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We are grateful for the evaluation of our paper atidhe useful comments and suggestions of bdéraes. We have
considered all of them and revised the manuscripbraingly. Please find below our responses to iipecomments

including the description of the changes made ¢onianuscript. The comments of the referees aréug bur responses in
black. The revisions made are visible in the ravisecument below, only the changes made to Figndl & are not
highlighted.

The Supplement now includes three parts, one istiggnal Supplement with the code for all the ctdtions, the second
part are two figures illustrating the dependencehef dO and d1 distances on the smoothing pararaatethe third part
includes figures related to the analysis of undetfaconnected to internal climate variability, @glained in the text of the

paper.
Responsesto Referee #1

The analysis is quite shallow and it is unclear tb&new method is adding value to pre-existindisti Also references to
important earlier studies (e.g. Deque et al., 2@k2)missing and the relation of the present stadiiese works is missing.
| think it would make the paper much more relevéttie proposed comparison/evaluation with obséovat (see chapter 6)
would be included into the current study.

The comparison with the observations is out ofd¢bepe of our study. We concentrate on simulated 8aries 130 years
long, the observations cover only 45 years of ie @ose to show results only for two European regjias they were
interesting and illustrative. But for model skitl would probably be interesting to show differeagions, and the study
would get disaggregated. Moreover, we pay attenti@inly to the structure of the multi-model enseenbhd overall

uncertainty, independently of model skill, evenugb, as mentioned in the paper, it can be expdtimdthe better the
models, the closer to each other.

Therefore we have not added the comparison witlerolations to present study, mainly because we tttiak the study

would become disaggregated and would lose clarity.

We have added citations of Déqué et al. (2007, pdithe Introduction and to the last section & gaper.

Chapter 3.1: How much do the results depend ortibsen smoothing method and especially on the ibmadtsmoothing
(e.g., instead of the smoothing one could alsothee30 year running mean - which is already smabthand temporal
correlation)?

The results do not strongly depend on the smoothiing dependence is slightly stronger for d1, tugnefor that the
structure of the distances is quite stable fonthele ensemble. We added a comment on this tortti@ethe Sections 3.1:
"The mutual distances of the curves do not strodglyend on the smoothing parameter, as shown inF2dl and S2.2 (see
Supplement 2).The Fig. S2.1 and S2.2 show the results for aitrartty chosen example.

Chapter 5: The results of the case studies are siemijar to earlier findings (e.g. Deque et al.12d Where does the
proposed method add value to the earlier findings?

The aim of our study is not to really reveal nemdfngs regarding the uncertainty of RCM outputsthRg we show a new
methodology framework and illustrate its usage aase study. The advantages of the new methoddlaggd on modern
statistical approach are discussed in the pap@arding the comparison to Déqué et al. (2012), deed a paragraph to the
last section:

.Previously, in PRUDENCE and ENSEMBLES projectse(fgcessors of Euro-CORDEX), the studies of unegytaind
GCM-RCM interactions (mainly Déqué et al., 2007 &hué et al, 2012) relied on the analysis of vace of the multi-
model ensemble. Quite straightforward and cleanltgipretable results suffered from additional uniaarty connected to
the necessity to fill in values for missing RCM-G@Mrs with some statistical approach. The methodglproposed in
present paper overcomes this issue and uses oalgutputs of dynamical models that are availablertier, as already
mentioned above, the FDA similarities evaluatewele simulated time series and are not limited t@ference or future
time period. “

Technical corrections: REMO is missing in Table 1.
We have corrected the Table 1.

In Figures 4, 5 and 6 | would suggest to leavetletdiagonal (bottom left to top right) and resalt®ve or underneath the
diagonal because the information is trivial/redurida

We have changed the Fig. 4 and 5 as suggestedb6 igludes the dendrogram structure, and the Rtifum used for its
creation does not allow leaving out the redundant. pTherefore we could not change the Fig. 6.
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Responsesto Referee #2

The analysis uses only spatially averaged timessdriformation, unlike earlier work (e.g. KnuttiZZ) Sanderson 2015)
which primarily use spatial bias correlation toessssimilarity. By not using spatial informationseems like the authors
are throwing away a lot of potentially useful infeation. This is not a showstopper - but the autlsbisuld acknowledge
that by using both spatial and temporal informatimore meaningful results could probably be obtiine

It is certainly true that the evaluation of spatahulated fields is important. But in current stude have chosen to
concentrate on temporal behaviour of the time seni@raged over the large European regions. Cosauaoif spatial fields
from RCMs and GCMs is complicated, mainly by ladij#erences in spatial resolution and also by défees in effective
spatial resolution (which depends on numerical weshincorporated in the models). We have not figurat how the
spatial information could be incorporated in ourrent setting of the methodology. Spatial fieldsnfr GCMs are much
smoother than RCMs, and therefore if we convertfiglds into functions, the results will be venyfdirent in nature. By
smoothing (regridding) the RCM fields to GCM-likearse resolution would result in throwing away &adbinformation.
But it is probably a good topic for another possiapplication of our methodology framework, to gpiplfor evaluation of
spatial simulated fields, but for an ensemble cgiimg) of simulations with comparable spatial resolu

some parameter sensitivity is required - or attlaasexplanation of why some arbitrary decisionsenmade. The domain
averaging size, for example - a larger averagieg &r precipitation

might result in a less noisy field in which modehgarities are more accurately identified. Simijarthe averaging period
and the parameters of the spline expansion - hogitdee is the method to these choices?

