the workflow, then stating 
requirements for the rewrite, then describing the realization of the workflow, and then 
showing how the new workflow fulfills the requirements. I largely regard this as a stylistic 
decision, that is left to the authors, but during reading I am left with the impression, that I’m 
repeatedly reading similar passages. One such case is the overlap between sections 3.3 and 
4.3.2. I would suggest to revisit the two sections and perform some streamlining (maybe use 
exactly the same structure in both, so referencing 3.3 in 4.3.2 is easier?). 
 
To avoid any repetitions, the workflow steps described in 4.3.2 of the URC workbench are now 
briefly summarized (instead of the Listed representation) on Page 14, Lines 3-7. 
 
Sec 6 Related work is unexpected in this location. The information looks like it could be part 
of the overview of the state-of-the-art in the introduction. Also, please reconsider which 
parts of this section are relevant to the reader. 
 
For more clarity of our readers, we have now moved the relevant related work discussion into 
Section 2.2 Scientific Workflows and also labelled Section 2’s title as State of the Art. 
 
Physics and setups: 
Section 3.3 could use a few more references to Vallot et al. (2017,2018) regarding the set- 
ups. The prescribed temperature field could be briefly explained. 
In section 3.3 step 3, it is stated that “HiDEM scales down the obtained friction parameters 
it receives from Elmer/Ice (in our case using the factor 10−4) so as to increase the sliding 
speeds and thereby reduce the physical time (in our case 100 s) needed to evaluate the 
resulting fractures.” 
At this point more information on how the stress field is preserved in this scaling and which 
parameters are affected by the scaling would be very helpful, especially to other scientists 
planning similar couplings. Is viscosity scaled as well? Any other constants or fields? Is this a 
feature of HiDEM, or is this done in the transfer scripts? Can you provide evidence of the 
successful rescaling of the equations? 
Also, the reasoning for the separation of time scales permitting the rescaling needs to be 
more precise than “are separate anyhow” (p7 l30), especially considering the rescaling by a 
factor of 10 4 (turning a second into a few hours). 
A reference to the prescribed temperature field, that removes the effects of strain heating 
and basal frictional heating (which would grow drastically with upscaled velocities) might 
also be helpful. 
 
HiDEM is a model for brittle-elastic materials and hence does not take viscous deformations into               
consideration. Consequently, there is no need for a scaling of the viscosity or any other               



parameters. Deformations within HiDEM are solely evaluated using elastic parameters of the ice             
and - despite calving dynamics - usually negligible in size. Stress fields inside HiDEM - just like                 
in the Stokes problem solved by Elmer/Ice - are rather an instantaneous result to the forces                
imposed on a certain geometry and independent from the exact timescale, as long as we can be                 
sure that those timescales fall well below those of viscous ice-deformation. This is easily              
fulfilled, as the fracture time-scale is determined by the ratio of vertical scales and the velocity of                 
sound, and hence is in the sub-second range. Ice flow, on the other hand, happens on the scale                  
of relaxation time, which is dominated by a large viscosity in relation to a significantly smaller                
Young’s modulus, and is thereby in the range of hours and beyond - several orders of                
magnitude larger. In other words: everything that happens in HiDEM can be interpreted as              
instantaneous for the ice-flow model, Elmer/Ice. Along the same line of argumentation, HiDEM             
further does not account for thermodynamic effects, simply because the timescales discussed            
before are irrelevant to have a significant effect on the global energy balance. 
 
Specific comments: 
page 3 line 5: Gagliardini et al. (2013) needs an e.g.. This is just one (rather new) ice 
dynamics model. 
 
The citation has been changed accordingly. 
 
Page 3 line 20: fraction should probably be fracturing. 
 
This has now been changed to “fracturing”. 
 
Page 3 line 28: very complex – that’s subjective. complex should do. Similarly two (or even 
more). 
 
This has now been streamlined to “complex as multiple”  
 
Page 7 line 4: basal friction law of any type sounds strange. Maybe just say a Weertman 
friction law 
 
This is mentioned because in our case, any type of friction law (Weertman, Budd, Schoof-Gagliardini,                             
Tsai for example) can be implemented. Currently it is the Weertman friction law. But it is important                                 
to know that this can be generalised to some other law. In this case, we remove the "of any type"                                       
statement, which might be misleading and would rather state: "basal friction (currently Weertman                         
friction law)." 
 
Page 7 line 9: Cuffey and Paterson needs an e.g. 
 
The citation has been changed accordingly. 
 
 



Page 10 lines 19, 21 required , also lines 21-23 Without input ... is a necessary prerequisite for 
all further iterations. There is no need to justify that the input data and directories need to 
be provided before the models can be started. 
 
“Without [...] further iterations” has now been removed. 
 
Page 8 line 21: in a batch system-agnostic manner. The agnostic part is probably 
requirement 11. 
 
It is redundant to mention this statement in R2. We have removed this word to avoid replication. 
 
Page 9 line 13/14: Please rephrase. 
 
The description of R6-Parametric Execution was misleading, we have now simplified it to make 
it more understandable. 
 
Page 9 line 24 against any errors show me an error-free piece of code... 
 
We apologize for the misunderstanding. At this location, we actually meant the run-time errors              
which may occur due to different reasons, such as system dependent static variables or              
non-existent data source/sinks. We have rephrased this now to better reflect our point of view. 
 
Page 16 lines 9 ... We can consider it standard good practice to bail out of a job when one of 
the components has failed. That’s not a very innovative thing relying on UNICORE, but 
standard housekeeping. 
 
Apart from improving the overall workflow makespan, there are also other significant benefits a              
UNICORE-based implementation offers, such as user intervention while a workflow is in the             
running state - e.g. halt, develop, restart sequence, use of shared and collaborative cross-site              
file systems, and access to jobs’ working directories. Based on our experience, this is what most                
scientific users would like to have properly managed while working on different experiments. We              
have added a corresponding sentence at the end of Section 4.3.3. 
 
Page 19 Section 5.4 Lines 5/6 and 9/10 seem to be duplicates. Consider rephrasing the 
subsection to clarify. 
 
The duplicate statements have now been removed, and some parts of Section 5.4 have been 
streamlined for clarity.  
 
 
 
 
 



 
 
Page 19 lines 19... 
“one could argue ... workflow.“ maybe just say that this is facilitated by UNICORE, instead of 
lamenting about the difficulty of writing a job header. 
 
The text has now been altered (see Page 19, Lines 8-10). It says, “This is avoided by using 
UNICORE, which provisions each workflow task to have a separate resource requirement 
specification and also enables different computing platforms (SLURM, PBS, etc.) to be 
combined into a single workflow. “ 
 
Page 19 line 33 “and in a batch system-agnostic manner” 
 
This statement is corrected. 
 
Page 22, line 9: consider replacing “fire-and-forget pattern” with something that’s not 
missile-terminology. 
 
We apologize for the misleading term. It has now been changed to “asynchronously”. 
 
Figures: 
 
On the way from Vallot 2018 (there Fig. 3) to Memon et al., Fig. 1 gained crevasses in the 
sketch, but lost “+1” in the bottom index in the right part of the Figure. 
 
Figure 1 is now presented with clarity.  
 
Fig 5 still is the right half of Fig 4, and shares a lot of information with Fig. 2. Please change 
this or make the intentions of this duplication clear in the captions. 
 
Figure 4 was just intended to show the general look and feel of the GUI - it is not essential to the                      
paper and hence has been removed (also to shorten the length). The similarities between Fig. 2                
and the current Fig. 5 illustrate a strength of the UNICORE implementation of the actual               
workflow that is visually defined within the GUI. Thus, we prefer to keep both figures, as the first                  
one defines the generic composition of the workflow, and the second shows its implementation              
within UNICORE. 



Scientific Workflows Applied to the Coupling of a Continuum
(Elmer v8.3) and a Discrete Element (HiDEM v1.0) Ice Dynamic
Model
Shahbaz Memon1,4, Dorothée Vallot2, Thomas Zwinger3, Jan Åström3, Helmut Neukirchen4,
Morris Riedel1,4, and Matthias Book4

1Jülich Supercomputing Centre, Forschungszentrum Jülich, Leo-Brandt Straße, 52428 Jülich, Germany
2Department of Earth Sciences, Uppsala University, Uppsala, Sweden
3CSC – IT Center for Science Ltd., Espoo, Finland
4Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland

Correspondence: Shahbaz Memon (m.memon@fz-juelich.de)

Abstract. Scientific computing applications involving complex simulations and data-intensive processing are often composed

of multiple tasks forming a workflow of computing jobs. Scientific communities running such applications on computing re-

sources find it often cumbersome to manage and monitor the execution of these tasks and their associated data. These workflow

implementations usually add overheads by introducing unnecessary I/O for coupling the involved models and in the worst case

even lead to sub-optimal CPU utilisation; also running these workflow implementations in different environments requires5

significant adaptation efforts, thus hindering reproducibility of the underlying science. High-level scientific workflow manage-

ment systems (WMS) can be used to automate and simplify complex task structures by providing tooling for the composition

and execution of workflows even across distributed and heterogeneous computing environments. The WMS approach allows

to focus on the underlying high-level workflow and to avoid low-level pitfalls that would lead to non-optimal resource usage

while still having the workflow portable between different computing environments. As a case study, we apply the UNICORE10

workflow management system to enable the coupling of a glacier flow and calving models that contains many tasks and de-

pendencies, ranging from pre-processing and data management to repetitive executions in heterogeneous high-performance

computing (HPC) resource environments. Using the UNICORE workflow management system, the composition, management,

and execution of the glacier modelling workflow becomes easier with respect to usage, monitoring, maintenance, re-usability,

portability, and reproducibility in different environments and by different user groups. Last but not least, it helped to speed up15

the runs by reducing model coupling I/O overhead and it optimised CPU utilisation by avoiding idle CPU cores and running

the involved models in a distributed way on those HPC cluster that fit best the characteristics of each model.

1 Introduction

The complexity of glaciological systems is in an increasing way reflected by the physical models used to describe the processes

acting on different temporal and spatial scales. Addressing those complexities inevitably involves the combination of different20

sub-models into a single simulation that encompasses multiple tasks executed in a distributed computing facility. A particularly

1



good example for such a combination is the simulation of calving behaviour at the front of glaciers that combines continuum

model and discrete element model simulations. These computational tasks are connected to each other to form a scientific

workflow: the composition and execution of multiple data processing steps as defined by the requirements of the concerned

scientific application.

