"PIC v1.3: Comprehensive R package for permafrost indices computing with daily weather observations and atmospheric forcing over the Qinghai–Tibet Plateau"

by Lihui Luo et al.

We thank Anonymous Reviewer #1 for the valuable feedback, which helped us to improve the manuscript. Please find below the Reviewer comments in black, Author responses in green, and Changes to the manuscript in blue.

Response to reviewer comment 1:

In this manuscript the authors introduce the "PIC" R-package for computing permafrost indices over the Qinghai-Tibet Plateau (QTP). The package can calculate temperature/depth-related indices to estimate

- 15 the possible change trends of frozen soil in the QTP, and provides over 10 statistical methods, a sequential Mann-Kendall trend test and spatial trend method to evaluate the permafrost indices. The package also provides multiple visual options to display the temporal and spatial variabilities on the stations and region. Along with the package, a dataset from 52 permanent meteorological stations across the QTP is prepared and the authors use it to demonstrate the temporal-spatial change trends of Tibetan permafrost with the
- 20 climate.

5

10

The manuscript demonstrates some basic usages of PIC package. Although the authors state that the PIC package can be employed for a comprehensive analysis and can be used to validate the simulated results of the region, there's no such application presented in the current manuscript, therefore it's difficult to find the advantages of this package. On the other hand, a reasonable summarizing and categorizing the

- 25 frozen indices developed in this package would be very useful for permafrost community, it's not available in the current manuscript. Overall, the manuscript is not well written and needs to be better organized. I do not recommend it for publication at the current stage, it could be reconsidered if the following points are addressed.
- 30 Thanks for your insightful comments. In revising the paper, we have carefully considered your comments and suggestions. We agree with your comments on data, parameters, simulation verification, extensibility of the package, and so on. To address these concerns, we make the following modifications to the manuscript: (1) Reorganized the manuscript structure; (2) Added the preparation of datasets and parameters, and comparative analysis between simulations and observations; (3) Modified many
- **35** inappropriate expression; (4) Highlighted the importance of the transparency and repeatability in permafrost modeling, especially for the current permafrost study in the Qinghai-Tibet Plateau, openness and sharing are extremely important from data, parameters, model codes, computational processes, simulation output, statistical analysis to visualization; (5) Improved the flow of the manuscript language (Figure R1). We tried our best to address each of your points in detail. We feel the revision represents an

improvement and hope you do also. For more details, please see our replies below.

EDITORIAL CERTIFICATE

This document certifies that the manuscript listed below was edited for proper English language, grammar, punctuation, spelling, and overall style by one or more of the highly qualified native English speaking editors at American Journal Experts.

Manuscript title: PIC v1.2: Comprehensive R package for permafrost indices computing with daily weather observations and atmospheric forcing over the Qinghai–Tibet Plateau

> Authors: Lihui Luo, Zhongqiong Zhang, Wei Ma, Shuhua Yi, Yanli Zhuang

> > Date Issued: May 4, 2018

Certificate Verification Key: 0F39-05E1-2A03-E17C-F3E0

This certificate may be verified at www.aje.com/certificate. This document certifies that the manuscript listed above was edited for proper English language, grammar, punctuation, spelling, and overall style by one or more of the highly qualified native English speaking editors at American Journal Experts. Neither the research content nor the authors' intentions were altered in any way during the editing process. Documents receiving this certification should be English-ready for publication; however, the author has the ability to accept or reject our suggestions and changes. To verify the final AJE edited version, please visit our verification page. If you have any questions or concerns about this edited document, please contact American Journal Experts at support@aje.com.

American Journal Experts provides a range of editing, translation and manuscript services for researchers and publishers around the world. Our top-quality PhD editors are all native English speakers from America's top universities. Our editors come from nearly every research field and possess the highest qualifications to edit research manuscripts written by non-native English speakers. Tromore information about our company, services and partner discounts, please versitien www.aje.com.

Figure R1. Editorial Certificate.

5 Specific comments:

20

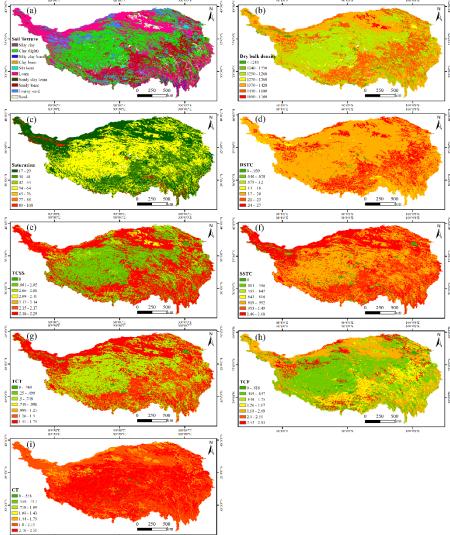
1. It's mentioned that GLDAS and the weather station data of the surrounding QTEC were merged to produce a new data set, while it's not clear how this is done.

The main data processing workflow is as follows:

- 10 (1) Data pre-processing. There are a lot of details to be considered in the pre-processing workflow, such as time conversion, null value, unit conversion, and height correction in different datasets. For time conversion, China Meteorological Administration (CMA) data is based on Beijing time, while Beijing time is 8 hours earlier than time of Global Land Data Assimilation System (GLDAS). So the time of GLDAS data needs to be converted to coincide with CMA time. For height correction, the height of
- variables of the two datasets is different and needs to be revised according to the corresponding formula.
 (2) Spatial interpolation of GLDAS. Higher spatial resolution data can be obtained through the spatial interpolation, which used bilinear interpolation method to implement spatial downscaling from 0.25° of GLDAS to 0.10°.

(3) Spatial interpolation of CMA. Spatial distribution of the CMA data can be obtained through transparent analysis and spatial interpolation of ground-based observations using ANUSPLIN package.

(4) Offset correction. The higher spatial resolution data was calibrated with correction parameters obtained from differences between the GLDAS data and the CMA data.


(5) Data post-processing. Post-processing mainly includes files segmentation, data compression, format conversion and so on.

We have updated the sentence as follows:

"The Qinghai-Tibet Engineering Corridor (QTEC), located at the centre of the QTP, was selected in preparing the atmospheric forcing data. Global Land Data Assimilation System (GLDAS, https://ldas.gsfc.nasa.gov) and the weather station data of the surrounding QTEC were merged through spatial interpolation and offset correction to produce a new data set for 1980 to 2010 with a daily 0.1° temporal-spatial resolution. An atmospheric forcing dataset was used as the input data for the PIC v1.3 regional calculation."

Please give concrete description on the parameters for the ground conditions, such as thermal
 conductivity of ground in thawed/frozen states, how were these parameters estimated or retrieved? their typical values and ranges at QTP.

We added the process of preparing the parameters in "3 Data and parameters" section. The computing parameters for whole processing can be found in Figure R2. We selected 4 input spatial parameters as Figure 3 of the manuscript

15 Figure 3 of the manuscript.

5

Figure R2: Computing parameters for PIC v1.3 over the Qinghai-Tibet Plateau. (a) soil texture classification based on HWSD data; (b) dry bulk density ρ ; (c) soil saturated water content θ s; (d) thermal conductivity of dry soil λ_{dry} ; (e) thermal conductivity of soil solids λ_s ; (f) saturated soil thermal

conductivity λ_{sat} ; (g) thermal conductivity of ground in thawed state λ_t ; (h) thermal conductivity of ground in frozen state λ_f ; (i) volumetric heat capacity during thawing C_T .

3.3 Parameters

- 5 The parameters for the ground conditions were based on soil property data and field observations. The parameter data have two sets: one for weather stations and another for the QTEC region. The Harmonized World Soil Database (HWSD, version 1.21) provides information on soil parameters that are available for evaluating soil thermal conductivity with field observations and can be used as input parameters to the PIC v1.3 package (Bicheron et al., 2008; Nachtergaele et al., 2009). The thermal conductivity of ground in a thawed/frozen state, λt and λf, can be computed through the joint parameterization scheme
 - $\lambda_{drv} = \frac{0.135 \times \rho + 64.7}{2700 \times 0.47 \times r}$

of the Johansen method (Johansen, 1977) and Luo parameterization (Luo et al., 2009):

$$2700-0.947 \times p$$

(25)

$$\lambda_s = \lambda_q^{\ q} \times \lambda_o^{1-q} \tag{26}$$

$$\lambda_{sat} = \lambda_s^{1-\theta_s} \times \lambda_w^{\theta_s} \tag{27}$$

$$15 \qquad S_r = \frac{\theta}{\theta_s} \tag{28}$$

$$K_{et} = \frac{K_t \times S_r}{1 + (K_t - 1) \times S_r} \tag{29}$$

$$K_{ef} = \frac{K_f \times S_r}{1 + (K_f - 1) \times S_r}$$
(30)

$$\lambda_t = (\lambda_{sat} - \lambda_{dry})K_{et} + \lambda_{dry} \tag{31}$$

$$\lambda_f = (\lambda_{sat} - \lambda_{dry}) K_{ef} + \lambda_{dry} \tag{32}$$

- 20 where the soil thermal conductivity of dry soil λ_{dry} depends on dry bulk density ρ , the thermal conductivity of soil solids λ_s varies with the gravel content q, λ_q is the thermal conductivity of quartz (7.7 W m⁻¹ K⁻¹), λ_0 is the thermal conductivity of other minerals (2.0 W m⁻¹ K⁻¹), and q is the gravel content in the soil. The saturated soil thermal conductivity λ_{sat} depends on the thermal conductivity of soil solids λ_s , liquid water λ_w (0.594 W m⁻¹ K⁻¹), and the soil saturated water content θ_s . The degree of saturation S_r
- 25 is a function of the soil water content, θ and soil saturated water content, θ_s . The Kersten numbers in the thawed/frozen state, K_{et} and K_{ef}, are two functions of the degree of saturation S_r, and K values in the thawed/frozen state, K_t and K_f, ρ , q and θ_s come from the T_BULK_DENSITY, T_GRAVEL, and T_BS fields of the HWSD.

The volumetric heat capacity during thawing, C_T , is given as :

$$C_T = (C_s + \theta \times C_w) \times \rho$$

(33)

Where C_w is specific heat of liquid water (4.18 kJ kg⁻³ K⁻¹), Cs is soil specific heat capacity. θ , Cs, Kt and Kf in different soil textures can be found in Table 3, these four parameters are empirical parameters used to explain different soil texture types based on soil texture, thermal conductivities and specific heat capacity derived from soil sampling along the QTEC. Figure 3 shows these input spatial parameters over the QTP.

10

5

Table 3: Parameters of thermal conductivity in the thawed/frozen state. The UADS Code came from soil
texture classification of United States Department of Agriculture (USDA). The Qinghai-Tibet Plateau
does not have the 1 and 8 of soil classification codes. θ : soil water content; K_t : K value in thawed state;
K _f : K value in frozen state; C _s : soil specific heat capacity (kJ/kg K).

USDA Code	Soil Texture	θ	K _t	\mathbf{K}_{f}	Cs
1	clay(heavy)	0.17	1.90	0.85	1.00
2	silty clay	0.17	1.90	0.85	1.00
3	clay (light)	0.17	1.90	0.85	0.92
4	silty clay loam	0.17	1.90	0.85	0.92
5	clay loam	0.17	1.90	0.85	0.92
6	silt	0.17	1.90	0.85	0.87
7	silt loam	0.17	1.90	0.85	0.87
8	sandy clay	0.15	3.55	0.85	0.84
9	loam	0.15	3.55	0.95	0.84
10	sandy clay loam	0.15	3.55	0.95	0.84
11	sandy loam	0.15	3.55	0.95	0.84
12	loamy sand	0.06	4.60	1.70	0.79
13	sand	0.06	4.60	1.70	0.79

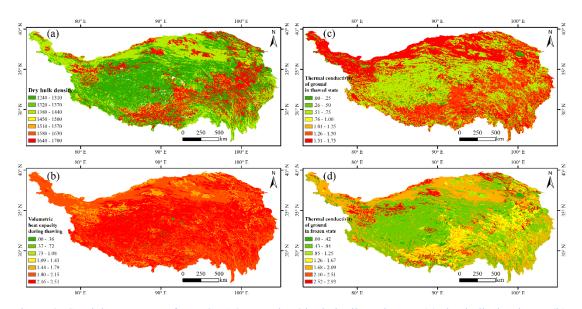


Figure 3: Spatial parameters for PIC v1.3 over the Qinghai-Tibet Plateau. (a) dry bulk density p; (b)

volumetric heat capacity during thawing CT; (c) thermal conductivity of ground in thawed state λt ; (d) thermal conductivity of ground in frozen state λf .

In Discussion section "5.3 Limitations and uncertainties", we added parameter uncertainties.

5 "Second, the heterogeneity in ground conditions of the QTP also brings along uncertainties of parameter preparation."

3. It's mentioned several times that the PIC package integrates meteorological observations, remote sensing data, and field measurements to compute the factors or indices of permafrost and seasonal frozen soil. But from the manuscript, there's no description on how remote sensing data is integrated. It's also

10 soil. But from the manuscript, there's no description on how remote sensing data is integrated. It's also mentioned that the package integrates model simulations, it's not clear what model simulations refer to.

The Global Land Data Assimilation System (GLDAS) data and Harmonized World Soil Database (HWSD) came from remote sensing data. The spatial data with GLDAS and weather station data was

- 15 called the gridded meteorological and soil datasets could be a more precise description. We changed "remote sensing data" to "gridded meteorological and soil datasets". Model simulations, in fact, is the operation of the PIC package. We changed "model simulation" to "permafrost modeling". In some statements, we still keep "simulation" the word.
- 20 4. In Discussion, the authors state the simulation results from the PIC package show widespread permafrost degradation in QTP and the temporal-spatial trends of the permafrost conditions in QTP are consistent with previous studies. While there's no material results presented here to validate or compare with previous published literatures.
- 25 The QTEC is the most accessible area of the QTP. Most boreholes were drilled in the QTEC to monitor changes of permafrost conditions, and this monitoring data provides support for model performance evaluation. Figure 7 and 8 provide the temporal-spatial change trends of the permafrost conditions using active layer thickness (ALT), and we added Table 5 to evaluated the PIC v1.3 simulation performance in "5.1 PIC performance"
- 30

"Climate change indicates a pronounced warming and permafrost degradation in the QTP with active layer deepening (Chen et al., 2013; Cheng and Wu, 2007b; Wu and Zhang, 2010; Wu et al., 2010), and both the simulation of stations and the region in PIC v1.3 also show widespread permafrost degradation (Figures 4-8). Meanwhile, as shown in Figures 7 & 8, the permafrost in the QTEC also continued to thaw,

- 35 with the ALT growing. The QTEC is the most accessible area of the QTP. Most boreholes were drilled in the QTEC to monitor changes of permafrost conditions, and this monitoring data provides support for model performance evaluation. Meanwhile, ALT was widely used, so we adopted the permafrost index to estimate PIC v1.3 simulation performance. The simulated PIC v1.3 ALT and previous literature in the QTEC are compared in Table 5. The increasing rate of ALT averaged 0.50-7.50 cm yr⁻¹. The rate during
- 40 the 1990s to 2010s was greater at more than 4.00 cm yr⁻¹, than during 1980 to the 1990s, at approximately 2.00 cm yr⁻¹. Though both the observed and the simulated ALT and its variation in different locations of the QTEC were still relatively large, the ALT trend in PIC v1.3 was close to the observations and simulation in the QTEC. In recent decades, the permafrost thaw rate has increased significantly. The majority of observed ALT and its trend along the QTH and QTR were greater than the simulated grid

ALT of PIC v1.3, mainly because the observation sites are near these engineering facilities. These comparative analyses suggest that the temporal-spatial trends of permafrost conditions in the QTEC using PIC v1.3 were consistent with previous studies. More importantly, the difference between simulation results highlights the importance of transparency and reusability of models, data, parameters, simulation results and so on."

Mean	ALT Scope	ALT trend	Period	Location	Data sources
ALT	(m)	(cm yr-1)			
(m)					
2.03	0.97-3.87	2.89	1980-2010	The whole QTEC	PIC v1.3
2.18	1.00-3.20	1.33	1981-2010	Near the Qinghai-Tibet highway	Li et al.
				along the QTEC	(2012)
	1.00-3.00	0.50-2.00;	1980-2001	Simulation along the Qinghai-Tibet	Oelke and
		3.00-5.00		Highway/Railway	Zhang (2007)
		(1990s-2001)			
	1.30-3.50			Near the Qinghai-Tibet highway	Pang et al.
				along the QTEC	(2009)
	2.00-2.60	2.14-7.14	1991-1997	1 site (35°43'N, 94°05'E) Near the	Cheng and
				Qinghai-Tibet highway along the	Wu (2007a)
				QTEC	
	1.84-3.07	—	1990s	17 Monitoring sites near the Qinghai-	Jin et al.
				Tibet Highway/	(2008)
				Railway along the QTEC	
2.41	1.32-4.57	7.50	1995-2007	10 Monitoring sites Near the	Wu and Zhang
				Qinghai-Tibet highway along the	(2010)
				QTEC	
2.40	1.61-3.38	4.26	2002-2012	10 Monitoring sites (34°49'N,	Wu et al.
				92°55'E) along the QTEC	(2015)

Table 5. The active layer thickness (ALT) and its trend between the PIC v1.3 simulation and literature analysis in the Qinghai-Tibet Engineering Corridor (QTEC).

