
1 
 

Similarities within a multi-model ensemble: functional data analysis 
framework 
Eva Holtanová1, Thomas Mendlik2, Jan Koláček3, Ivanka Horová3, Jiří Mikšovský1 
1Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague, 
180 00, Czech Republic 5 
2Wegener Center for Climate Studies, University of Graz, Brandhofgasse 5/1, Graz, 8010, Austria 

3Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech 
Republic 
 

 10 

Correspondence to: Eva Holtanová (Eva.Holtanova@mff.cuni.cz) 

Abstract. Despite the abundance of available global and regional climate model outputs, their use for evaluation of past and 

future climate changes is often complicated by substantial differences between individual simulations, and the resulting 

uncertainties. In this study, we present a methodology framework for the analysis of multi-model ensembles based on 

functional data analysis approach. A set of two metrics that generalize the concept of similarity based on the behaviour of 15 

entire simulated climatic time series, encompassing both past and future periods, is introduced. As far as our knowledge, our 

method is the first to quantitatively assess similarities between model simulations based on the temporal evolution of 

simulated values. To evaluate mutual distances of the time series we used two semimetrics based on Euclidean distances 

between the simulated trajectories and on differences in their first derivatives. Further, we introduce an innovative way of 

visualizing climate model similarities based on a network spatialization algorithm. Using the layout graphs the data are 20 

ordered on a 2-dimensional plane which enables an unambiguous interpretation of the results. The method is demonstrated 

using two illustrative cases of air temperature over the British Isles and precipitation in central Europe, simulated by an 

ensemble of EURO-CORDEX regional climate models and their driving global climate models over the 1971–2098 period. 

In addition to the sample results, interpretational aspects of the applied methodology and its possible extensions are also 

discussed.  25 

1 Introduction 

While numerical climate models serve as the cardinal tool of contemporary climatology, their outputs are typically burdened 

by distinct uncertainties, manifesting through substantial differences between individual simulations. Here, we address the 

issue of comparing various climate simulations and quantifying their differences by introducing a methodology for analysis 

of multi-model ensembles and the relationship between nested regional climate model simulation and its driving global 30 

climate model run. We propose use of a metric generalizing the concept of similarity, based on the information contained in 

the entire simulated climate series, extending from historical to future periods. The evaluation framework is based on 

functional data analysis (further denoted as FDA; Ramsay and Silverman, 2005, 2007; Ferraty and Vieu, 2006).  

The analysis of uncertainties in climate model outputs is a key research topic, especially due to the use of model simulations 

as inputs for studies of possible future climate changes impacts. The results of the respective analyses serve as the basis for 35 

important adaptation and mitigation decisions, with a critical role belonging to the information on reliability of the 

projections and the structure of the relevant uncertainties. Climate model outputs are subject to uncertainties coming from 

various sources, including imperfect initial and boundary conditions, parameterizations of small scale processes or necessary 

choices and simplifications in the model structure (numerical schemes, spatial resolution, etc.). For detailed discussion see 

e.g. Tebaldi and Knutti (2007). When considering regional climate models (RCMs), it is necessary to take into account some 40 
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additional factors, mainly connected to the limited integration domain (Laprise et al., 2008) or possible inconsistencies of 

parameterization schemes between driving and nested models (Denis et al., 2002). The estimate of the uncertainties in 

climate model outputs must accompany any future climate change scenario. 

One of the most frequently used ways of uncertainty assessment is the analysis of multi-model ensemble (MME) spread (e.g. 

Belda et al., 2017; Holtanová et al., 2010; Prein et al., 2011). The main aim of MMEs is to sample the uncertainty stemming 5 

from choices in model structure, parameterization schemes and, in case of RCMs, also boundary conditions. Estimating the 

uncertainty range based on the MME spread is not a straightforward task, as currently available MMEs suffer from various 

deficiencies. One obstacle is raised by the deficiencies in the statistical experimental design: Models are developed 

voluntarily from institutions worldwide. This problem is further amplified when designing an ensemble of RCMs. An RCM 

is driven by a global climate model (GCM) which has a substantial effect on the nested simulation (Déqué et al., 2007, 2012, 10 

Heinrich et al., 2014). It is not computationally feasible to run all combinations of RCMs with every GCM. Therefore, for a 

proper uncertainty assessment it is crucial to investigate the interactions between driving GCMs and nested RCMs and their 

respective influence on the total MME spread (e.g. Déqué et al., 2012, Holtanová et al., 2014; Heinrich et al., 2014; 

Holtanová and Mikšovský, 2016). 