Carrying out the discrete calving and ice flow modelling dynamically and as one workflow instance becomes very laborious5

without an automated mechanism. An analysis of such a workflow in more detail reveals that there are even more steps than just

the two model elements mentioned above. These include, for instance, pre- and post-processing, job dependency management,

job submission, monitoring, conditional invocations, and multi-site data management. These steps can be cumbersome for a

user, for example if any step may produce an unexpected output, which can cause the whole workflow to fail, and may thus

require to re-run the whole workflow. These issues often indicate that workflow implementation is sub-optimal because it10

requires coupling overhead (such as unnecessary I/O), or or because a high number of CPU cores is allocated, which suits the

most CPU-intensive task to be executed, but leaves cores idle when other tasks are executed that are less CPU-intensive or

do not scale well. A Workflow Management System (WMS) allows to automate and ease the workflow managements steps by

means of abstraction, which not only increases usability, but also enhances portability to different computing platforms and

thus reproducibility of the scientific model runs. In our case, it also allowed us to focus on performance aspects, thus enabling15

a reduction in coupling I/O overhead and an optimisation the CPU utilisation.

The main contribution of this article is to identify the workflow problems to be solved for coupling a glacier continuum

model and a discrete element model in an optimised way, to elicit corresponding requirements that address – among oth-

ers – portability, performance improvements, and CPU utilisation, and to implement an automated workflow based on the

UNICORE (Streit et al., 2010) distributed computing middleware, in particular using the UNICORE workflow management20

system (Memon et al., 2007). We demonstrate this by combining ice flow modelling and discrete calving into a high-level

easy-to-use and performance-optimised scientific workflow.

This article is structured as follows: Subsequent to this introduction, foundations
::::
state

::
of

:::
the

:::
art on glacier calving modelling

and on scientific workflows are
::
is provided in Section 2. The targeted glacier modelling use case is presented in Section 3,

which describes a workflow baseline used for model coupling and the applications used for execution. It is then demonstrated25

how to create a good solution, by first identifying requirements to solve these problems (Section 4.1), followed by creating

an improved matching workflow design (Section 4.2), and finally implementing the workflow (Section 4.3). The implemented

workflow is evaluated in Section 5 from different perspectives, including a discussion of how the identified requirements from

Section 4.1 have been fulfilled. Finally, a summary and an outlook conclude the article.

2 Foundations
::::
State

::
of

:::
the

::::
Art30

2.1 Modelling and Simulating the Calving of a Glacier

The calving behaviour at the front of glaciers is still a largely unresolved topic in modern theoretical glaciology. The core of the

problem is that ice as a material shows different behaviour, depending on the time scale on which the forces are applied (Greve

2



and Blatter, 2009). The everyday experience is that ice is a brittle solid body (e.g. breaking icicles). Such behaviour is observed

if the reaction to a force is in the range of seconds to minutes. Theoretical glaciology up to recent years rather dealt with the

long-term (i.e., beyond minutes to millennia) behaviour of glaciers and ice sheets, where ice shows the property of a strong

non-linear, shear thinning fluid (Greve and Blatter, 2009). This leads to a description of long-term ice flow dynamics in classical

ice-sheet and glacier dynamics models (Gagliardini et al., 2013)
::::::::::::::::::::::::
(e.g. Gagliardini et al., 2013) in terms of thermo-mechanically5

coupled non-Newtonian Stokes flow continuum models.

In stark contrast to such a description, the process of cracking or calving (i.e., the complete failure of ice fronts) is an

inherently discontinuous process, that – if addressed in a physically correct way – needs a completely different model approach.

Models adopting a discontinuous approach have been developed throughout the recent years (e.g. Åström et al., 2013; Bassis

and Jacobs, 2013; Åström et al., 2014). These models describe the glacier as discrete particles connected by elastic beams that10

can be dissolved if a certain critical strain is exceeded, thus being able to mimic elastic as well as brittle behaviour of ice.

The size of these model particles (in the range of metres), which need to resolve a whole glacier of several cubic kilometres,

inherently demands large computational resources. In addition, the characteristic speeds of advancing cracks is close to the

speed of sound, which, in combination with the small spatial resolution, imposes a maximum allowed timestep size of a

fraction of a second.15

In other words, the combination of a discrete element and a continuum ice flow model is a temporal multi-scale problem,

where the first basically describes an instant change of geometry or rheology for the latter. This means that both models need to

be run in a sequential manner, with several repetitions. This defines a workflow of two model components that strongly differ

in computational demand. In addition, these two model components have to effectively and efficiently exchange data – namely,

the new geometries either changed by flow deformation or by calving as well as damage caused by fraction
::::::::
fracturing.20

2.2 Scientific Workflows

A scientific workflow can be defined as the composition and execution of multiple data processing steps as required by a

scientific computing application, i.e. e-Science. Such a workflow captures a series of analytical steps of computational exper-

iments to “aid the scientific discovery process through the combination of scientific data management, analysis, simulation,

and visualisation” (Barker and van Hemert, 2008). Conceptually, scientific workflows can be considered (and are typically25

visualized) as graphs consisting of nodes representing individual tasks and constructs, and edges representing different types

of associations between nodes, such as sequential or conditional execution.

Carrying out the discrete calving and ice flow model simulations becomes very complex as two (or even more)
:::::::
complex

::
as

:::::::
multiple parallel High-Performance Computing (HPC) applications are involved, especially if there are tasks in the workflow

that consist of pre- and post-processing phases, and require multi-site and iterative job and data management functions. The30

overall scenario may easily become unmanageable, and the workflow management might be prone to errors, failures, poor

reproducibility, and sub-optimal HPC resource usage.

Such a workflow scenario will be even more challenging when some parts are launched on heterogeneous resource manage-

ment systems equipped with different file systems, different data transfer mechanisms, and different job submission systems.

3



In our case, for example, two different HPC clusters with different characteristics are simultaneously used, one for the ice flow

modelling and another one for the discrete element (i.e., calving) modelling executions.

These workflow challenges can be addressed by a Workflow Management System (WMS) that is capable of managing the

complex dependencies of many job steps with multiple conditional and nested constructs. Several scientific WMSs have been

developed to automate complex applications from multi-disciplinary backgrounds. Ferreira da Silva et al. (2017) comprehen-5

sively categorized
:::::::::
categorised different workflow management systems according to the type of execution scenario and capabil-

ities they offer, and also identified their specialised scientific domain. are widely used to facilitate complex scientific scenarios,

among them Pegasus (Deelman et al., 2015), Kepler (Ludäscher et al., 2006) and Taverna (Oinn et al., 2006), to name just a

few. These are also used for specialised scenarios and cater to a specific group of users who interact with
:::
One

::::::::
example

:
is
:::::::

Taverna
:::::::::::::::::::::::

(Wolstencroft et al., 2013),
:::::
which

:::
in

::::::::
principle

::
is

:
a
:::::::

general
::::::
WMS,

:::
but

::
is
:::::::::::

significantly
::::::
driven

:::
by

:::::::::::::
bio-informatics10

::::::::::
communities

:::::
with

:::
the

::::
need

:::
for

:
High-Throughput Computing (HTC)

::::::
-driven

::::::::
“-omics”

:::::::
analyses

:::::::::::
(proteomics,

::::::::::::::
transcriptomics,

:::
etc.)

::::
and

::::
thus

:::::
lacks

::::::
distinct

:::::::
support

::
of

:::::::::::
cutting-edge HPC resources

::::::
systems

:::::
such

::
as

:::::
those

::::
used

::
in

::::
our

::::
case

:::::
study.

::
In

::
a

::::::
similar

::::::
manner,

:::
the

::::::::
Southern

:::::::::
California

:::::::::
Earthquake

::::::
Center

:::::::
(SCEC)

:::::::::
Earthworks

::::::
portal,

:
a
::::
part

::
of

:::
the

:::
US

:::::::::::
infrastructure

:::::::
Extreme

:::::::
Science

:::
and

::::::::::
Engineering

:::::::::
Discovery

:::::::::::
Environment

:::::::::
(XSEDE),

:::::
adopts

::::
two

:::::
other HTC

::::::
-related

:::::::::
Workflow

::::::::::::
Managements

:::::::
Systems,

:::::::
namely

::::::
Pegasus

::::::::::::::::::::::
(Deelman et al., 2015) and

:::::::::
DAGMan

:::::::::::
(Frey, 2003).

:::::::
Pegasus

::::
itself

::
is

:::
just

::
a
:::::::::
component

:::
on

:::
top

::
of

::::::::
DAGMan

::::
that

::
in

::::
turn15

:
is
:::::
based

:::
on

:::
the

:::::::::
HTCondor

::::::::::
middleware

:::
for HTC

:
,
:::::
which

::
in

:::
our

::::::
review

:::
did

:::
not

::::::::::
particularly

::::
meet

:::
the

:::
full

::::::::::
capabilities

:::::::
required

:::
for

HPC
::
in

::::::
general

::::
and

::
in

::::::::
particular

:::
for

:::
the

::::
large

:::::::::::::
supercomputers

:::::
used

::
in

:::
our

:::::
study.

Our scenario from the domain of glaciology using HPC technology includes a complex workflow graph, and is therefore

not easily manageable for users having only little expertise concerning HPC environments. Hence it is important to implement

the glacier modelling use case with a WMS that offers a rich graphical front-end and simultaneously offers
:
a

::::::
generic

::::
and20

seamless execution and monitoring of involved applications
::
on HPC

:::::
-based

::::::::::::
infrastructures

:::
in

::::::::
particular. Considering that, the

glacio-coupling use case is automated through our standards-based workflow management system (Memon et al., 2007) that is

a part of the Uniform Interface to Computing Resources (UNICORE) (Streit et al., 2010) distributed computing middleware.

It is specifically designed to support HPC applications deployed in a massively parallel environment. As described later in

Section 4.3, our WMS for UNICORE provides a rich graphical interface for the composition, management and monitoring of25

scientific workflows by users with different levels of system expertise.