The domains used in our study are the quite laRIRUDENCE” regions very often used for analysis @NRoutputs over
Europe. The results for smaller regions would pbbpde more influenced by internal variability adifferences between
RCMs connected to smaller scale processes andapimgrepresentation.

Regarding the averaging period, we have not evadutite sensitivity of the method. The choice oflérgth of the period
is not basically an arbitrary choice, but it orifies in the fact, that we intended to work withgdarm means as the main
characteristics of climate. And 30-year period & far as our knowledge the most common period fengted in
climatology.

Regarding the parameters of the spline expansierhave analysed the sensitivitydgfandd, distances on the amount of
smoothing of the underlying curves. The resultsaforarbitrarily chosen example are shown in Supetéthand commented
on in the end of Section 3.1. The results do monglly depend on the smoothing. The dependendiglglg stronger ford,,
but even for that the structure of the distancepiite stable for the whole ensemble.

what is the expected noise from climate variahilégd can this be quantified more accurately? @Garatithors use initial
condition ensemble members to identify the expettenimodel distance which arises from climate afitity alone?

The influence of internal variability on RCM simtitan is difficult to be evaluated, as simulationghaperturbed initial
conditions are not available (as far as our knogdgdEarlier findings (Déqué et al., 2007, Déquélet2012, Hawkins and
Sutton, 2009, 2010) suggest that the influencentgfrinal variablity on the overall uncertainty ofnsilated air temperature
and precipitation changes is expected to be rdtiver To investigate the issue we compared the tedat the ensemble
used in our study with a mini-ensemble consisti® simulations of CNRM-CM5 GCM with perturbed iaticonditions
(runs denoted as rlilpl, r10ilpl, r2ilpl,rdilpilp®). We chose this GCM to maximize the numbeRGMs driven by it
and the extent of resulting mini-ensemble. Therguare available in Supplement3 and the residts@nmented on in the
last section of the revised paper:

»As explained in the Introduction, the spread ofltinmodel ensembles is considered as an estimasgtro€tural model

uncertainty. For analysis of the influence of im&rvariability on the overall uncertainty, simulas with perturbed initial
conditions can be used. Unlike GCMs, for RCMs the®enot generally available. In Supplement3 aeswf figures
showing FDA similarities between 5 simulations &fRIM GCM with perturbed initial conditions is proeid. The aim of
these figures is to illustrate the range of uncetyastemming from internal variability. We chosdRM GCM to maximize
the number of RCMs driven by this GCM and the nunalbanini-ensemble members. The figures suggestftnaair
temperature changes the spread of the CNRM mirerehke covers almost a half of the multi-model ebéeispread (Fig.
S3.1). In case of precipitation, the portion of gpgead is smaller (Fig. S3.2). Thgandd,distances between the members
of CNRM mini-ensemble are shown in Fig. S3.3 —.S6enable the comparison with the distances Herrhulti-model
ensemble, their values before normalization arevjgted in Fig. S3.7-S3.10. For air temperature, th@imum inter-model
distances are almost twice as large as the intema$ation distances within the CNRM mini-ensembtem(gare Fig. S3.3,
S3.4 and S3.7, S3.8). In case of precipitationdtléstances between the simulations with perturbéthirconditions are

very small in comparison to inter-model distanceg(S3.5 and S3.9). However, fhdistances the difference is not so
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struggling (Fig. S3.6 and S3.10). The fact thatrdmege of uncertainty connected to internal varldpiis relatively larger
(in comparison to structural uncertainty) for aierhperature than for precipitation probably points larger overall
structural uncertainty in case of precipitation thair temperature, i.e. the inter-model differendassimulation of
processes connected to precipitation changes agefahan in case of air temperature changes. Harewe have to keep

in mind that presented results rely only on a ledihumber of simulations from one GCM.*

Déqué, M., Rowell, D.P., Lithi, D., Giorgi, F., @tensen, J.H. et al.,, 2007. An intercomparisorregfional climate
simulations for Europe: assessing uncertaintiesddel projections. Climatic Change, 81, Supplemegi@&1-52.

Déqué, M., Somot, S., Sanchez-Gomez, E., Goodedd,,Qacob, D., Lenderink, G., Christensen, O(212): The spread
amongst ENSEMBLES regional scenarios: regional afémmodels, driving general circulation models amérannual
variability Climate Dynamics, 2012, 38, 951-964

Hawkins, E., Sutton, R., 2009. The potential taroaruncertainty in regional climate predictions.liBtin of the American
Meteorological Society. DOI: 10.1175/2009BAMS2607.1

Hawkins, E., Sutton, R., 2010: The potential toroaruncertainty in projections of regional preciibn change. Climate
dynamics. DOI: 10.1007/s00382-010-0810-6

the graph plots are nice - but there are precedemite literature for presenting model similastia 2D space, which should
probably be cited here (Sanderson 2015).

We have added a comment to the last section:

“Unlike similar approach of multidimensional scafjrused in Sanderson et al. (2015), which also tesal2-dimensional
visualization of inter-model distances, the laygrgphs do not require defining any data node asiatral (reference) point
of the whole ensemble.”

| feel slightly more could be made of the discussib parent GCMs and embedded RCMs. Figure 4 stgtes the parent
GCMs dominatethe inter-model distances for botlaal® d1 for temperature, but perhaps not for pretipn where there is
clear structure from RCM pairs. This is perhaps ohthe more interesting results from the papend tne authors should
make more of it. Why is this the case, what arenieehanisms? What recommendations would the autheesfor end-
users of CORDEX given this finding?

