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Abstract. This paper describes ESM-SnowMIP, an international coordinated modelling effort to evaluate current snow 

schemes against local and global observations in a wide variety of settings, including snow schemes that are included in 

Earth System Models. The project aims at identifying crucial processes and snow characteristics that need to be improved in 

snow models in the context of local- and global-scale modeling. A further objective of ESM-SnowMIP is to better quantify 15 

snow-related feedbacks in the Earth system. ESM-SnowMIP is tightly linked to the Land Surface, Snow and Soil Moisture 

Model Intercomparison Project, which in turn is part of the 6th phase of the Coupled Model Intercomparison Project 

(CMIP6). 

1 Introduction 

Snow is a crucial cryospheric component of the climate system. It perennially covers almost entirely the large continental ice 20 

sheets, and seasonally the Earth’s sea-ice and a large fraction of the Northern ice-free continental areas. Its particular role in 

the Earth system is linked to its physical properties, namely its high albedo and its usually low thermal conductivity. The 

former gives rise to the positive snow-albedo feedback (e.g., Qu and Hall 2014; Flanner et al. 2011) that amplifies global 

climate variations and is thought to contribute to the observed Arctic amplification of the current global warming (e.g., 

Serreze and Barry 2011; Chapin III et al. 2005; Pithan and Mauritsen 2014; Bony et al. 2006) and to the observed 25 

amplification of global warming at high altitudes (Pepin et al. 2015; Palazzi et al. 2017). Similarly, snow acts as a “fast 

climate switch” on shorter (weekly and seasonal) timescales, with observed strong coupling between temperature and snow 

cover (Betts et al. 2014) on regional scales. Thermal insulation of underlying soil in winter strongly influences the soil 

thermal regime and thus the thermal state of permafrost and its carbon balance (e.g., Zhang 2005; Vavrus 2007; Gouttevin et 

al. 2012; Groffman et al. 2001; Park et al. 2015; Cook et al. 2008). In addition, snow influences the ecosystem carbon 30 

balance by protecting low vegetation in winter from frost damage (Sturm et al. 2001) and by conditioning springtime onset 

of the growing season (Pulliainen et al. 2017). Furthermore, substantial impacts of the presence of snow cover on the 

atmospheric circulation have been found (e.g., Cohen et al. 2012; Xu and Dirmeyer 2011; Vernekar et al. 2010); in general, 

the coupling between snow and atmosphere is strongest during the melting season, and the effect of snow was found to last 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-153
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 30 July 2018
c© Author(s) 2018. CC BY 4.0 License.



3 
 

well into the snow-free season because of its delayed effect on soil humidity (Xu and Dirmeyer 2011). Linked to its effect on 

soil humidity, snow has an obvious and profound impact on water availability in snow-dominated regions (Barnett et al. 

2005), and large potential economic impacts of snowpack decrease in a warming climate can be expected regionally (e.g., 

Fyfe et al. 2017). 

Observed global and (predominantly Northern) hemispheric trends of snow cover extent and duration over the recent 5 

decades are consistently negative and linked to the observed warming trends (e.g., Derksen and Brown 2012; Brown and 

Mote 2009; Déry and Brown 2007). Observed snow mass follows similar trends (Cohen et al. 2012; Räisänen 2008), except 

in high Northern latitudes, where warming leads to higher moisture availability (Räisänen 2008; Mote et al. 2018). Global 

and hemispheric seasonal snow mass, extent and snow cover duration is consistently projected to decrease with on-going 

warming (e.g., Brutel-Vuilmet et al. 2013; Thackeray et al. 2016; Mudryk et al. 2017; Collins et al. 2013). 10 

The snow modules included in the global coupled climate models which are used for producing these projections come in 

varying degrees of complexity, from very simple slab models with prescribed physical properties of snow to more 

sophisticated multi-layer models that represent processes such as snowpack compaction, liquid water percolation, snow 

interception and unloading by vegetation etc. in more or less detail. For example, widely varying treatments of vegetation 

masking of snow are suspected to be a major reason for large intermodel variations of the intensity of the snow-albedo 15 

feedback (Qu and Hall 2014; Thackeray et al. 2018). Besides snow modules included in the land-surface parameterization 

packages of large coupled Earth System Models (ESMs), there is a large number of other snow models for a range of 

applications, their degree of complexity depending on the intended applications (e.g., Magnusson et al. 2015). 

It is clear that some important physical processes affecting snow, particularly in very cold conditions, are not captured even 

by the most detailed physically-based snow models (Domine et al. 2016). In addition to these physical processes, accurate 20 

representation of vegetation distribution and parameters are also found to be critical for realistic simulation of surface albedo 

for snow-covered forests (Essery 2013; Loranty et al. 2014; Wang et al. 2016). Interestingly, however, the behaviour of 

many snow models can be emulated with multi-physics models (Essery 2015; Lafaysse et al. 2017). This suggests that in 

spite of their large variety, “many of them draw on a small number of process parameterizations combined in different 

configurations and using different parameter values” (Essery et al. 2013). This gives reason to hope that some persistent 25 

problems of snow models, and some snow-related problems in ESMs, could in fact be tackled fairly easily, sometimes 

simply by careful parameter choices. In ESMs, these problems include, for example, the representation of snow masking by 

vegetation (Essery 2013; Thackeray et al. 2015), the thermal (Cook et al. 2008; Gouttevin et al. 2012) and radiative 

(Thackeray et al. 2015; Flanner et al. 2011) properties of the snowpack, and a resulting persistent large uncertainty 

concerning the emergent strength of the planetary snow albedo feedback (Qu and Hall 2014; Flanner et al. 2011). However, 30 

it is also clear that even if there is a large room of improvement in the snow schemes currently used in ESMs, the current 

knowledge of snow physics also maintains an irreducible uncertainty in snow modeling, even in the most detailed snowpack 

models currently available (Lafaysse et al. 2017). 
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Several model intercomparison exercises focusing on snow, or at least regions that are heavily influenced by the seasonal 

presence of snow, have been carried out in the past, notably the Programme for Intercomparison of Land-Surface 

Parameterization Schemes (Pilps) Phase 2d (Slater et al. 2001) and 2e (Bowling et al. 2003) and SnowMIP Phase 1 

(Etchevers et al. 2004) and Phase 2 (Essery et al. 2009; Rutter et al. 2009). These intercomparisons have highlighted some 

common problems of snow models such as vegetation masking and internal processes affecting snow physical properties 5 

particularly during the melting season, leading to potentially large errors in the simulated date of disappearance of the 

seasonal snow cover. These previous intercomparison exercises have been carried out at small scales, and one important 

conclusion of the most recent one of these, SnowMIP Phase 2, was that the challenge of evaluating snow models at larger 

scales, on which they are often applied, needed to be tackled (Essery et al. 2009). 

