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We are grateful for the evaluation of our paper and all the useful comments and suggestions of both referees. We have 
considered all of them and revised the manuscript accordingly. Please find below our responses to specific comments 
including the description of the changes made to the manuscript. The comments of the referees are in blue, our responses in 
black. The revisions made are visible in the revised document below, only the changes made to Fig. 4 and 5 are not 
highlighted. 5 
The Supplement now includes three parts, one is the original Supplement with the code for all the calculations, the second 
part are two figures illustrating the dependence of the d0 and d1 distances on the smoothing parameter and the third part 
includes figures related to the analysis of uncertainty connected to internal climate variability, as explained in the text of the 
paper.  
 10 

Responses to Referee #1 
 
The analysis is quite shallow and it is unclear how the new method is adding value to pre-existing studies. Also references to 
important earlier studies (e.g. Deque et al., 2012) are missing and the relation of the present study to these works is missing. 
I think it would make the paper much more relevant if the proposed comparison/evaluation with observations (see chapter 6) 15 
would be included into the current study. 
 
The comparison with the observations is out of the scope of our study. We concentrate on simulated time series 130 years 
long, the observations cover only 45 years of it. We chose to show results only for two European regions, as they were 
interesting and illustrative. But for model skill it would probably be interesting to show different regions, and the study 20 
would get disaggregated. Moreover, we pay attention mainly to the structure of the multi-model ensemble and overall 
uncertainty, independently of model skill, even though, as mentioned in the paper, it can be expected that the better the 
models, the closer to each other.  
Therefore we have not added the comparison with observations to present study, mainly because we think that the study 
would become disaggregated and would lose clarity.  25 
We have added citations of Déqué et al. (2007, 2012) in the Introduction and to the last section of the paper.  
 
Chapter 3.1: How much do the results depend on the chosen smoothing method and especially on the functional smoothing 
(e.g., instead of the smoothing one could also use the 30 year running mean - which is already smoothed - and temporal 
correlation)?  30 
 
The results do not strongly depend on the smoothing. The dependence is slightly stronger for d1, but even for that the 
structure of the distances is quite stable for the whole ensemble. We added a comment on this to the end of the Sections 3.1: 
"The mutual distances of the curves do not strongly depend on the smoothing parameter, as shown in Fig. S2.1 and S2.2 (see 
Supplement 2)." The Fig. S2.1 and S2.2 show the results for an arbitrarily chosen example.  35 
 
Chapter 5: The results of the case studies are very similar to earlier findings (e.g. Deque et al., 2012). Where does the 
proposed method add value to the earlier findings? 
 
The aim of our study is not to really reveal new findings regarding the uncertainty of RCM outputs. Rather, we show a new 40 
methodology framework and illustrate its usage on a case study. The advantages of the new methodology based on modern 
statistical approach are discussed in the paper. Regarding the comparison to Déqué et al. (2012), we added a paragraph to the 
last section: 
„Previously, in PRUDENCE and ENSEMBLES projects (predecessors of Euro-CORDEX), the studies of uncertainty and 
GCM-RCM interactions (mainly Déqué et al., 2007 and Déqué et al, 2012) relied on the analysis of variance of the multi-45 
model ensemble. Quite straightforward and clearly interpretable results suffered from additional uncertainty connected to 
the necessity to fill in values for missing RCM-GCM pairs with some statistical approach. The methodology proposed in 
present paper overcomes this issue and uses only the outputs of dynamical models that are available. Further, as already 
mentioned above, the FDA similarities evaluate the whole simulated time series and are not limited to a reference or future 
time period. “ 50 
 
Technical corrections: REMO is missing in Table 1.  
 
We have corrected the Table 1. 
 55 
In Figures 4, 5 and 6 I would suggest to leave out the diagonal (bottom left to top right) and results above or underneath the 
diagonal because the information is trivial/redundant. 
 
We have changed the Fig. 4 and 5 as suggested. Fig. 6 includes the dendrogram structure, and the R function used for its 
creation does not allow leaving out the redundant part.  Therefore we could not change the Fig. 6. 60 
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Responses to Referee #2 
 
The analysis uses only spatially averaged time-series information, unlike earlier work (e.g. Knutti 2013, Sanderson 2015) 
which primarily use spatial bias correlation to assess similarity. By not using spatial information, it seems like the authors 
are throwing away a lot of potentially useful information. This is not a showstopper - but the authors should acknowledge 5 
that by using both spatial and temporal information, more meaningful results could probably be obtained  
 
It is certainly true that the evaluation of spatial simulated fields is important. But in current study we have chosen to 
concentrate on temporal behaviour of the time series averaged over the large European regions. Comparison of spatial fields 
from RCMs and GCMs is complicated, mainly by large differences in spatial resolution and also by differences in effective 10 
spatial resolution (which depends on numerical methods incorporated in the models). We have not figured out how the 
spatial information could be incorporated in our current setting of the methodology. Spatial fields from GCMs are much 
smoother than RCMs, and therefore if we convert the fields into functions, the results will be very different in nature. By 
smoothing (regridding) the RCM fields to GCM-like coarse resolution would result in throwing away a lot of information. 
But it is probably a good topic for another possible application of our methodology framework, to apply it for evaluation of 15 
spatial simulated fields, but for an ensemble consisting of simulations with comparable spatial resolution.      
 
some parameter sensitivity is required - or at least an explanation of why some arbitrary decisions were made. The domain 
averaging size, for example - a larger averaging area for precipitation 
might result in a less noisy field in which model similarities are more accurately identified. Similarly, the averaging period 20 
and the parameters of the spline expansion - how sensitive is the method to these choices?  
 