3 Use Case: Kronebreen Glacier Simulation

Coupling a continuum ice flow model and a particle-based calving model of the Kronebreen glacier provides a well-suited case

study for the application of a WMS. More details on the scientific background of such a coupling and on models description

are presented in (Vallot et al., 2018). In that study, a series of key processes (ice flow, surface and subglacial hydrology, ocean30

water mixing, undercutting at the front and finally ice calving in the ocean) were simulated by different models in an offline

coupling. The aim was to show the feasibility of the coupling by comparing observations and historical data to simulation

results and to identify the resulting interactions through this global approach. In this article, we introduce a full coupling that

4



can be used for prognostic simulations. To simplify the problem we only use two models: the ice flow model (Elmer/Ice)

and the discrete particle model (HiDEM). In the following, we describe the involved software executables and the underlying

workflow.

3.1 Conceptual Scheme

Kronebreen is a tidewater glacier (ice flowing directly into the ocean) that is one of the fastest-flowing glaciers of the Svalbard5

archipelago. After a period of stability, it started to retreat in 2011 and continued since then. This glacier has been extensively

studied (e.g. Kääb et al., 2005; Luckman et al., 2015; Nuth et al., 2012; van Pelt and Kohler, 2015; Schellenberger et al., 2015;

Vallot et al., 2017), partly due to its situation close to a research station and its interesting behaviour in terms of sliding and

calving. For that reason, it is a good candidate for the present study. The aim is to reproduce both continuous (ice flow) and

discrete (calving) processes using a Finite Element Model (FEM) and a first-principle ice fracture model, respectively.10

3.2 Applications: Meshing Tools, Continuum and Discrete Ice Dynamics Model

Within our application, we use the continuum model Elmer/Ice (Gagliardini et al., 2013), and for the discrete calving model,

the Helsinki Discrete Element Model (HiDEM) (Åström et al., 2013). Both codes can be run on large parallel HPC platforms.

Implied by the physics that have to be addressed and by the modelling tools, the workflow contains three main applications

that are part of the use case implementation:15

1. Meshing: Gmsh (Geuzaine and Remacle, 2009) is the applied meshing tool used to provide the updated mesh for the

continuum ice flow model run. It creates an updated footprint mesh in the horizontal plane that further is extruded and

reshaped using the bedrock as well as free surface elevation to form the three-dimensional computing mesh for the ice

dynamic simulation. Gmsh is an open source versatile and scriptable meshing tool that perfectly matches the demands

of being deployed within a workflow like this one. Gmsh applies a bottom-up geometry and meshing strategy, starting20

from outline points of the glacier, building a closed loop of its outline and further creating a planar surface that is being

meshed in two dimensions.

2. Continuum Modelling: Elmer/Ice (Gagliardini et al., 2013) is the open source ice sheet model used to compute the

long-term dynamics of the glacier. Elmer/Ice is based on the multi-physics package Elmer (Råback et al., 2018), an

open source Finite Element code developed by CSC – IT Center for Science Ltd. Elmer/Ice is able to utilize parallel25

processing, applying the Message Passing Interface (MPI) paradigm (Message Passing Interface Forum, 2012) that uses

messages to exchange data between nodes of a distributed parallel processing environment, and – for certain solver

implementations – OpenMP (Dagum and Menon, 1998) for shared-memory parallel processing using multi-threading.

Elmer also provides the ElmerGrid executable that can be used to convert the mesh created by Gmsh and at the same

time perform a domain decomposition on the footprint, using the Metis library. The solver executable ElmerSolver30

has a built-in feature to internally extrude the given footprint mesh into layered columns of prisms and impose the given

surface and bedrock elevation to form the volume of the glacier. Elmer is built on a shared library concept, meaning

5



all solver modules are loaded during runtime. This enables the easy deployment of user-written functions and solvers

through an API.

3. Discrete Modelling: HiDEM (Helsinki Discrete Element Model) (Åström et al., 2013) is a discrete element model

that represents the glacier as mass-points connected by massless beams that are allowed to break if exceeding a given

threshold. An additionally applied repelling potential based on distance guarantees a non-intersection of compressed5

loose particles. Solving Newton’s equation on such a setup, it is possible to realistically reproduce the behaviour of

fracturing. The downside of this approach is the high demand of computational power, as the several cubic kilometres

large glacier is discretised in pieces of a few tens of cubic metres. Furthermore, the time scales for the simulation are

imposed by the ratio of the speed of sound to the typical length of the discretised particles, which falls clearly below

seconds. Hence, despite the fact that the code is utilizing massive parallel computing using the MPI paradigm, only a few10

minutes to hours of physical time can be computed even on a huge HPC cluster. HiDEM receives the initial geometry

from Elmer/Ice, in form of gridded data over a limited area at the tongue of the glacier, and also receives the basal friction

coefficient distribution computed within the continuum ice flow model.

3.3 Initial Base Workflow

The continuum ice flow model and the discrete calving model need to be coupled, thus leading to a scientific workflow. A15

baseline version of the workflow was initially realised by a Bash shell script that calls the above executables as well as addi-

tional Python helper code, and performs all the needed management operations using shell script commands. The underlying

workflow is as follows:

Step 1: Generate the Mesh for Elmer/Ice

At t= ti, the front position Fi and the contour Cont are given as input to create the mesh Mi. This determines the domain20

of the glacier for the ice flow model Elmer/Ice. A Python script invokes the meshing executable gmsh to build the mesh from

the contour and the front position, and invokes ElmerGrid (Råback, 2015) to convert it into Elmer format. In this particular

application, the mesh is then split into 16 partitions. This step runs as a single-threaded application, as with respect to resource

requirements, mesh generation is not very CPU-intensive (serial, i.e. 1 CPU core), but it consumes some storage space.

Step 2: Ice Flow Modelling and Conversion to HiDEM Domain25

The continuum ice flow model is executed using the ElmerSolver application which is an MPI-based implementation and

part of the Elmer application suite. The number of time steps (Nt) depends on the studied glacier and process as well as the

spatial resolution. Here, we simulate Nt = 11 days in one run, which – using a time-step size of one day – corresponds to the

update frequency of remote sensing satellite data which was used for model validation.

As the basal boundary condition (BC), we assume a no-penetration condition with no basal melting nor accumulation and30

a basal friction law of any type (currently a
::::
basal

:::::::
friction

:::::::::
(currently Weertman friction law). The upper BC is defined as

6



Z

X

Y

X

SIDE VIEWPLAN VIEW

F
i,elmer

F
i

S
i

S
i+1

Figure 1. Conceptual plan and side view of an Elmer/Ice transient run. The initial front Fi and surface Si are evolved to a new position of

the front Fi,elmer and a new surface elevation Si+1.

a stress-free surface and is able to evolve during the simulation following an advection equation forced by a surface mass

balance. As the BC in contact with the ocean, the normal component of the stress vector is equal to the hydrostatic water

pressure exerted by the ocean where ice is below sea level. The front is also able to evolve, using a Lagrangian scheme

(i.e., mesh velocity equal to ice flow velocity corrected by melting). The temperature profile in the ice and lateral BC are

prescribed but can be changed easily. The ice is flowing as a non-linear isotropic viscous fluid following Glen’s flow law5

(Cuffey and Paterson, 2010)
::::::::::::::::::::::::::
(e.g. Cuffey and Paterson, 2010) and the Stokes equations for an incompressible fluid are solved

over the ice volume. Elmer/Ice executes a solver input file, SIFi, with the above-mentioned parameters.

After the simulation, the glacier has a new position of the front Fi,elmer , a new surface elevation Si+1 (see Fig. 1) and a map

of basal friction coefficients (determined by a linear sliding law). These form the output of Elmer/Ice and input to HiDEM.

Elmer/Ice can be sped up by parallel processing, but is not as CPU-intensive as HiDEM, hence only 16 CPU cores are used for10

a relatively small glacier, like Kronebreen, in this part of the workflow.

The output format of Elmer/Ice does not match the input format of HiDEM, and HiDEM does not need to process the whole

glacier, but only the front that is relevant for calving. Hence, a conversion step runs a set of helper scripts (“Elmer to HiDEM”)

implemented in Python. This step is performing a conversion of the output of ElmerSolver to the HiDEM grid (10 m× 10 m

in our case) that is used for the calving front of the glacier. Elevations are offset so that the minimum bed elevation is equal to15

0. It also includes places with no ice where the surface elevation is equal to the bed elevation. This conversion step creates a

text input file for HiDEM, Pini, with coordinates, surface, bed and basal friction coefficient. This conversion is performed on

a single CPU.

Step 3: Discrete Particle Modelling and Conversion to Elmer/Ice Domain

The converted output from Elmer/Ice is passed to HiDEM. The implementation of HiDEM requires an MPI environment20

(560 cores running the MPI processes in our case), because in comparison to the other steps, it consumes the biggest share

of CPU hours due to the high spatial and temporal resolution. In order to avoid excess computations, scales
:::
The

::::::
stress

::::
field

7



::
in

::::
both

::::::
models

::
is
::

a
:::::::::::
consequence

::
of

:::::::
gravity

:::::
acting

:::
on

:::
the

:::::::
specific

:::
ice

:::::::::
geometry

:::
and

:::::::
thereby

:::::::
initially

:::::::
identical

:::::::::::
(differences

::::
arise

::::
only

:::
by

:::::::::::
discretization

::::::::
method).

::::::::::
Deviations

:::::::
between

:::
the

:::::::
models

:::
are

:::::
only

::
in

:::
the

::::::::
response

::
to

::::::
stress,

:::
i.e.

:::
the

:::::::::
rheology.

::::::::
Elmer/Ice

:::::::::::
deformations

:::
are

:::::::
viscous,

:::::::
HiDEM

::::::::::::
elastic-brittle.

:::
The

:::::::
fracture

:::::::::
time-scale

::
is

:::::::::
determined

:::
by

:::
the

::::
ratio

::
of

:::
the

::::::::
glacier’s

:::::
spatial

:::::::::
dimension

::::
and

:::
the

:::::::
velocity

::
of

::::::
sound,

::::::
which

::::::
usually

::
is

::
in

:::
the

::::::::::
sub-second

:::::
range.