The mechanisms for different results for DJF tasrd1 and JJA pr over EA are commented on in thpepéSection 5) :

“It is clearly seen that when large-scale phenomana responsible for output, as in case of tempgeathanges over Bl
region, RCMs tend to be very close to driving G@N different GCMs are apart from each other (Figgsand 7). On the
contrary, when smaller scale processes are moigay, such as in case of JJA precipitation chanoesr EA, the results
are more influenced by RCMs (Figs. 2 and 8). Thiesdnot automatically imply any real added valu¢hi@ sense of more
realistic simulation. Rather, it points to diffei@s in implementation of the local processes ifediiit RCMs. In our case,
different parameterization schemes employed to lateuconvection, microphysical processes in cloadsl surface

processes including soil moisture are possible atds.”

Our results are not really representative for amperature and precipitation over the whole Europ#zmain and for all

seasons, but it illustrates that there are larfferdnces between individual cases. Therefore,camenendation for end-
users is that an analysis of GCM-RCM interactiond a thorough choice of representative simulat{@fisis not possible

to use the whole multi-model ensemble) for impaatiies is necessary. Our paper offers a tool foh snalysis. We added
a comment on this into the last sections:

“The results of presented case study for two babinatic variables over two European regions shbattthe structure of
the multi-model ensemble and the GCM-RCM interastican differ substantially in individual casesefédfore, before the
RCM outputs are used in any applied research @&uglies on impacts of projected future climate dem) an analysis of
GCM-RCM interactions and a thorough choice of RGMbe used is necessary. Present paper offers aecient tool for

this purpose.”
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Similarities within a multi-model ensemble: functional data analysis
framework
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'Department of Atmospheric Physics, Faculty of Mathtics and Physics, Charles University, V Hole&k&th 2, Prague,
180 00, Czech Republic
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Republic

Correspondence tdeva Holtanova (Eva.Holtanova@mff.cuni.cz)

Abstract. Despite the abundance of available global andnegiclimate model outputs, their use for evaluatd past and
future climate changes is often complicated by &gl differences between individual simulatioasd the resulting
uncertainties. In this study, we present a methagiolframework for the analysis of multi-model enddes based on
functional data analysis approach. A set of tworitethat generalize the concept of similarity lohee the behaviour of
entire simulated climatic time series, encompasbutt past and future periods, is introduced. Asafaour knowledge, our
method is the first to quantitatively assess sintitss between model simulations based on the teahpsvolution of
simulated values. To evaluate mutual distanceh@ftime series we used two semimetrics based olidEan distances
between the simulated trajectories and on diffexenn their first derivatives. Further, we introdugn innovative way of
visualizing climate model similarities based onetwork spatialization algorithm. Using the layoutghs the data are
ordered on a 2-dimensional plane which enablesnambiguous interpretation of the results. The nebtiscdemonstrated
using two illustrative cases of air temperaturerabe British Isles and precipitation in centralr&ue, simulated by an
ensemble of EURO-CORDEX regional climate models @ed driving global climate models over the 192098 period.
In addition to the sample results, interpretatiomsppects of the applied methodology and its pas®kiensions are also
discussed.

1 Introduction

While numerical climate models serve as the catdow of contemporary climatology, their output® dypically burdened
by distinct uncertainties, manifesting through sabtal differences between individual simulatiokkere, we address the
issue of comparing various climate simulations gudntifying their differences by introducing a nedblogy for analysis
of multi-model ensembles and the relationship betwaested regional climate model simulation andditging global
climate model run. We propose use of a metric gdizang the concept of similarity, based on theoinfiation contained in
the entire simulated climate series, extending fiwistorical to future periods. The evaluation fravek is based on
functional data analysis (further denoted as FD&mnRay and Silverman, 2005, 2007; Ferraty and \4eQ6).

The analysis of uncertainties in climate model atgps a key research topic, especially due taitfeeof model simulations
as inputs for studies of possible future climatanges impacts. The results of the respective agmlysrve as the basis for
important adaptation and mitigation decisions, wdthcritical role belonging to the information onliability of the
projections and the structure of the relevant uaggties. Climate model outputs are subject to ttaggies coming from
various sources, including imperfect initial andibdary conditions, parameterizations of small spateesses or necessary
choices and simplifications in the model struct(memerical schemes, spatial resolution, etc.).datailed discussion see
e.g. Tebaldi and Knutti (2007). When consideringjoral climate models (RCMSs), it is necessary k@ tmto account some

additional factors, mainly connected to the limitategration domain (Laprise et al., 2008) or poissinconsistencies of
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parameterization schemes between driving and neastatkls (Denis et al., 2002). The estimate of theetainties in
climate model outputs must accompany any futureaté change scenario.

One of the most frequently used ways of uncertasgessment is the analysis of multi-model ense(MNME) spread (e.qg.
Belda et al., 2017; Holtanova et al., 2010; Pre¢iale 2011). The main aim of MMEs is to sample tineertainty stemming
from choices in model structure, parameterizatidmeses and, in case of RCMs, also boundary conditiéstimating the
uncertainty range based on the MME spread is mitagghtforward task, as currently available MME§fer from various
deficiencies. One obstacle is raised by the defwes in the statistical experimental design: Medate developed

voluntarily from institutions worldwide. This pradoh is further amplified when designing an ensermbl@CMs. An RCM

is driven by a global climate model (GCM) which leasubstantial effect on the nested simulatiddgué et al., 2007, 2012,
Heinrich et al., 2014). It is not computationalBasible to run all combinations of RCMs with ev&@§M. Therefore, for a

proper uncertainty assessment it is crucial tostigate the interactions between driving GCMs agsted RCMs and their

respective influence on the total MME spread (&ggué et al., 2012Holtanova et al., 2014; Heinrich et al., 2014;
Holtanova and MikSovsky, 2016).