The domains used in our study are the quite large “PRUDENCE” regions very often used for analysis of RCM outputs over 
Europe. The results for smaller regions would probably be more influenced by internal variability and differences between 
RCMs connected to smaller scale processes and orography representation.    25 
Regarding the averaging period, we have not evaluated the sensitivity of the method. The choice of the length of the period 
is not basically an arbitrary choice, but it originates in the fact, that we intended to work with long-term means as the main 
characteristics of climate. And 30-year period is as far as our knowledge the most common period length used in 
climatology.  
Regarding the parameters of the spline expansion, we have analysed the sensitivity of �� and �� distances on the amount of 30 
smoothing of the underlying curves. The results for an arbitrarily chosen example are shown in Supplement2 and commented 
on in the end of Section 3.1. The results do not strongly depend on the smoothing. The dependence is slightly stronger for ��, 
but even for that the structure of the distances is quite stable for the whole ensemble.   
 
what is the expected noise from climate variability, and can this be quantified more accurately? Can the authors use initial 35 
condition ensemble members to identify the expected intermodel distance which arises from climate variability alone? 
 
The influence of internal variability on RCM simulation is difficult to be evaluated, as simulations with perturbed initial 
conditions are not available (as far as our knowledge). Earlier findings (Déqué et al., 2007, Déqué et al., 2012, Hawkins and 
Sutton, 2009, 2010) suggest that the influence of internal variablity on the overall uncertainty of simulated air temperature 40 
and precipitation changes is expected to be rather low. To investigate the issue we compared the results for the ensemble 
used in our study with a mini-ensemble consisting of 5 simulations of CNRM-CM5 GCM with perturbed intial conditions 
(runs denoted as r1i1p1, r10i1p1, r2i1p1,r4i1p1, r6i1p1). We chose this GCM to maximize the number of RCMs driven by it 
and the extent of resulting mini-ensemble. The figures are available in Supplement3 and the results are commented on in the 
last section of the revised paper: 45 
„As explained in the Introduction, the spread of multi-model ensembles is considered as an estimate of structural model 

uncertainty. For analysis of the influence of internal variability on the overall uncertainty, simulations with perturbed initial 

conditions can be used. Unlike GCMs, for RCMs these are not generally available. In Supplement3 a suite of figures 

showing FDA similarities between 5 simulations of CNRM GCM with perturbed initial conditions is provided. The aim of 

these figures is to illustrate the range of uncertainty stemming from internal variability. We chose CNRM GCM to maximize 50 

the number of RCMs driven by this GCM and the number of mini-ensemble members. The figures suggest that for air 

temperature changes the spread of the CNRM mini-ensemble covers almost a half of the multi-model ensemble spread (Fig. 

S3.1). In case of precipitation, the portion of the spread is smaller (Fig. S3.2). The �� and ��distances between the members 

of CNRM mini-ensemble are shown in Fig. S3.3 – S3.6. To enable the comparison with the distances for the multi-model 

ensemble, their values before normalization are provided in Fig. S3.7-S3.10.  For air temperature, the maximum inter-model 55 

distances are almost twice as large as the inter-simulation distances within the CNRM mini-ensemble (compare Fig. S3.3, 

S3.4 and S3.7, S3.8). In case of precipitation, the ��distances between the simulations with perturbed initial conditions are 

very small in comparison to inter-model distances (Fig. S3.5 and S3.9). However, for ��distances the difference is not so 
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struggling (Fig. S3.6 and S3.10). The fact that the range of uncertainty connected to internal variability is relatively larger 

(in comparison to structural uncertainty) for air temperature than for precipitation probably points to larger overall 

structural uncertainty in case of precipitation than air temperature, i.e. the inter-model differences in simulation of 

processes connected to precipitation changes are larger than in case of air temperature changes. However, we have to keep 

in mind that presented results rely only on a limited number of simulations from one GCM.“ 5 

 
Déqué, M., Rowell, D.P., Lüthi, D., Giorgi, F., Christensen, J.H. et al., 2007. An intercomparison of regional climate 
simulations for Europe: assessing uncertainties in model projections. Climatic Change, 81, Supplement 1, 31–52.  

Déqué, M., Somot, S., Sanchez-Gomez, E., Goodess, C. M., Jacob, D., Lenderink, G., Christensen, O. B. (2012): The spread 
amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual 10 
variability Climate Dynamics, 2012, 38, 951-964 

Hawkins, E., Sutton, R., 2009. The potential to narrow uncertainty in regional climate predictions. Bulletin of the American 
Meteorological Society. DOI: 10.1175/2009BAMS2607.1 

Hawkins, E., Sutton, R., 2010: The potential to narrow uncertainty in projections of regional precipitation change. Climate 
dynamics. DOI: 10.1007/s00382-010-0810-6 15 

 
the graph plots are nice - but there are precedents in the literature for presenting model similarities in 2D space, which should 
probably be cited here (Sanderson 2015). 
 
We have added a comment to the last section: 20 
“Unlike similar approach of multidimensional scaling used in Sanderson et al. (2015), which also results in 2-dimensional 
visualization of inter-model distances, the layout graphs do not require defining any data node as a central (reference) point 
of the whole ensemble.“ 
 
I feel slightly more could be made of the discussion of parent GCMs and embedded RCMs. Figure 4 suggests that the parent 25 
GCMs dominatethe inter-model distances for both d0 and d1 for temperature, but perhaps not for precipitation where there is 
clear structure from RCM pairs. This is perhaps one of the more interesting results from the paper - and the authors should 
make more of it. Why is this the case, what are the mechanisms? What recommendations would the authors give for end-
users of CORDEX given this finding? 
 30 
The mechanisms for different results for DJF tas over BI and JJA pr over EA are commented on in the paper (Section 5) : 
“It is clearly seen that when large-scale phenomena are responsible for output, as in case of temperature changes over BI 

region, RCMs tend to be very close to driving GCM, and different GCMs are apart from each other (Figs. 1 and 7). On the 

contrary, when smaller scale processes are more in play, such as in case of JJA precipitation changes over EA, the results 

are more influenced by RCMs (Figs. 2 and 8). This does not automatically imply any real added value in the sense of more 35 

realistic simulation. Rather, it points to differences in implementation of the local processes in different RCMs. In our case, 

different parameterization schemes employed to simulate convection, microphysical processes in clouds and surface 

processes including soil moisture are possible candidates.“ 

Our results are not really representative for air temperature and precipitation over the whole European domain and for all 

seasons, but it illustrates that there are large differences between individual cases. Therefore, a recommendation for end-40 

users is that an analysis of GCM-RCM interactions and a thorough choice of representative simulations (if it is not possible 

to use the whole multi-model ensemble) for impact studies is necessary. Our paper offers a tool for such analysis. We added 

a comment on this into the last sections:  

