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Abstract. Despite the abundance of available global andnegiclimate model outputs, their use for evaluatd past and
future climate changes is often complicated by wmigl differences between individual simulatioasd the resulting
uncertainties. In this study, we present a methagiolframework for the analysis of multi-model enddes based on
functional data analysis approach. A set of tworitethat generalize the concept of similarity lohee the behaviour of
entire simulated climatic time series, encompasbutt past and future periods, is introduced. Asafaour knowledge, our
method is the first to quantitatively assess sintitss between model simulations based on the teahpsvolution of
simulated values. To evaluate mutual distanceh@ftime series we used two semimetrics based olidEan distances
between the simulated trajectories and on diffexenn their first derivatives. Further, we introdugn innovative way of
visualizing climate model similarities based onetwork spatialization algorithm. Using the layoutghs the data are
ordered on a 2-dimensional plane which enablesnambiguous interpretation of the results. The nebtiscdemonstrated
using two illustrative cases of air temperaturerabe British Isles and precipitation in centralr&ue, simulated by an
ensemble of EURO-CORDEX regional climate models @ed driving global climate models over the 192098 period.
In addition to the sample results, interpretatiomsppects of the applied methodology and its pas®kiensions are also
discussed.

1 Introduction

While numerical climate models serve as the catdow of contemporary climatology, their output® dypically burdened
by distinct uncertainties, manifesting through sabtal differences between individual simulatiokkere, we address the
issue of comparing various climate simulations gudntifying their differences by introducing a nedblogy for analysis
of multi-model ensembles and the relationship betwaested regional climate model simulation andditging global
climate model run. We propose use of a metric gdizang the concept of similarity, based on theoinfiation contained in
the entire simulated climate series, extending fiwistorical to future periods. The evaluation fravek is based on
functional data analysis (further denoted as FD&mnRay and Silverman, 2005, 2007; Ferraty and \4eQ6).

The analysis of uncertainties in climate model atgps a key research topic, especially due taitfeeof model simulations
as inputs for studies of possible future climatanges impacts. The results of the respective agmlysrve as the basis for
important adaptation and mitigation decisions, wdthcritical role belonging to the information onliability of the
projections and the structure of the relevant uaggties. Climate model outputs are subject to ttaggies coming from
various sources, including imperfect initial andibdary conditions, parameterizations of small spateesses or necessary
choices and simplifications in the model struct(memerical schemes, spatial resolution, etc.).d&tailed discussion see

e.g. Tebaldi and Knutti (2007). When consideringjoral climate models (RCMSs), it is necessary k@ tmto account some
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additional factors, mainly connected to the limitategration domain (Laprise et al., 2008) or poigsinconsistencies of
parameterization schemes between driving and neastatkls (Denis et al., 2002). The estimate of theetainties in
climate model outputs must accompany any futureaté change scenario.

One of the most frequently used ways of uncertaasgessment is the analysis of multi-model ense(Mi4E) spread (e.qg.
Belda et al., 2017; Holtanova et al., 2010; Preiale 2011). The main aim of MMEs is to sample tineertainty stemming
from choices in model structure, parameterizatidmeses and, in case of RCMs, also boundary conditiéstimating the
uncertainty range based on the MME spread is mitagghtforward task, as currently available MME§fer from various
deficiencies. One obstacle is raised by the defwes in the statistical experimental design: Medate developed
voluntarily from institutions worldwide. This pradoh is further amplified when designing an ensermbl@CMs. An RCM
is driven by a global climate model (GCM) which leasubstantial effect on the nested simulation (Béef al., 2007, 2012,
Heinrich et al., 2014). It is not computationalBasible to run all combinations of RCMs with ev&@§M. Therefore, for a
proper uncertainty assessment it is crucial tostigate the interactions between driving GCMs aasted RCMs and their
respective influence on the total MME spread (©gqué et al.,, 2012, Holtanova et al., 2014; Hein®t al., 2014;
Holtanova and MikSovsky, 2016).