::::
Ice

::::
flow,

:::
on

:::
the

:::::
other

:::::
hand,

:::::::
happens

::
on

:::
the

:::::
scale

::
of

:::::::::
relaxation

::::
time,

::::::
which

::
is

:::::::::
dominated

::
by

::
a
::::
large

::::::::
viscosity

::
in

:::::::
relation

::
to

::
a

:::::::::
significant

::::::
smaller

:::::::
Young’s

::::::::
modulus5

:::
and

:::::::
thereby

::
in

:::
the

:::::
range

::
of

:::::
hours

::::
and

::::::
beyond

::
–
::::::
several

::::::
orders

::
of

:::::::::
magnitude

::::::
larger.

::::
This

::::::
means

::::
that

:::::::
HiDEM

::::::
results

:::
can

:::
be

:::::::::
interpreted

::
as

:::::::::::
instantaneous

:::
for

:::
the

:::::::
ice-flow

::::::
model,

:::::::::
Elmer/Ice.

::::
This

::::::
allows

::
us

::
to

::::
scale

:
down the obtained friction parameters it

::::::
HiDEM

:
receives from Elmer/Ice (in our case using the factor 10−4) so as to increase the sliding speeds and thereby reduce the

physical time (in our case 100 s) needed to evaluate the resulting fractures . This can be justified because the distribution of the

friction parameters and hence the instantaneous fracture pattern does not change, and the time scales of ice flow (represented10

by the continuum model) and fracturing are separate anyhow.
::
in

::::
order

:::
to

:::::
avoid

::::::
excess

::::::::::::
computations. A new front position,

Fi+1, is modelled after the simulation. Because of the high spatial resolution, the involved text files are rather large.

Once a HiDEM run is completed, the next step is to re-convert this data set to the Elmer/Ice format, so that the next iteration

of the coupled glaciology models’ workflow can begin. Again, a Python script (“HiDEM to Elmer”) is used to convert the

HiDEM output into a format that can be read by Gmsh and ElmerGrid. For this purpose, the new front position Fi+1 (after15

calving) and surface elevation Si+1 are re-introduced into Step 1 at t= ti+1. Again, the conversion is performed in serial

execution. After this step, the workflow is begins again, starting
::::::::
reiterates from Step 1.

4 Workflow

4.1 Requirements Analysis

The problem analysis of the initial shell script-based workflow led to a set of requirements that aim at improving the work-20

flow with respect to usability, adaptability, maintainability, portability, robustness, resource usage (I/O and CPU), and overall

runtime. Based on the weaknesses of the initial workflow implementation, we focused in particular on reducing the overhead

associated with the initial coupling approach by improving overall runtime, optimising the CPU resource usage and coupling-

related I/O, as well as the factors stated in the beginning on enabling a uniform access to widen the scientific community

adoption of this glaciology workflow.25

The requirements elicitation phase yielded the following requirements, which led to an improved design and implementation

of the workflow (a summary of the requirements is provided in Table 1 together with a description of the UNICORE-based

implementation.):

R1: Readability and Understandability To continuously develop, maintain, and disseminate a scientific application for

collaboration requires the implementation to have a clean, clearly modularized and error-free code.
::::::::::::::::
system-independent

:::::
code.30

:::
The

::::::::
workflow

:::::::::::::
implementation

::::::
should

:::
not

:::::::
contain

::::
static

::::::::
resource

::::::
specific

::::::
details

::
or

:::::::::
malformed

::::
data

::::::::
locations

::
as

::
it

::::
may

::::
lead

::
to

::::
later

::::::
runtime

::::
task

:::::::
failures.

:
Since our case study consists of many independent applications related to each workflow task, it

is important that the identified tasks are well-segregated and do not overlap each other. A well-segregated workflow not only

8



helps the application developer to further enhance the application, but also to distribute the code in order to collaborate with a

larger scientific community.

R2: Sequential Pipeline The execution of jobs in the workflow should be orchestrated in a sequential manner such that one

job step should not commence unless all previous steps are completed. This requirement envisages the whole scenario as a

sequence of jobs that should connect all the involved applications in a batch system-agnostic manner
:::::::
scientific

::::::::::
applications.5

R3: Dynamic Data Injection The data injection for any workflow job should be transparent and easy to express. This

requirement refers to the provisioning of data sets to individual workflow steps: Before a job is started, the required data needs

to be available. Furthermore, dynamic data injection allows to import data from various sources using different protocols. A

data-transfer-agnostic access is an add-on to this requirement.

R4: Minimise Coupling I/O The cost of data sharing across the jobs of the workflow steps becomes high when the data is10

unnecessarily replicated across each of the job steps. This increases the used storage space and negatively impacts the overall

workflow footprint in terms of resource consumption, in particular with respect to I/O performance. Therefore, an adequate data

sharing mechanism that minimises the coupling-related I/O of all the tasks should be available, which allows at the same time a

simplified integration of data at application runtime. It will also facilitate optimal storage resource usage (e.g. of a parallel file

system) in the target system. This is of particular importance when dealing with two different HPC clusters running different15

steps of the workflow, where data needs to be exchanged between the HPC clusters.

R5: Minimise CPU Resource Consumption The continuum ice flow model (Elmer/Ice) is less CPU resource-intensive than

the calving model (HiDEM). This is due to very different spatial and temporal resolutions but also the models themselves,

which require different amounts of computational resources (16 cores for the continuous ice flow model, but 560 cores for

the discrete particle model). Getting access to CPU time on a small HPC cluster is typically easier than on big clusters, hence20

the workflow shall support the possibility to run these two significantly different steps on two different computing resources,

thus reducing the amount of CPU and queueing
::::::
queuing

:
time needed on the larger cluster. If the executions are running on

heterogeneous clusters, a layer of abstraction is needed that encapsulates the intricacies of different resource management

systems (see R11). If the executions are running on the same cluster, it needs to be avoided that more cores are allocated than

actually used (e.g. do not allocate 560 cores for running a 16 core Elmer/Ice job or even for executing a serial data conversion25

script).

R6: Parametric Execution In our case study, most of the job steps need to be executed in an iterative way. Every new

iteration takes input
::::
With

:::::
every

::::
new

:::::::
iteration

:::::
input

:::
has

::
to

::
be

::::::::
extracted

:
from a plain ASCII text file, called n_list.txt, that

records
:::::::
contains the surface velocity data of some days of ice flow simulation. The

::::
Here

:::
the requirement is to take

::
use

:
the input

data from the file and use it as a parameter for
:::::::::
parametrise

::
it

::
for

:::::::
guiding

:::
the

::::::::
workflow

:::::::::
iterations.

:::::::::::
Furthermore,

:::
the

:::::::::
envisioned30

::::::::
workflow

:::::::::::::
implementation

::::::
ensures

:::
that

:::
the

:::::::
number

::
of

:::::::
resulting

::::::::
iterations

::::::
should

:::::
abide

::
by

:
the iteration of the tasks. It means that

the parameter value is shared by all the tasks involved. Furthermore, the iteration should not exceed a certain threshold
::::::
number

::
of

::::::::::
observations

:::::::
defined

::
in

:::
the

::::
input

:::
file.

R7: Workflow Composition and Visual Editing It will be more robust for users to have a graphical interface that allows

them to visually program and manage scientific workflows. In the glacier modelling scenario there are six main steps, each35

9



with different shell scripts and resource configurations, therefore a Graphical User Interface (GUI) can be very useful for

visual editing, composition and automation of all the steps.

R8: Workflow Tracing and Monitoring It should be possible to trace and monitor the whole workflow, including its sub-

elements such as individual jobs. The extensive process of calving simulation may have to be aborted at some stage due to data

or parameter anomalies. Therefore, it must be possible to interrupt the workflow at any point. Apart from that, real-time status5

of the jobs managed by the workflow should be provided.

R9: Workflow Reproducibility The workflow needs to support reproducing results both by the original researchers and by

third parties. If the created workflow is carefully designed and validated against any errors
::
in

:
a
::::
way

::
to

::::
adopt

::::::::
different

:::::::::
computing

:::
and

::::
data

:::::::::::
environments, it can be exported for re-use by a larger community. This includes not only exposing that workflow

to a wider community on the same computational resource, but also running it in a completely different hardware or software10

environment (re-usability, adaptability, portability, and maintainability).

R10: Secure Access The workflow management system should be capable of providing an interface to let users run scientific

workflows in a secure manner. This implies that adequate authentication and authorization
::::::::::
authorisation

:
need to be in place.

This requirement further mandates the workflow system to be compatible with back-end computing clusters and existing

production computing infrastructures.15

R11: Execution Platform Independence This requirement supports a scenario which allows scientists to submit computa-

tions without knowledge of the parallel execution environment installed at the target computing resource. In our case, there are

at least two different MPI execution environments involved, and thus two different MPI implementations. Another aspect is to

abstract from the batch system used for job submission to the HPC cluster(s). The intended middleware abstraction should not

require a user to know the target environment that is providing the actual execution.20

R12: Data and Variable Configuration Configuring required data elements such as workflow-centric input and output

locations, and shared applications’ environment variables or constants across many job steps can reduce much workflow man-

agement and development overhead. This may allow carrying out the design, execution, and debugging phases of many tasks

in a more efficient manner. Therefore, in terms of overall usability and application maintenance, this requirement is considered

important for realising the complex structure of connected tasks.25

Any solution that addresses this set of requirements will make the scientific workflow usable for a wider set of communities

working in Glaciology.

4.2 Workflow Design

Using the initial shell script-based workflow as a starting point and taking the requirements R1–R12 into account, this section

discusses the design of the glacio-coupling workflow implementation. Figure 2 shows the workflow composition.30

The data conversion tasks, such as “Elmer to HiDEM” and “HiDEM to Elmer” existed in the initial workflow implementation

as part of the respective ElmerSolver and HiDEM jobs. As the latter are both resource-intensive (i.e., they run on multiple

cores), while the data conversion tasks are serial and require less resources, it is inappropriate to reserve (and thus waste)

10



Figure 2. Whole
:::::
Generic

:
workflow

::::
layout

:
with blocks representing steps.

parallel resources for the serial data conversion. The separation of tasks in the workflow’s design enables them to use only a

single core, which is sufficient for their serial execution.