The purpose of this paper is to present a new, already ongoing initiative aiming at evaluating a large range of snow models 10 

both at local and large scales, including in particular, but not exclusively, land surface models that are part of the ESMs 

contributing to the current 6th phase of the Coupled Model Intercomparison Project (CMIP6: Eyring et al. 2016), and 

specifically to the Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP: van den Hurk et al. 

2016), which is part of CMIP6. The initiative presented here, called ESM-SnowMIP, is an extension of LS3MIP including 

site-scale evaluation and process studies as well as complementary, snow-specific large-scale (global) simulations and 15 

analyses. 

The overall objectives and rationale of ESM-SnowMIP are presented in the following section. Section 3 describes the 

planned experiments and analysis strategy, presenting some initial results from the site-scale reference simulations. The 

discussion in Section 4 concerns the expected outcome and impacts of ESM-SnowMIP as well as possible future extensions. 

2 Objectives and rationale 20 

The first objective of ESM-SnowMIP is to assess the current state of the art of snow models on spatial scales ranging from 

the site scale to global scales. On the site scale, the availability of longer-term high-quality observations at a larger range of 

sites than in previous intercomparison exercises provides the opportunity for a more comprehensive assessment of the 

current modelling capacity in different climate settings (see the section on reference site simulations). Similarly, on the 

global scale, a wealth of new large-scale observational data sets based on advanced remote-sensing techniques allows for 25 

more meaningful evaluations than has been possible in the past, as will be described in the relevant section below. 

In this respect, one particular motivation of ESM-SnowMIP is to profit from the multi-model CMIP6 setting, and, at the 

same time, make particular snow modelling and observational expertise available to climate modelling groups that in the past 

have not focused their attention on the representation of snow in their coupled models. CMIP6 provides the opportunity to 

evaluate the representation of the historical evolution of seasonal snow in a number of mutually consistent global simulations 30 

with varying degrees of freedom, ranging from global coupled ocean-atmosphere simulations to AMIP-type climate 

simulations with prescribed oceanic boundary conditions (Gates 1992) to land-surface only simulations (LMIP) forced by 
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observationally-based meteorological data (van den Hurk et al. 2016). Combining the evaluation of these global-scale 

simulations with the detailed process-based assessment at the site scale provides an opportunity for substantial progress in 

the representation of snow, particularly in those Earth System Models that have not been evaluated in detail with respect to 

their snow parameterizations. We aim at identifying the optimum degree of complexity required and sufficient in global 

models to simulate snow-related processes satisfyingly on large scales, at identifying previously unrecognized weaknesses in 5 

these models and at identifying feasible ways to correct these by including relevant processes and setting model parameters 

judiciously. Besides the site simulations using the reference model setup, additional simulations at the same scale are 

planned to identify the role of specific processes or snow properties such as snow albedo and thermal conductivity. 

A second objective of ESM-SnowMIP is to allow for a better quantification of snow-related global climate feedbacks. In 

LS3MIP (van den Hurk et al. 2016), simulations extending the Glace-CMIP approach (Seneviratne et al. 2013) are planned 10 

to quantify the combined land-surface feedbacks involving snow and soil moisture on interannual time scales and in the 

context of projected future climate change. Complementary coordinated simulations in ESM-SnowMIP, described in the 

relevant section of this paper, aim at isolating the effect of snow from that of soil moisture. Diagnoses of snow shortwave 

radiative forcing as simulated by the participating ESMs, a metric of the radiative effect of snow cover within the climate 

system (Flanner et al. 2011), complete this aspect of ESM-SnowMIP. 15 

ESM-SnowMIP is part of the World Climate Research Programme (WCRP) Grand Challenge “Melting Ice and Global 

Consequences”1. As such, it is intended to ensure rapid progress in the understanding of snow-related processes and 

feedbacks in the global climate, and their depiction in global climate models in the context of the on-going global changes, 

which are characterized by a rapid decrease of the extent and mass of the global cryosphere. 

3 Experimental design and analysis strategy 20 

As in CMIP6, experiments in ESM-SnowMIP are tiered. Tier 1 simulations are supposed to be carried out by all 

participating groups provided their model structure is adapted to the specific experiment; for example it is obviously 

impossible for a snow model that is not part of an ESM to participate in the coupled experiments, even those that are labeled 

as tier 1. The number of groups participating in tier 2 simulations will necessarily be lower or equal to those participating in 

tier 1 experiments; we anticipate that not all proposed tier 2 experiments will necessarily attract a sufficient number of 25 

participating groups for a meaningful multi-model analysis to be possible. The experiments proposed in ESM-SnowMIP, 

with links to relevant LS3MIP reference simulations where appropriate, are listed in Table 1 and described in detail in this 

section. We start with simulations at the plot scale, part of which have already been carried out and are currently being 

analysed, and then describe global distributed simulations that will be carried out by a subset of the models participating in 

ESM-SnowMIP, namely global land surface models (LSM) that are also components of an ESM. Finally, we describe 30 

planned ESM experiments. 
                                                             
1 http://www.climate-cryosphere.org/activities/grand-challenges 
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3.1 Local scale 

3.1.1 Overview of the sites, models, forcing and evaluation data 

Global snow simulations are subject to uncertainty in the meteorological data used to drive models (whether provided by 

bias corrected reanalyses as in LS3MIP offline land model experiments (van den Hurk et al. 2016) or by coupling with 5 

atmospheric models as in CMIP6), global products providing vegetation and soil characteristics for model parameters are 

often contradictory, and global observations of snow properties for evaluation of models (e.g., for snow density and thermal 

conductivity) are limited. To gain more insight into the behaviour of models in coupled and uncoupled global snow 

simulations, ESM-SnowMIP includes experiments using high-quality driving and evaluation data from well-instrumented 

reference sites. These process-based studies have been enabled by the considerable efforts of organizations maintaining the 10 

sites to compile, quality control, gap fill and publish their data. Even these reference sites cannot provide all of the input data 

required by the most sophisticated snow physics models, such as shortwave radiation partitioned into direct and diffuse 

components and aerosol deposition fluxes. Details of sites used in a first round of ESM-SnowMIP reference site simulations 

that have already been completed are given in Table 2, and temperature and snowfall statistics are shown in Figure 1 (the 

forcing data provide separate rain- and snowfall rates). Alpine, arctic, boreal and maritime sites have been included in the 15 

first round of simulations, and a second round will introduce tundra and glacier sites. The challenges of maintaining 

unattended hydrometeorological measurements in cold and snowy environments and a requirement for multiple years of data 

limit the number of possible sites, but the range of sites and the numbers of years simulated in ESM-SnowMIP far exceed 

those in similar experiments for SnowMIP and PILPS2d. 

Only climate and Earth System Models will be able to perform the global coupled simulations required for CMIP6, but the 20 

local uncoupled reference site simulations for ESM-SnowMIP can be performed by a wider range of models at much lower 

computational expense. Models that have already completed the first round of reference site simulations, listed in Table 3, 

include land surface schemes (LSS) of CMIP6 models, sophisticated snow physics models, hydrological models and multi-

physics ensemble models. 