In addition, climate models (even across developirsgitutions) are known to share certain compogieleiading to inter-
model similarities and dependencies. This makesfficult to justify the independence assumptionenmhquantifying the
uncertainty of MMEs with standard statistical maddtecently, innovative methods have been develapatentify groups
of similar climate models (e.g. Knutti et al., 20Ehd account for the similarities (Annan and Haayes, 2017). However,
these methods quantify model similarity based dmeeitheir behavior in approximating the historicinate or purely on
their projected climate change signals. Some studiduded evaluation of the relationship betwedsndriving GCM and
nested RCM based on more advanced climatic chaistiie (e.g. Rajczak and Schér, 2017; Crhova aoltHova, 2018),
but their approach to the issue was rather quiaitafs far as our knowledge, our method is thet fio quantitatively assess
similarities between model simulations based ortéhgporal evolution of simulated values.

To illustrate a possible application of the prombseethodology we analyze (dis)similarities betwenembers of the
EURO-CORDEX multi-model ensemble (Jacob et al. 3}@hd their driving GCMs. The inter-model distambetween the
trajectories of the temporal development of runniB@year mean changes in seasonal mean air temperand
precipitation are evaluated. We first assessedithdarities between ensemble members for timeesaaiveraged over eight
large European regions defined by Christensen admdst€nsen (2007) that have been widely used fonaté model
assessments (e.g. Rajczak and Schar, 2017; Hoétaral MikSovsky, 2016; Mendlik and Gobiet, 2016¢rélwe show the
results for only two chosen cases, namely the wintean air temperature over the British Isles arshmsummer
precipitation over Eastern Europe. These two cases chosen to illustrate two distinct cases of GREM interaction.
The paper is structured as follows. In Sect. 2BRO-CORDEX regional climate models and their drivglobal climate
models are briefly introduced. In Sect. 3 the méthogy is described, including the basic informat@bout the FDA
approach. Sect. 4 explains the application of nadlugy framework and Sect. 5 is devoted to dedonpof the results of

the case study. Sect. 6 summarizes key featurtse gfroposed framework and offers possible furépglications.

2 Data

The methodology framework is presented on the sampRCM simulations from the EURO-CORDEX initiagiyJacob et
al., 2013; http://www.euro-cordex.net/) togethethwtheir driving GCMs. We use 13 RCM simulations/en by 9 different
GCMs. All RCM simulations have 0.44° horizontal alegion. The RCM simulations were conducted for plegiod 1951—
2100, with some of them starting in 1971 or endm@098. We therefore concentrate on the periodl42098. After the
year 2006 model simulations incorporated the regmtadive concentration pathway RCP8.5 (van Vuutead.e2011). The
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GCM simulations were performed under the CMIP5 qeol (Taylor et al., 2012). The list of models igem in Table 1 and
the GCM-RCM simulation matrix in Table 2. To idéptindividual simulations, we use the acronyms ¢stinsg of RCM
and GCM abbreviation (as defined in Table 1) cotegbavith underscore character. In case of drivitgMssimulation we
use “dGCM” instead of the RCM identification.

We concentrate on running 30-year mean changesaisosal mean air temperature and precipitatiomn@sof running
30-year mean averages throughout the period 19BB-i2Ocomparison to the reference period 1971-2088)) the purpose
of introducing the methodology, we only present tilistrative cases: winter mean air temperatu@nges over the British
Isles (denoted as DJF tas over Bl, data showngn Fa) and summer precipitation changes over Ba&arope (JJA pr
over EA, Fig. 2a).