The step “shared preprocessing” is introduced as an additional task to manage the initialisation phase of the workflow. It

mainly provides the involved applications with the required initial input data sets and prepares shared output directories where

the subsequent individual workflow steps accumulate intermediate and final results. In this step, the shared workflow variables5

are also initialized
::::::::
initialised, and the required intermediate working directories are created. Without input and output storage

management and shared variables, our workflow implementation would stall. Therefore, this step is a necessary prerequisite

for all further iterations.

11



4.3 Workflow Implementation

This section describes the workflow implementation and its realisation through Uniform Interface to Computing Resources

(UNICORE) (which includes a workflow engine). The UNICORE middleware is not only used for the developement
::::::::::
development

and automation, but for the processing and management of the entire workflow on deployed HPC resources. We have con-

tributed to the creation of both UNICORE in general (Memon et al., 2007) and the workflow engine in particular (Memon5

et al., 2013b). This section briefly details the UNICORE foundations, the workflow implementation and it concludes with

resource setup and interaction.

4.3.1 UNICORE Foundations

UNICORE (Streit et al., 2010) is a distributed computing middleware that provides abstractions for job submission and man-

agement on different kinds of job scheduling systems. Hence, jobs can be submitted to a cluster without needing to know about10

the job scheduling system internally used by that cluster. The abstraction is achieved through a unified set of interfaces that

enable scientists to submit computation jobs without considering any intricacies of the underlying batch system. UNICORE

takes care of automatic translation of job requests to multiple target resource environments.

UNICORE provides a workflow system based on the Service Oriented Architecture (SOA), i.e., all the main functional

interfaces of the workflow system are exposed as web services. Figure 3 gives a holistic view of UNICORE’s multi-layered15

architecture that is composed of Client, Server, and Target System tiers. The Client tier has two main variants, the UNICORE

Command-line Client (UCC) and UNICORE Rich Client (URC). However, other third party client applications such as scientific

gateways, science portals and client APIs can also be integrated, if they comply with the provided server-side interfaces.

To address the goal of usability, we put emphasis on the URC, which is an Eclipse-based (Eclipse Foundation, 2013) client

application implemented in Java. It provides users with a wide range of functionalities such as workflow management and20

monitoring, data down- and upload to a remote cluster, a GUI for workflow editing and resource and environment selection

panels. An example screenshot of the workbench is shown in Fig. ??. For more details about the URC we refer to (Demuth

et al., 2010).

The UNICORE Rich Client workbench.

4.3.2 Workflow Realisation using UNICORE25

Considering the complexity of the compute and data aspects, satisfying our requirements R1–R12 would take tremendous

effort if no abstractions and high-level concepts (such as those provided by UNICORE) were used. We therefore employ the

UNICORE workflow management system to automate the workflow of our use case in a high-level way.

To improve usability, the new, improved workflow was designed using the visual editor provided by the URC. The editor

allows scientists to visually drag and drop different task types for different application types that may be enclosed in conditional30

structures. The supported task types are simplified, and small Bash shell scripts containing customized
:::::::::
customised

:
or generic

applications can be executed remotely on user-specified resources.

12



Figure 3. Multi-tiered UNICORE architecture.

Figure 4 shows the URC
::::::
-based

:::::::::::::
implementation

::
of

:::
the

::::::::
workflow

::::::::
sketched

::
in

::::
Fig

::
2,

::::::::
outlining

:
a
:
sequence of the workflow

tasks defined for our glacier modelling case study. The major steps described in Section 3.3 can be directly mapped to the tasks

defined at the URC level. However, there is an additional step required for arranging any intermediate input and output data

sets. The concrete tasks defined at the tier are:

prerun: This initial task declares global
::
In

:::::::
addition

:::
to

:::
the

:::::
initial

:::::::::
workflow,

:::
we

:::::::::
introduce

:::
the

:::::::
prerun

::::
step,

::::::::
wherein

:::
we5

::::::
declare constants for all the workflow instances and also creates

:::::
create

:
a central output directory that is shared across

::
all the

jobs participating in an instance of the workflow. It also sets an initial input that contains the total number of iterations.

meshing: This task generates the mesh for Elmer/Ice by running the Gmsh and ElmerGrid tools sequentially using a set of

input files. ElmerGrid is a mesh generator that takes as input a mesh from Gmsh to generate the output mesh to be used in the

following step by Elmer/Ice.10

elmer: In this task, the finite element modelling is executed. In order to achieve that, the parallel ElmerSolver application

is invoked. This application is based on /OpenMPI standards and thus typically runs in environments.

elmer-to-particle: A Python script that transforms the Elmer/Ice output produced by the previous step to create a format

required for the application.

calving: This task performs discrete element modelling by running the application. This step consumes much more resources15

than any other task of the workflow
::::::::::
Furthermore,

:::::
while

::
in

:::
the

::::::::
previous

:::::
model

:::::
runs,

::
the

::::::::::
conversion

:::::::::
procedures

::::
were

:::::::::
integrated

::::
from

:::::::::
continuum

::
to

:::::::
discrete

::::::
model,

::::
they

::
are

::::
now

:::::::::::
implemented

::
as

:::::::
separate

:::::
tasks

:::::
within

:::::::::::
UNICORE’s

::::::::
workflow

:::::::::::::
implementation.

13



Iteration: 
WhileActivity1

WhileActivity1_Iteration_Counter < iteration_length

Start

prerun

Modifier2
store

storage-shared

iterationLength

While1

elmer

calving

meshing
elmer-to-particle

particle-to-elmer

Modifier1

Figure 4. Graphical workflow snippet from
:::::::
Workflow

::::::::::::
implementation

:
in
:

the URC workbench.

particle-to-elmer: A Python script transforming the output of the output of the calving job into the format used by task 2,

(re-)meshing for Elmer/Ice.

In addition to
::
In the task definitions, a shared variable is required that contains the workflow output location that is to be used

across all the tasks. This is the only variable meant to be customized
::::::
changed

:
for a different user: In

:
in
:
case another user wants

to run the same workflow on the same set of resources, e.g. the same HPC cluster, then this single value has to be adjusted to5

the preferred file storage location.

Prior to the workflow execution by URC, the user has to: 1) configure on which target site each task runs; 2) specify the

extent of computing resources it requires; 3) provide a list of input and output files involved. Once the tasks are prepared, the

14



workflow can be submitted for execution on (remote) HPC clusters. During the workflow execution phase, the sequence of

running tasks will follow the workflow graph specified by the user.

Listing shows two code snippets from the URC environment: First snippet shows the kernel of the particle-to-elmer task,

which simply invokes the Python executable. Batch system-specific components are added by the WMS (lines 2–5); and

second, the common code section (lines 7–12) that fetches the value of the last iteration required to process the data of the5

current iteration. This common code snippet must be present in all the workflow steps (including the iteration blocks) except

the prerun step. Practically, this is just a syntactic overhead, and considered negligible when the number of affected steps is

small.

4.3.3 Resource Setup and Interaction Scenario

Our new and improved workflow requires the deployment of separate UNICORE server and client instances. The server-side10

deployment spans two production clusters at CSC in Finland, namely the Taito cluster for smaller jobs such as Elmer/Ice and

the bigger Sisu cluster for massively parallel jobs such as HiDEM. On both sites, the UNICORE instances were separately

deployed. These sites already have SLURM as a resource management system available, but with different hardware config-

urations: Taito has heterogeneous node groups with varying capabilities and CPU layouts (Intel’s Haswell and Sandy Bridge

processors), whereas Sisu has a symmetric configuration with all the nodes providing same number of processing, data and15

memory resources. Furthermore, as some sort of master, a shared UNICORE workflow management and a resource broker

instance have been deployed on a cloud computing instance running at the Jülich Supercomputing Centre (JSC) in Germany.

The resources at CSC needed to have the respective applications installed to support the complete workflow execution, i.e. on

Taito, the Elmer suite with the Elmer/Ice glaciology extension was installed, whereas the particle calving application (HiDEM)

was provided on Sisu. In addition to these executables, a Python environment had to be available on both systems for running20

the Elmer-to-Particle (and vice versa) conversion scripts.

The workflow development and remote execution is managed by the user through the UNICORE Rich Client (URC). It is

thus required to have the URC installed on the user side. To obtain access to the remote UNICORE sites at CSC, the user has to

acquire X.509 credentials and trusted certificates of the server instances. By using these credentials, the user can interact with

all the UNICORE server instances of the infrastructure that she has access to.25

After the credentials are set up, the user has to add sites that shall be used for the workflow execution. For this, only a single

location of the discovery service called Registry is provided. If the user’s identity is known to the Registry instance and all

the concerned compute sites, then these sites will be available for execution. Following the discovery service inclusion, the

workflow development and management can be performed easily.

Figure 5 shows the output of the calving task that is the last step of each workflow iteration. Without the UNICORE-30

based implementation, it was difficult to manage the overall makespan of this step and in general the whole workflow. After

transforming it using the UNICORE system, the management became easier and seamless as the calving tasks are only invoked

when the preceding phases (such as coupling and data conversion) and iterations were completed successfully, i.e. when they

could provide reasonable input to the computationally expensive HiDEM executable.
:
In

::::::::
addition

::
to

:::
the

:::::::
reduced

:::::::::
makespan

15



Figure 5. Basal friction coefficient, β and new position of the front Fi+1 after calving from the HiDEM simulation generated through the

UNICORE-based implementation.

:::::
effort,

:::
the UNICORE

:::::
-based

:::::::::::::
implementation

:::::::
enables

:::::
users

::
to

:::::::
remotely

::::::::
intervene

::
in

:::
the

:::::::
running

::::::::
workflow

:::::::
instance

::
by

::::::::
allowing

::::
them

:::
to

::::::
access

:::
the

::::::::
individual

:::::
task’s

::::::::
execution

:::::
state,

:::::::
working

::::::::
directory

:::
and

:::::::::
multi-site

:::::
shared

::::::::
storages.

5 Discussion

This section discusses the most vital elements of the glacio-coupling case study to show that the main goal was achieved, i.e.

a coupling of two different models dynamically and simplified access to distributed HPC resources.5

In the implementation using UNICORE, we use the same application environment and dataset as before the introduction of

a WMS. Therefore, this discussion does not cover the application performance and scalability, but rather the overall workflow

effectiveness, robustness, and usability.