10 5. In Discussion, it's mentioned the spatial modeling at QTEC region classifies land cover and topographic features to determine the input spatial parameters, it's necessary to provide details and rationalities. It's also mentioned that the spatial modeling uses the GLDAS satellite data, but no detailed information.

15 Please see the our responses "1", "2" and "3" in the Specific comments section.

6. The authors claim the PIC package will serve engineering applications and can be used to assess the impact of climate change on permafrost. Currently the package targets specifically QTP, how's the extensibility of this package? Is it possible to apply or extent the PIC package to other permafrost regions easily? If so, the PIC package will benefit a larger community.

The transparency and repeatability of data, parameters, model codes, computational processes,

20

5

simulation output, visualization, and statistical analysis is a fundamental principle of scientific researches in the Earth system modeling. At present, there is a lack of open source software for permafrost modeling in the Tibetan plateau. The PIC v1.1 package use commonly used data and parameters, and these permafrost indices are also applied to other permafrost regions; data and parameters of station calculation

- 5 support a variety of data formats, while the current spatial data and parameters of region calculation only support NetCDF format, but this format is widely used in the Earth System Modeling community. A total of 52 weather stations with daily meteorological records over the Qinghai-Tibet Plateau (i.e., from 1951 to 2010) were integrated into the PIC package, which was never before. Whether it's data or packages, it can cause broad interest in permafrost communities. In order to ensure that the PIC package can be widely
- 10 used, although the Qinghai-Tibet Plateau data is the default option, but are not confined to the Qinghai-Tibet Plateau, the invocation of PIC functions take into account the convenience of users. More importantly, these indices can be used separately to make free choices based on the needs of the researchers. Furthermore, we use the GNU-GPL 3.0 license, which other researchers can modify, refine, or integrate the PIC package into other software or Web service. Meanwhile, our team will continue to
- refine the package to meet a variety of needs.Below, we will use an example to show the application of external data using PIC package, which came from other permafrost regions.

We used weather station data in northeastern China to compute permafrost indices using PIC package (please see Table R1, Figure R3 & R4). We think that the PIC package can be fully extended to other areas.

20 area

10	dole KT. Station mornation for Wole Station.										
	SID	Station Name	e Latitude Longitude		Elevation	Start d	late	End date			
	50136	Mohe	52°58'	122°31'	433	1958	1	2000	12		

Console Te	erminal ×															-
I:/PIC/PIC/ A																
> Thawing 1999	<- read.cs ∟index(Yea					=d50136, s	ID=50136			station d ing <i>n_t fo</i>						
1999	Ig_index(Ye	ar=1999,	TempName='	"⊤emperat	ure", data	a=d50136,	SID=5013									
3534.4 > Thawing 1958	∟index(Yea 1959	r=1958:20 1960	000,TempNa 1961	ame="Temp 1962	erature", 1963	data=d501 1964	.36, 5ID= 1965	50136) (1966	Comput	ing <i>n, fr</i> 1968	om 1958 1969	to 2000	1971	197	2 1 973	
210695.9 1974	12105.3 1975	2054.9 1976	21623.2 1977	2130.9 1978	2102.0 1979	1993.4 1980	1974.1 1981	2070.2 1982	2173.5 1983	2188.9 1984	1979.5 1985	2187.2 1986	2226.0 1987	1932. 198		
2145.6	2249.0	2036.0	2035.4	2032.4	2131.2	2123.6	2056.0	2108.3	2004.9	2146.6	2125.8		1988.1	2290		
1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000						
2244.4	2122.8	2180.2	2196.2	2279.3	2094.0	2172.6	2062.8	2101.0	2010.3	2226.7						
	ar=2000,Te	mpName=""	Temperatu	re", data	a=d50136, s	5ID=50136)				رng MA،						
2000																
4.764658																
	ar=1958:20															
195			1960	1961	1962	196		L964	1965	1966	1967	196		1969	1970	
66.93342					-4.400000					-5.914247	-3.418904				-4.705753	
197			1973	1974	1975 -3,258356	197		L977	1978	1979	1980			1982	1983	
-3.90794			61096 -5. 1986		-3.258350	-5.56191				5.057808- 1992	-4.707397 1993	4.26411- 199		26849 · 1995	-3.760000 1996	
198 4.80958-				1987 457808	-2.777534	198		L990	1991	-3.942740	-3.227123				-4.433699	
-4.80938			1999 - J.	2000	-2.11/354	-5.22950	-2.01	+/95 -4.	12005	-5.542740	-5.22/125	-5.56274	-5.0	0430	-4.455099	
-3.84630				.764658												

25 Figure R3. The computing process using PIC package for Mohe station. The other permafrost indices can also be computed.

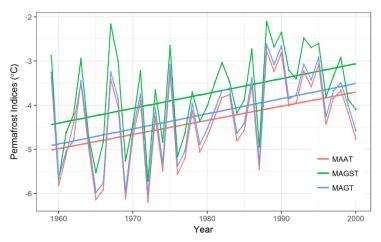


Figure R4. The visualization example of the permafrost indices (MAAT, MAGST and MAGT) using PIC package for Mohe station.

5 We added some sentences in Abstract and Discussion sections.

"The transparency and repeatability of the PIC v1.3 package and its data can be used and extended to assess the impact of climate change on permafrost."

"Moreover, the regional calculation can extend from QTEC to the entire QTP and even the other permafrost regions."

Minor comments:

1. P2, L13: Change "Such an increase. . ." to "Such an increase in temperature of QTP. . ."

- 15 This has been corrected, thank you.
 - 2. P2, L14-15: Add "Understanding" before "The distribution and changes of permafrost with climate. . . ".

This has been corrected, thank you.

20

10

3. P3, L4: Change "depends on the size of" to "depends on the magnitude of"

This has been corrected, thank you.

25 4. P3, L15: Change "with" to "at".

This has been corrected, thank you.

5. P3, L16: Change "These indices consist. . ." to "The permafrost indices consist. . ."

30

This has been corrected, thank you.

6. P3, L19: Change "multi-dimensional simulation" to "multi-dimensional permafrost simulation"

This has been corrected, thank you.

7. P3, L21: Be more concise on the problem.

5

10

We modified these sentence below.

"The transparency and repeatability of data, parameters, model codes, computational processes, simulation output, visualization, and statistical analysis is a fundamental principle of scientific research in Earth system modelling. At present, there is a lack of open source software, shared data and parameters

for permafrost modelling in the QTP."

8. P3, L23: Change "the current condition" to "the current situation".

15 This has been corrected, thank you.

9. P3, L25: I doubt the word "determine" used here.

This has been corrected, thank you.

20 We have updated the sentence as follows:

"The goal is to provide guidance for the future of highway and high-speed railway design and construction in the QTP, as well as to further understand the effects of climate change on permafrost dynamics."

25

10. P5, L5: Change "function" to "functions".

This has been corrected, thank you.

30 11. P5, L6: Change "max and min" to "maximal and minimal".

This has been corrected, thank you.

12. P5, L14-20: The signs of equations from (3) to (6) are not consistent with equations (7) and (8).

35

We checked these equations.

13. P5, L21: Add "defined" before "in".

40 This has been corrected, thank you. For a clearer description of MAGT, we rewrote the sentence as follows:

"MAGT is defined as the soil temperature at the depth of zero annual temperature change. $T_{z,t}$ is the ground temperature at any time *t* and depth *z* below a ground surface. MAGT is often found at the depths from 10 m to 16 m over the QTP (Wu and Zhang, 2010). Here, we take the *z* value of 15 meters as default

value, user can change the depth z."

14. P8, L3: Please add a proper citation to R.

- 5 we have added the following as a reference to the manuscript:
 - R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/, 2017.
- 10 15. P8, L5: Change "functionality" to "functionalities".

This has been corrected, thank you.

16. P12, L9-10: What does "based on the 52 observation stations" mean? What index is used to detectthe permafrost here?

Using Exist_Permafrost function to detect the probability of permafrost occurrence. This has been corrected, thank you. We have updated the sentence as follows:

20 "The PIC v1.3 simulation results using the Exist_Permafrost function show that permafrost was detected at 12 of the 52 observation stations (Figure 4)"

17. P12, L11: Why does ALT decrease here?

35

40

25 Sorry. Wrong writing. Thanks for pointing this out. Have been modified to "increasing ALT".

"The permafrost, whether in permafrost stations or QTEC, continued to thaw with increasing ALT, low surface offset and thermal offset, and high MAAT, MAGST, MAGT, and TTOP for most areas of QTP."

30 18. P13, L8-11: It's better to mention that you're discussing technical implementation here. It will be more informative by giving the specification of the computer used to run the performance tests.

PIC v1.3 was run natively as a single process in Windows 7 Operating system. The calculations were performed independently through RStudio Desktop v1.1 software (RStudio, Inc., USA). The utilized processor type is Intel Core i7-2600 CPU 3.40GHz, and the available memory is 32 GB.

"The "for" loop is discarded, whereas the "apply" functions are used extensively to significantly lower the computation time. PIC v1.3 was run natively as a single process in the Windows 7 Operating system. The calculations were performed independently through RStudio Desktop v1.1 software (RStudio, Inc., USA). The utilized processor is an Intel Core i7-2600 CPU 3.40 GHz, and the available memory is 32 GB. The current regional calculation takes only approximately 11 s. Apart from the Kudryavtsev model that requires considerable computation time (i.e., approximately 5 min), the station calculation also exhibited an improved efficiency. Therefore, PIC v1.3 can be considered an efficient R package."

19. P13, L14-15: The point (2) is not clear.

MAGT is soil temperature at the depth of zero annual temperature change, which is often found at 10–15 m depth below the ground surface on the QTP. Regression analysis shows that MAGT on the QTP has the relationship as equation (R1-R3):

 5
 has the relationship as equation (R1-R3):

 MAGT = $-0.83\varphi - 0.0049E + 50.63341$ (R1)

 MAGT = $68.827 - 0.00827E - 0.927\varphi$ (R2)

 MAGT = $65.461 - 1.222\varphi - 0.005E - 0.299\cos\theta$ (R3)

 Where φ, E and θ represents latitude, elevation and aspect respectively.

10 We have updated the sentence as follows:

"(2) constructed a regression analysis method through the relationship between MAGT and elevation, latitude, and slope-aspects that presented a static permafrost distribution (Lu et al., 2013; Nan, 2005)."

15 20. P14, L1: Change "approximately" to "partially".

This has been corrected, thank you.

21. P14, L19: Please describe how the soil input parameters are handled in PIC directly.

20

Please see the our responses "2" in the Specific comments section (above).

22. Table 1: The units of thermal conductivity usually are written as "W m-1 K-1".

25 This has been corrected, thank you.

References:

Biche	ron, P., Defourny, P., Brockmann, C., Schouten, L., Vancutsem, C., Huc, M., Bontemps, S.,
Ι	Leroy, M., Achard, F., and Herold, M.: GLOBCOVER: products description and validation report,
F	Foro Mundial De La Salud, 17, 285-287, 2008.

Chen, H., Zhu, Q. A., Peng, C. H., Wu, N., Wang, Y. F., Fang, X. Q., Gao, Y. H., Zhu, D., Yang, G., Tian, J. Q., Kang, X. M., Piao, S. L., Ouyang, H., Xiang, W. H., Luo, Z. B., Jiang, H., Song, X. Z., Zhang, Y., Yu, G. R., Zhao, X. Q., Gong, P., Yao, T. D., and Wu, J. H.: The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau, Global Change Biol, 19, 2940-2955, 2013.

35

30

- Cheng, G. and Wu, T.: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau, J Geophys Res-Earth, 112, 2007a.
- Cheng, G. D. and Wu, T. H.: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau, J Geophys Res-Earth, 112, 2007b.
- 40 Jin, H., Yu, Q., Wang, S., and Lü, L.: Changes in permafrost environments along the Qinghai–Tibet engineering corridor induced by anthropogenic activities and climate warming, Cold Reg Sci Technol, 53, 317-333, 2008.

Johansen, O.: Thermal Conductivity of Soils, 1977. University of Trondheim, Norway, 1977.

Li, R., Zhao, L., Ding, Y., Wu, T., Xiao, Y., Du, E., Liu, G., and Qiao, Y.: Temporal and spatial

variations of the active layer along the Qinghai-Tibet Highway in a permafrost region, Chin Sci Bull, 57, 4609-4616, 2012.

- Luo, S., Lü, S., and Zhang, Y.: Development and validation of the frozen soil parameterization scheme in Common Land Model, Cold Reg Sci Technol, 55, 130-140, 2009.
- 5 Nachtergaele, F., Velthuizen, H. V., Verelst, L., Batjes, N., Dijkshoorn, K., Engelen, V. V., Fischer, G., Jones, A., Montanarella, L., and Petri, M.: Harmonized World Soil Database, 2009, 34-37 (Published on DVD).
 - Oelke, C. and Zhang, T.: Modeling the Active-Layer Depth over the Tibetan Plateau, Arct Antarct Alp Res, 39, 714-722, 2007.
- 10 Pang, Q., Cheng, G., Li, S., and Zhang, W.: Active layer thickness calculation over the Qinghai–Tibet Plateau, Cold Reg Sci Technol, 57, 23-28, 2009.
 - Wu, Q., Hou, Y., Yun, H., and Liu, Y.: Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai–Xizang (Tibet) Plateau, China, Global Planet Change, 124, 149-155, 2015.
- 15 Wu, Q. B. and Zhang, T. J.: Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007, J Geophys Res-Atmos, 115, 2010.
 - Wu, Q. B., Zhang, T. J., and Liu, Y. Z.: Permafrost temperatures and thickness on the Qinghai-Tibet Plateau, Global Planet Change, 72, 32-38, 2010.

Authors reply to the comments by Anonymous Reviewer #2 of the manuscript gmd-2018-15

"PIC v1.3: Comprehensive R package for permafrost indices computing with daily weather observations and atmospheric forcing over the Qinghai–Tibet Plateau"

by Lihui Luo et al.

We thank Anonymous Reviewer #2 for the valuable feedback, which helped to improve the manuscript. Please find below the Reviewer comments in black, Author responses in green, and Changes to the manuscript in blue.

Response to reviewer comment 2:

5

10

Overall problems English is problematic. Before resubmission, ask a native English speaker with good geoscience background to help edit the manuscript when all technical details are taken care of.

- 15 Thanks for your insightful comments. In revising the paper, we have carefully considered your comments and suggestions. We agree with your comments on some details and the latest progress of permafrost modeling. To address these concerns, we make the following modifications to the manuscript: (1) Reorganized the manuscript structure; (2) Added the preparation of datasets and parameters, and comparative analysis between simulations and observations; (3) Modified inappropriate expression; (4)
- 20 Highlighted the importance of the transparency and repeatability in permafrost modeling, especially for the current permafrost study in the Qinghai-Tibet Plateau, openness and sharing are extremely important from data, parameters, model codes, computational processes, simulation output, statistical analysis to visualization; (5) Improved the flow of the manuscript language (Figure R1). We tried our best to address each of your points in detail. We feel the revision represents an improvement and hope you do also. For
- 25 more details, please see our replies below.

Figure R1. Editorial Certificate.

Specific issues: Title: OK Abstract: OK

5

1. Introduction P2, Lines 7-8, winter snow cover in some of those areas is supposed to one of the thickest in the world.

Thanks for pointing this out.

10 We have updated the sentence as follows:

"Permafrost occurs mostly in high latitudes and altitudes with long, cold winters and thick winter snow, e.g., the Arctic, Antarctica, Alaska, the Alps, Northern Russia, Northern Canada, Northern Mongolia, and the Qinghai-Tibet Plateau (QTP) (Riseborough et al., 2008; Yi et al., 2014; Zhang et al., 2008)"

15

P2, Lines 14-16, sentence needs elaboration. The distribution and changes of permafrost with climate is necessary for infrastructure development, ecological and environmental assessments, and climate system modeling. The distribution of permafrost under influences of climate change is. . .. Notes: the epidemic issue here in the paper is rambunctious listing of references in the text. It should follow the GMD format,

20 or at least the earlier, the first principle. Such as, Lines 10-11, 15-16, and others. Change them all and make the list more reasonable.

Thanks for pointing this out. We check the reference format. We have updated the sentence as follows:

25

"Understanding the distribution and changes of permafrost under the influence of climate change is necessary for infrastructure development, ecological and environmental assessment, and climate system modelling (Luo et al., 2017; Luo et al., 2012; Zhang et al., 2014)"

P3, Lines 3-5, please cite original references, who proposed the classification of permafrost on the basis of MAGT in Chin and on the QTP? Additionally, it is on the MAGT, rather than on the size of the MAGT. What is the size of the MAGT?