3 Methodology
3.1 Functional data analysis approach

We analyzed (dis)similarities between the tempdelelopment of simulated 30-year running mean eaimperature and
precipitation changes. The original dataset coedistf simulated valueg, at central years of the 30-year peridds =
1,...,K, ranging from 1986 to 2083 (henke= 98) for each model,= 1,...,n. These sequences of simulations were converted
to functional form using the B-spline basis systBt), j = 1....,N. Each sequence was approximated by a spline &mcti
xi(t) in the form

x(t) = X q1c;Bi(®),i =1,...,n. (1)

The B-splined3;(t) were polynomials of order four with twenty eqyadbaced knots;; were real coefficients in the B-spline
basis. Such use of order four B-splines imphed 22 basis functions. Spline functior$t) were constructed in order to
minimize the penalized squared error

n yK 2 ty [ a2 2
P Xkl — )] + 2 ftl [in(t)] dt )
with respect to the coefficients. The smoothing parametéwas selected via cross-validation method. The evalidation

was based on the minimization of the following esgsion,

2
=1 25:1[3’1’;’ = x;(tk, A —k)] , 3)
wherex; (t;, 4, —k)denotes the leave-one-out estimatoxk;(j omitting thek-th observationt,y,). The actual calculation is

based on minimization of the errorxft,A,—k) using a smoothing operator — see, e.g., Cravdniahba (1978) for details.

The representative examples of the functional ftata panels (a) of Fig. 1 and 2 are depicted irgfga(b) of the respective
figures.

One of the aims of this study was to explore thst filerivative of the response function. Thus, fite derivative curves

x; (t) were expressed in a similar manner, using the &us@ine basis with coefficienq-,

xi(t) = XiciBi(t),i =1,...,n. (4)

All subsequent analyses were conducted separatdbpihx(t) andx (t).

For the representation of functional data in diatiésoftware R (R Core Team, 2013), we used tukage fda (Ramsay et
al., 2017). It provides several basis options forctional data including B-splines presented abave further functional

data processing techniques.

Since the time series analyzed in the present stwdyrelatively smooth, a metric and a semimetrézeaconstructed to
represent the distance separation between two £uynae that the smaller the cross-distance, thee ramnilar the two

curves are). Such approach seems to be approméstes.g. Pokora et al.(2017). Eendf, be two curves, specifically two



10

15

20

25

30

35

40

cubic smoothing splines in our case. A well-knowd avidely-used distance between given cufyasdfs,is thelL,-metric,

do(f1,f2). It is a nonnegative number, whose square isiddfas the integral

d3(fu £2) = [ THO) ~ LO1dt. (5)

Let us call this common metric dgdistance (Euclidean distance).

Similarly, a common way to build a semimetric betwetwo curves is to consider the-distance between the first
derivatives of the curves. More precisely, givemw turvesf,; andf,, we define thal,-distanced,(f,,f;) to be a nonnegative

number, whose square is given by the integral

(i ) = TR © ~ f O dt. (6)

Fig. 3 illustrates examples of two parts of timeesethat are evaluated as quite different witlgdadistancel, = 112.8 but
similar with relatively small distana®& = 1.56. The main point is that the values of the semiitetare inferred solely based
on the chosen feature (e.g. Euclidean distancé,joand are independent of other time series chaisiits. In Fig. 3 it is
clearly seen that unlike,, thed, semimetric does not take into account the mutied bf the two time series. It only
focuses on the character of their temporal devetoppm The
analysis of sensitivity to amount of smoothing wasried out. The mutual distances of the curvesatstrongly depend on

the smoothing parameter, as shown in Fig. 4 and 5.

3.2 Visualization of the similarities

For visualization of mutual distances based on F&#mimetrics we use layout graphs created usingFtreeAtlas2
algorithm (Jacomy et al., 2014) within the Gephitware (https://gephi.org/). In these graphs indiidl members of the
multi-model ensemble are visualized as nodes (eamthel simulation corresponding to a single noddje ForceAtlas?
algorithm creates a force directed layout of thdeutying data. The network of the nodes is createdimulating a physical
system and its movement. The nodes are repulsed dach other in analogy to charged particles. Atdhme time the
edges between the nodes attract them like spridgsofny et al.,, 2014). The iterative procedure odlifig the nodes
positions results in an equilibrium state whichresponds to the final network.

The interpretation of the layout graphs is strdimfitard. The closer the nodes are to each other|dier the mutual
distance of corresponding simulations is accordinghe semimetric of interest. The larger the ndltee more close
neighbours, meaning more similar simulations (vétmilarity defined by the values of selected sentime The edges

between nearest 10 % of neighbours are made vigihkcolours indicate the driving GCM.