3.1.2 Tier 1: Reference site simulations (Ref-Site) 25 

Snow water equivalent (SWE) and depth measurements (and therefore also bulk snow density) are available for all of the 

reference sites, and several sites also have albedo, surface temperature and soil temperature measurements. As examples, 

Figure 2 and Figure 3 show measurements and simulations at Col de Porte, which has mild and wet winters, and Sodankylä, 

which is cold and dry. Observations of SWE, snow depth, surface albedo and soil temperature are within the model spread 

and close to means of the model ensemble. At the warmer site, the simulations of SWE and depth spread out rapidly as snow 30 

accumulates, but most of the soil temperature simulations remain within a relatively narrow range. Some models have rather 
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low albedos, leading to early melt, and other models melt the snow too late. Apart from a few outliers, SWE simulations at 

the colder site remain tightly bunched until the spring, but there is a wide spread in winter soil temperature simulations. 

Some models maintain soil temperatures under snow close to 0°C, whereas other models are much too cold. For both sites, 

there is a strong reduction in model temperature spread as soils cool in autumn. 

With several observed variables available for comparison with model outputs and several metrics that can be used for 5 

measuring the match between models and observations, there are many ways in which the reference site simulations could be 

evaluated and ranked. Figure 4 shows one example, in which root mean squared errors in simulated SWE have been 

calculated for each model at each site and normalized by the standard deviation of measured SWE for comparison between 

sites. A value greater than 1 for this metric shows that a model fits variations in the observations no better than the average 

of all observations. Ranking models according to their average error for all sites shows that a couple of models perform well 10 

and a couple perform poorly at all sites, but most models perform well at some sites and poorly at others. Many models have 

larger errors for the forested sites than the open sites and larger errors for warmer sites than colder sites. The ensemble mean 

of the models has lower errors than the majority of the individual models at most of the sites. 

3.1.3 Tier 2 site simulations 

Snow mass balance is influenced by radiated, advected and conducted heat fluxes in the energy balance, and soil temperature 15 

is influenced by snow depth and thermal conductivity. To investigate how these influences differ between models, additional 

experiments are proposed with prescribed snow albedo, with prescribed aerodynamic parameters and with the thermal 

insulation of snow removed. These experiments have not started yet, but pilot studies have been conducted using version 2 

of the Factorial Snow Model (FSM, Essery 2015); this is a multi-physics model designed to run ensembles of simulations 

producing a range of model behaviours by using alternative parametrizations for snow albedo, thermal conductivity, 20 

compaction, liquid water storage and coupling with the atmosphere. The pilot studies using FSM allow validating the 

intended experiment setup, provide a benchmark for model spread, and facilitate the interpretation of the results. 

Fixed snow albedo (FA-Site). Seasonal and subseasonal variations of snow albedo are substantial and strongly influence the 

energy balance of the snowpack. This is particularly important during the melting season when complex processes within the 

snowpack lead to strong and rapid variations of albedo. Positive albedo feedbacks strongly influence melt timing. Snowmelt 25 

timing is a critical climatic variable that is often incorrectly represented in climate and dedicated snow models, but it is 

difficult to untangle the effects of the simulation of snow albedo from other processes because of the strong feedbacks 

involved. An experiment in which snow albedo is fixed to 0.7 (which approximates the CMIP5 multi-model mean peak snow 

albedo for non-boreal snow) will enable evaluation of the effect of seasonal snow albedo variations and biases. 

Differences between an ensemble of fixed snow albedo simulations with FSM and reference simulations for Col de Porte are 30 

shown in Figure 5. Ensemble members differ widely in their responses to the removal of snow albedo feedbacks. Fixing the 

snow albedo prevents it from decreasing as the snow melts and delays the snowmelt. Extending the duration of snow cover 
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as a result delays warming of the soil in spring, leading to large temperature differences when snow remains in a fixed 

albedo simulation but has disappeared in the corresponding reference simulation. 

No suppression of fluxes in stable surface layers over snow (NS-Site). Models generally calculate turbulent heat fluxes in 

the surface layer using exchange coefficients that only depend on surface roughness and wind speed in neutral conditions but 

are reduced in stable conditions by a factor depending on a Richardson number or an Obukhov length. The strength of this 5 

decoupling between the atmosphere and the surface is a major source of uncertainty in climate models and will influence 

how strongly snowmelt responds to warming of the atmosphere. The coupling strength in a model could be quantified by an 

additional experiment in which exchange coefficients are kept fixed at neutral values, or fixed positive Richardson numbers 

are imposed. 

FSM only has a single option for stability adjustment of the surface exchange coefficient, but ensemble members still 10 

respond differently to switching this option off, as seen in Figure 6. Snow-free soil temperatures would also be influenced, so 

the fix is only applied when snow is on the ground. With heat transfers predominantly being downwards from the 

atmosphere to snow, fixing the exchange coefficient increases the heat transfer and warms the snow surface, often leading to 

decreases in snow albedo and earlier melt. The soil warms rapidly in spring when the snow melts, but winter soil 

temperatures can also be increased relative to the reference simulation despite the decrease in insulating snow depth because 15 

of the increased heat flux from the atmosphere. 

No thermal insulation by snow (NI-Site). The low thermal conductivity of snow has major climatic effects on the 

temperature of underlying soils and heat fluxes to the atmosphere that are highly variable and often not well represented in 

climate models (Koven et al. 2013). This insulating effect might be quantified by an experiment in which snow is attributed a 

very high (effectively infinite) thermal conductivity while its other properties (albedo, latent heat of melting, etc.) are kept 20 

unchanged. In practice, the numerical scheme of a model might become unstable for high thermal conductivities and another 

solution might be envisaged, such as resetting the temperature or the net heat flux at the soil-snow interface to that calculated 

at the snow surface. 

In a pilot study, FSM simulations were found to be numerically stable with a fixed 50 W m–1 K–1 thermal conductivity for 

snow, which is much higher than a typical range of 0.05 to 0.5 W m–1 K–1 (Sturm et al. 1997). Results are shown in Figure 7. 25 

Without the insulating effect of snow, the soil freezes even in the relatively mild winters at Col de Porte. Building up a cold 

reservoir in the soil over winter has a secondary effect of delaying snowmelt in spring. Even without the insulating effect, the 

high albedo of snow and energy required for snowmelt reduce the amount of energy to warm the soil, leading to a second 

trough in soil temperature differences between high thermal conductivity and reference simulations. 

Downscaled large-scale forcing (LSF-downscaled-Site). Most of the mid-latitude ESM-SnowMIP reference sites were 30 

established for snow research in mountainous regions and are at higher elevations than much of the surrounding terrain. 