“The results of presented case study for two basic climatic variables over two European regions show that the structure of 

the multi-model ensemble and the GCM-RCM interactions can differ substantially in individual cases. Therefore, before the 45 

RCM outputs are used in any applied research (e.g. studies on impacts of projected future climate changes) an analysis of 

GCM-RCM interactions and a thorough choice of RCMs to be used is necessary. Present paper offers a convenient tool for 

this purpose.“ 
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Abstract. Despite the abundance of available global and regional climate model outputs, their use for evaluation of past and 

future climate changes is often complicated by substantial differences between individual simulations, and the resulting 

uncertainties. In this study, we present a methodology framework for the analysis of multi-model ensembles based on 

functional data analysis approach. A set of two metrics that generalize the concept of similarity based on the behaviour of 15 

entire simulated climatic time series, encompassing both past and future periods, is introduced. As far as our knowledge, our 

method is the first to quantitatively assess similarities between model simulations based on the temporal evolution of 

simulated values. To evaluate mutual distances of the time series we used two semimetrics based on Euclidean distances 

between the simulated trajectories and on differences in their first derivatives. Further, we introduce an innovative way of 

visualizing climate model similarities based on a network spatialization algorithm. Using the layout graphs the data are 20 

ordered on a 2-dimensional plane which enables an unambiguous interpretation of the results. The method is demonstrated 

using two illustrative cases of air temperature over the British Isles and precipitation in central Europe, simulated by an 

ensemble of EURO-CORDEX regional climate models and their driving global climate models over the 1971–2098 period. 

In addition to the sample results, interpretational aspects of the applied methodology and its possible extensions are also 

discussed.  25 

1 Introduction 

While numerical climate models serve as the cardinal tool of contemporary climatology, their outputs are typically burdened 

by distinct uncertainties, manifesting through substantial differences between individual simulations. Here, we address the 

issue of comparing various climate simulations and quantifying their differences by introducing a methodology for analysis 

of multi-model ensembles and the relationship between nested regional climate model simulation and its driving global 30 

climate model run. We propose use of a metric generalizing the concept of similarity, based on the information contained in 

the entire simulated climate series, extending from historical to future periods. The evaluation framework is based on 

functional data analysis (further denoted as FDA; Ramsay and Silverman, 2005, 2007; Ferraty and Vieu, 2006).  

The analysis of uncertainties in climate model outputs is a key research topic, especially due to the use of model simulations 

as inputs for studies of possible future climate changes impacts. The results of the respective analyses serve as the basis for 35 

important adaptation and mitigation decisions, with a critical role belonging to the information on reliability of the 

projections and the structure of the relevant uncertainties. Climate model outputs are subject to uncertainties coming from 

various sources, including imperfect initial and boundary conditions, parameterizations of small scale processes or necessary 

choices and simplifications in the model structure (numerical schemes, spatial resolution, etc.). For detailed discussion see 

e.g. Tebaldi and Knutti (2007). When considering regional climate models (RCMs), it is necessary to take into account some 40 

additional factors, mainly connected to the limited integration domain (Laprise et al., 2008) or possible inconsistencies of 
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parameterization schemes between driving and nested models (Denis et al., 2002). The estimate of the uncertainties in 

climate model outputs must accompany any future climate change scenario. 

One of the most frequently used ways of uncertainty assessment is the analysis of multi-model ensemble (MME) spread (e.g. 

Belda et al., 2017; Holtanová et al., 2010; Prein et al., 2011). The main aim of MMEs is to sample the uncertainty stemming 

from choices in model structure, parameterization schemes and, in case of RCMs, also boundary conditions. Estimating the 5 

uncertainty range based on the MME spread is not a straightforward task, as currently available MMEs suffer from various 

deficiencies. One obstacle is raised by the deficiencies in the statistical experimental design: Models are developed 

voluntarily from institutions worldwide. This problem is further amplified when designing an ensemble of RCMs. An RCM 

is driven by a global climate model (GCM) which has a substantial effect on the nested simulation (Déqué et al., 2007, 2012, 

Heinrich et al., 2014). It is not computationally feasible to run all combinations of RCMs with every GCM. Therefore, for a 10 

proper uncertainty assessment it is crucial to investigate the interactions between driving GCMs and nested RCMs and their 

respective influence on the total MME spread (e.g. Déqué et al., 2012, Holtanová et al., 2014; Heinrich et al., 2014; 

Holtanová and Mikšovský, 2016). 

In addition, climate models (even across developing institutions) are known to share certain components, leading to inter-

model similarities and dependencies. This makes it difficult to justify the independence assumption when quantifying the 15 

uncertainty of MMEs with standard statistical models. Recently, innovative methods have been developed to identify groups 

of similar climate models (e.g. Knutti et al., 2013) and account for the similarities (Annan and Hargreaves, 2017). However, 

these methods quantify model similarity based on either their behavior in approximating the historical climate or purely on 

their projected climate change signals. Some studies included evaluation of the relationship between the driving GCM and 

nested RCM based on more advanced climatic characteristics (e.g. Rajczak and Schär, 2017; Crhová and Holtanová, 2018), 20 

but their approach to the issue was rather qualitative. As far as our knowledge, our method is the first to quantitatively assess 

similarities between model simulations based on the temporal evolution of simulated values.  