4 Application of the methodology

Figs. 1 and 2 illustrate the data used for thegmesl analysis. The lines are coloured accordingeariving GCM and the
type of line corresponds to RCM. The purpose ofgtesented methodology is to describe the struafithe multi-model
ensemble based on mutual relationships betweenlaions over the whole investigated time period amdluate whether
the temporal development of the simulated chargégluenced more strongly by the driving GCM oe tiested RCM. The
first step is the calculation of mutual distancesagen the curves corresponding to individual efiemembers using the
FDA semimetricsl, andd, defined in Sect. 3. In order to compare two serhiggewith substantially different range, we
transform the values to the interval [0,1] in bo#fses. To facilitate viewing, we display the resiuita pixel plot, see Figs. 6
and 7, with a temperature-colour code (or heatmatty redder colour for larger similarity, brighteolour for smaller
similarity).

Figs. 6 and 7 present the valuesig{panels (a)) and, (panels (b)) distances for the two chosen datgsetented in Figs.
1 and 2. Firstly, there are clear differences betw#he evaluation based énandd, semimetrics, because each of them is

based on different aspects of evaluated curvéswell apparent from the comparison of maximuntatises. In case of JJA

4
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pr over EA (Fig. 7), thd, distance is the largest for driving HadGEM GCM @& HadGEM) and ALADIN RCM driven
by CNRMCM (ALAD_CNRMCM). These two simulations effively represent lower and upper bounds of thetimmubdel
ensemble (Fig. 2). On the other hand, according the most dissimilar time series are GCM simulatibg IPSLCM and
CNRMCM (Fig. 7b), because their temporal developies largely an opposite sign, even though theljedtnside” the
multi-model ensemble (Fig. 2).

The second step of the proposed methodology isidmtitatively evaluate and visualize the similabgtween simulations
and their clustering according to their mutual ahsies. This would traditionally be done by meangiefarchical cluster
analysis which arranges the members of the multiehensemble into a dendrogram, as shown for exampfig. 8 for
DJF tas over Bl based ah (R function heatmap.2 from package gplots was usedhe dendrogram creation, see
Supplement). However, the interpretation of thedilegrams might not be straightforward and relayiv@iilar simulations
might be assigned to quite remote clusters. Inexample (Fig. 8) this is the case for the simufatiof HadGEM and
CNRM GCMs which are assigned to two remote clusiven though their mutud| distances are among the lowest from
the whole ensemble (the same applies to RCM sifougdriven by these two GCMs, Fig. 6b). Similasule can be seen in
case of CNRM and MIROC5 GCMs. To overcome this leusle propose an innovative method of visualizatdrthe
similarities based on evaluated semimetrics diggnthe layout graphs (see Sect. 3.2). Figs. 918ndhow the layout
graphs for the two investigated cases. The maimmtdge of the layout graphs in comparison to dassiendrograms is
that the structure of the ensemble is shown in 2D therefore the mutual distances are seen eddily.above noted
relationships between the HadGEM, MIROC5 and CNRdters are easily interpreted using the layouplgi@ig. 9b).

5 Case study results

The methodology described in Sect. 3 was appligtieamnodelled temperature and precipitation chafrges the EURO-
CORDEX multi-model ensemble and the respectiveimgivGCMs for eight large European domains (Chris¢éenand
Christensen, 2007). Here we only show two caséfugirate the ability of the proposed method teess the relationships
within the members of the multi-model ensemble. sehewvo sample cases, DJF tas over Bl and JJA pr B&e were
chosen because they differ in terms of the reslitained by application of the proposed methodolagg the results are
quite illustrative.