We add a reference. MAGT is often found at the depth from 10 m to 16 m over the QTP (Wu and Zhang, 2010), here we take the value of 15 meters. Usually, size connotes physical dimensions while magnitude connotes either a numerical measure of any sort of amount or metaphorical size. Our use of the word "size" is wrong. So we changed the "size" to "range".

"Thereafter, the type and distribution of frozen soil can be classified in a variety of manners depending on the range and magnitude of these indices."

- 15 Page 3, Paragraph 15, The land surface temperature significantly differs the near-surface air temperatures and ground surface temperatures, particularly for the simulation of the thermal regime of ground. This is significant when taking into account of different driving input of the modeling. Please refer to Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau (Geoderma, Luo et al., 2018);
- 20

25

30

5

10

Thanks for pointing this out. We agree with your comments on the difference of three temperature values, input data with different temperatures will cause the difference of simulation.

The Land Surface Temperature (LST) is the radiative skin temperature of the land surface, as measured in the direction of the remote sensor. LST is a mixture of vegetation and bare soil temperatures. The ground surface temperature (GST) is the soil temperature at 0-5 cm. The near-surface air temperature (T_a) was measured at a screen-height of 1.5–2 m.

In the PIC v 1.1 package, we use near-surface air temperature and ground surface temperature at 0 cm, which came from weather stations and GLDAS gridded meteorological datasets. In the future we will use spatial data of land/ground surface temperature as a input data of PIC package, and we will consider the simulation difference between LST and GST.

Page 3, Line 20, please change "is a problem" to "problematic";

We rewrote the sentence.

35

"The transparency and repeatability of data, parameters, model codes, computational processes, simulation output, visualization, and statistical analysis is a fundamental principle of scientific research in Earth system modelling. At present, there is a lack of open source software, shared data and parameters for permafrost modelling in the QTP."

40

Page 5, Line 20, "MAGT is the soil temperature in (Wu and Zhang, 2010)." This sentence is incomplete.

Thanks for pointing this out. For a clearer description of MAGT, we rewrote the sentence as follows:

"MAGT is defined as the soil temperature at the depth of zero annual temperature change. $T_{z,t}$ is the ground temperature at any time *t* and depth *z* below a ground surface. MAGT is often found at the depths from 10 m to 16 m over the QTP (Wu and Zhang, 2010). Here, we take the *z* value of 15 meters as default value, user can change the depth *z*."

5

Please also note the supplement to this comment: <u>https://www.geosci-model-dev-discuss.net/gmd-2018-15/gmd-2018-15-RC2- supplement.pdf</u>

We moved the reviewer's comments here from the manuscript edits.

10

Page 2, Line 3, consecutive

This has been added, thank you.

15 Page 2, Line 7, permafrost occurs also in Alps where there is a considerable snow cover during the winter.

This has been added, thank you.

Page 2, Line 9, Need to check if for the inside cite, the journal request that multiple authors to be arrangedalphabetically and not by year.

Thanks. We check the reference format for the inside cite.

Page 2, Line 10, There are some other opinions in a recent paper. At least is adecvate to cite them. Ran
et al. 2018: Climate warming over the past half century has led to thermal
degradation of permafrost on the Qinghai–Tibet Plateau. In: The Cryosphere, 12, 595–608

Thanks. Many recent articles have pointed out that the Qinghai-Tibet Plateau has warmed more than 0.25 degrees every ten years. We updated the sentence, and added a recent reference.

30

"The temperature in the QTP has increased by more than 0.25 °C per decade over the past 50 years (Li et al., 2010; Ran et al., 2018; Shen et al., 2015; Yao et al., 2007)."

Page 4, Line 5, I don't think this paragraph is necessary. This is a classical research article which structure
is well known and is already organised based on it. Also is indicated to finish the introduction part with the purpose, for a easier article reading.

We deleted this paragraph.

40 Page 5, Line 5, These indices are indeed very well explained.

We have added more descriptions to these permafrost indices in section "Permafrost modeling". We have updated the sentence as follows:

"DDT_a and DDT_s are the sums of mean daily air and ground surface above temperatures 0 °C (Celsius degree-days), respectively. DDF_a and DDF_s are the sums of mean daily air and ground surface temperatures below 0°C (Celsius degree-days), respectively."

"Local variations in vegetation, topography, and snow cover may result in several differences between MAGST and MAAT."

"MAGT is defined as the soil temperature at the depth of zero annual temperature change. $T_{z,t}$ is the ground temperature at any time t and depth z below a ground surface. MAGT is often found at depths from 10 m to 16 m over the QTP (Wu and Zhang, 2010), Here, we take the z value of 15 metres as default value, user can change the depth z."

- "The seasonal thawing/freezing n factor (nt/nf) relates thawing and freezing degree-days (DDTa/DDTs/DDFa/DDFs) in seasonal air temperature to ground surface temperatures."
 "TTOP indicates average temperatures at the top of the permafrost. The active layer is defined as the layer of ground subject to annual thawing and freezing underlain by permafrost."
- 15 Page 6, Line 16, Typing error. Subscript instead of normal letters.

This has been corrected, thank you.

Page 9, Line 3, It could be written also "Results" as a chapter name here. Or joined.

20

5

As a Development and technical manuscript of "Geoscientific Model Development", we reorganize the manuscript structure, and changed the title to "Implementation".

Page 10, Line 7-8, That's great, because is processing automatically the outliers.

25

40

Thanks.

Page 13, Line 2-3, Can this be explained?

30 The simulated TTOP and ALT that uses the Stefan and Smith functions have higher TTOP and ALT than the Kudryavtsev function. The difference between them were also shown in other areas (Uxa, 2017; Wilhelm et al., 2015).

Figure 1, Missing scale bar.

35 Maybe a bit more info on the map (r.g. main roads and rivers, key cities), and the dots for the weather stations can be smaller if it will be too crowded with the additional info.

Thanks for pointing this out. We added the scale, and also add lake, glacier (the Second Glacier Inventory Dataset of China, v1.0), the legend of elevation map, provincial border and three major cities in the Qinghai-Tibet Plateau.

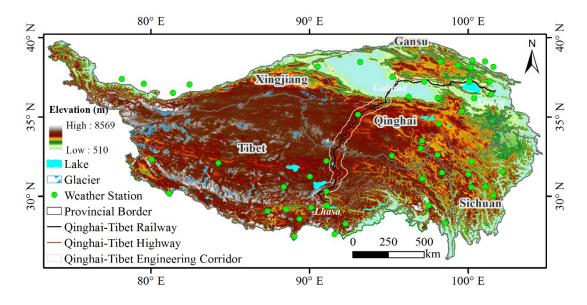


Figure 1: Map of the data location over the QTP.

Table 2, Typing error: too much space.

5

This has been corrected, thank you.

Table 2, It could be a better matching of left columns with right columns in this part for a easier reading.

10 We adjusted the arrangement of the columns.

Table 2, column

This has been corrected, thank you.

15

Table 3, It could be a note under the table to mention the abbreviations or to indicate that the abbreviations are specified in text.

We have added the sentence in the table caption as follows:

20

30

"Intercept: y-intercept; Slope: slope of regression line; R: Pearson's correlation coefficient, R2: coefficient of determination; RMSE: root mean squared error; NRMSE: normalized RMSE; SD_S: the standard deviation of TTOP using the Stefan function; SD K: the standard deviation of TTOP using the Kudryavtsev function; MEF: modelling efficiency; NAE: normalized average error; VR: variance ratio;

25 PBIAS: percent bias; NSE: Nash-Sutchliffe efficiency; RSR: RMSE-observations standard deviation ratio; and D: index of agreement."

References:

over the Qinghai-Tibet Plateau, Arct Antarct Alp Res, 42, 449-457, 2010.

Li, L., Yang, S., Wang, Z. Y., Zhu, X. D., and Tang, H. Y.: Evidence of Warming and Wetting Climate

- Luo, L., Ma, W., Zhang, Z., Zhuang, Y., Zhang, Y., Yang, J., Cao, X., Liang, S., and Mu, Y.: Freeze/Thaw-Induced Deformation Monitoring and Assessment of the Slope in Permafrost Based on Terrestrial Laser Scanner and GNSS, Remote Sens, 9, 198, 2017.
- Luo, L., Zhang, Y., and Zhu, W.: E-Science application of wireless sensor networks in eco-hydrological monitoring in the Heihe River basin, China, Iet Sci Meas Technol, 6, 432, 2012.
- Ran, Y., Li, X., and Cheng, G.: Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau, Cryosphere, 12, 595-608, 2018.
- Riseborough, D., Shiklomanov, N., Etzelmuller, B., Gruber, S., and Marchenko, S.: Recent advances in permafrost modelling, Permafrost Periglac, 19, 137-156, 2008.
- Shen, M. G., Piao, S. L., Jeong, S. J., Zhou, L. M., Zeng, Z. Z., Ciais, P., Chen, D. L., Huang, M. T., Jin, C. S., Li, L. Z. X., Li, Y., Myneni, R. B., Yang, K., Zhang, G. X., Zhang, Y. J., and Yao, T. D.: Evaporative cooling over the Tibetan Plateau induced by vegetation growth, Proc Natl Acad Sci USA, 112, 9299-9304, 2015.
 - Uxa, T.: Discussion on 'Active Layer Thickness Prediction on the Western Antarctic Peninsula' by Wilhelmet al. (), Permafrost Periglac, 28, 493-498, 2017.
 - Wilhelm, K. R., Bockheim, J. G., and Kung, S.: Active Layer Thickness Prediction on the Western Antarctic Peninsula, Permafrost Periglac, 26, 188-199, 2015.
 - Wu, Q. B. and Zhang, T. J.: Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007, J Geophys Res-Atmos, 115, 2010.
- 20 Yao, T., Pu, J., Lu, A., Wang, Y., and Yu, W.: Recent glacial retreat and its impact on hydrological processes on the tibetan plateau, China, and sorrounding regions, Arct Antarct Alp Res, 39, 642-650, 2007.
 - Yi, S., Wang, X., Qin, Y., Xiang, B., and Ding, Y.: Responses of alpine grassland on Qinghai-Tibetan plateau to climate warming and permafrost degradation: a modeling perspective, Environ Res Lett, 9, 2014.
 - Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A., and Brown, J.: Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere, Polar Geography, 31, 132-154, 2008.
- Zhang, Y., Olthof, I., Fraser, R., and Wolfe, S. A.: A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections, Cryosphere, 8, 2253-2253, 2014.

5

25

15

样式定义: 批注文字: 字体: (默认) Tahoma, 8 磅, 左

PIC<u>v1.3</u>: Comprehensive R package for permafrost indices computing with daily weather observations and atmospheric forcing over the Qinghai—Tibet Plateau

Lihui Luo¹, Zhongqiong Zhang¹, Wei Ma¹, Shuhua Yi², Yanli Zhuang³

²State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000, China

³Linze Inland River Basin Research Station, Key Laboratory of Inland River Basin Ecohydrology, Cold and Arid Regions
 Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000, China

Correspondence to: Lihui Luo (luolh@lzb.ac.cn)

Abstract. An R package <u>A</u> permafrost indices computing (PIC)-<u>v1.3</u>) <u>R</u> package was developed, which that integrates meteorological observations, remote sensing datagridded meteorological datasets, soil databases, and field measurements to compute the factors or indices of permafrost and seasonal frozen soil. At present, 16 temperature/depth-related indices are integrated into the <u>PIC v1.3</u> R package <u>PIC</u> to estimate the possible change-trends of frozen soil in the Qinghai—Tibet Plateau (QTP). These indices include the mean annual air temperature; (MAAT), mean annual ground surface temperature; (MAGST), mean annual ground temperature; (MAGT), seasonal thawing/freezing n factor (n_g/n_g), thawing/freezing degree-days offor air and the ground surface (DDT_g/DDT_g/DDF_g/DDF_g), temperature at the top of the permafrost; (TTOP), active layer thickness; (ALT), and maximum seasonal freeze depth. The PIC packagev1.3 supports two computational modes, namely, the stations and region calculationregional calculations that enablesenable statistical analysis and intuitive visualization onof the time series and spatial simulations. OverData sets of 52 weather stations and a central region of the QTP were prepared and simulated to evaluate the temporal-spatial trends of permafrost with the climate. More than 10 statistical methods and a sequential Mann-Kendall trend test and spatial trends

带格式的: 字体颜色: 文字 1带格式的: 字体颜色: 文字 1

/	带格式的: 下标
-(带格式的: 下标
-(带格式的: 下标
-	带格式的: 下标
\mathcal{A}	带格式的: 下标
X	带格式的: 下标

¹State Key Laboratory of Frozen Soils Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000, China

methodspatial methods were adopted- to assess the spatial trends. Multiple visual manners were used to display the temporal and spatial variabilities onvariability of the stations and region. The data sets of 52 weather stations and a central region of QTP were prepared and simulated to evaluate the temporal spatial change trends of permafrost with the climate. Simulation results show extensive permafrost degradation in the QTP, and the temporal—spatial trends of the permafrost conditions in the QTP were consistent withare close to those of previous studies. The transparency and repeatability of the PIC v1.3 package will serve engineering applications and and its data can be used and extended to assess the impact of climate change on permafrost.

1 Introduction

5

Permafrost, which is soil, rock, or sediment with temperatures that have remained at or below 0 °C for at least two consecutive 10 years, is a key component of the cryosphere. The upper layer in permafrost regions is called the active layer, which and it undergoes seasonal freezing and thawing. Below this layer lies permafrost, the upper surface of which is called the upper limit of permafrost limit or the permafrost table. Changes in permafrost can affect water and heat exchanges, exchange, the carbon budgetsbudget, and natural hazards with the climate change. Permafrost occurs mostly in high latitudes and altitudes with long, cold winters and thinthick winter snow eover (, e.g., the Arctic, Antarctica, Alaska, the Alps, 15 Northern Russia, Northern Canada, Northern Mongolia, and the Qinghai-Tibet Plateau (QTP)) (Riseborough et al., 2008; Yi et al., 2014b2014a; Zhang et al., 2008a). Over half of the QTP-land is underlain by permafrost (Ran et al., 2012)(Ran et al., 2012). The temperature in the QTP has increased by more than 0.25 °C per decade over the past 50 years (Li et al., 2010; LiuRan et al., 20062018; Shen et al., 2015; Yao et al., 2007). Climate-induced warming of the near-surface atmospheric layer and a corresponding increase in ground temperatures will lead to substantial changes in the water and energy balance of regions 20 underlain by permafrost (Hilbich et al., 2008). Such an increase in the temperature of the QTP can warm the ground through energy exchange at the surface and result in significant permafrost degradation. TheUnderstanding the distribution and changes of permafrost withunder the influence of climate change is necessary for infrastructure development, ecological and **带格式的:** 字体颜色: 文字 1, 英语(美国), 图案: 清除 (白色)

(帶格式的:英语(英国)
 (帶格式的:英语(英国), 图案: 清除
 (帶格式的:英语(英国)
 (帶格式的:英语(英国)
 (帶格式的:英语(英国))

带格式的:字体颜色:自动设置,图案:清除

environmental assessments assessment, and climate system modeling modelling (Luo et al., 2017; Luo et al., 2012; Zhang et al., 2014).