To illustrate a possible application of the proposed methodology we analyze (dis)similarities between members of the 

EURO-CORDEX multi-model ensemble (Jacob et al., 2013) and their driving GCMs. The inter-model distances between the 

trajectories of the temporal development of running 30-year mean changes in seasonal mean air temperature and 25 

precipitation are evaluated. We first assessed the similarities between ensemble members for time series averaged over eight 

large European regions defined by Christensen and Christensen (2007) that have been widely used for climate model 

assessments (e.g. Rajczak and Schär, 2017; Holtanová and Mikšovský, 2016; Mendlik and Gobiet, 2016). Here we show the 

results for only two chosen cases, namely the winter mean air temperature over the British Isles and mean summer 

precipitation over Eastern Europe. These two cases were chosen to illustrate two distinct cases of GCM-RCM interaction.  30 

The paper is structured as follows. In Sect. 2 the EURO-CORDEX regional climate models and their driving global climate 

models are briefly introduced. In Sect. 3 the methodology is described, including the basic information about the FDA 

approach. Sect. 4 explains the application of methodology framework and Sect. 5 is devoted to description of the results of 

the case study. Sect. 6 summarizes key features of the proposed framework and offers possible further applications. 

2 Data 35 

The methodology framework is presented on the sample of RCM simulations from the EURO-CORDEX initiative (Jacob et 

al., 2013; http://www.euro-cordex.net/) together with their driving GCMs. We use 13 RCM simulations driven by 9 different 

GCMs. All RCM simulations have 0.44° horizontal resolution. The RCM simulations were conducted for the period 1951–

2100, with some of them starting in 1971 or ending in 2098. We therefore concentrate on the period 1971–2098. After the 

year 2006 model simulations incorporated the representative concentration pathway RCP8.5 (van Vuuren et al., 2011). The 40 

GCM simulations were performed under the CMIP5 protocol (Taylor et al., 2012). The list of models is given in Table 1 and 
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the GCM-RCM simulation matrix in Table 2. To identify individual simulations, we use the acronyms consisting of RCM 

and GCM abbreviation (as defined in Table 1) connected with underscore character. In case of driving GCM simulation we 

use “dGCM” instead of the RCM identification. 

We concentrate on running 30-year mean changes in seasonal mean air temperature and precipitation (changes of running 

30-year mean averages throughout the period 1971–2098 in comparison to the reference period 1971–2000). For the purpose 5 

of introducing the methodology, we only present two illustrative cases: winter mean air temperature changes over the British 

Isles (denoted as DJF tas over BI, data shown in Fig. 1a) and summer precipitation changes over Eastern Europe (JJA pr 

over EA, Fig. 2a).  

3 Methodology 

3.1 Functional data analysis approach 10 

We analyzed (dis)similarities between the temporal development of simulated 30-year running mean air temperature and 

precipitation changes. The original dataset consisted of simulated values yik at central years of the 30-year periods tk, k = 

1,...,K, ranging from 1986 to 2083 (hence K = 98) for each model, i = 1,...,n. These sequences of simulations were converted 

to functional form using the B-spline basis system Bj(t), j = 1,...,N. Each sequence was approximated by a spline function 

xi(t) in the form 15 

��(�) 	= 	∑ ��
�
(�)�

�� , �	 = 1, . . . , �.         (1) 

The B-splines Bj(t) were polynomials of order four with twenty equally spaced knots, cij were real coefficients in the B-spline 

basis. Such use of order four B-splines implied N = 22 basis functions. Spline functions xi(t) were constructed in order to 

minimize the penalized squared error 
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� + �� �  

!

 "! ��(�)#
�
��"$

"%
&
���

'
���         (2) 20 

with respect to the coefficients cij. The smoothing parameter λ was selected via cross-validation method. The cross-validation 

was based on the minimization of the following expression, 

∑ ∑ ���
 − ��(��, �, −()�
�&

���
'
��� ,          (3) 

where ��(�� , �, −()denotes the leave-one-out estimator of xi(t) omitting the k-th observation (tk,yik). The actual calculation is 

based on minimization of the error of xi(t,λ,−k) using a smoothing operator – see, e.g., Craven and Wahba (1978) for details. 25 

The representative examples of the functional data from panels (a) of Fig. 1 and 2 are depicted in panels (b) of the respective 

figures.  

One of the aims of this study was to explore the first derivative of the response function. Thus, the first derivative curves 

��)(�) were expressed in a similar manner, using the same B-spline basis with coefficients c’
ij, 

��)(�) 	= 	∑ ��
) �
(�)�

�� , �	 = 1, . . . , �.         (4) 30 

All subsequent analyses were conducted separately on both xi(t) and x’
i(t). 

For the representation of functional data in statistical software R (R Core Team, 2013), we used the package fda (Ramsay et 

al., 2017). It provides several basis options for functional data including B-splines presented above and further functional 

data processing techniques. 

Since the time series analyzed in the present study are relatively smooth, a metric and a semimetric were constructed to 35 

represent the distance separation between two curves (note that the smaller the cross-distance, the more similar the two 

curves are). Such approach seems to be appropriate, see e.g. Pokora et al.(2017). Let f1 and f2 be two curves, specifically two 

cubic smoothing splines in our case. A well-known and widely-used distance between given curves f1 and f2 is the L2-metric, 

d0(f1,f2). It is a nonnegative number, whose square is defined as the integral 
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���(*�, *�) = � +*�(�) − *�(�),���"$
"% .          (5) 

Let us call this common metric as d0-distance (Euclidean distance). 