As we analyze simulations incorporating RCP8.5,clvtassumes a rise in greenhouse gas concentrdtioing the whole
21st century, it is not surprising that all modgilee a rise in DJF near surface air temperature theeBl region throughout
this period (Fig. 1). The RCMs tend to give gerigrimwer temperature change than their driving GCktgept for RCMs
driven by CNRMCM, MPIESM and MIROCS. Regarding #imulated changes in summer mean precipitation theeEA
region (Fig. 2), the model simulations disagreahmnsign of precipitation change and the multi-m@&tesemble has quite a
large variance. Some RCMs project larger changas their driving GCMs (e.g. ALADIN driven by CNRMCMsome
give smaller changes (RCA4 driven by IPSLCM).

Based oni,, the distances calculated for JJA pr over EA aostip quite low, lower than 0.25 with a couple aftlgers,
namely ALAD_CNRMCM and driving simulations of HadGEand CSIRO (Fig. 7a). Th&, distances for DJF tas over Bl
are more evenly distributed (Fig. 6a), becausesthee not so distinct outliers. THedistances are higher thap values in
both regions, and generally higher for JJA pr dwérthan for the other case (compare panels (b)igs.F and 7). That
means that there are less members of the ensemstideribg in a similar manner for the EA case tharitfe Bl case.
Regarding the influence of the driving GCM on thlested RCM simulation, based on bdthandd,, for DJF tas over Bl
the simulations driven by the same GCM are morsteted together than in case of JJA pr over EAclwig visible by
comparing Figs. 6 and 7 and confirmed in Figs. ® . The clustering is stronger fdr results. An evaluation of Fig. 6b

reveals that for DJF tas over Bl thiedistance of the RCM simulation and its driving GGivhulation is close to zero in
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most cases, as well as the mutual distances of R€idilations driven by the same GCM (e.g. MPIESMyrBSM,
CNRMCM). In case of JJA pr over EA (Fig. 7b) thedistances tend to be higher and rather indeperufettite driving
GCM. For example, the distance between the sinmatof RCA4 and REMO both driven by MPIESM is lartfean the
distances between RCA4 simulations driven by dffieiGCMs. What we “dig in” for in Figs. 6 and 7cigarly seen on the
first sight in Figs. 9 and 10, respectively. Thafiguration of the layout graphs confirms a strahgstering according to the
driving GCM in the case of DJF tas over Bl and kigtiegree of interaction between GCM and RCM ire ads)JA pr over
EA (compare the corresponding panels in Figs. 91&and

It is clearly seen that when large-scale phenonagaaresponsible for output, as in case of temperatbanges over Bl
region, RCMs tend to be very close to driving GGMd different GCMs are apart from each other (Figand 9). On the
contrary, when smaller scale processes are m@iayn such as in case of JJA precipitation changes EA, the results are
more influenced by RCMs (Figs. 2 and 10). This doeesautomatically imply any real added value ia #ense of more
realistic simulation. Rather, it points to diffeos in implementation of the local processes ifediht RCMs. In our case,
different parameterization schemes employed to Igsiteuconvection, microphysical processes in cloadd surface
processes including soil moisture are possible idamnes.

Regarding the three RCM simulations driven by CNRWIGCM (RCMs denoted here as ALAD, CUNI and RCA4has
been recently revealed that the boundary conditionsthe historical period have been flawed with ianonsistency
(personal communication with members of the EURCRDEX community). Specifically, 2D and 3D fields prded to
the RCMs come from different members of the ensendflCNRMCM simulations with perturbed initial catidns and
therefore they are mutually out of phase. Howewar,results do not show any anomalous behaviotinefe simulations.
When we calculated the distances for the curve8riirtwenty 30-year periods (i.e., those with temtral year before 2005,
which is the end of the historical period) andtfoe last 20-year periods, we found out that theadie of RCM simulations
driven by CNRMCM and their driving GCM is smallerfthe future period than for the reference one ¢hown). That is

probably partly caused by above mentioned discr@parin the boundary conditions, but the effecather small.