Meteorological variables in large-scale forcing datasets, such as the GSWP3 forcing provided at 0.5° spatial resolution for 

LS3MIP, would therefore be expected to be biased relative to in situ measurements at the sites even if they were perfect on 

the grid scale. Col de Porte, for example, is located at an elevation of 1325 m in the French Chartreuse Mountains but lies 
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within a 0.5° grid cell with an 870 m average elevation. Figure 8a shows that an FSM simulation for winter 2009-2010 at Col 

de Porte with GSWP3 driving data gives almost no snow accumulation; this is because temperature is overestimated, total 

precipitation is underestimated and snowfall is severely underestimated. Site and grid elevations for Sodankylä, in contrast, 

only differ by 40 m. The large-scale simulation shown in Figure 8b is not so strongly influenced by driving data biases. 

Downscaling is commonly required when using regional climate predictions in hydrological impact studies. An ESM-5 

SnowMIP experiment with bias-corrected large-scale driving data will be helpful in using reference site observations and 

simulations to evaluate the performance of models in large-scale simulations. Simply removing average biases in the 

GSWP3 driving data, with no attempt to adjust variations on interannual and shorter timescales, greatly improves the SWE 

simulation for Col de Porte, replacing a massive underestimate with a slight overestimate (Figure 8a). For Sodankylä, 

removing the smaller long-term driving data biases has very little effect on the SWE simulation (Figure 8b). 10 

We expect the Tier 2 site simulations with the individual models to essentially align with the FSM results presented here. 

However, we also expect a varying degree of sensitivity of the various models to the different model parameter and setup 

changes, which will allow identifying specific priorities for continuous development and improvement for each of the 

participating models. 

3.2 Global scale 15 

3.2.1 Large-scale observational data 

Observation-based estimates of SWE and SCF are required for evaluation of historical mean and model spread from ESM-, 

AMIP-, and LMIP- type simulations, as well as prescribed historical SWE and SCF as required for specific experiments. For 

this purpose, we have developed a blended data set of snow analyses from ERA-Interim/Land (Balsamo et al. 2015), 

MERRA (Rienecker et al. 2011), MERRA-2 (Reichle et al. 2017), ERA-Crocus (Brun et al. 2013), ESA-GlobSnow (Takala 20 

et al. 2011), ERA-Brown (Brown et al. 2003) and GLDAS-2 (Rodell et al. 2004). These SWE data sets were assessed 

previously for temporal and spatial consistency (2015), who proposed a climatology derived from a combination of these 

five datasets. 

The rationale for using a blended suite of snow analyses is threefold. First, it provides a measure of historical observational 

uncertainty given by the range of estimates from individual analyses. This is demonstrated in Figure 9, which shows the 25 

daily median and spread (5th-95th percentile) among all seven snow analyses listed above for the 1981-2010 seasonal SWE 

climatology. For a given day, statistics are calculated from the pooled distribution of data across the thirty-year period and 

across all seven data sets. As analyzed in Mudryk et al. (2015), the range across the seven snow analyses likely results from 

differences in the snow schemes within the land surface models, differences in precipitation and temperature in the forcing 

meteorology (from various reanalyses), and the impact of satellite and weather station measurements (used in GlobSnow and 30 

ERA-Brown). Still, the illustrated spread is a useful proxy for observation-based uncertainty (which cannot be determined 
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when a single product is applied for evaluation) and may be used to evaluate the corresponding level of agreement from 

LS3MIP and ESM-SnowMIP simulations over a similar historical period. 

A second reason to use a suite of analyses for MIP evaluation is that uncertainty in the fully characterized bias and error of 

individual data sets provides minimal reason to favor one analysis over another. Furthermore, it has been demonstrated that 

combinations of products have both lower bias and RMSE than individual products when evaluated over domains with in 5 

situ data (Schwaizer et al. 2016). For this reason, a blended combination of snow analyses will be used for time varying 

prescribed SWE simulations (see Section 3.2.2), and could also be used for evaluation of SWE output from simulations 

which are observationally constrained by non-snow related variables. 

Finally, the use of SWE analyses also allows the definition of a mutually consistent set of SCE data by choosing a seasonal 

and climatological SWE threshold above which a grid cell is considered snow-covered. The spread of total NH SCE 10 

estimated from a range of thresholds between 0-10 mm is large (Figure 10; light shading) with much of the uncertainty 

related to very low SWE thresholds (<2 mm), for which reanalysis-based SWE persists on the land surface for physically 

unrealistic amounts of time. Optimization based on satellite-based observations of climatological SCE has identified 5 mm 

as a reasonable choice of threshold (Figure 10; dark shading) for deriving SCE from SWE. 

3.2.2 Global land-only simulations 15 

The global land-only simulations planned in ESM-SnowMIP are designed as complements to a reference historical land 

simulation (Land-Hist) currently carried out in the framework of the LS3MIP project (van den Hurk et al. 2016). The aim of 

this 1850-2014 simulation, using GSWP3 meteorological forcing (Kim et al. 2018), is to provide a land-only simulation 

carried out with the land surface modules used in the CMIP6 ESMs at the same resolution as used in the coupled model, 

allowing to evaluate separately the land surface components of these models and potentially attributing sources of coupled 20 

model biases to the individual coupled model components. The global land simulations planned in ESM-SnowMIP share the 

model setup with this Land-Hist simulation to optimize complementarity. 

Tier 1: Prescribed observed snow water equivalent (SWE-LSM). The relationship between grid-scale snow water 

equivalent (SWE), fractional snow cover and hence surface albedo is complicated and very diverse solutions are presently 

implemented in coupled climate models. Here we propose a prescribed SWE experiment to identify LSM biases that are 25 

linked to the parameterization of surface albedo as a function of snow cover fraction (which in turn is usually a function of 

SWE). The aim is to evaluate the simulated grid-scale albedo in these simulations against satellite-based observations of 

surface albedo. 

Simulated grid-scale surface albedo in the presence of snow can depend explicitly on subgrid-scale topography, 

parameterized patchiness, vegetation cover, snow albedo, and other factors. The vegetation cover dependence includes 30 

explicitly simulated masking of vegetation by snow or vice versa. In particular, the albedo effect of transient snow load on 

trees after snowfall with subsequent unloading due to wind and melting, which is sometimes represented in current-

generation ESM snow modules, should not be offset by too simple a prescription of observed SWE. It should therefore be 
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left up to the modeling groups to decide exactly how SWE is prescribed in their models. However, the model SWE should 

satisfy the condition that the weekly average SWE in the model is close to the observed value (by less than 10% or so). This 

can, for example, be obtained by a Newtonian relaxation of SWE to the weekly average with a time constant of a few days. 

Other state variables of the snow module (e.g., snow internal temperature, water content, snow grain size, etc.) will have to 

be adapted accordingly; again, given the diversity of snow modules, it is impossible to define here exactly how this needs to 5 

be done in general. Note that these considerations also apply for the land-only simulations of LS3MIP in which soil wetness 

and SWE are to be prescribed (van den Hurk et al. 2016). In cases of snow modules where an unequivocal relationship ties 

surface albedo to SWE, it might be sufficient to run only the albedo scheme with prescribed SWE as input. 