Similarly, a common way to build a semimetric between two curves is to consider the L2-distance between the first 

derivatives of the curves. More precisely, given two curves f1 and f2, we define the d1-distance d1(f1,f2) to be a nonnegative 

number, whose square is given by the integral 5 

���(*�, *�) = � +*�)(�) − *�)(�),���"$
"% .         (6) 

Fig. 3 illustrates examples of two parts of time series that are evaluated as quite different with large distance �� = 112.8 but 

similar with relatively small distance �� = 1.56. The main point is that the values of the semimetrics are inferred solely based 

on the chosen feature (e.g. Euclidean distance for ��) and are independent of other time series characteristics. In Fig. 3 it is 

clearly seen that unlike ��, the �� semimetric does not take into account the mutual bias of the two time series. It only 10 

focuses on the character of their temporal development. The mutual distances of the curves do not strongly depend on the 

smoothing parameter, as shown in Fig. S2.1 and S2.2 (see Supplement2). 

3.2 Visualization of the similarities 

For visualization of mutual distances based on FDA semimetrics we use layout graphs created using the ForceAtlas2 

algorithm (Jacomy et al., 2014) within the Gephi software (https://gephi.org/). In these graphs individual members of the 15 

multi-model ensemble are visualized as nodes (each model simulation corresponding to a single node). The ForceAtlas2 

algorithm creates a force directed layout of the underlying data. The network of the nodes is created by simulating a physical 

system and its movement. The nodes are repulsed from each other in analogy to charged particles. At the same time the 

edges between the nodes attract them like springs (Jacomy et al., 2014). The iterative procedure of finding the nodes 

positions results in an equilibrium state which corresponds to the final network. 20 

The interpretation of the layout graphs is straightforward. The closer the nodes are to each other, the lower the mutual 

distance of corresponding simulations is according to the semimetric of interest. The larger the node the more close 

neighbours, meaning more similar simulations (with similarity defined by the values of selected semimetric). The edges 

between nearest 10 % of neighbours are made visible. The colours indicate the driving GCM.  

4 Application of the methodology 25 

Figs. 1 and 2 illustrate the data used for the presented analysis. The lines are coloured according to the driving GCM and the 

type of line corresponds to RCM. The purpose of the presented methodology is to describe the structure of the multi-model 

ensemble based on mutual relationships between simulations over the whole investigated time period and evaluate whether 

the temporal development of the simulated changes is influenced more strongly by the driving GCM or the nested RCM. The 

first step is the calculation of mutual distances between the curves corresponding to individual ensemble members using the 30 

FDA semimetrics �� and �� defined in Sect. 3. In order to compare two semimetrics with substantially different range, we 

transform the values to the interval [0,1] in both cases. To facilitate viewing, we display the results in a pixel plot, see Figs. 4 

and 5, with a temperature-colour code (or heatmap, with redder colour for larger similarity, brighter colour for smaller 

similarity). 

Figs. 4 and 5 present the values of �� (panels (a)) and �� (panels (b)) distances for the two chosen datasets presented in Figs. 35 

1 and 2. Firstly, there are clear differences between the evaluation based on �� and �� semimetrics, because each of them is 

based on different aspects of evaluated curves. It is well apparent from the comparison of maximum distances. In case of JJA 

pr over EA (Fig. 5), the �� distance is the largest for driving HadGEM GCM (dGCM_HadGEM) and ALADIN RCM driven 

by CNRMCM (ALAD_CNRMCM). These two simulations effectively represent lower and upper bounds of the multi-model 

ensemble (Fig. 2). On the other hand, according to �� the most dissimilar time series are GCM simulations by IPSLCM and 40 
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CNRMCM (Fig. 5b), because their temporal development has largely an opposite sign, even though they do lie “inside” the 

multi-model ensemble (Fig. 2). 

The second step of the proposed methodology is to quantitatively evaluate and visualize the similarity between simulations 

and their clustering according to their mutual distances. This would traditionally be done by means of hierarchical cluster 

analysis which arranges the members of the multi-model ensemble into a dendrogram, as shown for example in Fig. 6 for 5 

DJF tas over BI based on ��  (R function heatmap.2 from package gplots was used for the dendrogram creation, see 

Supplement). However, the interpretation of the dendrograms might not be straightforward and relatively similar simulations 

might be assigned to quite remote clusters. In our example (Fig. 6) this is the case for the simulations of HadGEM and 

CNRM GCMs which are assigned to two remote clusters, even though their mutual �� distances are among the lowest from 

the whole ensemble (the same applies to RCM simulations driven by these two GCMs, Fig. 4b). Similar result can be seen in 10 

case of CNRM and MIROC5 GCMs. To overcome this hurdle we propose an innovative method of visualization of the 

similarities based on evaluated semimetrics distances, the layout graphs (see Sect. 3.2). Figs. 7 and 8 show the layout graphs 

for the two investigated cases. The main advantage of the layout graphs in comparison to classical dendrograms is that the 

structure of the ensemble is shown in 2D and therefore the mutual distances are seen easily. The above noted relationships 

between the HadGEM, MIROC5 and CNRM clusters are easily interpreted using the layout graph (Fig. 7b). 15 

5 Case study results 

The methodology described in Sect. 3 was applied to the modelled temperature and precipitation changes from the EURO-

CORDEX multi-model ensemble and the respective driving GCMs for eight large European domains (Christensen and 

Christensen, 2007). Here we only show two cases to illustrate the ability of the proposed method to assess the relationships 

within the members of the multi-model ensemble. These two sample cases, DJF tas over BI and JJA pr over EA, were 20 

chosen because they differ in terms of the results obtained by application of the proposed methodology and the results are 

quite illustrative.  