5.1 Fulfilment of Requirements

In this section, we show how the requirements presented in Section 4.1 have been fulfilled through the use of the UNICORE10

workflow management system. Table 1 lists each of the requirements and explains briefly its realisation in the UNICORE-based

version. The details are as follows:

Requirements R1 – Readability and usability and R7 – Workflow composition and visual editing are addressed through the

URC client as it comes with a rich workflow editor that allows simplified composition and association of workflow tasks in a

user-friendly manner.15

16



Table 1. Summary of requirements and how the new workflow implementation addresses them.

Description UNICORE-based Realisation

R1 Readability and usability URC workflow management and interface

R2 Sequential pipeline Workflow management and enactment

R3 Dynamic data injection Automatic data import and export

R4 Data sharing across job steps UNICORE’s data management services

R5 Resource-agnostic access UNICORE’s job management services

R6 Parametric execution Composite constructs and loops

R7 Workflow composition and visual editing URC workflow editor and widgets

R8 Workflow tracing and monitoring UNICORE’s workflow tracing and management services

R9 Workflow reproducibility URC’s project export wizard

R10 Secure access PKI, X.509, and mutual authentication

R11 Execution environment independence Job incarnation through XNJS and Target System Interface (TSI)

R12 Data and variable configuration Middleware-supported variable resolution

The UNICORE WMS provides sequential access by enforcing a barrier on a workflow task that is about to be processed

until its preceding task completes successfully. This supports requirement R2 – Sequential pipeline.

The workflow’s data management is considered to be an essential requirement for any data-intensive application. It is typi-

cally either a remote data transfer or data movement within the file system used by that computational resource. The workflow

management system should not bother the user with this. In our case, the UNICORE atomic services take care of any data5

movement to a third-party data space or a local cluster; the user is only expected to specify the source and target file loca-

tions. After the workflow has been submitted, the required data transfers are carried out by the UNICORE middleware. This

functionality supports requirements R3 – Dynamic data injection and R4 – Minimise Coupling I/O.

For the glacier modelling workflow, the UNICORE-based implementation executes Steps 2-6 of the workflow in a WHILE

loop until a certain number of observations has been reached. As the observations are stored in a file, they need to be processed10

and the values need to be loaded to UNICORE’s WHILE loop variable store. Each time the workflow instance is created and

submitted, the loop construct loads the file called n_list.txt and takes each observation from that file to run the underlying

steps in a parametric way. This feature supports requirement R6 – Parametric execution.

The UNICORE-based glacio-coupling workflow is using the computing resources deployed on CSC’s Sisu and Taito aito

clusters. If a future user of this application intends to deploy and run the workflow in a different resource and application15

environment or with a different number of cores, this will be possible with minimal effort: The UNICORE atomic services pro-

vide a layer of abstraction over execution environments and batch systems, which fulfills
:::::
fulfils

:
requirements R11 – Execution

platform independence and R5 – Minimise CPU Resource Consumption. The latter requirement is also fulfilled by splitting

the previously monolithic job submission into separate job submissions, thus allowing to specify exactly the number of cores

needed for each jobs and preventing idle CPU cores that are reserved but in fact never used.20

17



In case another user is interested in using the UNICORE-based implementation, URC provides a feature to export the

workflow in a reproducible format to be re-usable by other users. This supports requirement R9 – Workflow reproducibility

(more details on workflow reproducibility are discussed later in Section 5.8).

The URC interface allows users to specify any application-, data- and environment-specific variables, scoped either to

one task or a group of tasks. To enhance and simplify our new workflow implementation, a number of workflow-wide and5

application-specific variables were used. During workflow runtime, they are resolved without needing any user intervention.

This addresses requirement R12 – Data and variable configuration.

Requirement R10 – Secure access is essential since the workflow will have access to large and precious compute resources,

for which the UNICORE-based deployment ensures secure interaction between the user and all the services she communicates

with, such as workflow executions and access to storage and data. Users accessing any remote UNICORE-based services are10

required to possess X.509 credentials in order to use these services.

Finally, to compose, manage and monitor workflow submissions interactively, URC provides a separate visual interface to

edit or create individual workflow tasks or monitor running workflows and the involved jobs. This supports requirement R8 –

Workflow tracing and monitoring.

5.2 Middleware Deployment Overhead15

While UNICORE is powerful and enabled the optimisation of our workflow, having that additional layer may introduce some

overhead: the provider of the computational resources has to ensure the availability of UNICORE server-side. Maintaining a

server-side deployment needs a dedicated server that manages workflow jobs. On the other hand, the URC is easy to use due

to its GUI and does not have any significant installation overhead – it is Java-based and thus easily usable on any hardware

platform. However, every URC user needs to maintain a credential store and personal X.509 certificates.20

5.3 Modularization

The UNICORE-based implementation using URC allows us to cleanly separate the tasks in a modular way, which enables us

to individually monitor and manage tasks even while they are in the execution phase. The complete workflow management can

be performed interactively and visually through the URC’s GUI. Our experience is that using the URC is less error-prone than

the purely shell-script-based approach.25

5.4 Data Transfer and Management

UNICORE significantly eases data handling: For example, during the UNICORE-based workflow development and testing

phase we ran one application instance in Germany (JSC) the other in Finland (CSC) with respective Elmer/Ice and HiDEM

deployments, i.e. the worklow execution was distributed and the associated data had to be transferred back and forth between

both sites. With the shell-script-based implementation, we found the inter-task input and output (I/O) of the workflow not easily30

manageable and
::
due

:::
to

::::::::
manually

:::::::::
configured

::::::::
locations,

::
so

::
it

::::
was prone to multiple data transfer errors during the data staging

18



phase. In contrast, the UNICORE-based approach takes care of the data movement automatically, in which only the input and

output files and their physical or logical addresses have to be declared in the beginning. The I/O is automatically managed by

UNICORE as the reaches the specific task with data staging declarations. Similarly,
:::::::::::
Furthermore,

::::::
through

:::
the

:
UNICORE

:::::
-based

:::::::::::::
implementation,

:::
the

::::
user

:::
can

:::::
easily

:::::::
connect

:::::::
outputs

::
of

:::
one

::::
task

::
as

::::::
inputs

::
to

:::::
other,

:::::
which

:::::::
implies

:::
the

:::::::::
connecting

::::
task

::::
will

:::
not

::::
begin

::::::
unless

:::
the

::::::::
preceding

::::
task

::
is

::::::::::
successfully

:::::::
finished

:::
and

:
the shell-based approach including manual I/O statements is more5

susceptible to file staging failures, and potentially increases the time span to reach the workflow usage phase
::::::
desired

:::::::
outputs

::
are

::::::::
produced.

5.5 Efficient Resource Utilization
::::::::
Utilisation

Using our improved workflow allowed us to optimise CPU utilisation of running the models and data conversion and to speed

up the I/O needed for model coupling.10

The ratio of needed computational resources between HiDEM and Elmer/Ice is about 10:1. Hence, when running the same

workflow as a single job submission (allocating the number of CPU cores needed for HiDEM), 90 percent of the CPU cores

in the Elmer/Ice stage would go idle, which would lead to extremely bad performance (not in terms of wall-clock time, but

efficiency). In a similar manner, the data conversion steps in the workflow are less compute-intensive, and if attached to any

of the Elmer or HiDEM job submission, could be very inefficient in terms of resource utilization. One might argue that this15

could also be improved through batch job scripts, but this would be challenging as those scripts would have to be tailored to a

specific computing platform (SLURM, PBS, etc.). This issue
::::::::
utilisation.

::::
This

:
is avoided by using UNICORE, which enables

even
::::::::
provisions

:::::
each

::::::::
workflow

:::
task

::
to
:::::
have

:
a
:::::::
separate

:::::::
resource

::::::::::
requirement

:::::::::::
specification

:::
and

::::
also

::::::
enables

:
different computing

platforms
::::::::
(SLURM,

:::::
PBS,

::::
etc.) to be combined into a single workflow.

Our workflow approach minimises the I/O consumption by using UNICORE’s internal workflow storage management ser-20

vices, which provision data (in the scope of a single infrastructure) to the next task without creating any explicit copy of the

data set. Yet, UNICORE is flexible enough to support also distributed scenarios, by automatically transferring in a secure way

data across geographically distributed workflow tasks – as described previously, when we were using resources both at JSC in

Germany and at CSC in Finland. The glacio-coupling use case intensively uses UNICORE’s managed workflow storage that

organizes
::::::::
organises the individual workflow instances and their output data. In a resource-conservative environment, where the25

secondary storage, though not costly, is limited and regulated on the basis of site-constrained user quotas, the workflow-wide

storage services proved to be adequate while supporting the complex data management requirements.

Usage of shared variables spanning all workflow tasks is essential to the glacio-coupling workflow implementation. In

the UNICORE-based approach, the prerun job encapsulates the creation of shared variables for managing a workflow-wide

structure useful for arranging the input and output data in a single location. This is realised through a single job that runs on30

the cluster’s login node and in a batch system-agnostic manner
::::
with

:::
low

::::::::
processor

::::
and

:::::::
memory

:::::::
footprint.

19



5.6 Extendable Workflow Structure

In practice, enhancements or addition of new scientific methods to an existing workflow are inevitable. In the UNICORE-

based workflow implementation, in contrast, the editing and validation of the individual workflow tasks or the whole structure

can easily be performed. This process happens before the whole workflow is submitted for execution on HPC resources.

Furthermore, if there are any enhancements to be performed after the workflow request is submitted, the running workflow5

instance can even be put on hold for intermittent script updates and restarted later.

The glacio-coupling model uses Elmer/Ice and HiDEM to analyse the complete scenario in the form of one structured recipe.

Our approach adds flexibility through the fact that the used models are interchangeable. This means that if there are other

glaciological models than Elmer/Ice or HiDEM to be used, they can easily be integrated into the existing workflow structure.

Therefore, other ice sheet modelling communities can benefit from the implemented glacio-coupling workflow template and10

couple their models with much less technical effort. Similarly, the workflow can be extended with new script tasks or control

constructs (conditional or iterative composites) from any part of the workflow structure, according to the scenario requirements.

For instance, let us assume that we want to introduce some additional tasks, e.g. on a different HPC resource than the one

already implied here.