While a number of snow analyses are available to serve as prescribed SWE, we recommend the Mudryk et al. (2015) 

combined climatology (see section 0) for ESM-SnowMIP simulations. Because biases in individual products are 10 

compensated through averaging, this dataset represents an improved reference for model evaluation compared to any single 

component dataset (Sospedra-Alfonso et al. 2016), just like a climate model ensemble mean is often preferred over a single 

member. 

The simulated surface albedo will be compared to surface albedo as derived from satellite observations (MODIS (Schaaf et 

al. 2002), APP-x (Wang and Key 2005), GlobAlbedo (Lewis et al. 2012)). In particular, the change in the quality of the 15 

simulated surface albedo, compared to the “free” LS3MIP Land-Hist simulation and the historical CMIP6 simulation will be 

evaluated in order to infer the part of surface albedo errors linked to erroneous snow mass balance. 

Tier 2: Fixed snow albedo (FA-LSM). This is a spatially distributed version of the FA-Site simulation described above. It 

consists of prescribing snow albedo to a fixed value of 0.7. The aim of the experiment is, similar to that of the FA-Site 

simulation, to enable evaluation of the effect of seasonal snow albedo variations and biases in LSMs, although the model 20 

response will depend very much on how snow masking by vegetation is parameterized. 

Simulated snow water equivalent (SWE), fractional snow cover, vegetation masking, etc. will still influence the grid-point 

average surface albedo. The simulation period is 1980-2014, as in the Land-Hist and SWE-LSM simulations. If possible, the 

fixed snow albedo value should also be used over the ice sheets. Correct prescription of snow albedo can be verified by 

checking grid-scale average surface albedo in areas with deep snow cover and low vegetation. In addition, the effect of 25 

vegetation masking on surface albedo in snow-covered areas will be isolated, since the snow-vegetation parameterizations 

will vary between models, but snow albedo will remain fixed. 

This simulation is tightly linked to the LS3MIP Land-Hist offline reference simulation. In synergy with the site simulation 

with prescribed snow albedo (FA-Site), comparison with the same period in the reference simulation allows evaluation of the 

effect of snow albedo in terms of timing of snow melt, winter season surface temperature, energy flux partitioning and 30 

potentially as a source of model biases. In addition, the effect of vegetation masking on surface albedo in snow-covered 

areas will be isolated, since the snow-vegetation parameterizations will vary between models, but snow albedo will remain 

fixed. Again, as in FA-Site, a basic metric to evaluate the effect of prescribed snow albedo will be the duration of snow 

cover (in particular melt onset) in this experiment compared to the reference simulation and observation. Required 
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observations therefore concern snow cover seasonality, in particular snow melt dates, and general climate variables such as 

surface air temperature etc. 

Tier 2: No thermal insulation by snow (NI-LSM). We propose a global LSM simulation with “infinite” snow conductivity 

(that is, no effective thermal insulation by snow) as a global extension of the site-scale experiment NI-Site. Again, this 

simulation will have an identical setup as the relevant reference simulation Land-Hist, except obviously for the prescribed 5 

snow thermal conductivity. However, the models might need to be spun up for a substantial number of years in this setup in 

order to achieve thermal equilibrium at the lowest soil levels.  

In this global setting, simulated potential permafrost extent (that is, the permafrost extent in equilibrium with the prescribed 

climate and model setup; often also termed “near-surface permafrost”, e.g. Lawrence et al. (2008)) and active layer thickness 

will be diagnosed from the thermal state of the lowermost soil layer in the simulations. It will be compared to the 10 

corresponding output of the Land-Hist reference simulation and GTN-P observations (Biskaborn et al. 2015). Required 

reference data are soil temperature measurements and observations and analyses of surface energy fluxes at all seasons in 

areas with seasonal snow cover. Again, in the multi-model context, we expect a relationship between the sensitivity of the 

simulated potential permafrost extent to thermal insulation by soil and diagnosed errors of the simulated near-surface 

permafrost extent, which we hope will be useful to identify ways for model improvement. 15 

Tier 2: Fixed land cover (FLC-LSM). Previous studies show that inaccurate representation of vegetation distribution and 

parameters in LSMs may result in large biases in simulated surface albedo for snow-covered forests (Essery 2013; Wang et 

al. 2016). Most current LSMs represent vegetation from a set of Plant Functional Types (PFTs), which are usually derived 

from global land cover datasets (Bonan et al. 2002; Poulter et al. 2015). There are large differences among PFTs used in 

LSMs, which may result from the differences in the land cover datasets, the cross-walking tables used to map land cover 20 

datasets into PFTs represented in LSMs, or uncertainties in dynamic PFT simulations (Hartley et al. 2017; Poulter et al. 

2011). In order to separate biases due to differences in vegetation distribution from those due to physical processes in LSMs, 

we propose an experiment in which models derive their PFTs from the same land cover dataset and using the same cross-

walking table. 

Several global land cover datasets are available with spatial resolutions ranging from 300m to 1km (Bontemps et al. 2012). 25 

The newly released European Space Agency (ESA) Climate Change Initiative (CCI) land cover datasets are developed 

specifically to address the needs of the climate modelling community (ESA 2017). The CCI maps include 22 level 1 classes 

and 15 level 2 sub-classes based on the United Nations Land Cover Classification System, which was identified as a suitable 

thematic legend and compatible with the PFT concept of most LSMs (Bontemps et al. 2012). While most previous land 

cover datasets are for a single year, the CCI datasets are available from 1992-2015 at 300m resolution (ESA 2017). The finer 30 

spatial resolution of 300m (versus 1km) makes it inherently superior for land cover mapping in heterogeneous landscapes 

where different datasets tend to disagree (Herold et al. 2008; Fritz et al. 2011). In addition, a cross-walking table to convert 

the categorical land cover classes to the fractional area of PFTs was provided with the CCI datasets (Poulter et al. 2015). We 

thus suggest the use of the CCI 2000 as the common land cover dataset from which to derive PFTs. Different models usually 
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have their own unique set of PFTs. For cases in which both the phenology type and the associated climate zone are 

considered, the Koeppen-Geiger climate classification can be used as in Poulter et al. (2015). 

The simulation period of 1980-2014 matches the LS3MIP Land-Hist offline reference simulations. A comparison of the 

surface albedo with the reference simulation will isolate the impact of PFT distribution on surface albedo and associated 

feedbacks in snow-covered areas. Since the PFTs are from the same land cover data in the participating models, the 5 

differences in surface albedo among the models will reveal differences in snow-vegetation interactions and other vegetation 

related parameterizations (e.g. leaf area index) used in the models. 