In addition, climate models (even across developirsgitutions) are known to share certain composieleiading to inter-
model similarities and dependencies. This makesfficult to justify the independence assumptionemhquantifying the
uncertainty of MMEs with standard statistical maddtecently, innovative methods have been develapatentify groups
of similar climate models (e.g. Knutti et al., 20Ehd account for the similarities (Annan and Haayes, 2017). However,
these methods quantify model similarity based dmeeitheir behavior in approximating the historicimate or purely on
their projected climate change signals. Some ssudieluded evaluation of the relationship betwesndriving GCM and
nested RCM based on more advanced climatic chaistiie (e.g. Rajczak and Schér, 2017; Crhova aoltHova, 2018),
but their approach to the issue was rather quiaitafs far as our knowledge, our method is th&t fio quantitatively assess
similarities between model simulations based ortehgporal evolution of simulated values.

To illustrate a possible application of the prombseethodology we analyze (dis)similarities betwenembers of the
EURO-CORDEX multi-model ensemble (Jacob et al.,3}@hd their driving GCMs. The inter-model distambetween the
trajectories of the temporal development of runniB@year mean changes in seasonal mean air temperand
precipitation are evaluated. We first assessedithéarities between ensemble members for timeesaaveraged over eight
large European regions defined by Christensen admdst€nsen (2007) that have been widely used fonaté model
assessments (e.g. Rajczak and Schér, 2017; Hoétaral MikSovsky, 2016; Mendlik and Gobiet, 2016¢rélwe show the
results for only two chosen cases, namely the wintean air temperature over the British Isles arshmsummer
precipitation over Eastern Europe. These two cages chosen to illustrate two distinct cases of GREM interaction.

The paper is structured as follows. In Sect. 2BEbRO-CORDEX regional climate models and their driyglobal climate
models are briefly introduced. In Sect. 3 the méthogy is described, including the basic informat@bout the FDA
approach. Sect. 4 explains the application of nalugy framework and Sect. 5 is devoted to dedonpof the results of

the case study. Sect. 6 summarizes key featurthe giroposed framework and offers possible furépgiications.

2 Data

The methodology framework is presented on the sampRCM simulations from the EURO-CORDEX initiagiyJacob et
al., 2013; http://www.euro-cordex.net/) togethethwtheir driving GCMs. We use 13 RCM simulations/en by 9 different
GCMs. All RCM simulations have 0.44° horizontal akegion. The RCM simulations were conducted for plegiod 1951—
2100, with some of them starting in 1971 or endm@098. We therefore concentrate on the periodl42098. After the
year 2006 model simulations incorporated the regmtagive concentration pathway RCP8.5 (van Vuutead.e2011). The
GCM simulations were performed under the CMIP5 qeol (Taylor et al., 2012). The list of models igem in Table 1 and
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the GCM-RCM simulation matrix in Table 2. To idéptindividual simulations, we use the acronyms ¢stinsg of RCM
and GCM abbreviation (as defined in Table 1) cotegbavith underscore character. In case of drivitgMssimulation we
use “dGCM” instead of the RCM identification.

We concentrate on running 30-year mean changesaisosal mean air temperature and precipitatiomn@sof running
30-year mean averages throughout the period 19BB-i2Ocomparison to the reference period 1971-2088)) the purpose
of introducing the methodology, we only present tilistrative cases: winter mean air temperatu@nges over the British
Isles (denoted as DJF tas over Bl, data showndn Fa) and summer precipitation changes over Ha&arope (JJA pr
over EA, Fig. 2a).

3 Methodology
3.1 Functional data analysis approach

We analyzed (dis)similarities between the tempdelelopment of simulated 30-year running mean eaimperature and

precipitation changes. The original dataset coedistf simulated valueg at central years of the 30-year peridds =

1,...,K ranging from 1986 to 2083 (henke= 98) for each model,= 1,...,n These sequences of simulations were converted

to functional form using the B-spline basis systBt), j = 1,...,N Each sequence was approximated by a spline &mcti
X(t) in the form

x(t) = X q1c;Bi(®),i =1,...,n. (1)

The B-splined3;(t) were polynomials of order four with twenty eqyadbaced knots;; were real coefficients in the B-spline
basis. Such use of order four B-splines imph¢d 22 basis functions. Spline functior$t) were constructed in order to
minimize the penalized squared error

n 2 tx [ d? 2
Ty — 0] + ALK [ ®)] de )
with respect to the coefficients. The smoothing parametéwas selected via cross-validation method. The evalidation

was based on the minimization of the following esgsion,

Y YKy — xi(te 4 =], 3)

wherex; (t;, 1, —k)denotes the leave-one-out estimatok;ffj omitting thek-th observationt(,y,). The actual calculation is

based on minimization of the errorxft,A,—Kk) using a smoothing operator — see, e.g., Cravdniahba (1978) for details.

The representative examples of the functional ftata panels (a) of Fig. 1 and 2 are depicted irefg(b) of the respective
figures.

One of the aims of this study was to explore thst filerivative of the response function. Thus, fite derivative curves
x; (t) were expressed in a similar manner, using the &us@ine basis with coefficienq,

xi(t) = XiciBi(t),i =1,...,n. (4)

All subsequent analyses were conducted separatdbpihx(t) andx (t).

For the representation of functional data in diati$software R (R Core Team, 2013), we used tHukage fda (Ramsay et
al., 2017). It provides several basis options forctional data including B-splines presented akerve further functional
data processing techniques.