5.7 Resource Management Agnostic Access15

UNICORE-based job submission does not require a hard-coded approach, as it provides users with a seamless interface for

varying resource management systems (e.g. SLURM, LSF etc.). The underlying server-side UNICORE services automatically

take care of the job submission commands’ translation to the target batch system on behalf of the user. However, while this

middleware abstraction offers user-friendliness, it also means that, due to the abstraction, some batch system-specific low-level

technical features that might be useful for the application are truncated. This is because the middleware layer hides them for20

the sake of a unified, less complex and consistent user experience. In case any batch system-specific features are necessary,

workflow tasks could still be partially re-programmed to use custom features. In our case study, we needed only standard job

submission features, so no custom batch system-specific functions were required.

5.8 Reproducibility and Re-use

As in every field of science, it is necessary that other scientists (but also the original scientist) are able to reproduce and25

validate the glaciological results we obtained. It is however not trivial to ensure this in particular if the resource environment

has changed, e.g. when using a different or updated HPC cluster or batch system.

In the UNICORE-based implementation (where the batch system translation is automated as described in Section 5.7 and

hard-coded, system-dependent paths can be easily avoided), this scenario is much simplified for the end users, as for them

just the UNICORE workflow needs to be exported into a re-usable workflow (using an XML format). The exported version30

can easily be imported by any other UNICORE system. The only requirement is that the imported workflow tasks’ resource

requirements and the shared workflow variables have to be re-aligned to the new environment (that might, e.g., have a lower

20



number of CPU cores). If the cluster environment stays the same, but only the user changes, there is not even any need to

re-configure target resource requirements, but only shared workflow variables concerning the storage of user-specific data, e.g.

the location of the datasets to be used as input needs to be adjusted. In addition to reproducing experiments, the high-level

UNICORE workflows can also easily be extended (cf. Section 5.6) by other scientists from the glaciology community to adapt

them to their needs.5

6 Related Work

There is a wide variety of work and research on scientific workflows that couple different computing-intensive applications

in many disciplines. However, new research fields often pop up, recently e.g. data-intensive applications such as machine

learning, data mining, or statistical analysis. As a consequence, the technologies are often evolved to fit the needs of specific

user communities or hardware resources, which makes them too distinct to share across systems or a broad set of user10

communities (Ferreira da Silva et al., 2017).

One known example is Taverna (Wolstencroft et al., 2013), which in principle is a general WMS, but is significantly driven

by bio-informatics communities with the need for -driven “-omics” analyses (proteomics, transcriptomics, etc.) and thus lacks

distinct support of cutting-edge systems such as those used in our case study. At the same time one can observe that systems

quickly evolve with an ever new set of features that need to be adopted to ensure good performance of the applications, thus15

motivating the use of the that is specifically designed for HPC environments and constantly maintained and tuned to new HPC

system designs.

Having a closer look in the Earth science domain, another field of related work are scientific gateways such as the Southern

California Earthquake Center (SCEC) Earthworks portal that inherently adopts the system Pegasus (Deelman et al., 2015) and

DAGMan (Frey, 2003) in order to run on systems provided by the US infrastructure Extreme Science and Engineering Discovery20

Environment (XSEDE). Pegasus itself is just one component on top of DAGMan that in turn is based on the HTCondor

middleware for , which in our review did not meet the full capabilities required for in general and the large supercomputers

used in our study in particular.

Given the nature of the scientific gateway of the Earthworks portal and its focus on specifically only supporting earthquake

science applications, it is not possible to re-use the system for our research in glaciological models and the above-described25

coupling approaches using European HPC systems.

Reviewing related work further leads to consideration of older systems such as VisTrails (Callahan et al., 2006). Work

has been done there in the past to work with emerging systems, but maintenance is typically lacking today. There are also

adaptations of VisTrails to specific environments such as the NASA Earth Exchange (NEX) collaboration platform, as described

by Zhang et al. (2013).30

To the best of our knowledge, there is no general that is both mostly used with distinct workflow features (as outlined above)

in the Earth science domain, and is also applicable to cutting-edge HPC systems, as required in our study to perform the

efficient calculations.

21



6 Conclusions

Scientific workflows automate and enable complex scientific computational scenarios, which include data-intensive scenarios,

parametric executions, and interactive simulations. In this article, a glacier ice flow and calving model have been combined

into a single high-level scientific workflow. The ice flow is solved using Elmer/Ice, a glaciological extension to the Finite

Element Model (FEM) code Elmer, whereas calving was simulated by the discrete element code Helsinki Discrete Element5

Model (HiDEM).

We created a workflow implementation based on the state-of-the-art UNICORE middleware suite. The workflow can easily

be composed on a high and abstract level through the UNICORE Rich Client (URC)’s visual workflow editor. The workflow

developed this way can be submitted in a fire-and-forget pattern
:::::::::::::
asynchronously to HPC clusters, while real-time monitoring

is also possible. Such a versatile GUI-type environment that allows for automated error reporting and handling clearly gives10

an operational advantage. It helps to reduce time needed to debug setups prior to production and helps to deal more effectively

with unexpected problems during the production phase. For this case study, the production deployment of UNICORE instances

on CSC’s clusters Taito and Sisu has been used.

We evaluated our workflow implementation from different points of view, such as streamlining coupling-related I/O, improv-

ing CPU utilisation, workflow extensions, usability, and portability in order to foster reproducibility. Unnecessary file copying15

was removed, thus speeding up I/O and as such the whole workflow. The abstracted workflow eased to allocate only as many

CPU cores as needed for each step, thus avoiding idle cores and making them available for other jobs. The UNICORE-based

workflow implementation can be exported to an abstract machine-readable format, so that other users interested in reproducing

results can easily re-run the simulation without any change on a different platform and still obtain the same outputs generated

by our experiment, or they can re-use the workflow to adapt and apply it to new datasets. Furthermore, this UNICORE-based20

workflow can be easily changed by simply updating the existing tasks, given they are properly configured with respect to the

needed target resources. The workflow can also be easily extended due to the inherent high-level of abstraction.

While we demonstrated the workflow management system approach based on the glacier modelling case study, we believe

that the requirements that we derived from our use case are in fact applicable to many other Earth Science modelling applica-

tions, and even to further scientific disciplines that involve distributed HPC resources. Hence, our UNICORE-based approach25

appears promising also for other e-Science cases. The high-level workflow approach allows to focus on critical workflow-

related aspects such as optimised coupling-related I/O, improved CPU utilisation, and reproducibility.

With regard to future work, it would be possible to create a portal that provides even simpler access to our glaciology

workflow. This might include a web-based interface where a scientist simply has to upload her credentials for using an HPC

cluster, upload or point to the dataset to be used, configure some simulation-specific parameters, and finally press a button to30

start the workflow on one or multiple HPC clusters.

As the UNICORE workflow management system is independent from any scientific domain, we encourage other disci-

plines to transform and automate their e-Science steps into automated workflows. We have successfully demonstrated this

22



already for applications in remote sensing (Memon et al., 2018) and for interpretation of analytical ultracentrifugation experi-

ments (Memon et al., 2013a).

Code availability. Elmer and Elmer/Ice sources are freely available at https://github.com/ElmerCSC/elmerfem. The initial coupling (shell)

scripts can be obtained by directly contacting the author. HiDEM sources can be openly accessed via https://doi.org/10.5281/zenodo.1252379.

All the UNICORE packages are available at http://unicore.eu. The UNICORE-based glacier model coupling workflow that can be used as5

template and associated Bash helper scripts are available via http://doi.org/10.23728/b2share.f10fd88bcce240fb9c8c4149c130a0d5.

To access and run the workflow, the UNICORE sites and the workflow services, and the application packages and the coupling scripts

have to be installed. The intended users need to have appropriate and valid X.509 credentials, because UNICORE Rich Client (URC) requires

them to present the credentials while accessing the workflow services.

Author contributions. SM has developed the overall workflow design, prototyping, development and realisation, which also includes the10

workflow deployment and administration. He has also streamlined the glacier modelling use case scripts and application deployment on

CSC clusters. DV contributed the scientific problem that motivated the construction of this workflow. She has also developed the coupling

script, and provided significant contributions during the workflow development, testing and deployment phases. TZ is heavily involved in the

Elmer/Ice project and provided his support in the integration and deployment of Elmer/Ice. JÅ is the main author of HiDEM. HN provided

input on workflow foundations, conclusions, and also worked on streamlining the manuscript. In addition, he was in charge of the application15

to NeIC Dellingr for CPU time on CSC clusters. MR has provided related work in highlighting scientific workflows and Earth science

modelling. MB has contributed to the system architecture from the software engineering perspective.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This work was supported by NordForsk as part of the Nordic Center of Excellence (NCoE) eSTICC (eScience Tools for

Investigating Climate Change at High Northern Latitudes) and the NCoE SVALI (Stability and Variation of Arctic Land Ice). The authors20

wish to acknowledge CSC – IT Center for Science, Finland, for computational resources that were granted via the Nordic e-Infrastructure

Collaboration (NeIC) Dellingr project. The authors are grateful to Jaakko Leinonen (CSC – IT Center for Scinece) for his support and patience

in making the UNICORE services available on CSC’s computing resources and to Joe Todd (University of St. Andrews) for publishing

HiDEM on GitHub.

23

https://github.com/ElmerCSC/elmerfem
https://doi.org/10.5281/zenodo.1252379
http://unicore.eu
http://doi.org/10.23728/b2share.f10fd88bcce240fb9c8c4149c130a0d5


References

Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O’Neel, S., Bartholomaus, T. C., Liu, Y., Riikilä, T. I., Zwinger, T., Ti-

monen, J., and Moore, J. C.: Termini of calving glaciers as self-organized critical systems, Nature Geoscience, 7, 874–878,

https://doi.org/10.1038/ngeo2290, 2014.

Åström, J., Riikilä, T., Tallinen, T., Zwinger, T., Benn, D., Moore, J., and Timonen, J.: A particle based simulation model for glacier dynamics,5

The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, 2013.

Barker, A. and van Hemert, J.: Scientific Workflow: A Survey and Research Directions, in: Parallel Processing and Applied Mathematics.

PPAM 2007, Lecture Notes in Computer Science, Springer, https://doi.org/10.1007/978-3-540-68111-3_78, 2008.