In addition, climate models (even across developing institutions) are known to share certain components, leading to inter-15 

model similarities and dependencies. This makes it difficult to justify the independence assumption when quantifying the 

uncertainty of MMEs with standard statistical models. Recently, innovative methods have been developed to identify groups 

of similar climate models (e.g. Knutti et al., 2013) and account for the similarities (Annan and Hargreaves, 2017). However, 

these methods quantify model similarity based on either their behavior in approximating the historical climate or purely on 

their projected climate change signals. Some studies included evaluation of the relationship between the driving GCM and 20 

nested RCM based on more advanced climatic characteristics (e.g. Rajczak and Schär, 2017; Crhová and Holtanová, 2018), 

but their approach to the issue was rather qualitative. As far as our knowledge, our method is the first to quantitatively assess 

similarities between model simulations based on the temporal evolution of simulated values.  

To illustrate a possible application of the proposed methodology we analyze (dis)similarities between members of the 

EURO-CORDEX multi-model ensemble (Jacob et al., 2013) and their driving GCMs. The inter-model distances between the 25 

trajectories of the temporal development of running 30-year mean changes in seasonal mean air temperature and 

precipitation are evaluated. We first assessed the similarities between ensemble members for time series averaged over eight 

large European regions defined by Christensen and Christensen (2007) that have been widely used for climate model 

assessments (e.g. Rajczak and Schär, 2017; Holtanová and Mikšovský, 2016; Mendlik and Gobiet, 2016). Here we show the 

results for only two chosen cases, namely the winter mean air temperature over the British Isles and mean summer 30 

precipitation over Eastern Europe. These two cases were chosen to illustrate two distinct cases of GCM-RCM interaction.  

The paper is structured as follows. In Sect. 2 the EURO-CORDEX regional climate models and their driving global climate 

models are briefly introduced. In Sect. 3 the methodology is described, including the basic information about the FDA 

approach. Sect. 4 explains the application of methodology framework and Sect. 5 is devoted to description of the results of 

the case study. Sect. 6 summarizes key features of the proposed framework and offers possible further applications. 35 

2 Data 

The methodology framework is presented on the sample of RCM simulations from the EURO-CORDEX initiative (Jacob et 

al., 2013; http://www.euro-cordex.net/) together with their driving GCMs. We use 13 RCM simulations driven by 9 different 

GCMs. All RCM simulations have 0.44° horizontal resolution. The RCM simulations were conducted for the period 1951–

2100, with some of them starting in 1971 or ending in 2098. We therefore concentrate on the period 1971–2098. After the 40 

year 2006 model simulations incorporated the representative concentration pathway RCP8.5 (van Vuuren et al., 2011). The 
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GCM simulations were performed under the CMIP5 protocol (Taylor et al., 2012). The list of models is given in Table 1 and 

the GCM-RCM simulation matrix in Table 2. To identify individual simulations, we use the acronyms consisting of RCM 

and GCM abbreviation (as defined in Table 1) connected with underscore character. In case of driving GCM simulation we 

use “dGCM” instead of the RCM identification. 

We concentrate on running 30-year mean changes in seasonal mean air temperature and precipitation (changes of running 5 

30-year mean averages throughout the period 1971–2098 in comparison to the reference period 1971–2000). For the purpose 

of introducing the methodology, we only present two illustrative cases: winter mean air temperature changes over the British 

Isles (denoted as DJF tas over BI, data shown in Fig. 1a) and summer precipitation changes over Eastern Europe (JJA pr 

over EA, Fig. 2a).  