3.2.3 Coupled global simulation: SnowMIP-rmLC 

ESM-SnowMIP proposes one coupled Tier 1 experiment, which serves the purpose of quantifying snow-related feedbacks in 

the global climate system on interannual time scales. It is designed to separate the effects of snow from the combined effects 10 

of snow and soil humidity, the combined effect being addressed by the LS3MIP Tier 1 coupled experiment LFMIP-rmLC 

(van den Hurk et al. 2016). This LS3MIP experiment uses 30-year running mean land conditions (snow and soil humidity) as 

simulated in a reference transient climate change experiment, and prescribes these in the LFMIP-rmLC experiment. In these 

runs, snow and soil moisture feedbacks on decadal and shorter timescales are muted. Comparing the LFMIP-rmLC 

simulation to the appropriate scenario simulation used for prescribing the land surface conditions allows identifying these 15 

feedbacks. In the context of a transient run, additional diagnoses of geographic shifts of land-atmosphere coupling hotspots 

(Seneviratne et al. 2006) and changes in potential predictability related to land surface (Dirmeyer et al. 2013) can be carried 

out. In order to isolate the effects of snow-atmosphere coupling, we suggest carrying out a simulation in which only the snow 

state is prescribed from the coupled model’s CMIP6 climatology (not the observed climatology). 

For the SnowMIP-rmLC experiment, the LFMIP-rmLC experiment setup is modified such that only the climatological snow 20 

variables (in particular snow water equivalent) are prescribed. Soil moisture and other land surface prognostic state variables 

are allowed to evolve freely. Because of internal variability in the climate system, a 5-member ensemble simulation would 

be ideal, but this is expensive. Similar to the LFMIP-rmLC setup, we propose the first ensemble member as Tier1, and 

suggest 4 other ensemble members as Tier2 (see Table 1). The simulation period is the same as in LFMIP-rmLC, i.e. 1980-

2100. Correct prescription of prescribed snow can be verified easily by comparing the simulated SWE for an individual year 25 

with the simulated climatological (1980-2014) SWE of the free scenario simulation. It should be very close. 

This simulation is linked to the CMIP6 historical simulation and to the LFMIP-rmLC experiments of LS3MIP. The 

SnowMIP-rmLC experiments will allow evaluation of the effect of snow feedbacks on interannual to decadal time scales as 

well as on the centennial climate change signal (since even by the end of the 21st century, the 1980-2014 average snow 

conditions will be used). 30 
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The simulation will be analyzed in parallel to the LFMIP-rmLC simulations, following very closely the methodologies of 

Seneviratne et al. (2013). Required observations are snow cover seasonality, in particular snow melt dates, and general 

climate variables such as surface air temperature, circulation patterns etc. 

3.2.4 Snow Shortwave Radiative Effect diagnosis 

Another useful measure of the impact of snow on climate is the snow shortwave radiative effect (SSRE) (e.g., Flanner et al. 5 

2011; Perket et al. 2014; Singh et al. 2015). For the purposes outlined here, SSRE is the instantaneous change in surface 

absorbed solar energy flux caused by the presence of terrestrial snow. The diagnosis of SSRE provides a precise, overarching 

measure of the snow-induced perturbation to solar absorption in each model, integrating over the variable influences of 

vegetation masking, snow grain size, snow cover fraction, soot content, and other factors. SSRE is also a useful measure for 

climate feedback analysis, and has a direct analog in the widely used “cloud radiative effect”. To enable us to calculate and 10 

to analyze inter-model differences of SSRE and their causes, participating modelling groups are requested to provide specific 

gridded output (see below) from their LS3MIP Land-Hist and Land-Future simulations, as well as from the ESM- SnowMIP 

FA-LSM and SWE-LSM simulations. Ideally, these output fields should also be provided for one or more of the coupled 

atmosphere-ocean simulations, preferably from the historical reference run. 

SSRE can be calculated in a land surface model through the following procedures: 15 

1. Conducting an additional surface albedo calculation at each model timestep with zero snow. This implies setting to 

zero the mass of snow on ground, mass of snow in vegetation canopy, and snow cover fraction, but only for the 

purpose of this diagnostic albedo calculation. It should have no effect on the prognostic snow simulation. 

2. Calculating net and reflected surface solar energy fluxes, each model timestep, using the diagnostic albedo from (1) 

and using the same surface downwelling (incident) flux that would otherwise be used to calculate solar heating. 20 

3. Archiving the diagnostic calculations from (1) and (2) at the same frequency as other model output (e.g., daily or 

monthly). 

The following gridded fields should be provided from the model: 

• Net surface shortwave irradiance calculated without snow (rss_nosno) 

• Mean shortwave surface albedo calculated without snow (albs_nosno) 25 

Net surface solar energy flux in the absence of snow can then be differenced from that calculated with snow (output by 

default) to provide the SSRE. Depending on the spectral resolution of solar energy in each model, it would also be useful to 

provide the visible and near-infrared partitions of these fields: 

• Net surface visible (0.2-0.7µm) irradiance calculated without snow 

• Net surface near-IR (0.7-5.0µm) irradiance calculated without snow 30 

• Mean visible surface albedo calculated without snow 

• Mean near-IR surface albedo calculated without snow 
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Although the no-snow albedo fields are not strictly needed for the calculation of SSRE, they will complement standard 

albedo output from the model to facilitate convenient evaluation and the derivation of hypothetical SSRE from different 

(e.g., clear-sky) surface downwelling irradiance fields. 

3.3 Timeline, data request and data availability 

The first set of reference site simulations (Ref-Site) have already been carried out and are currently being analysed. The 5 

additional site simulations will be carried out in the near future. In 2018 and 2019, the global climate modelling community 

will be heavily involved in CMIP6. To decrease peak work load on the modelling groups while at the same time optimizing 

synergies with the CMIP6 activities and in particular with LS3MIP, it was decided to launch the ESM-SnowMIP simulations 

after the main CMIP6 activities. This has, however, the disadvantage that ESM-SnowMIP global simulation results will not 

be available for analysis in time for the 6th IPCC assessment report. The tentative schedule for the realization of the various 10 

ESM-SnowMIP simulations is indicated in Table 1. 

For these global land-only and coupled simulations, the request for output variables is identical to the LS3MIP data request2 

for the respective reference simulations indicated in Table 1, and the model setup will be very similar, as described in the 

preceding sections of this paper. This further keeps the additional workload for the ESM-SnowMIP coupled simulations to a 

minimum. 15 

The ESM-SnowMIP site simulation output is sufficiently small to be easily handled via a ftp server at one of the 

participating institutes (see the dedicated website at https://www.geos.ed.ac.uk/~ressery/ESM-SnowMIP.html). Gridded 

northern hemisphere SWE data are freely available from the National Snow and Ice Data Center 

(http://nsidc.org/data/NSIDC-0668). Large-scale meteorological forcing (GSWP3) for the distributed simulations, also used 

in LS3MIP, will be made available via the ESGF https://esgf-node.llnl.gov/search/input4mips/. To optimize synergies with 20 

LS3MIP, ESM-SnowMIP will seek endorsement by the WCRP Working Group on Coupled Modeling, which oversees 

CMIP. This will allow ESM-SnowMIP output to be handled via the Earth System Grid Federation3, i.e. the same 

infrastructures as the relevant CMIP6 simulations these simulations are to be compared with. 