Since the time series analyzed in the present stwdyrelatively smooth, a metric and a semimetrézeaconstructed to
represent the distance separation between two £uynate that the smaller the cross-distance, thee ramnilar the two
curves are). Such approach seems to be approméstes.g. Pokora et al.(2017). Eendf, be two curves, specifically two
cubic smoothing splines in our case. A well-knowd avidely-used distance between given cufyasdfs,is thelL,-metric,

do(f1,f2). It is a nonnegative number, whose square isiddfas the integral
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d3(fu f2) = [LXTA D — L0, (5)

Let us call this common metric dgdistance (Euclidean distance).

Similarly, a common way to build a semimetric betwetwo curves is to consider the-distance between the first
derivatives of the curves. More precisely, givemw turvesf; andf,, we define thel;-distanced,(f;,f,) to be a nonnegative
number, whose square is given by the integral

d2(fu ) = 1R © ~ f O dt. (6)

Fig. 3 illustrates examples of two parts of timeesethat are evaluated as quite different witlydadistancel, = 112.8 but
similar with relatively small distana®& = 1.56. The main point is that the values of the semiitetare inferred solely based
on the chosen feature (e.g. Euclidean distancé,joand are independent of other time series chaisiits. In Fig. 3 it is
clearly seen that unlike,, thed, semimetric does not take into account the mutims bf the two time series. It only

focuses on the character of their temporal devedopinThe mutual distances of the curves do not strodglyend on the

smoothing parameter, as shown in Fig. S2.1 and (S2&Supplement?).

3.2 Visualization of the similarities

For visualization of mutual distances based on Fi&imetrics we use layout graphs created usingFtireeAtlas2
algorithm (Jacomy et al., 2014) within the Gephitware (https://gephi.org/). In these graphs indixdl members of the
multi-model ensemble are visualized as nodes (eamthel simulation corresponding to a single noddje ForceAtlas?
algorithm creates a force directed layout of théautying data. The network of the nodes is creaiedimulating a physical
system and its movement. The nodes are repulsed dach other in analogy to charged particles. Atdame time the
edges between the nodes attract them like spridgsofny et al., 2014). The iterative procedure odlifig the nodes
positions results in an equilibrium state whichresponds to the final network.

The interpretation of the layout graphs is stréefgfwtard. The closer the nodes are to each other|diver the mutual
distance of corresponding simulations is accordinghe semimetric of interest. The larger the ndicee more close
neighbours, meaning more similar simulations (vétmilarity defined by the values of selected sentimoe The edges

between nearest 10 % of neighbours are made vidihkcolours indicate the driving GCM.

4 Application of the methodology

Figs. 1 and 2 illustrate the data used for thegmesl analysis. The lines are coloured accordingeariving GCM and the
type of line corresponds to RCM. The purpose ofgtesented methodology is to describe the struatithe multi-model
ensemble based on mutual relationships betweeraions over the whole investigated time period awdluate whether
the temporal development of the simulated chargy@gluenced more strongly by the driving GCM oe tiested RCM. The
first step is the calculation of mutual distancesazen the curves corresponding to individual efemembers using the
FDA semimetricsl, andd, defined in Sect. 3. In order to compare two sericge with substantially different range, we
transform the values to the interval [0,1] in bo#tses. To facilitate viewing, we display the resiita pixel plot, see Figs. 4
and 5, with a temperature-colour code (or heatmatty redder colour for larger similarity, brighteolour for smaller
similarity).

Figs. 4 and 5 present the valuesig{panels (a)) and, (panels (b)) distances for the two chosen datgsetented in Figs.
1 and 2. Firstly, there are clear differences betwihe evaluation based énandd, semimetrics, because each of them is
based on different aspects of evaluated curvéswell apparent from the comparison of maximuntagises. In case of JJA
pr over EA (Fig. 5), thd, distance is the largest for driving HadGEM GCM @& HadGEM) and ALADIN RCM driven
by CNRMCM (ALAD_CNRMCM). These two simulations effively represent lower and upper bounds of thetimmubdel
ensemble (Fig. 2). On the other hand, according the most dissimilar time series are GCM simulatibg IPSLCM and
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CNRMCM (Fig. 5b), because their temporal developtes largely an opposite sign, even though theljedtnside” the
multi-model ensemble (Fig. 2).

The second step of the proposed methodology isidmtgatively evaluate and visualize the similabgtween simulations
and their clustering according to their mutual ahsies. This would traditionally be done by meangiefarchical cluster
analysis which arranges the members of the muliehensemble into a dendrogram, as shown for exaimpFig. 6 for
DJF tas over Bl based aeh (R function heatmap.2 from package gplots was usedhe dendrogram creation, see
Supplement). However, the interpretation of thediegrams might not be straightforward and relayive@milar simulations
might be assigned to quite remote clusters. Inex@ample (Fig. 6) this is the case for the simufatiof HadGEM and
CNRM GCMs which are assigned to two remote clustven though their mutud) distances are among the lowest from
the whole ensemble (the same applies to RCM simoukatdriven by these two GCMs, Fig. 4b). Similasulé can be seen in
case of CNRM and MIROC5 GCMs. To overcome this leusle propose an innovative method of visualizatidérthe
similarities based on evaluated semimetrics digtsnihe layout graphs (see Sect. 3.2). Figs. Batw the layout graphs
for the two investigated cases. The main advantddbe layout graphs in comparison to classicalddegrams is that the
structure of the ensemble is shown in 2D and tbeeethe mutual distances are seen easily. The atateel relationships
between the HadGEM, MIROCS5 and CNRM clusters aslyemterpreted using the layout graph (Fig. 7b).