6 Discussion and conclusions

We have presented an innovative methodology foessssent of the structure of the multi-model ensenatsid mutual
relationships between its members. A case studyuatiag the similarities within the EURO-CORDEX rtiuihodel
ensemble extended by the driving CMIP5 GCM simalaihas been performed. Attention has been paetigdly to the
relationship between the driving GCM and nested REiMulations in terms of temporal development ohudated
temperature and precipitation changes over two figao regions. Contrary to previous studies, thesassent takes into
account not only simulated values for a certairetperiod (reference or future), but the charactéh® simulated temporal
development of studied variables as a whole. Thidone by generalization to functional similarifytioe time series. To
evaluate mutual distances of the time series wel ta® semimetrics based on the Euclidean distabetween the
simulated trajectoriesif) and on differences in their first derivativeg)( The similarity between an RCM and its driving
GCM points to a strong forcing and rather low iefice of RCM on the simulations of temporal develephof the variable
of interest. Thel, distances are bias invariant while similarity erxséd by, is largely influenced by common biases of
model simulations. A smadl; mutual distance between two simulations does atitraatically imply similarity in climate
change signal for a selected time period, it ratheans that the shape of the temporal developraesithilar.

In current study we have chosen to concentrateemparal behaviour of the time series averaged thestarge European
regions. We have decided to omit the spatial infdiom as the comparison of spatial fields from RCisl GCMs is
complicated, mainly by large differences in spatedolution and also by differences in effectivatap resolution (which

depends on numerical methods incorporated in théefah We have not figured out how the spatial imi@tion could be
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incorporated in our current setting of the methodgl Spatial fields from GCMs are much smoothemtRCMs, and
therefore if we convert the fields into functionise results will be very different in nature. By aothing (regridding) the
RCM fields to GCM-like coarse resolution would ritsm throwing away a lot of information.

In general, thel, similarity indicates agreement in bias and climaiange signal, which is influenced by various beeks
in the climate system and which might be differgptionounced in different models. Thesimilarity points to similar rate
(speed and sign) of climate change in time whichagly modulated by internal variability of the deds which again is
governed by feedbacks and nonlinearities in clinsgitem.

Furthermore, we presented a new way to visualimeaté model similarities, based on a network spasiion algorithm.
Instead of arranging the data in a one-dimensiomaémental way (like in case of hierarchical obusinalysis resulting in
dendrograms), the data are ordered on a 2-dimealspane using the layout graphs, which enablesumambiguous
interpretation of the results. The interpretatisronly made harder by the fact that the graph earotated subjectively, the
algorithm (see Sect. 3.2) only places each data methtively to all other nodes, but no absoluterdmate system is
defined. Even so, it is a very illustrative wayvigualization of the mutual distances between teenivers of a multi-model
ensemble. Unlike similar approach of multidimensioscaling used in Sanderson et al. (2015), whish eesults in 2-
dimensional visualization of inter-model distanctse layout graphs do not require defining any daide as a central
(reference) point of the whole ensemble.

Previously, in PRUDENCE and ENSEMBLES projects @a@eessors of Euro-CORDEX), the studies of uncdstaamd
GCM-RCM interactions (mainly Déqué et al., 2007 @nehué et al, 2012) relied on the analysis of vemgaof the multi-
model ensemble. Their results were quite straigiviod and clearly interpretable, but suffered fraddlitional uncertainty
connected to the necessity to fill in values fossimg GCM-RCM pairs using some statistical approdtie methodology
proposed in present paper overcomes this issuesegionly the outputs of dynamical models thabagglable. Further, as
already mentioned above, the FDA similarities eatdithe whole simulated time series and are ndtelthio a reference or
future time period.

The results of presented case study for two bdisiatic variables over two European regions shoat the structure of the
multi-model ensemble and the GCM-RCM interactionsa differ substantially in individual cases. Theref before the
RCM outputs are used in any applied research &uglies on impacts of projected future climate geah a thorough
choice of RCMs to be used is necessary. Presest péflers a convenient tool for such analysis.

The methodology could be extended to include mdireatic variables. Similarly, time series with difent temporal
aggregation (e.g. monthly or annual time serieg)iccde used as input for the analysis. The respfitsnultivariate
evaluation of the similarities and relationshipsthivi the multi-model ensemble could be a basis delection of
representative models to be used in impact stuBliesiously proposed procedures, such as in MeadilikGobiet (2016) or
Herger et al. (2018), could be modified to useRB&A similarities introduced here.