3 Methodology 10 

3.1 Functional data analysis approach 

We analyzed (dis)similarities between the temporal development of simulated 30-year running mean air temperature and 

precipitation changes. The original dataset consisted of simulated values yik at central years of the 30-year periods tk, k = 

1,...,K, ranging from 1986 to 2083 (hence K = 98) for each model, i = 1,...,n. These sequences of simulations were converted 

to functional form using the B-spline basis system Bj(t), j = 1,...,N. Each sequence was approximated by a spline function 15 

xi(t) in the form 
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The B-splines Bj(t) were polynomials of order four with twenty equally spaced knots, cij were real coefficients in the B-spline 

basis. Such use of order four B-splines implied N = 22 basis functions. Spline functions xi(t) were constructed in order to 

minimize the penalized squared error 20 
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with respect to the coefficients cij. The smoothing parameter λ was selected via cross-validation method. The cross-validation 

was based on the minimization of the following expression, 
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where ��(�� , �, −')denotes the leave-one-out estimator of xi(t) omitting the k-th observation (tk,yik). The actual calculation is 25 

based on minimization of the error of xi(t,λ,−k) using a smoothing operator – see, e.g., Craven and Wahba (1978) for details. 

The representative examples of the functional data from panels (a) of Fig. 1 and 2 are depicted in panels (b) of the respective 

figures.  

One of the aims of this study was to explore the first derivative of the response function. Thus, the first derivative curves 

��
((�) were expressed in a similar manner, using the same B-spline basis with coefficients c’

ij, 30 
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All subsequent analyses were conducted separately on both xi(t) and x’
i(t). 

For the representation of functional data in statistical software R (R Core Team, 2013), we used the package fda (Ramsay et 

al., 2017). It provides several basis options for functional data including B-splines presented above and further functional 

data processing techniques. 35 

Since the time series analyzed in the present study are relatively smooth, a metric and a semimetric were constructed to 

represent the distance separation between two curves (note that the smaller the cross-distance, the more similar the two 

curves are). Such approach seems to be appropriate, see e.g. Pokora et al.(2017). Let f1 and f2 be two curves, specifically two 
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cubic smoothing splines in our case. A well-known and widely-used distance between given curves f1 and f2 is the L2-metric, 

d0(f1,f2). It is a nonnegative number, whose square is defined as the integral 

")
�(*�, *�) = � +*�(�) − *�(�),�"� #

 $ .          (5) 

Let us call this common metric as d0-distance (Euclidean distance). 

Similarly, a common way to build a semimetric between two curves is to consider the L2-distance between the first 5 

derivatives of the curves. More precisely, given two curves f1 and f2, we define the d1-distance d1(f1,f2) to be a nonnegative 

number, whose square is given by the integral 

"�
�(*�, *�) = � +*�((�) − *�((�),�"� #

 $ .         (6) 

Fig. 3 illustrates examples of two parts of time series that are evaluated as quite different with large distance ") = 112.8 but 

similar with relatively small distance "� = 1.56. The main point is that the values of the semimetrics are inferred solely based 10 

on the chosen feature (e.g. Euclidean distance for ")) and are independent of other time series characteristics. In Fig. 3 it is 

clearly seen that unlike "), the "� semimetric does not take into account the mutual bias of the two time series. It only 

focuses on the character of their temporal development. The  

analysis of sensitivity to amount of smoothing was carried out. The mutual distances of the curves do not strongly depend on 

the smoothing parameter, as shown in Fig. 4 and 5. 15 

3.2 Visualization of the similarities 

For visualization of mutual distances based on FDA semimetrics we use layout graphs created using the ForceAtlas2 

algorithm (Jacomy et al., 2014) within the Gephi software (https://gephi.org/). In these graphs individual members of the 

multi-model ensemble are visualized as nodes (each model simulation corresponding to a single node). The ForceAtlas2 

algorithm creates a force directed layout of the underlying data. The network of the nodes is created by simulating a physical 20 

system and its movement. The nodes are repulsed from each other in analogy to charged particles. At the same time the 

edges between the nodes attract them like springs (Jacomy et al., 2014). The iterative procedure of finding the nodes 

positions results in an equilibrium state which corresponds to the final network. 

The interpretation of the layout graphs is straightforward. The closer the nodes are to each other, the lower the mutual 

distance of corresponding simulations is according to the semimetric of interest. The larger the node the more close 25 

neighbours, meaning more similar simulations (with similarity defined by the values of selected semimetric). The edges 

between nearest 10 % of neighbours are made visible. The colours indicate the driving GCM.  