5

10

15

20

Given the possibility of future climate warming, an evaluation of the magnitude of changes in the ground thermal regime has become desirable to assess the possible eco-environmental responses response and their the impact on the QTP, infrastructure in OTP. Permafrost modeling maximizes quantitative methods, such as analytical, numerical, or empirical methods, to predict the thermal condition of the ground in environments where permafrost may be present (Harris et al., 2009; Lewkowicz and Bonnaventure, 2008; Riseborough, 2011; Riseborough et al., 2008; Yi et al., 2014a2014b; Zhang et al., 2008b). At present, dozens of different factors or indices are used to evaluate the characteristics and dynamics of permafrost presence or absence (Riseborough, 2011; Riseborough et al., 2008), including the freezing/thawing index, mean annual air temperature (MAAT), mean annual ground temperature (MAGT), mean annual ground surface temperature (MAGST), temperature at the top of permafrost (TTOP), and the active layer thickness (ALT), among others.). Thereafter, the type and distribution of frozen soil can be classified in a variety of manners depending on the index sizes range and magnitude of these indices. For example, frozen soil can be divided into highly stable, stable, substable, transitional, unstable, and extremely unstable permafrost, as well as seasonal frozen soil that depends on the sizemagnitude of MAGT (Chen et al., 2012; Ran et al., 2012). These indices can be used to evaluate and predict the temporal and spatial variation in the thermal response of permafrost to the changing elimateclimatic conditions and properties of Earth's surface and subsurface properties in one, two, or three dimensions (Juliussen and Humlum, 2007; Nelson et al., 1997; Riseborough et al., 2008; Wu et al., 2010; Zhang et al., 2005). Accordingly, successfully summarizing and categorizing a variety of frozen-soil indices requirerequires permafrost modeling modelling that concerns analytical, numerical, and empirical methodologies to compute the past and present condition of permafrost.conditions. The Stefan solution (Nelson et al., 1997) (Nelson et al., 1997), Kudryavtsev's approach (Kudryavtsev et al., 1977), the TTOP model (Smith and Riseborough, 1996), and (Smith and Riseborough, 1996), and the Geophysical Institute Permafrost Lab model (Romanovsky and Osterkamp, 1997; Sazonova and Romanovsky, 2003) are several important

带格式的:英语(英国)

带格式的: 英语(英国)

带格式的: 英语(英国)

developments for permafrost modelingmodelling in recent years. Permafrost is a subsurface feature that is difficult to directly

observe and map. These methods integrate the effects of air and ground temperatures, topography, vegetation, and soil properties to map permafrost spatially and explicitly (Gisnås et al., 2013; Jafarov et al., 2012; Zhang et al., 2014). Weather observation data, including air and soil temperatures withat different depths, are the main inputs for single-point simulation-, whereas the spatial and temporal resolution of the atmospheric forcing dataset is the main input data of permafrost spatial

- 5 modelling. These permafrost indices consist mainly of temperature-related and depth-related indices. The temperature-related indices depict the status of air or land surface temperature in frozen-soil environments, whereas the depth-related indices reveal the status of the active layer. Preparing atmospheric forcing-data sets, snow depth and density, vegetation types, and soil elasses are generally required for multi-dimensional simulation, which cameclass data sets from multi-source data fusion, particularly remote sensing and ground observation data is generally required for multi-dimensional permafrost simulation.
- 10 The eurrenttransparency and repeatability of data, parameters, model codes, computational processes, simulation output, visualization, and statistical analysis is a fundamental principle of scientific research in Earth system modelling. At present, there is a lack of open source software on, shared data and parameters for permafrost modeling over-modelling in the QTP is a problem. Although many scientists in China have field data and models on hand, thetheir integration of data and models into a new open source model can facilitate the deepening of the discussion and unfolding of permafrost research on the QTP.
- Given the current conditionsituation of permafrost modelingmodelling in the QTP, a comprehensive R package of permafrost indices computing (PIC v1.3, doi: 10.5281/zenodo.1254848) was developed to compute permafrost and seasonal frozen-soil indices- (Luo, 2018). The goal is to determine the solutions to maintain or build the engineers in a manner that provides provide guidance for the future of highway and high-speed railway design and construction in the QTP, as well as to further understand the effects of climate change on the permafrost dynamics-over QTP. Therefore, the proposed software integrates meteorological observations, remote sensing datagridded meteorological datasets, soil databases, field measurements, and model

simulationspermafrost modelling.

The remainder of this paper is organized as follows. Section 2 describes the prepared data sets, methodology of permafrost modeling, and statistical methods for stations and region. Section 3 presents a detailed description of the functions provided

带格式的: 英语(英国)

带格式的: 字体: Times New Roman, 字体颜色: 文字 1

 帶格式的:
 图案: 清除(白色)

 帶格式的:
 图案:
 清除(白色)

带格式的:	英语(英国)
-------	--------

带格式的: 英语(英国)

by PIC and the workflow. Section 4 demonstrates the application of the proposed software for the stations and region. Section 5-discusses several benefits and limitations of PIC. Lastly, Section 6 presents the conclusions.

2 Data and Methods

2 Package description

5 2.1 Data and parametersOverview

PIC v1.3 was developed in the R language and environment for statistical computing v. 3.3.3 and is distributed as open source software under the GNU-GPL 3.0 License (R Core Team, 2017). Therefore, the PIC v1.3 code can be modified as required to meet the needs of every user. The source code can be downloaded from the GitHub repository (https://github.com/iffylaw/PIC). The R package PIC v1.3 provides all the necessary functionality to perform the 10 calculation, statistics, and drawing of permafrost indices with over 38 functions based on the user's specific requirements (see Figure 2). The following packages are required in setting up PIC v1.3 (type library(PIC)): ggplot2 (Wickham et al., 2009), ggmap (Kahle and Wickham, 2013), RNetCDF (Michna and Woods, 2013), and animation (Xie, 2013). These packages are automatically added to the R users' library during installation. A data set that contains the daily weather observations, parameters, and information (i.e., from 1951 to 2010) of 52 weather stations in the QTP was bundled into this package. 15 However, the regional data with the NetCDF format was placed in the GitHub repository. The data set variables excluded in the calculation can also be used as reference or provide support to further develop PIC. These variables include wind speed, precipitation, evaporation, humidity, and soil temperature at different depths. Daily weather observations. Meteorological data were obtained from the China Meteorological Administration (CMA, http://www.cma.gov.cn/), particularly from permanent meteorological stations across QTP. A total of 52 weather stations with daily meteorological records (i.e., from 1951 to 2010) were selected, including the daily mean, maximum (max) and minimum (min) air temperatures, wind speed, 20 observed and corrected precipitation, evaporation, air humidity, atmospheric pressure, sunshine duration, daily mean, max and

min ground surface temperatures, and soil temperature with different depths (i.e., 5, 10, 15, 20, 40, 50, 80, 160, and 320 em).
PIC v1.3 was primarily designed to compute indices of permafrost and seasonal frozen soil from observations and forcing data.
Therefore, the current stable version of the program (v 1.1) includes functionalities that cover temperature-related indices (i.e.,
MAAT, MAGST, and TTOP) and depth-related indices (i.e., ALT and FD) that are commonly used in permafrost
research. These data have been corrected under specification for surface meteorological observation and quality control of
CMA.

Atmospheric forcing data set. The QT Engineering Corridor (QTEC), which is located at the center of QTP, was selected in preparing the atmospheric forcing data. Global Land Data Assimilation System (GLDAS, https://ldas.gsfc.nasa.gov) and the weather station data of the surrounding QTEC were merged to produce a new data-set for 1980 to 2010 with a daily 0.1°

10 temporal-spatial resolution (Rui and Beaudoing, 2011).

5

Parameters. The parameters for the ground conditions were prepared based on vegetation and soil classification (Bicheron et al., 2008; Nachtergacle et al., 2009), field observations, and topographic maps. The parameter data have two data sets: one for weather stations and another for the QTEC region. Table 1 and Figure 1 show the detailed information of the data and parameters.

15 It is possible to evaluate the changes in frozen soil better by combining multiple indices for overall analysis.

2.2 Permafrost modeling modelling

The PIC packagev1.3 enables the calculation of the thawing/freezing degree-days for air and ground surface $(DDT_{\theta}/DDT_{\theta}/DDF_{\theta}/DDF_{\theta})$, MAAT, MAGST, MAGT, the seasonal thawing/freezing *n* factor (n_{θ}/n_{f}) , thawing/freezing degree-days of air and ground surface $(DDT_{\theta}/DDF_{\theta}/DF_$

20 These<u>The</u> permafrost and seasonal frozen—soil indices that employemploying the following function werefunctions are illustrated. <u>Table 1 describes most of them</u>.

 A_s is the annual temperature amplitude at the ground surface, where T_{max} and T_{min} are the annual maxmaximal and minminimal temperatures, respectively, at the ground surface. A_s can be calculated as follows:

(带格式的:英语(英国)

带格式的: 英语(英国)

	$\overline{A_s = T_{max} - T_{min}} \tag{1}$	带格式的: 英语(英国)
	$f^*s = \frac{1}{2} \max \frac{1}{2} \min \left(\frac{1}{2} \right)$	带格式的: 英语(英国)
	L is the volumetric latent heat of fusion, ρ is the dry density of soil, and W is the water content of the soil in percentages.	带格式的: 英语(英国)
	80× 0×W	带格式的: 英语(英国)
	$L = \frac{80 \times \rho \times W}{100},$ (2)	
	DDT_a and DDT_s are the thawing degree dayssums of themean daily air and ground surface above temperatures 0 °C (Celsius	带格式的: 字体颜色:文字1
		带格式的: 字体颜色: 文字 1
5	degree-days), respectively. DDF_a and DDF_s are the freezing degree-days sums of themean daily air and ground surface	带格式的: 字体颜色:文字1
	temperatures helew 000 (Colour degree days) representively. Degree days are usually used to describe the six and ground	带格式的: 字体颜色:文字1
	temperatures below 0°C (Celsius degree-days), respectively. Degree-days are usually used to describe the air and ground	带格式的: 字体颜色:文字 1
	surface temperature intensity, where T_a and T_s are the air and ground temperatures, respectively, and n is the number of days	带格式的: 字体颜色:文字1
		带格式的:字体颜色:文字1
	in a year (Juliussen and Humlum, 2007) (Juliussen and Humlum, 2007)	带格式的: 字体颜色: 文字 1, 英语(英国)
		带格式的: 字体颜色: 文字 1
	$DDT_a = \sum_{i=1}^{n} T_a, T_a > 0 \tag{3}$	带格式的: 字体颜色:文字1
10	$DDF_a = \sum_{i=1}^{n} T_{a_i} T_a < 0 \tag{4}$	带格式的: 英语(英国)
10		带格式的: 英语(英国)
	$DDT_s = \sum_{1}^{n} T_{s_1} T_s > 0 \tag{5}$	带格式的: 英语(英国) 带格式的: 英语(英国)
		(新格式的:英语(英国) 带格式的:英语(英国)
	$DDF_s = \sum_{1}^{n} T_s, T_s < 0 \tag{6}$	(〒福式向: 英语(英国) 带格式的: 英语(英国)
	<i>P</i> is assigned a value of 365 days- as a default value. Local variations in vegetation, topography, and snow cover may result in	(川相上(4): 英语(英国) 带格式的: 英语(英国)
	The assigned a value of 500 days, us a delaunt rande. Escar randoms in regelation, repography, and show ester may result in	带格式的: 英语(英国)
	several differences between MAGST and MAAT. MAAT and MAGST can be computed as follows:	带格式的: 英语(英国)
		带格式的: 英语(英国)
15	$MAAT = \frac{DDT_a - DDF_a}{P} $ (7)	带格式的: 英语(英国)
		带格式的: 英语(英国)
	$MAGST = \frac{DDT_s - DDF_s}{P}.$ (8)	带格式的: 英语(英国)
	P . (9)	带格式的: 英语(英国)
	MAGT is <u>defined as</u> the soil temperature in (Wu and Zhang, 2010). at the depth of zero annual temperature change. $T_{z,t}$ is the	
	ground temperature at any time t and depth z below a ground surface. MAGT is often found at depths from 10 m to 15 m over	
	the OTP (Wu and Zhang, 2010), Here, we take the z value of 15 metres as default value, user can change the depth z. MAGT	(带格式的: 英语(英国)
	the QTT (the and Zhang, 2010), there, we take the 2 three of 15 meters as demand three, and can enable the depute, but of	带格式的: 英语(英国)
20	can be computed (Juliussen and Humlum, 2007; Riseborough et al., 2008) as follows:	带格式的: 英语(英国)
		带格式的: 英语(英国)
	$T_{z,t} = \overline{T_a} + A_s \times e^{-z \times \sqrt{\pi/\alpha P}} \times \sin(\frac{2\pi t}{p} - z \times \sqrt{\pi/\alpha P}) $ (9)	带格式的: 英语(英国)
		带格式的: 英语(英国)
	MAGT = $\overline{T_{z,t_4}} z \cong 15 \& t = 86400$. (10)	带格式的: 英语(英国)
		带格式的: 英语(英国)

	The seasonal thawing/freezing <i>n</i> factor (n_d/n_f) relates thawing and freezing degree-days $(DDT_d/DDF_d/DDF_d/DDF_s)$ in seasonal			
	air temperature to ground surface temperatures. n_t and n_f can be computed (Riseborough et al., 2008) as follows:			
	DDT ₅	/	(带格式的: 英语(英国)	
	$n_t = \frac{DDT_s}{DDT_a} \tag{11}$		(带格式的: 英语(英国)	
	DDFs	/	(带格式的: 英语(英国)	\supset
	$n_f = \frac{DDF_s}{DDF_a}.$ (12)		(带格式的: 英语(英国)	\square
5	TTOP indicates average temperatures at the top of the permafrost. The active layer is defined as the layer of ground subject to			
	annual thawing and freezing underlain by permafrost. ALT refers to the maximum thawing depth of the active layer. Two		带格式的: 字体颜色:文字1	
	methods serve the same purpose when computing TTOP and ALT. The subscripts S and K stand for the Smith and Kudryavtsev			
			带格式的: 字体颜色: 文字 1	
	functions (Kudryavtsev et al., 1977; Smith and Riseborough, 1996), respectively.	\leq	带格式的: 字体颜色: 文字 1	T
	$TTOP_{s} = \frac{n_{t} \times \lambda_{t} \times DDT_{a} - n_{f} \times \lambda_{f} \times DDT_{s}}{(13)}$	/		J
	$TTOP_{S} = \frac{n_{t} \times \lambda_{t} \times DDT_{a} - n_{f} \times \lambda_{f} \times DDT_{s}}{\lambda_{f} \times P} $ (13)		带格式的: 英语(英国)	J
		/	带格式的: 英语(英国)	5
	$0.5 \times MAGST \times (\lambda_t + \lambda_f) + A_s \times \frac{\lambda_f - \lambda_s}{\pi} \times \left \frac{MAGST}{\pi s} \times \arcsin \frac{MAGST}{A_s} + 1 - \frac{\pi^2}{4 - s^2} \right $		带格式的: 英语(英国)	5
10	$TTOP_{K} = \frac{0.5 \times MAGST \times (\lambda_{t} + \lambda_{f}) + A_{S} \times \frac{\lambda_{f} - \lambda_{t}}{\pi} \times \left[\frac{MAGST}{A_{S}} \times \arcsin \frac{MAGST}{A_{S}} + \sqrt{1 - \frac{\pi^{2}}{A_{S}^{2}}}\right]}{\lambda^{*}} $ (14)			
			带格式的: 英语(英国)	
	$\lambda^* = \begin{cases} \lambda_f, \text{ if numerator } < 0\\ \lambda_t, \text{ if numerator } > 0 \end{cases} $ (15)	\square	带格式的: 英语(英国)	5
	The maximum thawing depth or ALT uses the Stefan and Kudryavtsev functions (Kudryavtsev et al., 1977; Riseborough et al.,			
	2008), where L is the latent heat of fusion of flor ice $(3.34 \times 10^5 \text{ J/kg})$.			
			带格式的: 英语(英国)	
	$ALT_{S} = \sqrt{\frac{2 \times \lambda_{t} \times DDT_{a}}{L \times \rho \times (W - W_{u})}} $ (16)	\square	带格式的: 英语(英国)	T
				5
15	$A_{z} = \frac{A_{z} - T_{z}}{\ln \left[\frac{A_{z} + L_{z}}{A_{z} - L_{z}}\right]} - \frac{L}{2 \times C_{T}} $ (17)		带格式的: 英语(英国)	\dashv
	$\ln \left[\frac{3}{T_z + L_{2xC_T}} \right] = 2\pi C_T$	\square	带格式的: 英语(英国)	J
				Ξ
	$Z_c = \frac{2\times(A_s - T_z) \times \sqrt{\frac{ L_f + \Lambda_{(z)} \times P_{sn} \times C_T}{2\times \pi}}}{2\times A_s \times C_T + L} $ (18)		(市在式向), 英语(英国) (带格式的: 英语(英国)	\dashv
				\exists
	$(2 \times A_Z \times C_T \times Z_C - L \times Z_C) \times L \times \left[\frac{(\lambda_f + \lambda_f) \times P_{SR}}{2 \pi m^{2/3}} \right]$	/	带格式的: 英语(英国)	\dashv
	$2 \times (A_{5} - TTOP_{K}) \times \sqrt{\frac{(\lambda_{f} + \lambda_{t}) \times P_{SR} \times C_{T}}{2 \times \pi}} + \frac{(2 \times A_{2} \times C_{T} \times Z_{c} - L \times Z_{c}) \times L \times \sqrt{\frac{(\lambda_{f} + \lambda_{t}) \times P_{SR}}{2 \times \pi \times C_{T}}}}{2 \times A_{2} \times C_{T} \times Z_{c} - L \times Z_{c}) \times L \times \sqrt{\frac{(\lambda_{f} + \lambda_{t}) \times P_{SR}}{2 \times \pi \times C_{T}}}$	/	带格式的: 英语(英国)	
	$2 \times R_Z \times C_T \times L_C + L_L \times C_T + L_L \times C_T + L_L \times C_T$			
	$ALT_K = \qquad \qquad$			

Freeze_depths is the maximum seasonal freezing depth that uses the Stefan function, which can be computed as follows:

带格式的: 非上标/ 下标

			带格式的: 英语(英国)
	$Freeze_depth_{S} = \sqrt{\frac{2 \times \lambda_{t} \times DDF_{a}}{L \times \rho \times (W - W_{u})}}.$ (20)		带格式的: 英语(英国)
	2.3 Statistical methods		
	Statistical analysis can facilitate the evaluation of the ehange-trend and the overall modelling performance-of the model		
	simulation. In particular, each statistic has strengths and weaknesses; thus. Thus, we adopted over 10 statistical methods to		
5	evaluate these indices in station computing for time series data. The quantitative statistics include the slope, y-intercept,		
	Pearson's correlation coefficient (R), coefficient of determination (R^2), root mean square error (RMSE), standard deviation		
	(SD), ratio of scatter (RS), normalized RMSE (NRMSE), Nash-Sutchliffe efficiency (NSE), RMSE-observations standard		
	deviation ratio (RSR), percent bias (PBIAS), normalized average error (NAE), variance ratio (VR), and index of agreement		
	(D) (Jafarov et al., 2012; Legates and McCabe, 1999). The sequential Mann-Kendall (MK) trend test was used to statistically		
10	assess whether there was a shift in trends of the climate factors and permafrost indices (Fraile, 1993). The original MK trend		
	test can be calculated as follows:		
	$S = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} sign(x_j - x_i), (i = 2, 3, 4 \dots n) $ (21)		带格式的: 英语(英国)
	$\left(\begin{array}{c}1 \text{ if } x_j - x_i > 0\\0 \text{ if } x_i = 0\end{array}\right)$		带格式的: 英语(英国) 带格式的: 英语(英国)
	$sign(x_{j} - x_{i}) = \begin{cases} 1 \text{ if } x_{j} - x_{i} > 0\\ 0 \text{ if } x_{j} - x_{i} = 0\\ -1 \text{ if } x_{j} - x_{i} < 0 \end{cases} $ (22)		
	Two sequential series ui values can be calculated as follows:		
15	$u_{i} = \frac{S_{i} - E(S_{i})}{\sqrt{Var(S_{i})}}, (i = 1, 2, 3 \dots n) $ (23)		带格式的: 英语(英国) 带格式的: 英语(英国)
	value can be calculated as follows:		
	value can be calculated as follows:		带格式的: 英语(英国)
	$u_{i} = \frac{S_{i} - E(S_{i})}{\sqrt{V_{i} x_{i}(S_{i})}}, (i = 1, 2, 3 \dots n) $ (23)	_	(市住民国),英语(英国) (带格式的: 英语(英国)
	The two series for the MK trend test, a progressive one-and a backward-one, were setsset up. If they cross each other and		
	diverge beyond a specific threshold value and exceedingexceed the confidence level of 95%, then there is a statistically		
20	significant trend shift point.		
	The spatial trend can also be calculated to evaluate regional computing for temporal-spatial data through the function below.		