As explained in the Introduction, the spread of tirmbdel ensembles is considered as an estimasdroétural model
uncertainty. For analysis of the influence of intdrvariability on the overall uncertainty, simudats with perturbed initial
conditions can be used. Unlike GCMs, for RCMs thase not generally available. In Supplement3 aesaft figures
showing FDA similarities between 5 simulations diRM GCM with perturbed initial conditions is prowd. The aim of
these figures is to illustrate the range of undetysstemming from internal variability. We chos&lRM GCM to maximize
the number of RCMs driven by this GCM and the numbfemini-ensemble members. The figures suggedt fraair
temperature changes the spread of the CNRM mirgrabke covers almost a half of the multi-model erserspread (Fig.
S2.1). In case of precipitation, the portion of Hpeead is smaller (Fig. S2.2). Téeandd,distances between the members
of CNRM mini-ensemble are shown in Fig. S2.3 — SZ® enable the comparison with the distancesHernhulti-model
ensemble, their values before normalization areigeal in Fig. S2.7-S2.10. For air temperature,ttaximum inter-model

distances are almost twice as large as the imewlation distances within the CNRM mini-ensemblenjpare Fig. S2.3,
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S2.4 and S2.7, S2.8). In case of precipitationdtldéstances between the simulations with perturbédhlirronditions are
very small in comparison to inter-model distandeg.(S2.5 and S2.9). However, f@ydistances the difference is not so
struggling (Fig. S2.6 and S2.10). The fact thatrtimgye of uncertainty connected to internal valitghis relatively larger (in
comparison to structural uncertainty) for air tengpere than for precipitation probably points togkr overall structural
uncertainty in case of precipitation than air terapgre, i.e. the inter-model differences in simiolatof processes connected
to precipitation changes are larger than in casgrdemperature changes. However, we have to kespnd that presented
results rely only on a limited number of simulasdnrom one GCM.

Presented methodology does not take model perfa@axplicitly into account. However, the influerafemodel quality on
similarity is implicitly included. Worse performingiodels will likely be further away from good mosleFurthermore,
common modelling deficiencies can lead to commanilarities in the validation statistics, and thetriteused can account
for it. A dissimilarity between the driving GCM arlde nested RCM simulations can point to a sitmatithere the GCM
does not simulate a certain physical process diyretile the RCM improves it. Moreover, the metlodmhy can be easily
modified to serve as a mean of model performanetuation through performing the analysis for thiemence period and
including the observed time series. In that cdserésults could be used for definition of modeighes and calculation of
weighted multi-model mean. For example, in Sandertoal. (2017) the model weights are based om-t&lel distance
matrices with the distances defined by root mearasgdifference (RMSD) between the simulations. FB& similarities
between model simulations could be used insteatieoRMSD. Similarly, the inter-model distancescafculated for the
whole CMIP5 GCM ensemble, could serve as a basithéanalysis of inter-model dependencies, amtbcdiscussed for
example in Annan and Hargreaves (2017). Finallgait be mentioned that the presented methodolagig t@ extended by
using the functional principle component analy$€4). Nowadays, the functional PCA is a very popaad powerful

exploratory technique. Its applications on reahdatlicate that it could further improve our result