4 Application of the methodology 

Figs. 1 and 2 illustrate the data used for the presented analysis. The lines are coloured according to the driving GCM and the 

type of line corresponds to RCM. The purpose of the presented methodology is to describe the structure of the multi-model 30 

ensemble based on mutual relationships between simulations over the whole investigated time period and evaluate whether 

the temporal development of the simulated changes is influenced more strongly by the driving GCM or the nested RCM. The 

first step is the calculation of mutual distances between the curves corresponding to individual ensemble members using the 

FDA semimetrics ") and "� defined in Sect. 3. In order to compare two semimetrics with substantially different range, we 

transform the values to the interval [0,1] in both cases. To facilitate viewing, we display the results in a pixel plot, see Figs. 6 35 

and 7, with a temperature-colour code (or heatmap, with redder colour for larger similarity, brighter colour for smaller 

similarity). 

Figs. 6 and 7 present the values of ") (panels (a)) and "� (panels (b)) distances for the two chosen datasets presented in Figs. 

1 and 2. Firstly, there are clear differences between the evaluation based on ") and "� semimetrics, because each of them is 

based on different aspects of evaluated curves. It is well apparent from the comparison of maximum distances. In case of JJA 40 
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pr over EA (Fig. 7), the ") distance is the largest for driving HadGEM GCM (dGCM_HadGEM) and ALADIN RCM driven 

by CNRMCM (ALAD_CNRMCM). These two simulations effectively represent lower and upper bounds of the multi-model 

ensemble (Fig. 2). On the other hand, according to "� the most dissimilar time series are GCM simulations by IPSLCM and 

CNRMCM (Fig. 7b), because their temporal development has largely an opposite sign, even though they do lie “inside” the 

multi-model ensemble (Fig. 2). 5 

The second step of the proposed methodology is to quantitatively evaluate and visualize the similarity between simulations 

and their clustering according to their mutual distances. This would traditionally be done by means of hierarchical cluster 

analysis which arranges the members of the multi-model ensemble into a dendrogram, as shown for example in Fig. 8 for 

DJF tas over BI based on "�  (R function heatmap.2 from package gplots was used for the dendrogram creation, see 

Supplement). However, the interpretation of the dendrograms might not be straightforward and relatively similar simulations 10 

might be assigned to quite remote clusters. In our example (Fig. 8) this is the case for the simulations of HadGEM and 

CNRM GCMs which are assigned to two remote clusters, even though their mutual "� distances are among the lowest from 

the whole ensemble (the same applies to RCM simulations driven by these two GCMs, Fig. 6b). Similar result can be seen in 

case of CNRM and MIROC5 GCMs. To overcome this hurdle we propose an innovative method of visualization of the 

similarities based on evaluated semimetrics distances, the layout graphs (see Sect. 3.2). Figs. 9 and 10 show the layout 15 

graphs for the two investigated cases. The main advantage of the layout graphs in comparison to classical dendrograms is 

that the structure of the ensemble is shown in 2D and therefore the mutual distances are seen easily. The above noted 

relationships between the HadGEM, MIROC5 and CNRM clusters are easily interpreted using the layout graph (Fig. 9b). 

5 Case study results 

The methodology described in Sect. 3 was applied to the modelled temperature and precipitation changes from the EURO-20 

CORDEX multi-model ensemble and the respective driving GCMs for eight large European domains (Christensen and 

Christensen, 2007). Here we only show two cases to illustrate the ability of the proposed method to assess the relationships 

within the members of the multi-model ensemble. These two sample cases, DJF tas over BI and JJA pr over EA, were 

chosen because they differ in terms of the results obtained by application of the proposed methodology and the results are 

quite illustrative.  25 

As we analyze simulations incorporating RCP8.5, which assumes a rise in greenhouse gas concentrations during the whole 

21st century, it is not surprising that all models give a rise in DJF near surface air temperature over the BI region throughout 

this period (Fig. 1). The RCMs tend to give generally lower temperature change than their driving GCMs, except for RCMs 

driven by CNRMCM, MPIESM and MIROC5. Regarding the simulated changes in summer mean precipitation over the EA 

region (Fig. 2), the model simulations disagree on the sign of precipitation change and the multi-model ensemble has quite a 30 

large variance. Some RCMs project larger changes than their driving GCMs (e.g. ALADIN driven by CNRMCM), some 

give smaller changes (RCA4 driven by IPSLCM). 