The *index* represents one permafrost index, *n* represents the sequential years, and *index*₁ is the index <u>valuesvalue</u> in year *i*. Taking ALT as an example, a positive trend<u>means that ALT was increasing</u>, thereby indicating that permafrost degradation <u>has intensified</u>; a negative value means that ALT was decreasing, thereby indicating that permafrost degradation has a certain inhibition; and a zero trend suggests a lack of change (Chen et al., 2014; Stow et al., 2003).

5 Trend = $\frac{n \times \sum_{i=1}^{n} i \times index_i \cdot \sum_{i=1}^{n} i \times \sum_{i=1}^{n} index_i}{n \times \sum_{i=1}^{n} i^2 \cdot (\sum_{i=1}^{n} i)^2}$

-value means that ALT was increasing, thereby indicating that permafrost degradation has intensified; a negative value means that ALT was decreasing, thereby indicating that permafrost degradation has a certain inhibition; and a zero trend suggests a lack of change (Chen et al., 2014; Stow et al., 2003).

 $\frac{\text{Trend}}{\frac{n \times \sum_{i=1}^{n} i \times index_i \sum_{i=1}^{n} i \times \sum_{i=1}^{n} i \times \sum_{i=1}^{n} index_i}{n \times \sum_{i=1}^{n} i^2 (\sum_{i=1}^{n} i)^2}}$

10 3 Package description

PIC was developed in the R LanguageData and Environment for Statistical Computing v. 3.3.3 and is distributed as* open source software under the GNU-GPL 3.0 License. Therefore, the PIC code can be modified as required to meet the needs of every user. The source code can be downloaded at the GitHub repository (https://github.com/iffylaw/PIC). The R package PIC provides all the necessary functionality to perform the calculation, statistics, and drawing of permafrost indices with over 38 functions based on the user's specific requirements (see Figure 2). The following packages are required in setting up the PIC (type library(PIC)): ggplot2 (Wickham et al., 2009), ggmap (Kahle and Wickham, 2013), RNetCDF (Michna and Woods, 2013); (Zambrano-Bigiarini and Rojas, 2013), and animation (Xie, 2013). These packages are automatically added to the users' R library during installation. A data set that contains the daily weather observations, parameters, and information (i.e., from 1951 to 2010) of 52 weather stations in QTP were bundled into this package. However, the region data with the NetCDF format was placed in the GitHub repository. The data set variables excluded in the calculation, evaporation, humidity, and soil temperature at different depths. PIC was primarily designed to compute indices of permafrost and seasonal

and soil temperature at different depths. PIC was primarily designed to compute indices of permafrost and seasonal frozen soil from observations and foreing data. Therefore, the eurrent stable version of the program (v 1.0<u>parameters</u>) **带格式的:** 英语(英国)

带格式的: 英语(英国)

(24)

(24)

带格式的: 字体颜色: 黑色, 英语(英国), 字距调整三号, 图案: 清 **带格式的:** 标题 1, 段落间距段前: 24 磅, 段后: 12 磅, 行距: 单倍 includes functionalities that cover temperature-related indices (i.e., MAAT, MAGST, and TTOP) and depth-related indices (i.e., ALT and FD) that are commonly used in permafrost research_a

(带格式的:字体颜色:黑色,英语(英国),字距调整三号,图案:清

3.1 Daily weather observations

Table 2 shows detailed information of the data and parameters. Meteorological data were obtained from the China

- 5 Meteorological Administration (CMA, http://www.cma.gov.cn/), particularly from permanent meteorological stations across the QTP (Figure 1). A total of 52 weather stations with daily meteorological records (i.e., from 1951 to 2010) were selected, including the daily mean, maximum (max) and minimum (min) air temperatures, wind speed, observed and corrected precipitation, evaporation, air humidity, atmospheric pressure, sunshine duration, daily mean, max and min ground surface temperatures, and soil temperature at different depths (i.e., 5, 10, 15, 20, 40, 50, 80, 160, and 320 cm). The PIC packageThese
- 10 data have been corrected under specifications for surface meteorological observation and CMA quality control. Daily weather observations are used as the input data for the PIC v1.3 station calculation.

3.2 Atmospheric forcing dataset

The Qinghai-Tibet Engineering Corridor (QTEC), located at the centre of the QTP, was selected in preparing the atmospheric forcing data. Global Land Data Assimilation System (GLDAS, https://ldas.gsfc.nasa.gov) and the weather station data of the

15 surrounding QTEC were merged through spatial interpolation and offset correction to produce a new data set for 1980 to 2010 with a daily 0.1° temporal-spatial resolution. An atmospheric forcing dataset was used as the input data for the PIC v1.3 regional calculation.

3.3 Parameters

The parameters for the ground conditions were based on soil property data and field observations. The parameter data have
 two sets: one for weather stations and another for the QTEC region. The Harmonized World Soil Database (HWSD, version 1.21) provides information on soil parameters that are available for evaluating soil thermal conductivity with field observations and can be used as input parameters to the PIC v1.3 package (Bicheron et al., 2008; Nachtergaele et al., 2009). The thermal conductivity of ground in a thawed/frozen state, λ_t and λ₅ can be computed through the joint parameterization scheme of the Johansen method (Johansen, 1977) and Luo parameterization (Luo et al., 2009):

	$\lambda_{dry} = \frac{0.135 \times \rho + 64.7}{2700 - 0.947 \times \rho}$	(25)
	$\lambda_s = \lambda_q^{q} \times \lambda_o^{1 - q} \underline{\qquad}$	(26)
	$\lambda_{sat} = \lambda_s^{1-\theta_s} \times \lambda_w^{\theta_s}$	(27)
	$S_r = \frac{\theta}{\theta_s}$	(28)
5	$K_{et} = \frac{K_t \times S_r}{1 + (K_t - 1) \times S_r}$	(29)
	$K_{ef} = \frac{K_f \times S_r}{1 + (K_f - 1) \times S_r}$	(30)
	$\lambda_t = (\lambda_{sat} - \lambda_{dry}) K_{et} + \lambda_{dry}$	(31)
	$\lambda_f = (\lambda_{sat} - \lambda_{dry}) K_{ef} + \lambda_{dry}$	(32)
	where the soil thermal conductivity of dry soil λ_{dry} depends on dry bulk density ρ , the thermal conductivity of soil so	lids λ _s
10	varies with the gravel content q, λ_{g} is the thermal conductivity of quartz (7.7 W m ⁻¹ K ⁻¹), λ_{g} is the thermal conductivity	vity of
	other minerals (2.0 W m ⁻¹ K ⁻¹), and q is the gravel content in the soil. The saturated soil thermal conductivity λ_{sat} dependences of the saturated solution of the s	<u>ıds on</u>
	the thermal conductivity of soil solids λ_s , liquid water λ_w (0.594 W m ⁻¹ K ⁻¹), and the soil saturated water content θ_s . The	legree
	of saturation S_r is a function of the soil water content, θ_{and} soil saturated water content, θ_{s} . The Kersten numbers	in the
	thawed/frozen state, K_{et} and K_{ef} , are two functions of the degree of saturation S_{r_s} and K values in the thawed/frozen state	ate, K
15	and K _f , ρ , q and θ_s come from the T_BULK_DENSITY, T_GRAVEL, and T_BS fields of the HWSD.	
	The volumetric heat capacity during thawing, $C_{T_{x}}$ is given as :	
	$C_T = (C_s + \theta \times C_w) \times \rho_{__}$	(33)
	<u>Where C_w is specific heat of liquid water (4.18 kJ kg-³ K⁻¹), C_s is soil specific heat capacity. θ, C_s, K_t and K_f in different difference of the second se</u>	nt soil
	textures can be found in Table 3, these four parameters are empirical parameters used to explain different soil texture	types
20	based on soil texture, thermal conductivities and specific heat capacity derived from soil sampling along the QTEC. Fi	gure 3
	shows these input spatial parameters over the QTP.	

4 Implementation

5

<u>PIC v1.3</u> supports two computational modes: the station and <u>regionregional</u> calculations that enable statistical analysis and visual displays <u>onof</u> the time series and spatial simulations. The regional calculation adopts GIS approaches to compute each spatial grid. PIC v1.3 was initially developed to address <u>anthe</u> immediate need for a reliable and easy-to-use program to estimate the for estimating temporal—spatial changes in frozen <u>QTP</u> soil-in <u>QTP</u>. Thus, the workflow <u>comprises comprised</u> of deliberately simplified steps involved throughout the entire process. Once PIC v1.3 is installed, the workflow of the weather observations is considerably straightforward: (1) an index of a weather station for one year or multiple years is calculated, (2) an index of 52 weather stations from 1951 to 2010 is calculated, and (3) an index of all stations or permafrost stations from 1951 to 2010 is drawn through a curve and spatial visualization. Step (1) is an optional step. The workflow of the forcing data

10 <u>workflow</u> has only two steps: (1) a total of 4 indices from 1980 to 2010 are calculated, including MAAT, DDT_a , DDF_a , and ALT and (2) the spatial statistic statistics and visualization of these 4 indices are drawn. Table 2 describes most of these functions,

带格式的: 英语(英国)

带格式的:默认段落字体

带格式的:字体:加粗,字距调整二号

带格式的: 英语(英国)

4 Examples

Several examples of the PIC v1.3 use and application wereare presented here. This section highlights several significant features of the package in terms of specific functions, including station and regionregional calculation, statistics, and visualization. However, PIC v1.3 includes numerous illustrations from the literature and possible detailed analyses. PIC v1.3 has built-in station data. The data set comprises two tables (data frame), namely, QTP_ATM for daily weather observations and Station_Info for information and parameters infrom each station. Users can modify or adjust the parameters in the Station_Info and ean-use the data and parameters. Additional examples can be referenced in the GitHub repository.

20 (https://github.com/iffylaw/PIC/blob/master/

Examples.R).

4.1 Station calculation

5

We can use different functions in the R console to perform the calculations based on the selected method. For example, if a user wants to obtain a MAAT value for a certain year of a station, then year, he/she can enter the following command. TempName and data are optional in the MAAT function.

MAAT (Year = 1980, TempName = "Temperature", data = QTP ATM, SID = 52908)

User<u>A user</u> can also obtain the MAAT values for a specified period of years in a station.

MAAT (Year = 1980:2010, TempName = "Temperature," data = QTP_ATM, SID = 52908)

The "Year" option can be assigned to a number and sequence. The other temperature/depth-related indices can also use the two inputs for the "Year" option. A user can obtain the values of all stations for an index. The "VarName" option can be equal to the function name in the Com_Indices_QTP function. The results can also be saved to a CSV file with column/row names.

The case of the input VarName is supported.

Com Indices QTP (VarName = "MAAT")

10 Given that the freezing/thawing index can be divided into freezing/thawing degree-days of the air and ground surface, the VarName option should add "_air" or "_ground" at the endends of the Freezing_index and Thawing_index. However, the

abbreviation can also be utilized as the option input. The "Thawing_index_air" and "ta" are the same.

Com Indices QTP (VarName = "Thawing index air")

Com_Indices_QTP (VarName = "ta")

After the TTOP indices are computed, the stations that may have permafrost should be determined. The Exist_Permafrost function can determine and map the stations where permafrost exists. The probability of permafrost occurrence and most likely

15 permafrost conditions are determined from the computing results of the Exist_Permafrost function (see Figure 34).

TTOP_S_QTP <<-- Com_Indices_QTP (VarName = "TTOP_Smith")

TTOP_K_QTP <<-- Com_Indices_QTP (VarName = "TTOP_Kudryavtsev")

Exist Permafrost (plot = "yes")

14

带格式的:英语(英国)

The QTP measurements have constantly been difficult. The data set has several null and anomalous values, as well as leadleading to a few anomalous values in computing the indices. Accordingly, these outlier values should be processed. The Outlier_Process function seeks the outlier values and sets these values them to null-values thereafter, which is an option because abnormal values have been processed in the Com_Indices_QTP.

Outlier_Process (MAAT_QTP[,1:stations])

5 4.2 RegionRegional calculation

A total of four indices, including MAAT, DDF_a, DDT_a and ALT, can be computed with the atmospheric forcing data set in the PIC packagev1.3. This package supports the NetCDF format data; thus, the packageit reads and writes a NetCDF file to support regionregional computing. The input NetCDF files require a few forcing and parameter data. After the calculations, a user can compute the spatial statistics and draw the index changes through a GIF animation (see Sections 4.3 and 4.4).

Spatial_Pic (NetCDFName = "PIC_indices.nc", StartYear = 1980, EndYear = 2010)

10 4.3 Statistics

The stat function contains all the statistical methods for station calculation. The PIC packagev1.3 provides two statistical calculations to compute for computing the statistical value values of all stations using Com_Stats_QTP: (1) the indices that vary with the change in the yearchanging years and (2) the comparison of the same two indices for different computational methods. Options ind1 and ind2 were used; however, ind2 can be disregarded when computing the statistical values between a single

15 datadatum and years.

Com_Stats_QTP (ind1 = MAAT_QTP)

TTOP and ALT were calculated utilizing two different functions, so these two indices should be compared. For example, the two TTOP values for all <u>QTP</u> stations of <u>QTP</u> are compared. A user can assign ind1 and ind2 to compute the ALT statistical values between the Stefan and Kudryavtsev functions. Thereafter, the statistical values are saved to the CSV file when executing the Com_Stats_QTP function. Table <u>34</u> shows all the statistical values of the selected stations.

带格式的: 英语(英国)	

带格式的: 英语(英国)

带格式的: 英语(英国)

带格式的: 英语(英国)

Com_Stats_QTP (ind1 = TTOP_S_QTP, ind2 = TTOP_K_QTP)

Com_Stats_QTP (ind1 = ALT_S_QTP, ind2 = ALT_K_QTP)

A spatial trend can also be computed using the Spatial_Stat function after the regional calculation. The function simultaneously saves the spatial trend of the five indices into the NetCDF file. In addition, the function draws the animation of the spatial trend (see Section 4.4).

Spatial_Stat ("PIC_indices.nc", "ALT")

4.4 Visualization

5 Station visualization can be produced by Plot_TTOP_ALT and Plot_3M. The Plot_TTOP_ALT function plots two TTOP or two ALT indices in a figure for all stations or stations with permafrost. VarName has the "TTOP" and "ALT" options, whereas SID has the "permafrost" and "all" options. The Plot_3M function draws the MAAT, MAGST, and MAGT indices. The two functions plot only plot these the stations where permafrost exists when SID = "permafrost."

Plot TTOP ALT (VarName = "TTOP", SID = "permafrost")

Plot TTOP ALT (VarName = "ALT", SID = "permafrost")

Plot 3M(SID = "permafrost")

The other approach of "ggplot2" was adopted to visualize the region (see Figure 45).

ggplot_Pic (Type = "TTOP", SID = "permafrost")

10 1

The indices that change over time can also be plotted through a GIF animation that uses Map_Pic (Figure 56).