As we analyze simulations incorporating RCP8.5, which assumes a rise in greenhouse gas concentrations during the whole 

21st century, it is not surprising that all models give a rise in DJF near surface air temperature over the BI region throughout 

this period (Fig. 1). The RCMs tend to give generally lower temperature change than their driving GCMs, except for RCMs 25 

driven by CNRMCM, MPIESM and MIROC5. Regarding the simulated changes in summer mean precipitation over the EA 

region (Fig. 2), the model simulations disagree on the sign of precipitation change and the multi-model ensemble has quite a 

large variance. Some RCMs project larger changes than their driving GCMs (e.g. ALADIN driven by CNRMCM), some 

give smaller changes (RCA4 driven by IPSLCM). 

Based on ��, the distances calculated for JJA pr over EA are mostly quite low, lower than 0.25 with a couple of outliers, 30 

namely ALAD_CNRMCM and driving simulations of HadGEM and CSIRO (Fig. 5a). The �� distances for DJF tas over BI 

are more evenly distributed (Fig. 4a), because there are not so distinct outliers. The �� distances are higher than �� values in 

both regions, and generally higher for JJA pr over EA than for the other case (compare panels (b) in Figs. 4 and 5). That 

means that there are less members of the ensemble behaving in a similar manner for the EA case than for the BI case. 

Regarding the influence of the driving GCM on the nested RCM simulation, based on both �� and ��,  for DJF tas over BI 35 

the simulations driven by the same GCM are more clustered together than in case of JJA pr over EA, which is visible by 

comparing Figs. 4 and 5 and confirmed in Figs. 7 and 8. The clustering is stronger for �� results. An evaluation of Fig. 4b 

reveals that for DJF tas over BI the �� distance of the RCM simulation and its driving GCM simulation is close to zero in 

most cases, as well as the mutual distances of RCA4 simulations driven by the same GCM (e.g. MPIESM, NorESM, 

CNRMCM). In case of JJA pr over EA (Fig. 5b) the �� distances tend to be higher and rather independent of the driving 40 

GCM. For example, the distance between the simulations of RCA4 and REMO both driven by MPIESM is larger than the 



9 
 

distances between RCA4 simulations driven by different GCMs. What we “dig in” for in Figs. 4 and 5 is clearly seen on the 

first sight in Figs. 7 and 8, respectively. The configuration of the layout graphs confirms a strong clustering according to the 

driving GCM in the case of DJF tas over BI and higher degree of interaction between GCM and RCM in case of JJA pr over 

EA (compare the corresponding panels in Figs. 7 and 8). 

It is clearly seen that when large-scale phenomena are responsible for output, as in case of temperature changes over BI 5 

region, RCMs tend to be very close to driving GCM, and different GCMs are apart from each other (Figs. 1 and 7). On the 

contrary, when smaller scale processes are more in play, such as in case of JJA precipitation changes over EA, the results are 

more influenced by RCMs (Figs. 2 and 8). This does not automatically imply any real added value in the sense of more 

realistic simulation. Rather, it points to differences in implementation of the local processes in different RCMs. In our case, 

different parameterization schemes employed to simulate convection, microphysical processes in clouds and surface 10 

processes including soil moisture are possible candidates. 

Regarding the three RCM simulations driven by CNRMCM GCM (RCMs denoted here as ALAD, CUNI and RCA4), it has 

been recently revealed that the boundary conditions for the historical period have been flawed with an inconsistency 

(personal communication with members of the EURO-CORDEX community). Specifically, 2D and 3D fields provided to 

the RCMs come from different members of the ensemble of CNRMCM simulations with perturbed initial conditions and 15 

therefore they are mutually out of phase. However, our results do not show any anomalous behaviour of these simulations. 

When we calculated the distances for the curves for first twenty 30-year periods (i.e., those with the central year before 2005, 

which is the end of the historical period) and for the last 20-year periods, we found out that the distance of RCM simulations 

driven by CNRMCM and their driving GCM is smaller for the future period than for the reference one (not shown). That is 

probably partly caused by above mentioned discrepancies in the boundary conditions, but the effect is rather small. 20 

6 Discussion and conclusions 

We have presented an innovative methodology for assessment of the structure of the multi-model ensemble and mutual 

relationships between its members. A case study evaluating the similarities within the EURO-CORDEX multi-model 

ensemble extended by the driving CMIP5 GCM simulations has been performed. Attention has been paid especially to the 

relationship between the driving GCM and nested RCM simulations in terms of temporal development of simulated 25 

temperature and precipitation changes over two European regions. Contrary to previous studies, the assessment takes into 

account not only simulated values for a certain time period (reference or future), but the character of the simulated temporal 

development of studied variables as a whole. This is done by generalization to functional similarity of the time series. To 

evaluate mutual distances of the time series we used two semimetrics based on the Euclidean distances between the 

simulated trajectories (��) and on differences in their first derivatives (��). The similarity between an RCM and its driving 30 

GCM points to a strong forcing and rather low influence of RCM on the simulations of temporal development of the variable 

of interest. The �� distances are bias invariant while similarity evaluated by �� is largely influenced by common biases of 

model simulations. A small �� mutual distance between two simulations does not automatically imply similarity in climate 

change signal for a selected time period, it rather means that the shape of the temporal development is similar.  

In general, the �� similarity indicates agreement in bias and climate change signal, which is influenced by various feedbacks 35 

in the climate system and which might be differently pronounced in different models. The �� similarity points to similar rate 

(speed and sign) of climate change in time which is partly modulated by internal variability of the models which again is 

governed by feedbacks and nonlinearities in climate system.  

Furthermore, we presented a new way to visualize climate model similarities, based on a network spatialization algorithm. 