Based on "), the distances calculated for JJA pr over EA are mostly quite low, lower than 0.25 with a couple of outliers, 

namely ALAD_CNRMCM and driving simulations of HadGEM and CSIRO (Fig. 7a). The ") distances for DJF tas over BI 

are more evenly distributed (Fig. 6a), because there are not so distinct outliers. The "� distances are higher than ") values in 35 

both regions, and generally higher for JJA pr over EA than for the other case (compare panels (b) in Figs. 6 and 7). That 

means that there are less members of the ensemble behaving in a similar manner for the EA case than for the BI case. 

Regarding the influence of the driving GCM on the nested RCM simulation, based on both ") and "�,  for DJF tas over BI 

the simulations driven by the same GCM are more clustered together than in case of JJA pr over EA, which is visible by 

comparing Figs. 6 and 7 and confirmed in Figs. 9 and 10. The clustering is stronger for "� results. An evaluation of Fig. 6b 40 

reveals that for DJF tas over BI the "� distance of the RCM simulation and its driving GCM simulation is close to zero in 
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most cases, as well as the mutual distances of RCA4 simulations driven by the same GCM (e.g. MPIESM, NorESM, 

CNRMCM). In case of JJA pr over EA (Fig. 7b) the "� distances tend to be higher and rather independent of the driving 

GCM. For example, the distance between the simulations of RCA4 and REMO both driven by MPIESM is larger than the 

distances between RCA4 simulations driven by different GCMs. What we “dig in” for in Figs. 6 and 7 is clearly seen on the 

first sight in Figs. 9 and 10, respectively. The configuration of the layout graphs confirms a strong clustering according to the 5 

driving GCM in the case of DJF tas over BI and higher degree of interaction between GCM and RCM in case of JJA pr over 

EA (compare the corresponding panels in Figs. 9 and 10). 

It is clearly seen that when large-scale phenomena are responsible for output, as in case of temperature changes over BI 

region, RCMs tend to be very close to driving GCM, and different GCMs are apart from each other (Figs. 1 and 9). On the 

contrary, when smaller scale processes are more in play, such as in case of JJA precipitation changes over EA, the results are 10 

more influenced by RCMs (Figs. 2 and 10). This does not automatically imply any real added value in the sense of more 

realistic simulation. Rather, it points to differences in implementation of the local processes in different RCMs. In our case, 

different parameterization schemes employed to simulate convection, microphysical processes in clouds and surface 

processes including soil moisture are possible candidates. 

Regarding the three RCM simulations driven by CNRMCM GCM (RCMs denoted here as ALAD, CUNI and RCA4), it has 15 

been recently revealed that the boundary conditions for the historical period have been flawed with an inconsistency 

(personal communication with members of the EURO-CORDEX community). Specifically, 2D and 3D fields provided to 

the RCMs come from different members of the ensemble of CNRMCM simulations with perturbed initial conditions and 

therefore they are mutually out of phase. However, our results do not show any anomalous behaviour of these simulations. 

When we calculated the distances for the curves for first twenty 30-year periods (i.e., those with the central year before 2005, 20 

which is the end of the historical period) and for the last 20-year periods, we found out that the distance of RCM simulations 

driven by CNRMCM and their driving GCM is smaller for the future period than for the reference one (not shown). That is 

probably partly caused by above mentioned discrepancies in the boundary conditions, but the effect is rather small. 