Map_Pic (VarName = "TTOP_S")

Map_Pic (VarName = "TTOP_K")

The input and output of the regional calculation can be drawn using the Netcdf_Multiplot function (see Figure 6); the Netcdf_Animation function7), which uses animation to display thesethe values. The spatial trend can also be drawn in the Spatial_Stat apart from calculating the spatial statistics. This function draws all four indices when "VarName" has no input

(see Figure 78).

Netcdf_Multiplot (NetCDFName = "PIC_indices.nc", VarName = "ALT") Netcdf_Animation (NetCDFName = "PIC_indices.nc", VarName = "ALT") Spatial_Stat ("PIC_indices.nc")

5 Discussion

5.1 PIC performance

This study proposes permafrost modelingmodelling to compute the changes in the active layer and permafrost with the climate, which and this considers the station and region modeling regional modelling over the QTP. We apply the two approaches to 52 weather stations and a central region of the QTP. The PIC v1.3 simulation results from using the 52 stations Exist Permafrost function show that permafrost was detected at 12 stations based on of the 52 observation stations. For QTEC, the (Figure 4). The permafrost areas began to shrink from the southern and northern parts to the central QTEC region. (Figure 7). The permafrost, whether in permafrost stations or QTEC, continued to thaw with decreasing ALT, low surface offset and

10

5

thermal offset, and high MAAT, MAGST, MAGT, and TTOP for most areas of QTP.

The PIC packagev1.3 computes and maps the temporal dynamics and spatial distribution of permafrost in the stations and region. The regional modelingmodelling underwent more challenges than the stations' input data and parameters. The station calculation can estimate the long-term temporal trend of the permafrost dynamics, whereas the regional calculation can estimate the temporal—spatial trend. Climate change indicates a pronounced warming and permafrost degradation in QTP

15 (Chen et al., 2013; Cheng and Wu, 2007; Wu and Zhang, 2010; Wu et al., 2010). The simulation results show widespread permafrost degradation in QTP, and the temporal-spatial trends of the permafrost conditions in QTP were consistent with those in previous studies (Wu and Zhang, 2010; Wu et al., 2010). In addition, the simulated TTOP and ALT that usesusing the Stefan and Smith functions haveare higher TTOP and ALT than the Kudryavtsev function. Although the overall trend of TTOP and ATTALT are coincidental, the two different computational methods can be combined to simulate their variations variation. 带格式的:字体颜色:自动设置,英语(英国) 带格式的:英语(英国)

带格式的:字体颜色:自动设置,英语(英国)

带格式的: 英语(英国)

带格式的:字体颜色:自动设置,英语(英国)

Furthermore, 16 indices can be collectively employed for a comprehensive analysis. Moreover, the station and region modelingregional modelling can be integrated to evaluate the temporal—spatial evolution of permafrost in the QTP. In particular, the station modelingmodelling can be applied to validate the simulated results of the region. Moreover, the regional calculation can extend from QTEC to the entire QTP and even the other permafrost regions.

- The "for" loop is discarded, whereas the "apply" functions are used extensively to significantly lower the computation time. The current regional calculation only takes PIC v1.3 was run natively as a single process in the Windows 7 Operating system. The calculations were performed independently through RStudio Desktop v1.1 software (RStudio, Inc., USA). The utilized processor is an Intel Core i7-2600 CPU 3.40 GHz, and the available memory is 32 GB. The current regional calculation takes only approximately 11 s. Apart from the Kudryavtsev model that requires considerable computation time (i.e., approximately 5 min), the station calculation also exhibited an improved efficiency. Therefore, PIC v1.3 can be considered an efficient R
- 5 min), the station calculation also exhibited an improved efficiency. Therefore, PIC v1.3 can be considered an efficient R package,

Climate change indicates a pronounced warming and permafrost degradation in the QTP with active layer deepening (Chen et al., 2013; Cheng and Wu, 2007b; Wu and Zhang, 2010; Wu et al., 2010), and both the simulation of stations and the region in PIC v1.3 also show widespread permafrost degradation (Figures 4-8). Meanwhile, as shown in Figures 7 & 8, the permafrost in the QTEC also continued to thaw, with the ALT growing. The QTEC is the most accessible area of the QTP. Most boreholes were drilled in the QTEC to monitor changes of permafrost conditions, and this monitoring data provides support for model performance evaluation. Meanwhile, ALT was widely used, so we adopted the permafrost index to estimate PIC v1.3 simulation performance. The simulated PIC v1.3 ALT and previous literature in the QTEC are compared in Table 5. The increasing rate of ALT averaged 0.50-7.50 cm yr⁻¹. The rate during the 1990s to 2010s was greater at more than 4.00 cm yr⁻¹.
20 than during 1980 to the 1990s, at approximately 2.00 cm yr⁻¹. Though both the observed and the simulated ALT and its variation

20 than during 1980 to the 1990s, at approximately 2.00 cm yr⁻¹. Though both the observed and the simulated ALT and its variation in different locations of the QTEC were still relatively large, the ALT trend in PIC v1.3 was close to the observations and simulation in the QTEC. In recent decades, the permafrost thaw rate has increased significantly. The majority of observed ALT and its trend along the QTH and QTR were greater than the simulated grid ALT of PIC v1.3, mainly because the observation

_	带格式的: 字体颜色: 文字 1
	带格式的: 字体颜色: 文字 1
_	带格式的: 字体颜色: 文字 1

sites are near these engineering facilities. These comparative analyses suggest that the temporal-spatial trends of permafrost conditions in the QTEC using PIC v1.3 were consistent with previous studies. More importantly, the difference between simulation results highlights the importance of transparency and reusability of models, data, parameters, simulation results and so on.

5 5.2 Advantages

Previous studies inon the QTP (1) used one or two indices, such as MAAT and MAGST, to evaluate the permafrost changes (Yang et al., 2010); (2) presented a static permafrost distribution that, (2) constructed a regression analysis method through the relationship between MAGT and elevation, latitude, and slope-aspects that presented a static permafrost distribution (Lu et al., 2013: Nan, 2005: Vin et al., 2017); and, (3) did not share the model data and codes; hence, other researchers could not validate 10 their results and conduct further study based on previous research-results (McNutt, 2014). Compared with the previous permafrost modelling in modelling on the QTP, the PIC packagev1.3 is considerably open, easy, intuitive, and reproducible infor integrating data and most of the temperature/depth-related indices. The PIC v1.3 function supports the computation of multiple indices and different time periods, and the encoding mode is reusable and universal. This package can also be easily adopted to intuitively display the changes in the active layer and permafrost, as well as assess the impact of climate change. 15 The PIC v1.3 workflow is extremely simple and requires only one or two steps to obtain the simulated results and visual images. All running examples, data and code can be obtained from the GitHub repository. However, the permafrost modelingmodelling integrates satellite remote sensing dataa gridded meteorological dataset, soil database, weather and field observations, parameters, and multiple functions and models, and supports upporting dynamic change of parameters, parameter changes such as vegetation and ground condition changes. Over 50 QTP weather stations of QTP were introduced, which and 20 they can approximately partially resolve the spatial change directions of the permafrost area. The QTEC region is an example of spatial modeling, which modeling that classifies land cover and topographic features to determine the input spatial input

(带格式的: 字体颜色: 文字 1
 (带格式的: 字体颜色: 文字 1

information of the active layer and permafrost. The static/dynamic maps and statistical values of these indices can facilitate 19

parameters. Spatial modeling modelling also uses the GLDAS satellitetemporal-spatial data to provide spatially_detailed

the understanding of the current condition of the near-surface permafrost and identify stations and ranges at considerably high risk of permafrost thawing with the changing climate and human activities. Permafrost thawing causes significant changes in the environment and characteristics of frozen-soil engineering (Larsen et al., 2008; Niu et al., 2016). A comprehensive assessment of permafrost can provide guidance regarding the future of highways and high-speed railway systems in <u>the QTP</u>.

5 5.3 Limitations and uncertainties

10

PIC <u>v1.3</u> was developed with numerous indices, as well as support station and regional simulation. The PIC packagev1.3 can be used to estimate the frozen soil status and possible changes over the QTP by calculating permafrost indices. This package has many engineering applications and can be used to assess the impact of climate change on permafrost. Moreover, this packageit provides observationobservational data and provides the ability of a comprehensive analysis throughability for multiple indices. The probability of permafrost occurrence and the most likely permafrost conditions are determined by computing the 16 indices. Although PIC <u>v1.3</u> quantitatively integrates most of these indicesthem based on previous studies (Jafarov et al., 2012; Nelson et al., 1997; Riseborough et al., 2008; Smith and Riseborough, 2010; Wu et al., 2010; Zhang et al., 2005; Zhang et al., 2014), it still has several limitations- and uncertainties. First, the regional calculation is one-dimensional and assumes that each grid cell is uniform without the water—heat exchange. Second, the heterogeneity in ground conditions

15 of the QTP also brings along uncertainties of parameter preparation. Third, soil moisture changes at different depths affectaffects the thermal conductivity and thermal capacity of the soil (Shanley and Chalmers, 1999; Yi et al., 2007); thus. Thus, the soil input parameters should be dynamically changed. Lastly, climate forcing has several uncertainties (Zhang et al., 2014)(Zhang et al., 2014), including input air and ground temperatures (i.e., the quality of the ground temperature in the QTP is currently unreliable); thus). Thus, the regional calculation supports fewer indices than the station calculation. These deficiencies can be significant for the permafrost dynamics with environmental evolution.

带格式的:英语(英国)

(带格式的: 英语(英国) (带格式的: 英语(英国)

带格式的: 英语(英国)

6. Conclusions

An R package PIC v1.3 that computes the temperature/depth-related permafrost indices with daily weather observations and elimateatmospheric forcing has been developed. This package is open source software and can be easily used with input data and parameters, and that users can customize their own data and parameters. A total of 16 permafrost indices for stations and 5 the region are eurrentlydeveloped, and datasets of 52 weather stations and a central region of the OTP were prepared. Permafrost modelling and data are integrated into the PIC v1.3 R package PIC toto simulate the temporal-spatial trends of permafrost with the climate estimate and estimate the status of the active layer and permafrost in the QTP. The current functionalities also include time-series statistics, spatial statistics, and visualization. Multiple visual manners display the temporal and spatial variability onof the stations and the region. The package produces high-quality graphics that illustrate the 10 status of frozen soil and may be used for subsequent publication in scientific journals and reports. The data sets of the 52 weather stations and a central region of QTP were prepared and simulated to evaluate the temporal spatial change trends of permafrost with the climate. The simulated PIC v1.3 results generally indicate that the temporal-spatial trends of permafrost conditions essentially agree with previously published studies. The The transparency and repeatability of the PIC v1.3 package has many engineering applications and and its data can be used to assess the impact of climate change on permafrost. Additional 15 features may be implemented in future releases of PIC to broaden its application range. In the future, the observationobservational data of the active layer will be integrated into the PIC data setdatasets, and the outputsimulation results will be compared with the observation data. Theit. PIC package cany 1.3 will also be used to predict the future state of permafrost by utilizing projected climate forcing and scenarios. Additional functions and models will be absorbed into PIC to improve the simulation performance and perform comparative analyses with other functions and models. Parallel computation 20 will be added to the PIC package to improve the computation efficiency. The key impact that PIC v1.3 is expected to provide onto the open community is an increase in consistency within, and comparability among, studies. Furthermore, we encourage contributions from other scientists and developers, including suggestions and assistance, to modify and improve the proposed PIC packagev1.3.

带格式的: 英语(英国)

(#格式的: 英语(英国)
 (#格式的: 英语(英国)

带格式的:字体颜色:自动设置,图案:清除

Code availability

The PIC <u>v1.3</u> code that <u>supportsupports</u> the findings of this study is stored <u>withinin</u> the GitHub repository (https://github.com/iffylaw/PIC).

Data availability

5 The data isare included in the Supplement files or GitHub repository.

Competing interests

The authors declare no competing financial interests.

Acknowledgments

Acknowledgements

10 This research was supported by the National Natural Science Foundation of China (41301508, 41630636). We would like to express our gratitude to the editors and anonymous reviewers for suggestions that improved this paper.

References

- Bicheron, P., Defourny, P., Brockmann, C., Schouten, L., Vancutsem, C., Huc, M., Bontemps, S., Leroy, M., Achard, F., and Herold, M.: GLOBCOVER: products description and validation report, Foro Mundial De La Salud, 17, 285-287, 2008.
- 15 Chen, B. X., Zhang, X. Z., Tao, J., Wu, J. S., Wang, J. S., Shi, P. L., Zhang, Y. J., and Yu, C. Q.: The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau, <u>Agricultural and Agr</u> Forest <u>MeteorologyMeteorol</u>, 189, 11-18, 2014.
 - Chen, H., Zhu, Q. A., Peng, C. H., Wu, N., Wang, Y. F., Fang, X. Q., Gao, Y. H., Zhu, D., Yang, G., Tian, J. Q., Kang, X. M., Piao, S. L., Ouyang, H., Xiang, W. H., Luo, Z. B., Jiang, H., Song, X. Z., Zhang, Y., Yu, G. R., Zhao, X. Q., Gong, P.,
- 20 Yao, T. D., and Wu, J. H.: The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau, Global Change Biol, 19, 2940-2955, 2013.

Chen, S., Liu, W., Qin, X. Y., Liu, Y., Zhang, T., Chen, K., Hu, F., Ren, J., and Qin, D.: Response characteristics of vegetation

and soil environment to permafrost degradation in the upstream regions of the Shule River Basin, Environmental Research LettersEnviron Res Lett, 7, 045406, 2012.

- Cheng, G. and Wu, T.: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau, J Geophys Res-Earth, 112, 2007a.
- 5 Cheng, G. D. and Wu, T. H.: Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau, J Geophys Res-Earth, 112, 20072007b.

Fraile, R.: On the statistical analysis of series of observations, Atmos Res, 29, 274, 1993.

- Gisnås, K., Etzelmüller, B., Farbrot, H., Schuler, T. V., and Westermann, S.: CryoGRID 1.0: Permafrost Distribution in Norway estimated by a Spatial Numerical Model, Permafrost and Periglacial ProcessesPeriglac, 24, 2-19, 2013.
- Harris, C., Arenson, L. U., Christiansen, H. H., Etzemuller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Holzle, M., Humlum, O., Isaksen, K., Kaab, A., Kern-Lutschg, M. A., Lehning, M., Matsuoka, N., Murton, J. B., Nozli, J., Phillips, M., Ross, N., Seppala, M., Springman, S. M., and Muhll, D. V.: Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses, Earth-Sci Rev, 92, 117-171, 2009.
- Hilbich, C., Hauck, C., Hoelzle, M., Scherler, M., Schudel, L., Voelksch, I., Muehll, D. V., and Maeusbacher, R.: Monitoring
 mountain permafrost evolution using electrical resistivity tomography: A 7-year study of seasonal, annual, and long-term
 - variations at Schilthorn, Swiss Alps, Journal of Geophysical ResearchJ Geophys Res-Earth, 113, 2008. Jafarov, E. E., Marchenko, S. S., and Romanovsky, V. E.: Numerical modeling of permafrost dynamics in Alaska using a high

spatial resolution dataset, Cryosphere, 6, 613-624, 2012.

- Jin, H., Yu, Q., Wang, S., and Lü, L.: Changes in permafrost environments along the Qinghai–Tibet engineering corridor
 induced by anthropogenic activities and climate warming, Cold Reg Sci Technol, 53, 317-333, 2008.
- Johansen, O.: Thermal Conductivity of Soils, 1977. University of Trondheim, Norway, 1977.

Juliussen, H. and Humlum, O.: Towards a TTOP ground temperature model for mountainous terrain in central-eastern Norway, Permafrost and Periglacial ProcessesPeriglac, 18, 161-184, 2007.