5 Case study results

The methodology described in Sect. 3 was applietieamodelled temperature and precipitation chafiges the EURO-
CORDEX multi-model ensemble and the respectiveingivGCMs for eight large European domains (Chrisé@nand
Christensen, 2007). Here we only show two casdfutrate the ability of the proposed method teess the relationships
within the members of the multi-model ensemble. sehewo sample cases, DJF tas over Bl and JJA pr B&e were
chosen because they differ in terms of the resildtained by application of the proposed methodolagg the results are
quite illustrative.

As we analyze simulations incorporating RCP8.5,civtdssumes a rise in greenhouse gas concentrdtioing the whole
21st century, it is not surprising that all modgilee a rise in DJF near surface air temperature theeBl region throughout
this period (Fig. 1). The RCMs tend to give gerlgrimiwer temperature change than their driving GCkisept for RCMs
driven by CNRMCM, MPIESM and MIROCS5. Regarding #imulated changes in summer mean precipitation thaeeEA
region (Fig. 2), the model simulations disagreghmnsign of precipitation change and the multi-ni@tesemble has quite a
large variance. Some RCMs project larger changas their driving GCMs (e.g. ALADIN driven by CNRMCMsome
give smaller changes (RCA4 driven by IPSLCM).

Based oni,, the distances calculated for JJA pr over EA aostip quite low, lower than 0.25 with a couple aftlgers,
namely ALAD_CNRMCM and driving simulations of Had®Eand CSIRO (Fig. 5a). Th&, distances for DJF tas over Bl
are more evenly distributed (Fig. 4a), becausesthes not so distinct outliers. Thedistances are higher thap values in
both regions, and generally higher for JJA pr dw@rthan for the other case (compare panels (b)igs. and 5). That
means that there are less members of the ensewgtideibg in a similar manner for the EA case tharHte Bl case.
Regarding the influence of the driving GCM on thlested RCM simulation, based on bdthandd,, for DJF tas over Bl
the simulations driven by the same GCM are morsteted together than in case of JJA pr over EAclwig visible by
comparing Figs. 4 and 5 and confirmed in Figs. @ &nThe clustering is stronger féy results. An evaluation of Fig. 4b
reveals that for DJF tas over Bl thiedistance of the RCM simulation and its driving GGlhulation is close to zero in
most cases, as well as the mutual distances of R€idilations driven by the same GCM (e.g. MPIESMyrBSM,
CNRMCM). In case of JJA pr over EA (Fig. 5b) thedistances tend to be higher and rather indeperufettite driving
GCM. For example, the distance between the sinmatdf RCA4 and REMO both driven by MPIESM is lartfean the



10

15

20

25

30

35

40

distances between RCA4 simulations driven by diffieiGCMs. What we “dig in” for in Figs. 4 and 5ciearly seen on the
first sight in Figs. 7 and 8, respectively. The faguration of the layout graphs confirms a strohgstering according to the
driving GCM in the case of DJF tas over Bl and Bigtiegree of interaction between GCM and RCM ire ads)JA pr over
EA (compare the corresponding panels in Figs. 78nd

It is clearly seen that when large-scale phenonsgaaresponsible for output, as in case of temperatbanges over Bl
region, RCMs tend to be very close to driving GGd different GCMs are apart from each other (Figand 7). On the
contrary, when smaller scale processes are mgukayn such as in case of JJA precipitation changes EA, the results are
more influenced by RCMs (Figs. 2 and 8). This dnesautomatically imply any real added value in emse of more
realistic simulation. Rather, it points to diffeos in implementation of the local processes ifediht RCMs. In our case,
different parameterization schemes employed to lsiruconvection, microphysical processes in cloadd surface
processes including soil moisture are possible idanes.

Regarding the three RCM simulations driven by CNRWIGCM (RCMs denoted here as ALAD, CUNI and RCA4has
been recently revealed that the boundary conditfonsthe historical period have been flawed with ianonsistency
(personal communication with members of the EURCRDEX community). Specifically, 2D and 3D fields prded to
the RCMs come from different members of the ensenohlCNRMCM simulations with perturbed initial catidns and
therefore they are mutually out of phase. Howewar,results do not show any anomalous behaviotinefe simulations.
When we calculated the distances for the curvefrkirtwenty 30-year periods (i.e., those with teatral year before 2005,
which is the end of the historical period) andtfoe last 20-year periods, we found out that theadie of RCM simulations
driven by CNRMCM and their driving GCM is smallerfthe future period than for the reference ona ghown). That is

probably partly caused by above mentioned discr@parin the boundary conditions, but the effecatber small.

6 Discussion and conclusions

We have presented an innovative methodology foesassent of the structure of the multi-model ensenalsid mutual
relationships between its members. A case studyuatiag the similarities within the EURO-CORDEX rtiuihodel
ensemble extended by the driving CMIP5 GCM simalaihas been performed. Attention has been paetiedly to the
relationship between the driving GCM and nested R€Nulations in terms of temporal development ohidated
temperature and precipitation changes over two fi@ao regions. Contrary to previous studies, thesassent takes into
account not only simulated values for a certairetperiod (reference or future), but the charactéh® simulated temporal
development of studied variables as a whole. Thidone by generalization to functional similarifytioe time series. To
evaluate mutual distances of the time series wel ta® semimetrics based on the Euclidean distabetaeen the
simulated trajectoriesif) and on differences in their first derivativeg)( The similarity between an RCM and its driving
GCM points to a strong forcing and rather low iefice of RCM on the simulations of temporal develeptof the variable
of interest. Thel, distances are bias invariant while similarity exsdiéd byd, is largely influenced by common biases of
model simulations. A smadl; mutual distance between two simulations does atatnaatically imply similarity in climate
change signal for a selected time period, it ratheans that the shape of the temporal developraesitilar.