6 Discussion and conclusions 

We have presented an innovative methodology for assessment of the structure of the multi-model ensemble and mutual 25 

relationships between its members. A case study evaluating the similarities within the EURO-CORDEX multi-model 

ensemble extended by the driving CMIP5 GCM simulations has been performed. Attention has been paid especially to the 

relationship between the driving GCM and nested RCM simulations in terms of temporal development of simulated 

temperature and precipitation changes over two European regions. Contrary to previous studies, the assessment takes into 

account not only simulated values for a certain time period (reference or future), but the character of the simulated temporal 30 

development of studied variables as a whole. This is done by generalization to functional similarity of the time series. To 

evaluate mutual distances of the time series we used two semimetrics based on the Euclidean distances between the 

simulated trajectories (")) and on differences in their first derivatives ("�). The similarity between an RCM and its driving 

GCM points to a strong forcing and rather low influence of RCM on the simulations of temporal development of the variable 

of interest. The "� distances are bias invariant while similarity evaluated by ") is largely influenced by common biases of 35 

model simulations. A small "� mutual distance between two simulations does not automatically imply similarity in climate 

change signal for a selected time period, it rather means that the shape of the temporal development is similar.  

In current study we have chosen to concentrate on temporal behaviour of the time series averaged over the large European 

regions. We have decided to omit the spatial information as the comparison of spatial fields from RCMs and GCMs is 

complicated, mainly by large differences in spatial resolution and also by differences in effective spatial resolution (which 40 

depends on numerical methods incorporated in the models). We have not figured out how the spatial information could be 
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incorporated in our current setting of the methodology. Spatial fields from GCMs are much smoother than RCMs, and 

therefore if we convert the fields into functions, the results will be very different in nature. By smoothing (regridding) the 

RCM fields to GCM-like coarse resolution would result in throwing away a lot of information. 

In general, the ") similarity indicates agreement in bias and climate change signal, which is influenced by various feedbacks 

in the climate system and which might be differently pronounced in different models. The "� similarity points to similar rate 5 

(speed and sign) of climate change in time which is partly modulated by internal variability of the models which again is 

governed by feedbacks and nonlinearities in climate system.  

Furthermore, we presented a new way to visualize climate model similarities, based on a network spatialization algorithm. 

Instead of arranging the data in a one-dimensional incremental way (like in case of hierarchical cluster analysis resulting in 

dendrograms), the data are ordered on a 2-dimensional plane using the layout graphs, which enables an unambiguous 10 

interpretation of the results. The interpretation is only made harder by the fact that the graph can be rotated subjectively, the 

algorithm (see Sect. 3.2) only places each data node relatively to all other nodes, but no absolute coordinate system is 

defined. Even so, it is a very illustrative way of visualization of the mutual distances between the members of a multi-model 

ensemble. Unlike similar approach of multidimensional scaling used in Sanderson et al. (2015), which also results in 2-

dimensional visualization of inter-model distances, the layout graphs do not require defining any data node as a central 15 

(reference) point of the whole ensemble.      

Previously, in PRUDENCE and ENSEMBLES projects (predecessors of Euro-CORDEX), the studies of uncertainty and 

GCM-RCM interactions (mainly Déqué et al., 2007 and Déqué et al, 2012) relied on the analysis of variance of the multi-

model ensemble. Their results were quite straightforward and clearly interpretable, but suffered from additional uncertainty 

connected to the necessity to fill in values for missing GCM-RCM pairs using some statistical approach. The methodology 20 

proposed in present paper overcomes this issue and uses only the outputs of dynamical models that are available. Further, as 

already mentioned above, the FDA similarities evaluate the whole simulated time series and are not limited to a reference or 

future time period.      

The results of presented case study for two basic climatic variables over two European regions show that the structure of the 

multi-model ensemble and the GCM-RCM interactions can differ substantially in individual cases. Therefore, before the 25 

RCM outputs are used in any applied research (e.g. studies on impacts of projected future climate changes) a thorough 

choice of RCMs to be used is necessary. Present paper offers a convenient tool for such analysis. 

The methodology could be extended to include more climatic variables. Similarly, time series with different temporal 

aggregation (e.g. monthly or annual time series) could be used as input for the analysis. The results of multivariate 

evaluation of the similarities and relationships within the multi-model ensemble could be a basis for selection of 30 

representative models to be used in impact studies. Previously proposed procedures, such as in Mendlik and Gobiet (2016) or 

Herger et al. (2018), could be modified to use the FDA similarities introduced here.  