- Kahle, D. and Wickham, H.: ggmap: Spatial Visualization with ggplot2, R J, 5, 144-161, 2013.
- 25 Kudryavtsev, V. A., Garagulya, L. S., Yeva, K. A. K., and Melamed, V. G.: Fundamentals of Frost Forecasting in Geological Engineering Investigations (Osnovy Merzlotnogo Prognoza pri Inzhenerno-Geologicheskikh Issledovaniyakh), 1977. 1977.
 - Larsen, P. H., Goldsmith, S., Smith, O., Wilson, M. L., Strzepek, K., Chinowsky, P., and Saylor, B.: Estimating future costs for Alaska public infrastructure at risk from climate change, Global Environ Chang, 18, 442-457, 2008.
- 30 Legates, D. R. and McCabe, G. J.: Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation, Water Resour Res, 35, 233-241, 1999.
 - Lewkowicz, A. G. and Bonnaventure, P. R.: Interchangeability of mountain permafrost probability models, northwest Canada, Permafrost and Periglacial Processes/Periglac, 19, 49-62, 2008.
- Li, L., Yang, S., Wang, Z. Y., Zhu, X. D., and Tang, H. Y.: Evidence of Warming and Wetting Climate over the Qinghai-Tibet
 Plateau, Aretie, Antarctie, and Alpine ResearchArct Antarct Alp Res, 42, 449-457, 2010.
 - 23

- Li, R., Zhao, L., Ding, Y., Wu, T., Xiao, Y., Du, E., Liu, X. D., Yin, Z. Y., Shao, X. MG., and Qin, N. SQiao, Y.: Temporal trends and variabilityspatial variations of daily maximum the active layer along the Qinghai-Tibet Highway in a permafrost region, Chin Sci Bull, 57, 4609-4616, 2012.
- Lu, J., Niu, F., Cheng, H., Lin, Z., Liu, H., and minimum, extreme temperature events, Luo, J.: The Permafrost Distribution
- 5 Model and growing season length over the eastern and central Tibetan Plateau during 1961-2003, JournalIts Change Trend of Geophysical Research, 111, 2006Qinghai-Tibet Engineering Corridor, J Mt Sci-Engl, 31, 226-233, 2013. Luo, L.: PIC: Comprehensive R package for permafrost indices computing. Zenodo, 2018.
 - Luo, L., Ma, W., Zhang, Z., Zhuang, Y., Zhang, Y., Yang, J., Cao, X., Liang, S., and Mu, Y.: Freeze/Thaw-Induced Deformation Monitoring and Assessment of the Slope in Permafrost Based on Terrestrial Laser Scanner and GNSS, Remote Sens-Basel, 9, 198, 2017.
 - Luo, L., Zhang, Y., and Zhu, W.: E-Science application of wireless sensor networks in eco-hydrological monitoring in the Heihe River basin, China, IET Science, Measurement & Technologylet Sci Meas Technol, 6, 432, 2012.
 - Luo, S., Lü, S., and Zhang, Y.: Development and validation of the frozen soil parameterization scheme in Common Land Model, Cold Reg Sci Technol, 55, 130-140, 2009.
- 15 McNutt, M.: Journals unite for reproducibility, Science, 346, 679-679, 2014.

10

Michna, P. and Woods, M.: RNetCDF - A Package for Reading and Writing NetCDF Datasets, R J, 5, 29-36, 2013.

Nachtergaele, F., Velthuizen, H. V., Verelst, L., Batjes, N., Dijkshoorn, K., Engelen, V. V., Fischer, G., Jones, A., Montanarella, L., and Petri, M.: Harmonized World Soil Database, 2009, 34-37 (Published on DVD).

- Nan, Z.: Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years, <u>Science inSci</u> China
 SeriesSer D, 48, 797, 2005.
 - Nelson, F. E., Shiklomanov, N. I., Mueller, G. R., Hinkel, K. M., Walker, D. A., and Bockheim, J. G.: Estimating active-layer thickness over a large region: Kuparuk River Basin, Alaska, USA, Aretic, Antarctic, and Alpine ResearchArct Antarct <u>Alp Res</u>, 29, 367-378, 1997.
- Niu, F.-J., Luo, J., Lin, Z.-J., Fang, J.-H., and Liu, M.-H.: Thaw-induced slope failures and stability analyses in permafrost regions of the Qinghai-Tibet Plateau, China, Landslides, 13, 55-65, 2016.
- Oelke, C. and Zhang, T.: Modeling the Active-Layer Depth over the Tibetan Plateau, Arct Antarct Alp Res, 39, 714-722, 2007.
 Pang, Q., Cheng, G., Li, S., and Zhang, W.: Active layer thickness calculation over the Qinghai–Tibet Plateau, Cold Reg Sci Technol, 57, 23-28, 2009.
- <u>R Core Team: R: A language and environment for statistical computing., R Foundation for Statistical Computing, Vienna,</u>
 <u>Austria., 2017.</u>
 - Ran, Y., Li, X., and Cheng, G.: Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau, Cryosphere, 12, 595-608, 2018.
 - Ran, Y. H., Li, X., Cheng, G. D., Zhang, T. J., Wu, Q. B., Jin, H. J., and Jin, R.: Distribution of Permafrost in China: An Overview of Existing Permafrost Maps, Permafrost and Periglacial ProcessesPeriglac, 23, 322-333, 2012.
- 35 Riseborough, D.: Permafrost Modeling. In: Encyclopedia of Snow, Ice and Glaciers, Singh, V. P., Singh, P., and Haritashya, U.

K. (Eds.), Springer Netherlands, Dordrecht, 2011.

Riseborough, D., Shiklomanov, N., Etzelmuller, B., Gruber, S., and Marchenko, S.: Recent advances in permafrost modelling, Permafrost and Periglacial ProcessesPeriglac, 19, 137-156, 2008.

5

20

Romanovsky, V. E. and Osterkamp, T. E.: Thawing of the active layer on the coastal plain of the Alaskan Arctic, Permafrost and Periglacial Processes Periglac, 8, 1-22, 1997.

Rui, H. and Beaudoing, H.: Readme document for global land data assimilation system version 2 (GLDAS-2) products, GES DISC, 2011. 2011.

- 10 Shanley, J. B. and Chalmers, A.: The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont, Hydrol Process, 13, 1843-1857, 1999.
 - Shen, M. G., Piao, S. L., Jeong, S. J., Zhou, L. M., Zeng, Z. Z., Ciais, P., Chen, D. L., Huang, M. T., Jin, C. S., Li, L. Z. X., Li, Y., Myneni, R. B., Yang, K., Zhang, G. X., Zhang, Y. J., and Yao, T. D.: Evaporative cooling over the Tibetan Plateau induced by vegetation growth, <u>PProc</u> Natl Acad Sci USA, 112, 9299-9304, 2015.
- 15 Smith, M. W. and Riseborough, D. W.: Permafrost monitoring and detection of climate change, Permafrost and Periglacial ProcessesPeriglac, 7, 301-309, 1996.
 - Smith, S. L. and Riseborough, D. W.: Modelling the thermal response of permafrost terrain to right-of-way disturbance and climate warming, Cold Regions Science and TechnologyReg Sci Technol, 60, 92-103, 2010.

Stow, D., Daeschner, S., Hope, A., Douglas, D., Petersen, A., Myneni, R., Zhou, L., and Oechel, W.: Variability of the

seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s, International Journal of Int J Remote SensingSens, 24, 1111-1117, 2003.

- 30 Xie, Y. H.: animation: An R Package for Creating Animations and Demonstrating Statistical Methods, J Stat Softw, 53, 1-27, 2013.
 - Yang, M. X., Nelson, F. E., Shiklomanov, N. I., Guo, D. L., and Wan, G. N.: Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research, Earth-Sci Rev, 103, 31-44, 2010.
- Yao, T., Pu, J., Lu, A., Wang, Y., and Yu, W.: Recent glacial retreat and its impact on hydrological processes on the tibetan
 plateau, China, and sorrounding regions, Aretic, Antarctic, and Alpine ResearchArct Antarct Alp Res. 39, 642-650, 2007.

Sazonova, T. S. and Romanovsky, V. E.: A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures, Permafrost and Periglacial ProcessesPeriglac, 14, 125-139, 2003.

Wickham, H., Lawrence, M., Cook, D., Buja, A., Hofmann, H., and Swayne, D. F.: The plumbing of interactive graphics, <u>Computational StatisticsComputation Stat</u>, 24, 207-215, 2009.

Wu, Q., Hou, Y., Yun, H., and Liu, Y.: Changes in active-layer thickness and near-surface permafrost between 2002 and 2012
 in alpine ecosystems, Qinghai–Xizang (Tibet) Plateau, China, Global Planet Change, 124, 149-155, 2015.

Wu, Q. B. and Zhang, T. J.: Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007, Journal of Geophysical ResearchJ Geophys Res-Atmos, 115, 2010.

Wu, Q. B., Zhang, T. J., and Liu, Y. Z.: Permafrost temperatures and thickness on the Qinghai-Tibet Plateau, Global and PlanetaryPlanet Change, 72, 32-38, 2010.

	Yi, S., Wang, X., Qin, Y., Xiang, B., and Ding, Y.: Responses of alpine grassland on Qinghai-Tibetan plateau to climate
	warming and permafrost degradation: a modeling perspective, Environ Res Lett, 9, 2014a.
	Yi, S., Wischnewski, K., Langer, M., Muster, S., and Boike, J.: Freeze/thaw processes in complex permafrost landscapes of
	northern Siberia simulated using the TEM ecosystem model: impact of thermokarst ponds and lakes, Geosci Model Dev,
5	7, 1671-1689, 2014a<u>2014b</u>.
	Yi, S. H., Wang, X. Y., Qin, Y., Xiang, B., and Ding, Y. J.: Responses of alpine grassland on Qinghai-Tibetan plateau to climate
	warming and permafrost degradation: a modeling perspective, Environmental Research Letters, 9, 2014b.
	Yi, S. H., Yi, S., Woo, M. K., and Arain, M. A.: Impacts of peat and vegetation on permafrost degradation under climate
	warming, Geophysical Research Letters Geophys Res Lett, 34, 2007.
10	Yin, G. A., Niu, F. J., Lin, Z. J., Luo, J., and Liu, M. H.: Effects of local factors and climate on permafrost conditions and
	distribution in Beiluhe basin, Qinghai-Tibet Plateau, China, Sci Total Environ, 581, 472-485, 2017.
	Zambrano-Bigiarini, M. and Rojas, R.: A model-independent Particle Swarm Optimisation software for model calibration,
	Environ Modell Softw, 43, 5-25, 2013.
	Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A., and Brown, J.: Statistics and characteristics of permafrost and
15	ground-ice distribution in the Northern Hemisphere, Polar Geography, 31, 132-154, 2008a.
	Zhang, TJ., Frauenfeld, O. W., Serreze, M. C., Etringer, A., Oelke, C., McCreight, J., Barry, R. G., Gilichinsky, D., Yang, D.
	Q., Ye, H-C., Ling, F., and Chudinova, S.: Spatial and temporal variability in active layer thickness over the Russian
	Arctic drainage basin, Journal of Geophysical Research J Geophys Res-Atmos, 110, 2005.
	Zhang, Y., Carey, S. K., and Quinton, W. L .: Evaluation of the algorithms and parameterizations for ground thawing and
20	freezing simulation in permafrost regions, J Geophys Res-Atmos, 113, 2008b.
	Zhang, Y., Olthof, I., Fraser, R., and Wolfe, S. A .: A new approach to mapping permafrost and change incorporating
	uncertainties in ground conditions and climate projections, Cryosphere, 8, 2253-2253, 2014.
	Zhang, Y. S., Carey, S. K., and Quinton, W. L.: Evaluation of the algorithms and parameterizations for ground thawing and
	freezing simulation in permafrost regions, J Geophys Res-Atmos, 113, 2008b.

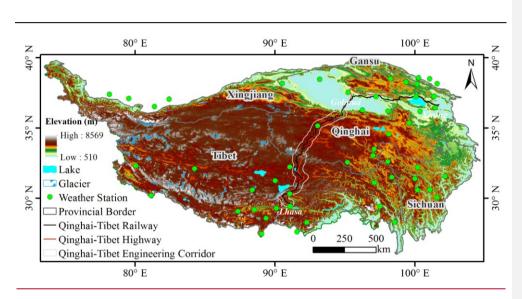


Figure 1: Map of the data location over the QTP.

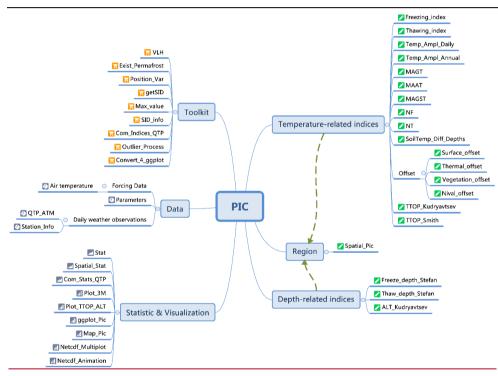


Table 1: Most important user functions in the R package PIC v1.3. The equation column of this table corresponds to the

			a	•
ea	uatic	n in i	Section	2.

<u>R function</u>	Equation	Description	<u>Unit</u>
Temperature-relate	ed indices		
Freezing_index	<u>(4,6)</u>	Freezing degree-days for air and ground	<u>°C day</u>
Thawing_index	<u>(3,5)</u>	Thawing degree-days for air and ground	<u>°C day</u>
MAAT	<u>(7)</u>	Mean annual air temperature	<u>°C</u>
MAGST	<u>(8)</u>	Mean annual ground surface temperature (5 cm)	<u>°C</u>
MAGT	<u>(10)</u>	Mean annual ground temperature (at 15 m)	<u>°C</u>

带格式的

带格式的: 字体: 非加粗

<u>NT</u>	<u>(11)</u>	Thawing n factor	
<u>NF</u>	<u>(12)</u>	Freezing n factor	
Surface_Offset		The difference between the MAGST and MAAT	<u>°C</u>
Thermal_Offset		The difference between the TTOP and MAGST	°C
		The second term (Surface_Offset) is negative and	
Vegetation_Offset		represents the reduction in MAGST due to vegetation	<u>°C</u>
		effects in summer (vegetation offset)	
		The first term (Surface_Offset) on the right-hand-side is	
NT 1.000 /		positive and represents the elevation of MAGST over	20
Nival_Offset		MAAT due to the insulating effect of winter snow cover	<u>°C</u>
		(nival offset)	
		The temperature at the top of the permafrost using Smith &	
TTOP_Smith	<u>(13)</u>	Riseborough function	<u>°C</u>
		The temperature at the top of the permafrost using	
TTOP_Kudryavtsev	<u>(14)</u>	Kudryavtsev function	<u>°C</u>
Depth-related indices			
Freeze depth Stefan	(20)	Maximum freezing depth using Stefan function	m
Thaw depth Stefan	(16)	Active layer thickness using Stefan function	m
<u></u>	<u>(10)</u>	Active layer thickness (ALT) or maximum thawing depth	<u></u>
ALT_Kudryavtsev	<u>(19)</u>	using Kudryavtsev function	<u>m</u>
Region			
Spatial Pic	(3,4,7,16)	Spatial changes with MAAT, DDT _a , DDF _a and ALT	m
	(3,4,7,10)	Spatial changes with MAAT, DDT _a , DDT _a and ALT	m
Toolkit			—
Com_Indices_QTP		Computing all indices for all stations of the QTP	
Outlier_Process		Process the abnormal value	- 3
VLH	<u>(2)</u>	Computing volumetric latent heat of fusion	J/m ³
Convert_4_ggplot		Convert the values of TTOP & ALT to one column	
Exist Permafrost		To determine the stations where permafrost exist by TTOP	
		values	
<u>Statistic</u>	_	_	_
Stat	(21,22,23)	Statistical functions with 10 more methods	
Spatial_Stat	<u>(24)</u>	Spatial statistical method, just for spatial trend	
Com Stats QTP		Computing the statistical values for one or both of these	
		indices	
Visualization	_		
		29	

Plot 3M	Plot MAAT, MAGST, and MAGT for all stations or a
<u>- 100_5111</u>	single station
Plot_TTOP_ALT	Plot TTOP and ALT for all stations or a station
amlet Die	Plot multiple indices for all stations or a single station
ggplot_Pic	using ggplot2
Mar Dia	Plot multiple indices for all stations or a single station
<u>Map_Pic</u>	using ggmap
Netcdf_Multiplot	Regional visualization of NetCDF with multiple plots
Netcdf_Animation	Regional animation of NetCDF

Table 2: Input data and parameters.

Variables	Meaning	Unit
Temperature	Daily mean air temperature	<u>°C_°C_</u>
Tmax	Daily maximum air temperature	<u></u>
Tmin	Daily Minimum air temperature	<u>°C</u>
GT	Daily mean ground temperature in	<u>-C_°C_</u>
	0 cm	
GT_0_MAX	Daily maximum ground	<u>-C-°C</u>
	temperature at 0 cm	
GT_0_MIN	Daily minimum ground	<u></u>
	temperature at 0 cm	
temp	Spatial daily mean air temperature	<u>°C</u>
λ_t	Thermal conductivity of ground in	W/m <mark>℃<u>K</u></mark>
	thawed state	
$\lambda_{\rm f}$	Thermal conductivity of ground in	W/m <mark>℃<u>K</u></mark>
	frozen state	
L	Latent heat of fusion	J/m ³
ρ	Dry bulk density	kg/m ³
W	Soil water content in thawed state	%
W_u	Soil unfrozen water content in	%
	frozen state	
P _{sn}	period of the temperature wave,	s
	adjusted for snow melt	
CT	volumetric heat capacity during	J <u>kJ</u> /m ³ K
	thawing	

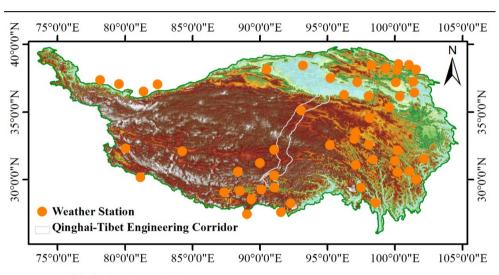


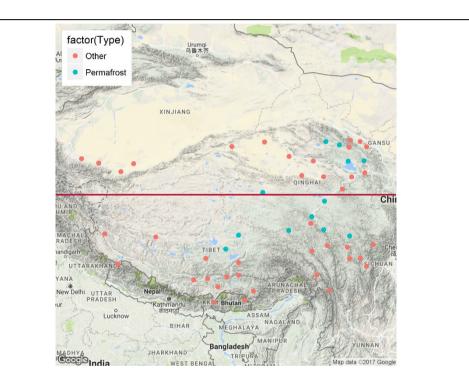
Figure 1: Map of the data location over QTP.