4 Discussion 

4.1 Expected outcome and impact of ESM-SnowMIP 25 

The parameterization of “cold” land-surface processes has received varying degrees of attention by climate modelling 

groups. In the framework of CMIP6, there is now a specific type of numeric experiments specifically designed for evaluating 

the land-surface components of the current-generation Earth System models. It is envisaged that these so-called LMIP 

                                                             
2 https://www.earthsystemcog.org/projects/wip/CMIP6DataRequest 
3 https://esgf.llnl.gov/ 
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exercises could become a central component of future CMIP editions (van den Hurk et al. 2016) as part of the so-called 

DECK core experiments (Eyring et al. 2016), along with separate evaluations of the atmospheric and ocean components.  

The specific effort aiming at evaluating and improving the representation of snow in ESMs and in more specific dedicated 

snow models relates to this broader context. It is hoped that ESM-SnowMIP, in conjunction with LS3MIP, will provide a 

clear determination of the current state of the art of snow modelling in the different participating communities and will spur 5 

knowledge transfer between these partially disjoint scientific communities. Snow modules in current-generation ESMs show 

a large range of degrees of sophistication. We expect that ESM groups who have not devoted particular effort to evaluating 

and improving their snow modules in the past will be able to benefit from a clear strategy for priorities of first-order snow 

module enhancements identified within ESM-SnowMIP. For those groups that have already put substantial effort into testing 

and continuously adapting their ESM snow modules or specific snow models, ESM-SnowMIP will be an opportunity to 10 

assess past and determine future priorities for model enhancement.  

The intended assessment of snow-related feedbacks on interannual and longer timescales, including a multi-model 

evaluation of the snow shortwave radiative effect, will hopefully help better constrain the global climate response to 

anthropogenic forcing and better understand regional responses, including the amplification of global warming at high 

Northern latitudes. 15 

4.2 Possible future extensions 

Recent work on tundra snow (Domine et al. 2016) has highlighted the importance and particularity of snow metamorphic 

processes under very cold conditions, specifically in the presence of strong vertical temperature gradients. While wind 

compaction in the absence of shelter by higher vegetation can increase snow density (Sturm et al. 2001) and hence snow 

conductivity, depth hoar formation induced by strong vertical temperature gradients within the snow pack (Derksen et al. 20 

2014, 2009) can substantially reduce the conductivity (Domine et al. 2016). In ESM-SnowMIP, an effort will be made to 

include snow observation sites from tundra environments in the near future (e.g., Boike et al. 2017). However, it is clear that 

in future extensions of ESM-SnowMIP, snow on sea ice and on the polar ice sheets should also move into the focus of 

attention. The physical properties of snow on sea ice are linked to low accumulation rates and strong vertical temperature 

gradients, its spatial heterogeneity, and its peculiar evolution in summer leading to melt ponds on sea ice due to inhibited 25 

drainage of meltwater. These are specificities that are, to our knowledge, often not taken into account in Earth System 

Models; however, snow on sea ice obviously concerns the sea-ice module of the coupled models and thus a slightly different 

community than that mobilized in this first version of ESM-SnowMIP. Assessments of snow on sea ice usually focus on, and 

are usually limited to, snow mass and height (e.g., Blanchard-Wrigglesworth et al. 2015; Hezel et al. 2012). However, an 

extension of the ESM-SnowMIP approach based on combined small- and large-scale evaluation of snow models will 30 
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necessarily be conditioned by the availability of yet scarce observations. In this context, the MOSAIC international Arctic 

drift expedition4 is projected to provide valuable new observations. 

A further obvious future extension of ESM-SnowMIP should tackle snow in extreme polar environments such as Dome C on 

the East Antarctic Plateau or the Greenland Summit; long-term meteorological observations have already been used at these 

locations for testing stand-alone snow models (Libois et al. 2015; Carmagnola et al. 2013). Perennial snow cover evolving 5 

under such extreme conditions would substantially broaden the range of snow types evaluated within our framework. This 

would provide stringent tests for snow models designed to simulate snow types that are extreme but far from rare, as the 

interior regions of the continental polar ice sheets make up an essential part of the perennial cryosphere. 

ESM-SnowMIP combines model evaluation at local and global scales. While snow, and particularly the timing and intensity 

of its melt season, do have important effects on basin-scale hydrology (e.g., Berghuijs et al. 2014; Barnhart et al. 2016; Fyfe 10 

et al. 2017), basin-scale processes exert a less dominant control on snow as such in terms of physical properties. Therefore 

intermediate scales, such as addressed in, e.g., the Rhône-Aggregation Land Surface Scheme Intercomparison Project 

(Boone et al. 2004), are bridged in the current phase of ESM-SnowMIP. However, terrain configuration and vegetation 

distribution, that is, geographical characteristics at intermediate (basin) scales, have an obvious and important effect on the 

snow cover, in particular on snow cover fraction. In the current phase of ESM-SnowMIP, such links are implicitly addressed 15 

through the assessment of snow cover fraction in the prescribed SWE experiment SWE-LSM. In future phases, basin-scale 

properties, processes and characteristics might be addressed more explicitly. A further aspect involving unresolved scales 

that could be tackled in future extensions of ESM-SnowMIP is the high spatial variability of impurities deposed on snow 

surfaces, given the known strong impact of this deposition (Flanner et al. 2007) and model errors that can be induced by not 

taking this effect into account (e.g., Clark et al. 2015). 20 
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Figure 1: Average winter (DJF) temperature and annual snowfall for the ESM-SnowMIP reference sites. 

 

 

 5 
Figure 2: Measurements (red lines), simulations (black lines) and averages of simulations (blue lines) of SWE, snow depth, albedo 
and soil temperature at 20 cm depth for Col de Porte, averaged over October 1994 to September 2014. 
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Figure 3: As Figure 2, but for October 2007 to September 2014 at Sodankylä (albedo measurements are not available for the snow 
surface). 

 

 5 

 
Figure 4: Normalized root mean square SWE errors for the 26 non-ensemble models in Table 3 returning a single simulation for 
each site (white symbols) and the 26 model ensemble mean (black symbols), with simulations identified by circles at open sites and 
triangles at forested sites. (a) Models ranked according to their average error for all sites. (b) Errors for all models at each site (for 
abbreviations see Figure 4). 10 
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Figure 5: Differences between FSM ensembles of fixed albedo and Correct prescription reference simulations for Col de Porte, 
averaged over October 1994 to September 2014. 

 
Figure 6: As Figure 5, but for differences between FSM ensembles of simulations with a fixed surface exchange coefficient over 5 
snow and reference simulations. 
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Figure 7: As Figure 5, but for differences between FSM ensembles of simulations with very high thermal conductivity for snow 
and reference simulations. 