Bassis, J. and Jacobs, S.: Diverse calving patterns linked to glacier geometry, Nature Geoscience, 6, 833–836,

https://doi.org/10.1038/ngeo1887, 2013.10

Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., and Vo, H.: Managing the Evolution of Dataflows with VisTrails, in: Proceedings

of the 22nd International Conference on Data Engineering Workshops, p. 71, IEEE, 2006.

Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, 2010.

Dagum, L. and Menon, R.: OpenMP: an industry standard API for shared-memory programming, IEEE computational science and engineer-

ing, 5, 46–55, https://doi.org/10.1109/99.660313, 1998.15

Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P. J., Mayani, R., Chen, W., Ferreira da Silva, R., Livny, M., and

Wenger, K.: Pegasus: a Workflow Management System for Science Automation, Future Generation Computer Systems, 46, 17–35,

https://doi.org/10.1016/j.future.2014.10.008, 2015.

Demuth, B., Schuller, B., Holl, S., Daivandy, J., Giesler, A., Huber, V., and Sild, S.: The UNICORE Rich Client: Facilitat-

ing the Automated Execution of Scientific Workflows, 2013 IEEE 9th International Conference on e-Science, 0, 238–245,20

https://doi.org/10.1109/eScience.2010.42, 2010.

Eclipse Foundation: Eclipse Foundation: Rich Client Platform (RCP), https://wiki.eclipse.org/Rich_Client_Platform, [Online; accessed 23-

May-2018], 2013.

Ferreira da Silva, R., Filgueira, R., Pietri, I., Jiang, M., Sakellariou, R., and Deelman, E.: A Characterization of Workflow Management Sys-

tems for Extreme-Scale Applications, Future Generation Computer Systems, 75, 228–238, https://doi.org/10.1016/j.future.2017.02.026,25

2017.

Frey, J.: Condor DAGMan: Handling Inter-Job Dependencies, presentation slides, http://www.bo.infn.it/calcolo/condor/dagman/, [Online;

accessed 25-May-2018], 2003.

Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P.,

Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice30

sheet model, Geoscientific Model Development, 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013.

Geuzaine, C. and Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International

Journal for Numerical Methods in Engineering, 79, 1309–1331, https://doi.org/10.1002/nme.2579, 2009.

Greve, R. and Blatter, H.: Dynamics of ice sheets and glaciers, Advances in Geophysics and Environmental Mechanics and Mathematics,

Springer, Heidelberg, 2009.35

Kääb, A., Lefauconnier, B., and Melvold, K.: Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data, Annals of

Glaciology, 42, 7–13, https://doi.org/10.3189/172756405781812916, 2005.

24

https://doi.org/10.1038/ngeo2290
https://doi.org/10.5194/tc-7-1591-2013
https://doi.org/10.1007/978-3-540-68111-3_78
https://doi.org/10.1038/ngeo1887
https://doi.org/10.1109/99.660313
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1109/eScience.2010.42
https://wiki.eclipse.org/Rich_Client_Platform
https://doi.org/10.1016/j.future.2017.02.026
http://www.bo.infn.it/calcolo/condor/dagman/
https://doi.org/10.5194/gmd-6-1299-2013
https://doi.org/10.1002/nme.2579
https://doi.org/10.3189/172756405781812916


Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., and Inall, M.: Calving rates at tidewater glaciers vary strongly with ocean

temperature, Nature communications, 6, https://doi.org/10.1038/ncomms9566, 2015.

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E. A., Tao, J., and Zhao, Y.: Scientific Workflow Management

and the Kepler System, Concurr. Comput. : Pract. Exper., 18, 1039–1065, https://doi.org/10.1002/cpe.v18:10, 2006.

Memon, M. S., Memon, A. S., Riedel, M., Schuller, B., Mallmann, D., Tweddell, B., Streit, A., van den Berghe, S., Snelling, D., Li, V.,5

Marzolla, M., and Andreetto, P.: Enhanced Resource Management Capabilities using Standardized Job Management and Data Access

Interfaces within UNICORE Grids, in: International Conference on Parallel and Distributed Systems (ICPADS), 5-7 Dec. 2007, Hsinchu,

Taiwan., IEEE, https://doi.org/10.1109/ICPADS.2007.4447834, 2007.

Memon, S., Attig, N., Gorbet, G., Gunathilake, L., Riedel, M., Lippert, T., Marru, S., Grimshaw, A., Janetzko, F., Demeler, B., and Singh, R.:

Improvements of the UltraScan scientific gateway to enable computational jobs on large-scale and open-standards based cyberinfrastruc-10

tures, in: Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery, XSEDE

’13, pp. 39:1–39:7, ACM, New York, NY, USA, https://doi.org/10.1145/2484762.2484800, 2013a.

Memon, S., Holl, S., Schuller, B., Riedel, M., and Grimshaw, A.: Enhancing the Performance of Scientific Workflow Execution in e-

Science Environments by Harnessing the Standards Based Parameter Sweep Model, in: Proceedings of the Conference on Extreme

Science and Engineering Discovery Environment: Gateway to Discovery, XSEDE ’13, pp. 56:1–56:7, ACM, New York, NY, USA,15

https://doi.org/10.1145/2484762.2484820, 2013b.

Memon, S., Cavallaro, G., Hagemeier, B., Riedel, M., and Neukirchen, H.: Automated Analysis of remotely sensed images using the UNI-

CORE workflow management system, in: 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 23-27

2018, Valencia, Spain, IEEE, https://doi.org/10.1109/IGARSS.2018.8519364, 2018.

Message Passing Interface Forum: MPI: A Message-Passing Interface Standard. Version 3.0, 2012.20

Nuth, C., Schuler, T. V., Kohler, J., Altena, B., and Hagen, J. O.: Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic

elevation changes and mass-balance modelling, Journal of Glaciology, 58, 119–133, https://doi.org/10.3189/2012JoG11J036, 2012.

Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., Ferris, J., Glover, K., Goble, C., Goderis, A., Hull, D., Marvin, D., Li, P., Lord,

P., Pocock, M. R., Senger, M., Stevens, R., Wipat, A., and Wroe, C.: Taverna: lessons in creating a workflow environment for the life

sciences, Concurrency and Computation: Practice and Experience, 18, 1067–1100, https://doi.org/10.1002/cpe.993, 2006.25

Råback, P., Malinen, M., Ruokolainen, J.and Pursula, A., and Zwinger, T.: Elmer Models Manual, CSC – IT Center for Science Ltd., Espoo,

http://www.nic.funet.fi/index/elmer/doc/ElmerModelsManual.pdf, [Online; accessed 20-Jun-2018], 2018.

Råback, P.: ElmerGrid Manual, CSC – IT Center for Science, http://nic.funet.fi/index/elmer/doc/ElmerGridManual.pdf, [Online; accessed

20-Jun-2018], 2015.

Schellenberger, T., Dunse, T., Kääb, A., Kohler, J., and Reijmer, C. H.: Surface speed and frontal ablation of Kronebreen and Kongsbreen,30

NW Svalbard, from SAR offset tracking, The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, 2015.

Streit, A., Bala, P., Beck-Ratzka, A., Benedyczak, K., Bergmann, S., Breu, R., Daivandy, J. M., Demuth, B., Eifer, A., Giesler, A., Hagemeier,

B., Holl, S., Huber, V., Lamla, N., Mallmann, D., Memon, A. S., Memon, M. S., Rambadt, M., Riedel, M., Romberg, M., Schuller, B.,

Schlauch, T., Schreiber, A., Soddemann, T., and Ziegler, W.: UNICORE 6 – Recent and Future Advancements, Annals of Telecommuni-

cations, 65, 757–762, https://doi.org/10.1007/s12243-010-0195-x, 2010.35

Vallot, D., Pettersson, R., Luckman, A., Benn, D. I., Zwinger, T., Van Pelt, W. J. J., Kohler, J., Schäfer, M., Claremar, B., and Hulton, N. R. J.:

Basal dynamics of Kronebreen, a fast-flowing tidewater glacier in Svalbard: non-local spatio-temporal response to water input, Journal of

Glaciology, 63, 1012–1024, https://doi.org/10.1017/jog.2017.69, 2017.

25

https://doi.org/10.1038/ncomms9566
https://doi.org/10.1002/cpe.v18:10
https://doi.org/10.1109/ICPADS.2007.4447834
https://doi.org/10.1145/2484762.2484800
https://doi.org/10.1145/2484762.2484820
https://doi.org/10.1109/IGARSS.2018.8519364
https://doi.org/10.3189/2012JoG11J036
https://doi.org/10.1002/cpe.993
http://www.nic.funet.fi/index/elmer/doc/ElmerModelsManual.pdf
http://nic.funet.fi/index/elmer/doc/ElmerGridManual.pdf
https://doi.org/10.5194/tc-9-2339-2015
https://doi.org/10.1007/s12243-010-0195-x
https://doi.org/10.1017/jog.2017.69


Vallot, D., Åström, J., Zwinger, T., Pettersson, R., Everett, A., Benn, D. I., Luckman, A., van Pelt, W. J. J., Nick, F., and Kohler, J.:

Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard, The Cryosphere, 12, 609–625,

https://doi.org/10.5194/tc-12-609-2018, https://www.the-cryosphere.net/12/609/2018/, 2018.

van Pelt, W. and Kohler, J.: Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard, Journal of

Glaciology, 61, 731–744, https://doi.org/10.3189/2015JoG14J223, 2015.5

Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., et al.:

The taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud, Nucleic Acids Res.,

pp. 557–561, https://doi.org/10.1093/nar/gkt328., 2013.

Zhang, J., Votava, P., Lee, T. J., Chu, O., Li, C., Liu, D., Liu, K., Xin, N., and Nemani, R.: Bridging VisTrails Scientific Work-

flow Management System to High Performance Computing, in: 2013 IEEE Ninth World Congress on Services, pp. 29–36,10

https://doi.org/10.1109/SERVICES.2013.64, 2013.

26

https://doi.org/10.5194/tc-12-609-2018
https://www.the-cryosphere.net/12/609/2018/
https://doi.org/10.3189/2015JoG14J223
https://doi.org/10.1093/nar/gkt328.
https://doi.org/10.1109/SERVICES.2013.64

	gmd-2018-158-author_response-version5.pdf (p.1-4)
	gmd-2018-158-supplement-version2.pdf (p.5-30)