Table 2: Most important user functions in the R package PIC. The equation of this table corresponds to the equation in Section 2.2.

5 Table 3: Parameters of thermal conductivity in the thawed/frozen state. The UADS Code came from soil texture classification of United States Department of Agriculture (USDA). The Qinghai-Tibet Plateau does not have the 1 and 8 of soil classification codes. θ: soil water content; K₁: K value in thawed state; K₁: K value in frozen state; C_s: specific heat capacity in thawed state (kJ/kg K).

R	Description-	Unit 0	Equation Kt	<u>K</u> f	<u>C</u> s	•
functionUSDA	and					
<u>Code</u>	referenceSoil					

J	带格式的: 字体: (默认) 楷体, 字体颜色: 文字 1
1	带格式的: 字体颜色: 文字 1
-{	带格式的: 居中, 无孤行控制
-	带格式表格
	插入的单元格
	插入的单元格
1	带格式的: 字体颜色: 文字 1


							带格式的	
							插入的单元格	
						/	带格式的	
							带格式的	
	Texture						带格式的	
Temperature-	-clay(heavy)	-0.17	1.90	0.85	1.00		带格式的	
•	-ciay(iicavy)		1.90	0.05	1.00		带格式表格	
related indices							带格式的	
<u>1</u>						/	带格式的	
<u>2</u>	silty clay	<u>0.17</u>	<u>1.90</u>	<u>0.85</u>	<u>1.00</u>	//	带格式的	
<u>3</u>	clay (light)	<u>0.17</u>	1.90	0.85	0.92		插入的单元格	
Freezing_index4	Freezing-	<u>°C-0.17</u>	(4,6) 1.90	0.85	0.92	•	带格式的	
	degree-days for-	_					插入的单元格	
	air and						带格式的	
						/	带格式的	
	groundsilty clay						带格式的	
	loam					/ //	带格式的	
Thawing_index5	Thawing-	<u>°C0.17</u>	(3,5)<u>1.90</u>	<u>0.85</u>	<u>0.92</u>	•	带格式的	
	degree-days for-						带格式的	
	air and					,	带格式的	
	ground <u>clay</u>						带格式表格	
	loam						带格式的	
<u>6</u>	silt	0.17	1.90	0.85	0.87	// /	带格式的	
							带格式的	
MAAT7	Mean annual air	<u>°C 0.17</u>	(7)<u>1.90</u>	0.85	0.87		插入的单元格	
	temperaturesilt						插入的单元格	
	<u>loam</u>						带格式的	
MAGST8	Mean annual-	<u>°C-0.15</u>	(8) <u>3.55</u>	<u>0.85</u>	<u>0.84</u>	•	带格式的	
	ground surface						带格式的	
	temperature (5-						带格式的	
	em)sandy clay						带格式的	
9	loam	0.15	2.55	0.95	0.94		带格式的	
		<u>0.15</u>	<u>3.55</u>		<u>0.84</u>		带格式的	
MAGT10	sandy clay loam	Mean-	<u>°C-3.55</u>	(10)<u>0.95</u>	0.84	1	带格式表格	
		annual					带格式的	
		ground-					插入的单元格	
		temperature					带格式的	
		(at 15-					带格式的	
		m) 0.15					带格式的	
NT11	Thawing n-	0.15	(11)3.55	0.95	0.84	•	插入的单元格	
111		0.10	(11) <u>5.55</u>	0.90	0.01		带格式的	
	factorsandy						带格式的	
	loam						带格式的	
NF12	Freezing n-	0.06	(12)4.60	<u>1.70</u>	<u>0.79</u>	_	带格式的	
		33					带格式的	
						1//	带格式的	
							带格式的	
							▲ 插入的单元格	
							带格式的	
							带格式的 带格式的	

factor_loamy		背格式的: 字体颜色: 文字 1
Surface_Offset The difference between the MAGST and MAAT 'C Thermal_Offset The difference between the TTOP and MAGST 'C The second term (Surface_Offset) is negative, and 'C Vegetation_Offset represents the reduction in MAGST due to- 'C vegetation effects in summer (vegetation offset) The first term (Surface_Offset) on the right hand- side is positive, and represents the clevation of 'C MAGST over MAAT due to the insulating effect of 'C winter snow cover (nival offset)- 'TTOP_Smith13, The temperature 'C0.06, (13)4.60, 1.70, 0.79 at the top of the permafrost using Smith & Riseborough-		背格式的: 字体颜色: 文字 1
Thermal_Offset The difference between the TTOP and MAGST 'C The second term (Surface_Offset) is negative, and Vegetation_Offset represents the reduction in MAGST due to 'C vegetation effects in summer (vegetation offset) The first term (Surface_Offset) on the right-hand- side is positive, and represents the elevation of MAGST over MAAT due to the insulating effect of- winter snow cover (nival offset)- TTOP_Smith_13_ The temperature 'C0.06_ (13)4.60_ 1.70_ 0.79 at the top of the permafrost using Smith &- Riseborough-		
The second term (Surface_Offset) is negative, and Vegetation_Offset represents the reduction in MAGST due to- vegetation effects in summer (vegetation offset) The first term (Surface_Offset) on the right-hand- side is positive, and represents the elevation of MAGST over MAAT due to the insulating effect of winter snow cover (nival offset)- TTOP_Smith13_ The temperature represents using Smith &- Riseborough-		
Vegetation_Offset represents the reduction in MAGST due to- *C vegetation effects in summer (vegetation offset) The first term (Surface_Offset) on the right-hand- Nival_Offset side is positive, and represents the elevation of Nival_Offset *C MAGST over MAAT due to the insulating effect of winter snow cover (nival offset)- TTOP_Smith13_ The temperature *C using Smith & Riseborough-		
vegetation effects in summer (vegetation offset) The first term (Surface_Offset) on the right-hand- side is positive, and represents the elevation of 'C MAGST over MAAT due to the insulating effect of winter snow cover (nival offset)- TTOP_Smith13 The temperature 'C0.06 (13)4.60 1.70 0.79 at the top of the permafrost using Smith & Riseborough-		
Nival_Offset The first term (Surface_Offset) on the right-hand-side is positive, and represents the elevation of MAGST over MAAT due to the insulating effect of winter snow cover (nival offset)- TTOP_Smith_13 The temperature 2006 (13)4.60 1.70 0.79 at the top of the permafrost using Smith & Riseborough-		
side is positive, and represents the elevation of MAGST over MAAT due to the insulating effect of winter snow cover (nival offset)- TTOP_Smith13 The temperature \$\curred{C}0.06\$ (13)4.60\$ 1.70\$ 0.79\$ at the top of the permafrost- using Smith & Riseborough- Riseborough-		
Nival_Offset MAGST over MAAT due to the insulating effect of winter snow cover (nival offset)- TTOP_Smith13 The temperature *C0.06 (13)4.60 1.70 0.79 at the top of the permafrost- using Smith & Riseborough-		
 MAGST over MAAT due to the insulating effect of winter snow cover (nival offset) TTOP_Smith13_The temperature *C0.06_(13)4.601.700.79		
TTOP_Smith13 The temperature <u>C0.06 (13)4.60 1.70 0.79</u> at the top of the permafrost using Smith & Riseborough-		
at the top of the permafrost- using Smith & Riseborough-		
at the top of the permafrost- using Smith &- Riseborough-	▲ 播	重人的单元格
permafrost- using Smith & Riseborough-		带格式的: 居中, 无孤行控制
using Smith &- Riseborough-		带格式的: 字体颜色: 文字 1
Riseborough		插入的单元格
		带格式的: 字体颜色: 文字 1
Turietionsand		带格式表格 带格式的: 字体颜色: 文字 1
The temperature at the top of the permafrost using		格式的: 宇体颜色: 文字 1 持格式的: 字体颜色: 文字 1
TTOP_Kudryavtsev The temperature at the top of the permanost using C (14) Kudryavtsev function	41)	中国政府3. 于平颜白. 大于 1
Depth-related indices	-	
reeze_depth_Stefan Maximum freezing depth using Stefan function m (20) haw depth Stefan Active layer thickness using Stefan function m (16)		
Active layer thickness (ALT) or maximum thawing		
ALT Kudryayteev (10)		
depth using Kudryavtsev function		
legion		
patial_Pic Spatial changes with MAAT, DDT _s , DDF _s and ALT m (3,4,7,16)	-	
Com_Indices_QTP Computing all indices for all stations of the QTP		
Dutlier_Process Process the abnormal value		
VLH Computing volumetric latent heat of fusion J/m^2 (2)		
Convert_4_ggplot Convert the values of TTOP & ALT to one columns		
Exist Permafrost		
TTOP values	_	
Statistic — — —		
Stati Statistic functions with more 10 methods (21,22,23)		
34		

Spatial_Stat	Spatial statistic method, just for spatial trend		(24)
C. State OTD	Computing the statistc values for one or both of		
Com_Stats_QTP	these indices		
Visualization			
D1-4 214	Plot MAAT, MAGST, and MAGT for all stations or		
Plot_3M	a station		
Plot_TTOP_ALT	Plot TTOP and ALT for all stations or a station		
and the Dis	Plot multiple indices all stations or a station using-		
ggplot_Pic	ggplot2		
Man Dia	Plot multiple indices all stations or a station using-		
Map_Pic	ggmap		
Netcdf_Multiplot	Region visualization of NetCDF with multiple plots		
Netcdf_Animation	Region animation of NetCDF	_	

(帶格式的: 字体: 小四, 字体颜色: 文字 1
 (帶格式的: 两端对齐, 行距: 单倍行距

•

Figure 3; Spatial parameters for PIC v1.3 over the Qinghai-Tibet Plateau. (a) dry bulk density ρ ; (b) volumetric heat capacity during thawing $C_{\underline{T}}$; (c) thermal conductivity of ground in thawed state $\lambda_{\underline{t}}$; (d) thermal conductivity of ground in frozen state $\underline{\lambda}_{\underline{t}}$.

【 带格式的: 字体颜色: 自动设置
 【 带格式的: 字体: 加粗, 字体颜色: 自动设置

带格式的: 行距: 单倍行距

Figure 4: Permafrost occurrence map. Google Maps is as a base map that uses the Exist_Permaforst function. "Other" indicates the seasonal frozen soil.

 Table 34: The statistical values of TTOP apply Com_Stats_QTP for the stations where permafrost exists. SD_S isIntercept: y intercept; Slope: slope of regression line; R: Pearson's correlation coefficient, R²: coefficient of determination; RMSE: root
 mean squared error; NRMSE: normalized RMSE; SD_S: the standard deviation of TTOP that usesusing the Stefan function,
 whereas; SD_K-is: the standard deviation of TTOP that-usesusing the Kudryavtsev function.-; MEF: modelling efficiency;
 NAE: normalized average error; VR: variance ratio; PBIAS: percent bias; NSE: Nash-Sutchliffe efficiency; RSR: RMSE observations standard deviation ratio; and D: index of agreement.

5

Statistic	Tuole	Wudaoliang	Anduo	Maduo	Qingshuihe	Shiqu
interceptIntercept	-0.69	-0.4	-0.59	-0.9	-1.24	-1.47
slopeSlope	1.11	1.16	1.2	1.19	0.93	0.89

R	0.97	0.96	0.97	0.97	0.96	0.86
\mathbb{R}^2	0.94	0.92	0.93	0.94	0.92	0.75
RMSE	0.83	0.86	0.83	1.24	1.06	1.5
NRMSE	-0.85	-0.34	-1.23	-0.78	-0.52	-3.17
SD_S	0.59	0.8	0.78	0.61	1	0.69
SD_K	0.6	0.66	0.78	0.66	0.6	0.69
MEF	-0.85	0.03	-0.06	-2.7	0.07	-3.09
NAE	0.89	0.39	1.38	0.86	0.65	3.35
VR	1.03	0.68	1	1.14	0.35	1
PBIAS	-76.13	-26.54	-108.59	-67.31	-41.42	-255.56
MSENSE	0.42	0.62	0.57	0.39	0.67	0.37
RSR	0.76	0.61	0.66	0.78	0.58	0.79
D	0.67	0.7	0.76	0.53	0.58	0.5

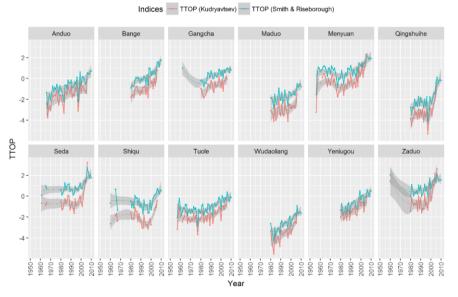


Figure 4<u>5</u>: TTOP that uses using the Smith and Kudryavtsev functions.

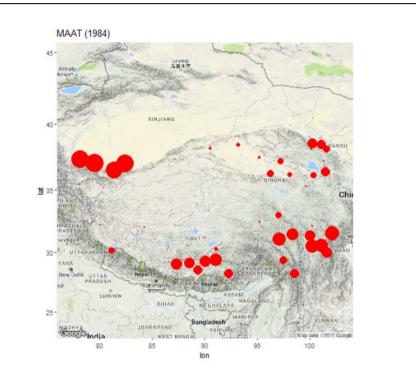


Figure 56: Index changes over time for MAAT. These graphs are animated in GIF mode.

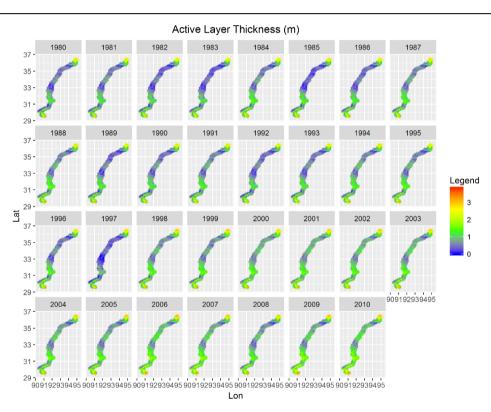
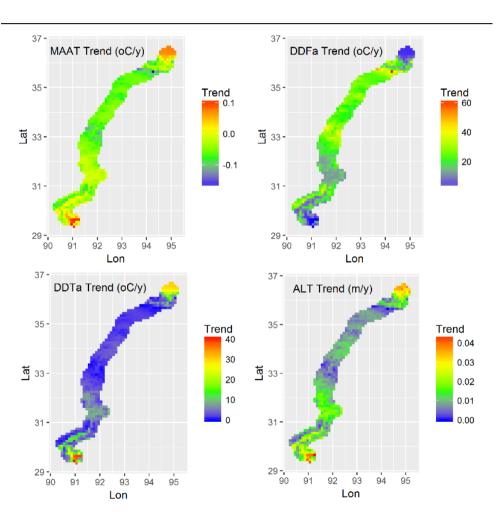



Figure 67: Regional visualization of ALT.

Figure 78: Spatial trend of MAAT, *DDT_a*, *DDF_a*, and ALT.

Table 5. The active layer thickness (ALT) and its trend between the PIC v1.3 simulation and literature analysis in the Qinghai-

Mean	ALT	ALT trend	Period	Location	Data sources
ALT	Scope	<u>(cm yr⁻¹)</u>			
(<u>m)</u>	<u>(m)</u>				
2.03	0.97-3.87	2.89	<u>1980-2010</u>	The whole QTEC	<u>PIC v1.3</u>
2.18	1.00-3.20	<u>1.33</u>	<u>1981-2010</u>	Near the Qinghai-Tibet highway	Li et al.
				along the QTEC	<u>(2012)</u>
=	1.00-3.00	<u>0.50-2.00;</u>	<u>1980-2001</u>	Simulation along the Qinghai-Tibet	Oelke and
		3.00-5.00		<u>Highway/</u>	Zhang (2007)
		(1990s-2001)		Railway	
_	1.30-3.50	=	=	Near the Qinghai-Tibet highway	Pang et al.
				along the QTEC	<u>(2009)</u>
=	2.00-2.60	2.14-7.14	<u>1991-1997</u>	1 site (35°43'N, 94°05'E) Near the	Cheng and Wu
				Qinghai-Tibet highway along the	<u>(2007a)</u>
				QTEC	
_	1.84-3.07	=	<u>1990s</u>	17 Monitoring sites near the Qinghai-	Jin et al.
				<u>Tibet Highway/</u>	<u>(2008)</u>
				Railway along the QTEC	
2.41	1.32-4.57	7.50	1995-2007	10 Monitoring sites Near the	Wu and Zhang
				Qinghai-Tibet highway along the	<u>(2010)</u>
				QTEC	
2.40	1.61-3.38	4.26	2002-2012	10 Monitoring sites (34°49'N,	Wu et al.
				<u>92°55′E) along the QTEC</u>	(2015)

带格式的:英语(英国)