 

 5 
Figure 8: Simulations with a single FSM ensemble member and in situ driving data (dashed black lines), large-scale GSWP3 
driving data (solid black lines) or bias-corrected GSWP3 driving data (blue lines) compared with in situ SWE measurements (red 
lines) for 2009-2010 at (a) Col de Porte and (b) Sodankylä. 
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Figure 9: Daily median and spread (5th—95th percentile) among all seven snow analyses listed above for the 1981—2010 period. 

 
Figure 10: (a) Daily median and spread (5th-95th percentile) among all seven snow analyses for SCE calculated using a 5mm SWE 
threshold (solid curve and dark shading) and spread calculated using a range of thresholds between 0-10mm (light shading). (b) 5 
January and May SCE for four choices of thresholds. 

 

 

 

 10 
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Experiment 

name 
Tier  

Experiment 

description / 

design 

Con-

figu-

ration 

Start 

End 

#Yrs 

per 

run 

Ens. 

size 

#Yrs 

total  

Science 

question and/or 

gap addressed 

with this 

experiment 

Possible 

synergies with 

other runs 

Run 

schedule 

Ref-Site 1 
Site reference 

simulations 
LND 1D 

Variable 

 

Evaluate snow 

model on site 

scale 

LS3MIP 

LMIP-H 
2017- 

FA-Site 2 

Site 

simulations, 

prescribed 

constant snow 

albedo 

LND 1D Variable 

Evaluate effect 

of snow albedo 

variations 

Ref-Site 2018- 

NS-Site 2 

Site 

simulations, 

prescribed 

neutral 

exchange 

coefficient 

LND 1D Variable 

Quantify effect 

of melt-induced 

near-surface 

temperature 

inversions  

Ref-Site 2018- 

NI-Site 2 

Site 

simulations, no 

soil insulation  

LND 1D Variable 

Diagnose snow 

soil insulation 

effect 

Ref-Site 2018- 

LSF-down-

scaled-Site 
2 

Site 

simulations, 

downscaled 

forcing 

LND 1D Variable 

Evaluate impact 

of downscaled 

gridded forcing 

in complex 

topography 

Ref-Site 2018- 

SWE-LSM 1 

Prescribed 

observed snow 

water 

equivalent  

 

LND 

 

1980-

2014 

 

35 1 35 

Evaluate link 

between snow 

mass and snow 

fraction 

Land-Hist 

(LS3MIP) 
2019- 

FA-LSM 2 

Land only 

simulation, 

prescribed 

constant snow 

albedo 

LND 
1980-

2014 
35 1 35 

Evaluate effect 

of snow albedo 

variations 

Land-Hist 

(LS3MIP) 
2019- 

NI-LSM 2 

Land only 

simulation, no 

soil insulation 

LND 
1850-

2014 
165 1 165 

Diagnose snow 

soil insulation 

effect 

Land-Hist 

(LS3MIP) 
2019- 

FLC-LSM 2 Land only LND 1980- 35 1 35 Diagnose effect Land-Hist 2019- 
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Table 1: Proposed ESM-SnowMIP simulations. Configurations are: LND 1D: Site-scale 1d (column); LND: Global land 
simulations with LSMs; LND-ATM-OC: Coupled land-atmosphere-ocean simulations. 

 

Site Latitude Longitude Elevation Period Type Reference 

BERMS5 Old Aspen, Canada 

(oas) 
53.63°N  106.20°W 600 m 

1997-

2010 

Boreal Bartlett et al. 

(2006) 

BERMS Old Black Spruce, 

Canada (obs) 
53.99°N 105.12°W 629 m 

1997-

2010 

Boreal Bartlett et al. 

(2006) 

BERMS Old Jack Pine, 

Canada (ojp) 
53.92°N 104.69°W 579 m 

1997-

2010 

Boreal Bartlett et al. 

(2006) 

Col de Porte, France (cdp) 45.30°N 5.77°E 1325 m 
1994-

2014 

Alpine Morin et al. 

(2012) 

Reynolds Mountain East, 

USA (rme) 
43.06°N 116.75°W 2060 m 

1988-

2008 

Alpine Reba et al. 

(2011) 

Sapporo, Japan (sap)      43.08°N 141.34°E 15 m 
2005-

2015 

Maritime Niwano et al. 

(2012) 

Senator Beck, USA (snb) 37.91°N 107.73°W 3714 m 
2005-

2015 

Alpine Landry et al. 

(2014) 

Sodankylä, Finland (sod) 67.37°N 26.63°E 179 m 
2007-

2014 

Arctic Essery et al. 

(2016) 

Swamp Angel, USA (swa) 37.91°N 107.71°W 3371 m 
2005-

2015 

Alpine Landry et al. 

(2014) 

Weissfluhjoch, Switzerland 

(wfj) 
46.83°N 9.81°E 2540 m 

1996-

2016 

Alpine 
WSL (2017) 

Table 2: ESM-SnowMIP reference sites with abbreviations used in Figure 4. 5 

                                                             
5 BERMS = Boreal Ecosystem Research and Monitoring Sites 

simulation, 

prescribed 

common land 

cover 

2014 of varying 

prescribed land 

covers 

(LS3MIP) 

SnowMIP-

rmLC 
1 (2) 

Prescribed 

snow 

conditions 30-

year running 

mean 

 

LND-

ATM-OC 

 

1980- 

2100 

 

121 1 (+4) 
121 

(+484) 

Diagnose snow-

climate 

feedback 

including ocean 

response 

CMIP6 

historical, 

Scenario-MIP, 

LFMIP-rmLC 

2019- 
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Model Type 

BCC_AVIM LSS in BCC-ESM 

CABLE LSS in ACCESS 

CRHM hydrological model 

CLASS LSS in CanESM 

CLM5 LSS in CESM 

CoLM LSS in BNU-ESM and CAS-ESM 

Crocus snow physics model 

ecearth LSS in EC-EARTH 

ESCIMO snow surface energy balance model 

ESCROC multi-physics snow model (35-member ensemble) 

FSM multi-physics snow model (32-member ensemble) 

htessel LSS of ECMWF operational forecasting system 

htesselML LSS of ECMWF forecasting system (research) 

ISBA-ES LSS in CNRM-CM 

ISBA-MEB LSS in CNRM-CM 

JSBACH LSS in MPI-ESM 

JSBACH3_PF LSS in MPI-ESM 

JULES LSS in UKESM 

MATSIRO LSS in MIROC 

MOSES LSS in HadCM3 

ORCHIDEE-E LSS in IPSL-CM 

ORCHIDEE-I LSS in IPSL-CM 

RUC LSS in NOAA/NCEP operational forecasting systems 

SMAP snow physics model 

SNOWPACK snow physics model 

SPONSOR hydrological model 

SWAP LSS 

VEG3D soil and vegetation model 

Table 3: Models performing ESM-SnowMIP reference site simulations. 
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