In general, thel, similarity indicates agreement in bias and climaiange signal, which is influenced by various beeks

in the climate system and which might be differgptionounced in different models. Thesimilarity points to similar rate
(speed and sign) of climate change in time whichagly modulated by internal variability of the deds which again is
governed by feedbacks and nonlinearities in clinsgitem.

Furthermore, we presented a new way to visualimeaté model similarities, based on a network spasiion algorithm.
Instead of arranging the data in a one-dimensiomaémental way (like in case of hierarchical cbusinalysis resulting in

dendrograms), the data are ordered on a 2-dimealspane using the layout graphs, which enablesumambiguous
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interpretation of the results. The interpretatisronly made harder by the fact that the graph earotated subjectively, the
algorithm (see Sect. 3.2) only places each data methtively to all other nodes, but no absoluterdmate system is
defined. Even so, it is a very illustrative wayvigualization of the mutual distances between teenivers of a multi-model

ensembleUnlike similar approach of multidimensional scaliosed in Sanderson et al. (2015), which also tes$ul 2-

dimensional visualization of inter-model distancd® layout graphs do not require defining any daide as a central

(reference) point of the whole ensemble.
Previously, in PRUDENCE and ENSEMBLES projects @i@eessors of Euro-CORDEX), the studies of uncegtaamd
GCM-RCM interactions (mainly Déqué et al., 2007 @éhué et al, 2012) relied on the analysis of vegaof the multi-

model ensemble. Quite straightforward and cleantigripretable results suffered from additional utaiety connected to the

necessity to fill in values for missing GCM-RCM maiusing some statistical approach. The methodofwgyposed in

present paper overcomes this issue and uses amlgutputs of dynamical models that are availabigther, as already

mentioned above, the FDA similarities evaluatevit®le simulated time series and are not limited r@ference or future

time period.
The results of presented case study for two bdisiatic variables over two European regions shoai the structure of the

multi-model ensemble and the GCM-RCM interactions differ substantially in_individual cases. Theref before the

RCM outputs are used in any applied research &buglies on impacts of projected future climate deah a thorough

choice of RCMs to be used is necessary. Presest péfiers a convenient tool for such analysis.

The methodology could be extended to include mdireatic variables. Similarly, time series with d@ifent temporal
aggregation (e.g. monthly or annual time serieg)iccde used as input for the analysis. The resofitsnultivariate
evaluation of the similarities and relationshipsthivi the multi-model ensemble could be a basis delection of
representative models to be used in impact stuBliesiously proposed procedures, such as in MeadlikGobiet (2016) or
Herger et al. (2018), could be modified to useRB& similarities introduced here.

As explained in the Introduction, the spread of tirmbdel ensembles is considered as an estimatgroftural model

uncertainty. For analysis of the influence of infdrvariability on the overall uncertainty, simudats with perturbed initial

conditions can be used. Unlike GCMs, for RCMs thaee not generally available. In Supplement3 aesait figures

showing FDA similarities between 5 simulations dfiRM GCM with perturbed initial conditions is prowd. The aim of

these figures is to illustrate the range of undeiyasstemming from internal variability. We chos&lRM GCM to maximize

the number of RCMs driven by this GCM and the numifemini-ensemble_members. The figures suggest foraair

temperature changes the spread of the CNRM mirgrabke covers almost a half of the multi-model ersdemspread (Fig.

S3.1). In case of precipitation, the portion of #pgead is smaller (Fig. S3.2). Téeandd, distances between the members

of CNRM mini-ensemble are shown in Fig. S3.3 — S3¥® enable the comparison with the distancesHerrulti-model

ensemble, their values before normalization areigenl in Fig. S3.7-S3.10. For air temperature,nfaximum inter-model

distances are almost twice as large as the inteutation distances within the CNRM mini-ensemblenipare Fig. S3.3,

S3.4 and S3.7, S3.8). In case of precipitationdléstances between the simulations with perturbéahlirtonditions are

very small in comparison to inter-model distandeis).(S3.5 and S3.9). However, f@rdistances the difference is not so

struggling (Fig. S3.6 and S3.10). The fact thatrdme of uncertainty connected to internal valiigds relatively larger (in

comparison to structural uncertainty) for air tenapare than for precipitation probably points togkr overall structural

uncertainty in case of precipitation than air terapgre, i.e. the inter-model differences in simolatof processes connected

to precipitation changes are larger than in casgrdemperature changes. However, we have to keepnd that presented

results rely only on a limited number of simulasdnom one GCM.