As explained in the Introduction, the spread of multi-model ensembles is considered as an estimate of structural model 

uncertainty. For analysis of the influence of internal variability on the overall uncertainty, simulations with perturbed initial 

conditions can be used. Unlike GCMs, for RCMs these are not generally available. In Supplement3 a suite of figures 35 

showing FDA similarities between 5 simulations of CNRM GCM with perturbed initial conditions is provided. The aim of 

these figures is to illustrate the range of uncertainty stemming from internal variability. We chose CNRM GCM to maximize 

the number of RCMs driven by this GCM and the number of mini-ensemble members. The figures suggest that for air 

temperature changes the spread of the CNRM mini-ensemble covers almost a half of the multi-model ensemble spread (Fig. 

S2.1). In case of precipitation, the portion of the spread is smaller (Fig. S2.2). The ") and "�distances between the members 40 

of CNRM mini-ensemble are shown in Fig. S2.3 – S2.6. To enable the comparison with the distances for the multi-model 

ensemble, their values before normalization are provided in Fig. S2.7-S2.10.  For air temperature, the maximum inter-model 

distances are almost twice as large as the inter-simulation distances within the CNRM mini-ensemble (compare Fig. S2.3, 
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S2.4 and S2.7, S2.8). In case of precipitation, the ")distances between the simulations with perturbed initial conditions are 

very small in comparison to inter-model distances (Fig. S2.5 and S2.9). However, for "�distances the difference is not so 

struggling (Fig. S2.6 and S2.10). The fact that the range of uncertainty connected to internal variability is relatively larger (in 

comparison to structural uncertainty) for air temperature than for precipitation probably points to larger overall structural 

uncertainty in case of precipitation than air temperature, i.e. the inter-model differences in simulation of processes connected 5 

to precipitation changes are larger than in case of air temperature changes. However, we have to keep in mind that presented 

results rely only on a limited number of simulations from one GCM. 

Presented methodology does not take model performance explicitly into account. However, the influence of model quality on 

similarity is implicitly included. Worse performing models will likely be further away from good models. Furthermore, 

common modelling deficiencies can lead to common similarities in the validation statistics, and the metric used can account 10 

for it. A dissimilarity between the driving GCM and the nested RCM simulations can point to a situation where the GCM 

does not simulate a certain physical process correctly while the RCM improves it. Moreover, the methodology can be easily 

modified to serve as a mean of model performance evaluation through performing the analysis for the reference period and 

including the observed time series. In that case, the results could be used for definition of model weights and calculation of 

weighted multi-model mean. For example, in Sanderson et al. (2017) the model weights are based on inter-model distance 15 

matrices with the distances defined by root mean square difference (RMSD) between the simulations. The FDA similarities 

between model simulations could be used instead of the RMSD. Similarly, the inter-model distances, if calculated for the 

whole CMIP5 GCM ensemble, could serve as a basis for the analysis of inter-model dependencies, as recently discussed for 

example in Annan and Hargreaves (2017). Finally, it can be mentioned that the presented methodology could be extended by 

using the functional principle component analysis (PCA). Nowadays, the functional PCA is a very popular and powerful 20 

exploratory technique. Its applications on real data indicate that it could further improve our results. 

 

Code and/or data availability. The analysis have been conducted within the R environment and using the Gephi software, 

which are both freely available. The R code is made available in the Supplement of this paper (contained in the Rcode.R 

together with npfda.R from Ferraty and Vieu (2006), available at https://www.math.univ-25 

toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html). The underlying data are available via ESGF infrastructure 

(https://www.earthsystemcog.org/projects/cog/). The time series of running 30-year mean temperature and precipitation 

changes used in the presented case study are available in the form of .RData files in the Supplement to this paper. The input 

files for Gephi software can be prepared using the Rcode.R and prepare_graphs.py.  
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Acronym Type Model ID Institute 

CCLM RCM CCLM4-8-17 
Climate Limited-area Modelling Community (CLM-

Community) 