Instead of arranging the data in a one-dimensional incremental way (like in case of hierarchical cluster analysis resulting in 40 

dendrograms), the data are ordered on a 2-dimensional plane using the layout graphs, which enables an unambiguous 
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interpretation of the results. The interpretation is only made harder by the fact that the graph can be rotated subjectively, the 

algorithm (see Sect. 3.2) only places each data node relatively to all other nodes, but no absolute coordinate system is 

defined. Even so, it is a very illustrative way of visualization of the mutual distances between the members of a multi-model 

ensemble. Unlike similar approach of multidimensional scaling used in Sanderson et al. (2015), which also results in 2-

dimensional visualization of inter-model distances, the layout graphs do not require defining any data node as a central 5 

(reference) point of the whole ensemble.       

Previously, in PRUDENCE and ENSEMBLES projects (predecessors of Euro-CORDEX), the studies of uncertainty and 

GCM-RCM interactions (mainly Déqué et al., 2007 and Déqué et al, 2012) relied on the analysis of variance of the multi-

model ensemble. Quite straightforward and clearly interpretable results suffered from additional uncertainty connected to the 

necessity to fill in values for missing GCM-RCM pairs using some statistical approach. The methodology proposed in 10 

present paper overcomes this issue and uses only the outputs of dynamical models that are available. Further, as already 

mentioned above, the FDA similarities evaluate the whole simulated time series and are not limited to a reference or future 

time period.      

The results of presented case study for two basic climatic variables over two European regions show that the structure of the 

multi-model ensemble and the GCM-RCM interactions can differ substantially in individual cases. Therefore, before the 15 

RCM outputs are used in any applied research (e.g. studies on impacts of projected future climate changes) a thorough 

choice of RCMs to be used is necessary. Present paper offers a convenient tool for such analysis. 

The methodology could be extended to include more climatic variables. Similarly, time series with different temporal 

aggregation (e.g. monthly or annual time series) could be used as input for the analysis. The results of multivariate 

evaluation of the similarities and relationships within the multi-model ensemble could be a basis for selection of 20 

representative models to be used in impact studies. Previously proposed procedures, such as in Mendlik and Gobiet (2016) or 

Herger et al. (2018), could be modified to use the FDA similarities introduced here.  

As explained in the Introduction, the spread of multi-model ensembles is considered as an estimate of structural model 

uncertainty. For analysis of the influence of internal variability on the overall uncertainty, simulations with perturbed initial 

conditions can be used. Unlike GCMs, for RCMs these are not generally available. In Supplement3 a suite of figures 25 

showing FDA similarities between 5 simulations of CNRM GCM with perturbed initial conditions is provided. The aim of 

these figures is to illustrate the range of uncertainty stemming from internal variability. We chose CNRM GCM to maximize 

the number of RCMs driven by this GCM and the number of mini-ensemble members. The figures suggest that for air 

temperature changes the spread of the CNRM mini-ensemble covers almost a half of the multi-model ensemble spread (Fig. 

S3.1). In case of precipitation, the portion of the spread is smaller (Fig. S3.2). The �� and ��distances between the members 30 

of CNRM mini-ensemble are shown in Fig. S3.3 – S3.6. To enable the comparison with the distances for the multi-model 

ensemble, their values before normalization are provided in Fig. S3.7-S3.10.  For air temperature, the maximum inter-model 

distances are almost twice as large as the inter-simulation distances within the CNRM mini-ensemble (compare Fig. S3.3, 

S3.4 and S3.7, S3.8). In case of precipitation, the ��distances between the simulations with perturbed initial conditions are 

very small in comparison to inter-model distances (Fig. S3.5 and S3.9). However, for ��distances the difference is not so 35 

struggling (Fig. S3.6 and S3.10). The fact that the range of uncertainty connected to internal variability is relatively larger (in 

comparison to structural uncertainty) for air temperature than for precipitation probably points to larger overall structural 

uncertainty in case of precipitation than air temperature, i.e. the inter-model differences in simulation of processes connected 

to precipitation changes are larger than in case of air temperature changes. However, we have to keep in mind that presented 

results rely only on a limited number of simulations from one GCM. 40 

Presented methodology does not take model performance explicitly into account. However, the influence of model quality on 

similarity is implicitly included. Worse performing models will likely be further away from good models. Furthermore, 

common modelling deficiencies can lead to common similarities in the validation statistics, and the metric used can account 
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for it. A dissimilarity between the driving GCM and the nested RCM simulations can point to a situation where the GCM 

does not simulate a certain physical process correctly while the RCM improves it. Moreover, the methodology can be easily 

modified to serve as a mean of model performance evaluation through performing the analysis for the reference period and 

including the observed time series. In that case, the results could be used for definition of model weights and calculation of 

weighted multi-model mean. For example, in Sanderson et al. (2017) the model weights are based on inter-model distance 5 

matrices with the distances defined by root mean square difference (RMSD) between the simulations. The FDA similarities 

between model simulations could be used instead of the RMSD. Similarly, the inter-model distances, if calculated for the 

whole CMIP5 GCM ensemble, could serve as a basis for the analysis of inter-model dependencies, as recently discussed for 

example in Annan and Hargreaves (2017). Finally, it can be mentioned that the presented methodology could be extended by 

using the functional principle component analysis (PCA). Nowadays, the functional PCA is a very popular and powerful 10 

exploratory technique. Its applications on real data indicate that it could further improve our results. 