Presented methodology does not take model perfaeaxplicitly into account. However, the influerafemodel quality on
similarity is implicitly included. Worse performingiodels will likely be further away from good mosleFurthermore,

common modelling deficiencies can lead to commamilafities in the validation statistics, and thetrizeused can account
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for it. A dissimilarity between the driving GCM arle nested RCM simulations can point to a sitmatithere the GCM
does not simulate a certain physical process diyretile the RCM improves it. Moreover, the metidmhy can be easily
modified to serve as a mean of model performaneduation through performing the analysis for thiemence period and
including the observed time series. In that cdserésults could be used for definition of modeighes and calculation of
weighted multi-model mean. For example, in Sanderdoal. (2017) the model weights are based om-t&lel distance
matrices with the distances defined by root mearasgdifference (RMSD) between the simulations. FB& similarities

between model simulations could be used insteatieoRMSD. Similarly, the inter-model distancescaiculated for the
whole CMIP5 GCM ensemble, could serve as a basithéanalysis of inter-model dependencies, amtbcdiscussed for
example in Annan and Hargreaves (2017). Finallgait be mentioned that the presented methodolagig t@ extended by
using the functional principle component analy$$€4). Nowadays, the functional PCA is a very popaad powerful

exploratory technique. Its applications on reahdatlicate that it could further improve our result

Code and/or data availability. The analysis have been conducted within the R enmient and using the Gephi software,
which are both freely available. The R code is madailable in the Supplement of this paper (comtaiin the Rcode.R
together with npfda.R from Ferraty and Vieu (2006),available at  https://www.math.univ-
toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html).h& underlying data are available via ESGF infrastme
(https://www.earthsystemcog.org/projects/cog/). Timee series of running 30-year mean temperatuk @necipitation
changes used in the presented case study arebdwariahe form of .RData files in the Supplememthis paper. The input

files for Gephi software can be prepared usingRbede.R and prepare_graphs.py.
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Acronym Type Model ID Institute
Climate Limited-area Modelling Community (CLM-
CCLM RCM CCLM4-8-17 Community)
REMO RCM REM 02009 Helmholtz-Zentrum Gees.thacht, Climate Service
Center, Max Planck Institute for Meteorology
RCA4 RCM RCA4 Swedish Meteorological and Hydrological Institute,
— Rossby Centre
ALAD RCM ALADIN53 Centre National de Recherches Meteorologiques
CUNI RCM RegCM4 Charles University
CanESM GCM CanESM2 Canadian Centre for Climate Modelling and Analysis
Centre National de Recherches Meteorologiques,
CNRMCM GCM CNRM-CM5 Meteo-France; Centre Europeen de Recherches et de
Formation Avancee en Calcul Scientifique
CSIRO- CSIRO; Queensland Climate Change Centre of
CIROX GEM Mk3.6.0 Excellence
GFDLES GCM GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory
HadGEM GCM HadGEM2-ES Met Office Hadley Centre
IPSLCM GCM % Institut Pierre Simon Laplace, Paris, France
University of Tokyo; National Institute for
MIROC5 GCM MIROC5 Environmental Studies; Japan Agency for Marine-
Earth Science and Technology
MPIESM GCM MPI-ESM-LR Max Planck Institute for Meteorology
NorESM GCM NorESM1-ME Norwegian Climate Centre

Table 1. List of regional climate models and driving glolsiinate models incorporated in the present stilitig. first column contains the

acronyms used throughout the text. Type columrcatds whether the model is regional (RCM) or gloGLi).
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Driving global climate models

CanESM CNRMCM CSIROx GFDLES HadGEM IPSLCM MIROC5 MPIESM NorESM

2 CCM
©
o
€ RCA4
]
©
£ ALAD
©
2 CUNI
o
»
© REMO

X

Table 2. Matrix of regional climate model simulations aheit driving global climate models incorporatedhe present study.
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Figure 1. (a) Temporal development of running 30-year mean chamg®inter (DJF) mean air temperature (changesimfing 30-year
mean averages throughout the period 1971-2098mpanson to the reference period 1971-2000) avdrager the British Isles region.
(b) Smoothed functional data from panel (a), ciaie described in Sect. 3. The lines in both parelsoloured according to the driving
global climate model (GCM) and the type of line esponds to regional climate model (RCM). The acrongfritie model simulations
are explained in Sect. 2, “dGCM” stands for the idigvglobal climate model simulation.
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Figure 2. The same as Fig. 1, but for running 30-year meam@és in summer (JJA) mean precipitation (relathenges of running 30-
year mean averages throughout the period 1971-B088nparison to the reference period 1971-2008)amed over the Eastern Europe

5 region.
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Figure 3. lllustration of the functional data analysis apmto#o evaluation of time series similarity. The tambitrarily chosen time series

shown here (Model 1 and 2) are evaluated as qiffezeht based o, but similar based od, .
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Figure 4. (a) Heatmap of thé, distances for running 30-year mean changes inew{fllJF) mean air temperature over British Isles (th
curves shown in Fig. 1b, underlying data in Fig. @ih redder colour for larger similarity, brighteolour for smaller similarity between
respective curves. The values of the semimeéyiare scaled to the interval [0,1]. The acronymghefmodel simulations are explained in

Sect. 2. The definition of the distances is ex@dim Sect. 3.1. (b) The same as (a), butlfodistances.
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Figure 5. The same as Fig. 4, but for running 30-year nretative changes in summer (JJA) mean precipitatiegr Eastern Europe

region (the curves shown in Fig. 2b, underlyingadatFig. 2a).
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Figure 6. An example of the dendrogram resulting from hielnéoal cluster analysis based éndistances for running 30-year mean
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changes in winter (DJF) mean air temperature ovitisBisles (underlying similarity matrix in Figba.
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Figure 7. (a) Layout graph based dg distances for running 30-year mean changes inew{iltJF) mean air temperature over the British

Isles (underlying similarity matrix in Fig. 4a).)(®he same as (a), but fdy distances (underlying similarity matrix in Fig.)4b
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Figure 8. The same as Fig. 7, but for running 30-year mekative changes in summer (JJA) mean precipitatioer &astern Europe
region (underlying similarity matrices in respeetpanels of Fig. 5).
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