REMO RCM REMO2009 
Helmholtz-Zentrum Geesthacht, Climate Service 

Center, Max Planck Institute for Meteorology 

RCA4 RCM RCA4 
Swedish Meteorological and Hydrological Institute, 

Rossby Centre 

ALAD RCM ALADIN53 Centre National de Recherches Meteorologiques 

CUNI RCM RegCM4 Charles University 

CanESM GCM CanESM2 Canadian Centre for Climate Modelling and Analysis 

CNRMCM GCM CNRM-CM5 

Centre National de Recherches Meteorologiques, 

Meteo-France; Centre Europeen de Recherches et de 

Formation Avancee en Calcul Scientifique 

CSIROx GCM 
CSIRO-

Mk3.6.0 

CSIRO; Queensland Climate Change Centre of 

Excellence 

GFDLES GCM GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory 

HadGEM GCM HadGEM2-ES Met Office Hadley Centre 

IPSLCM GCM 
IPSL-CM5A-

MR 
Institut Pierre Simon Laplace, Paris, France 

MIROC5 GCM MIROC5 

University of Tokyo; National Institute for 

Environmental Studies; Japan Agency for Marine-

Earth Science and Technology 

MPIESM GCM MPI-ESM-LR Max Planck Institute for Meteorology 

NorESM GCM NorESM1-ME Norwegian Climate Centre 
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Table 1. List of regional climate models and driving global climate models incorporated in the present study. The first column contains the 

acronyms used throughout the text. Type column indicates whether the model is regional (RCM) or global (GCM).  
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Table 2. Matrix of regional climate model simulations and their driving global climate models incorporated in the present study.  
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Figure 1. (a) Temporal development of running 30-year mean changes in winter (DJF) mean air temperature (changes of running 30-year 5 

mean averages throughout the period 1971–2098 in comparison to the reference period 1971–2000) averaged over the British Isles region. 

(b) Smoothed functional data from panel (a), created as described in Sect. 3. The lines in both panels are coloured according to the driving 

global climate model (GCM) and the type of line corresponds to regional climate model (RCM). The acronyms of the model simulations 

are explained in Sect. 2, “dGCM” stands for the driving global climate model simulation. 
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Figure 2. The same as Fig. 1, but for running 30-year mean changes in summer (JJA) mean precipitation (relative changes of running 30-

year mean averages throughout the period 1971–2098 in comparison to the reference period 1971–2000) averaged over the Eastern Europe 

region. 5 
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Figure 3. Illustration of the functional data analysis approach to evaluation of time series similarity. The two arbitrarily chosen time series 

shown here (Model 1 and 2) are evaluated as quite different based on ") but similar based on "�. 

 

 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

 

 

 

 25 

 

 

 

 

 30 

 

 



16 
 

 

 

Figure 4. Normalized ") distances between simulated air temperature curves (data shown in Fig. 1a) of randomly selected model and 

other models in dependence on amount of smoothing. Starting values represent ")   distances between original curves, values at the end 

represent ") distances for oversmoothed data. The vertical line depicts the amount of smoothing used in the presented study.  5 
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Figure 5. The same as Fig. 4, but for distances "�.   
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Figure 6. (a) Heatmap of the ") distances for running 30-year mean changes in winter (DJF) mean air temperature over British Isles (the 

curves shown in Fig. 1b, underlying data in Fig. 1a) with redder colour for larger similarity, brighter colour for smaller similarity between 

respective curves. The values of the semimetric ") are scaled to the interval [0,1]. The acronyms of the model simulations are explained in 5 

Sect. 2. The definition of the distances is explained in Sect. 3.1. (b) The same as (a), but for "� distances.  
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Figure 7. The same as Fig. 6, but for running 30-year mean relative changes in summer (JJA) mean precipitation over Eastern Europe 

region (the curves shown in Fig. 2b, underlying data in Fig. 2a). 
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Figure 8. An example of the dendrogram resulting from hierarchical cluster analysis based on d� distances for running 30-year mean 

changes in winter (DJF) mean air temperature over British Isles (underlying similarity matrix in Fig. 6b).  
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Figure 9. (a) Layout graph based on d) distances for running 30-year mean changes in winter (DJF) mean air temperature over the British 

Isles (underlying similarity matrix in Fig. 6a). (b) The same as (a), but for d� distances (underlying similarity matrix in Fig. 6b). 
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Figure 10. The same as Fig. 9, but for running 30-year mean relative changes in summer (JJA) mean precipitation over Eastern Europe 

region (underlying similarity matrices in respective panels of Fig. 7).  