Code and/or data availability. The analysis have been conducted within the R enmient and using the Gephi software,
which are both freely available. The R code is madailable in the Supplement of this paper (comtdim the Rcode.R
together with npfda.R from Ferraty and Vieu (2006),available at  https://www.math.univ-
toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html).h& underlying data are available via ESGF infrastme
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Acronym Type Model ID Institute
CCLM RCM CCLMA-8-17 Climate Limited-area Model!lng Community (CLM-
Community)
REMO RCM REM 02009 Helmholtz-Zentrum Gees.thacht, Climate Service
Center, Max Planck Institute for Meteorology
RCA4 RCM RCA4 Swedish Meteorological and Hydrological Institute,
Rossby Centre
ALAD RCM ALADIN53 Centre National de Recherches Meteorologiques
CUNI RCM RegCM4 Charles University
CanESM GCM CanESM2 Canadian Centre for Climate Modelling and Analysis
Centre National de Recherches Meteorologiques,
CNRMCM GCM CNRM-CM5  Meteo-France; Centre Europeen de Recherches et de
Formation Avancee en Calcul Scientifique
CSIRO- CSIRO; Queensland Climate Change Centre of
CSIROX GCM Mk3.6.0 Excellence
GFDLES GCM GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory
HadGEM GCM HadGEM2-ES Met Office Hadley Centre
IPSLCM GCM IPSL;\;ZI;/ISA- Institut Pierre Simon Laplace, Paris, France
University of Tokyo; National Institute for
MIROC5 GCM MIROC5 Environmental Studies; Japan Agency for Marine-
Earth Science and Technology
MPIESM GCM MPI-ESM-LR Max Planck Institute for Meteorology
NorESM GCM NorESM1-ME Norwegian Climate Centre

10

Table 1. List of regional climate models and driving glolsiinate models incorporated in the present stilitig. first column contains the

acronyms used throughout the text. Type columrcatds whether the model is regional (RCM) or gloGati1).
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Table 2. Matrix of regional climate model simulations aheit driving global climate models incorporatedhe present study.
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== MIROCS
=~ NorESM

Air temperature change [°C]
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Figure 1. (a) Temporal development of running 30-year mean chamg®inter (DJF) mean air temperature (changesimfing 30-year
mean averages throughout the period 1971-2098mpanson to the reference period 1971-2000) avdrager the British Isles region.
(b) Smoothed functional data from panel (a), ciaie described in Sect. 3. The lines in both parelsoloured according to the driving
global climate model (GCM) and the type of line esponds to regional climate model (RCM). The acrongfritie model simulations
are explained in Sect. 2, “dGCM” stands for the idigvglobal climate model simulation.
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Figure 2. The same as Fig. 1, but for running 30-year meam@és in summer (JJA) mean precipitation (relathenges of running 30-
year mean averages throughout the period 1971-B088nparison to the reference period 1971-2008)amed over the Eastern Europe

5 region.
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Figure 3. lllustration of the functional data analysis apmto#o evaluation of time series similarity. The tambitrarily chosen time series

shown here (Model 1 and 2) are evaluated as qiffezeht based o, but similar based od, .
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Figure 4. Normalizedd,, distances between simulated air temperature cydegs shown in Fig. 1a) of randomly selected mauaw

other models in dependence on amount of smootlitagting values represedy distances between original curves, values aetite

Smoothing

Maximal

representl, distances for oversmoothed data. The verticaldigggcts the amount of smoothing used in the ptedestudy.

16



10

15

20

1.0

0.6

Distances
0.4

0.2

Minimal
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Figure 6. (a) Heatmap of thé, distances for running 30-year mean changes inew{fllJF) mean air temperature over British Isles (th
curves shown in Fig. 1b, underlying data in Fig. @ih redder colour for larger similarity, brighteolour for smaller similarity between
respective curves. The values of the semimeéyiare scaled to the interval [0,1]. The acronymghefmodel simulations are explained in

Sect. 2. The definition of the distances is ex@dim Sect. 3.1. (b) The same as (a), butlfodistances.
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Figure 7. The same as Fig. 6, but for running 30-year nretative changes in summer (JJA) mean precipitatiegr Eastern Europe

region (the curves shown in Fig. 2b, underlyingadatFig. 2a).
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Figure 9. (a) Layout graph based dg distances for running 30-year mean changes inew{iltJF) mean air temperature over the British

Isles (underlying similarity matrix in Fig. 6a).)(he same as (a), but fdy distances (underlying similarity matrix in Fig.)6b
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Figure 10. The same as Fig. 9, but for running 30-year mekative changes in summer (JJA) mean precipitaticer &astern Europe
region (underlying similarity matrices in respeetpanels of Fig. 7).
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