 

Code and/or data availability. The analysis have been conducted within the R environment and using the Gephi software, 

which are both freely available. The R code is made available in the Supplement of this paper (contained in the Rcode.R 

together with npfda.R from Ferraty and Vieu (2006), available at https://www.math.univ-15 

toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html). The underlying data are available via ESGF infrastructure 

(https://www.earthsystemcog.org/projects/cog/). The time series of running 30-year mean temperature and precipitation 

changes used in the presented case study are available in the form of .RData files in the Supplement to this paper. The input 

files for Gephi software can be prepared using the Rcode.R and prepare_graphs.py.  
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Acronym Type Model ID Institute 

CCLM RCM CCLM4-8-17 Climate Limited-area Modelling Community (CLM-Community) 

RCA4 RCM RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre 

ALAD RCM ALADIN53 Centre National de Recherches Meteorologiques 

CUNI RCM RegCM4 Charles University 

CanESM GCM CanESM2 Canadian Centre for Climate Modelling and Analysis 

CNRMCM GCM CNRM-CM5 
Centre National de Recherches Meteorologiques, Meteo-France; Centre 

Europeen de Recherches et de Formation Avancee en Calcul Scientifique 

CSIROx GCM 
CSIRO-

Mk3.6.0 
CSIRO; Queensland Climate Change Centre of Excellence 

GFDLES GCM 
GFDL-

ESM2M 
NOAA Geophysical Fluid Dynamics Laboratory 

HadGEM GCM HadGEM2-ES Met Office Hadley Centre 

IPSLCM GCM 
IPSL-CM5A-

MR 
Institut Pierre Simon Laplace 

MIROC5 GCM MIROC5 
University of Tokyo; National Institute for Environmental Studies  

Agency for Marine-Earth Science and Technology 

MPIESM GCM MPI-ESM-LR Max Planck Institute for Meteorology 

NorESM GCM 
NorESM1-

ME 
Norwegian Climate Centre 
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Acronym Type Model ID Institute 

CCLM RCM CCLM4-8-17 
Climate Limited-area Modelling Community (CLM-

Community) 

REMO RCM REMO2009 
Helmholtz-Zentrum Geesthacht, Climate Service 

Center, Max Planck Institute for Meteorology 

RCA4 RCM RCA4 
Swedish Meteorological and Hydrological Institute, 

Rossby Centre 

ALAD RCM ALADIN53 Centre National de Recherches Meteorologiques 

CUNI RCM RegCM4 Charles University 

CanESM GCM CanESM2 Canadian Centre for Climate Modelling and Analysis 

CNRMCM GCM CNRM-CM5 

Centre National de Recherches Meteorologiques, 

Meteo-France; Centre Europeen de Recherches et de 

Formation Avancee en Calcul Scientifique 

CSIROx GCM 
CSIRO-

Mk3.6.0 

CSIRO; Queensland Climate Change Centre of 

Excellence 

GFDLES GCM GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory 

HadGEM GCM HadGEM2-ES Met Office Hadley Centre 

IPSLCM GCM 
IPSL-CM5A-

MR 
Institut Pierre Simon Laplace, Paris, France 

MIROC5 GCM MIROC5 

University of Tokyo; National Institute for 

Environmental Studies; Japan Agency for Marine-

Earth Science and Technology 

MPIESM GCM MPI-ESM-LR Max Planck Institute for Meteorology 

NorESM GCM NorESM1-ME Norwegian Climate Centre 

 

 

Table 1. List of regional climate models and driving global climate models incorporated in the present study. The first column contains the 

acronyms used throughout the text. Type column indicates whether the model is regional (RCM) or global (GCM).  
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    Driving global climate models 

    CanESM CNRMCM CSIROx GFDLES HadGEM IPSLCM MIROC5 MPIESM NorESM 
R

e
g

io
n

a
l 

cl
im

a
te

 m
o

d
e

ls
 

CCLM 
       

x 
 

RCA4 x x x x x x x x x 

ALAD 
 

x 
       

CUNI 
 

x 
       

REMO               x   

 

Table 2. Matrix of regional climate model simulations and their driving global climate models incorporated in the present study.  
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Figure 1. (a) Temporal development of running 30-year mean changes in winter (DJF) mean air temperature (changes of running 30-year 5 

mean averages throughout the period 1971–2098 in comparison to the reference period 1971–2000) averaged over the British Isles region. 

(b) Smoothed functional data from panel (a), created as described in Sect. 3. The lines in both panels are coloured according to the driving 

global climate model (GCM) and the type of line corresponds to regional climate model (RCM). The acronyms of the model simulations 

are explained in Sect. 2, “dGCM” stands for the driving global climate model simulation. 
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Figure 2. The same as Fig. 1, but for running 30-year mean changes in summer (JJA) mean precipitation (relative changes of running 30-

year mean averages throughout the period 1971–2098 in comparison to the reference period 1971–2000) averaged over the Eastern Europe 

region. 5 
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Figure 3. Illustration of the functional data analysis approach to evaluation of time series similarity. The two arbitrarily chosen time series 

shown here (Model 1 and 2) are evaluated as quite different based on �� but similar based on ��. 
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Figure 4. (a) Heatmap of the �� distances for running 30-year mean changes in winter (DJF) mean air temperature over British Isles (the 

curves shown in Fig. 1b, underlying data in Fig. 1a) with redder colour for larger similarity, brighter colour for smaller similarity between 

respective curves. The values of the semimetric �� are scaled to the interval [0,1]. The acronyms of the model simulations are explained in 5 

Sect. 2. The definition of the distances is explained in Sect. 3.1. (b) The same as (a), but for �� distances.  
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Figure 5. The same as Fig. 4, but for running 30-year mean relative changes in summer (JJA) mean precipitation over Eastern Europe 

region (the curves shown in Fig. 2b, underlying data in Fig. 2a). 
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Figure 6. An example of the dendrogram resulting from hierarchical cluster analysis based on d� distances for running 30-year mean 

changes in winter (DJF) mean air temperature over British Isles (underlying similarity matrix in Fig. 4b).  
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Figure 7. (a) Layout graph based on d� distances for running 30-year mean changes in winter (DJF) mean air temperature over the British 

Isles (underlying similarity matrix in Fig. 4a). (b) The same as (a), but for d� distances (underlying similarity matrix in Fig. 4b). 
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Figure 8. The same as Fig. 7, but for running 30-year mean relative changes in summer (JJA) mean precipitation over Eastern Europe 

region (underlying similarity matrices in respective panels of Fig. 5).  


