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Many thanks to both reviewers for the constructive comments that helped to improve
the paper. We will list the comments of the reviewers and our responses in the follow-
ing.

C1

Reviewer 1

General comments

Overall, this is a nice piece of pilot work and a stimulating discussion about the potential
for machine learning to change how we make numerical weather forecasts, and in par-
ticular the potential for an “equation-free” approach that doesn’t even use discretized
equations of fluid motion. In particular, it highlights the important of an intelligent hu-
man design for such an approach to be competitive.

It is interesting (but reassuring given the structure of the underlying equations of
atmospheric motion) that a “local” approach works better for both problems considered
than a “global” approach. The machine learning global forecast approach uses limited
inputs (Z500 and optionally T2m, at 6 degree lat/lon resolution) but performs com-
parably to a version of the current ECMWF operational model with similar resolution
(TL21), though not nearly as well as the full-resolution operational model. If you
used a polar filter to remove high zonal wavenumbers in the NN-predicted Z500 near
the poles, could you avoid the ad hoc approach of fixing Z500 at polar gridpoints to
maintain the stability of your NN?

Response:

Many thanks for the positive review and the very useful feedback. We agree, that a
polar filter or a relaxation against a reference state may remove the spurious behaviour
at the poles. In fact, many of the mechanisms that are used to stabilise conventional
grid-point models are likely to work in a very similar way for a Neural Network forecast
system. Targeted customisation of the network architectures around the poles may
also help to remove the spurious behaviour. However, this would require trial-and-error
testing and would not be based on any theoretic understanding.
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We feel that the application of a polar filter is beyond the scope of this paper. However,
we are now mentioning the possible fix via a filter when discussing the problems
around the poles on page 5:

“It is likely that the instabilities that were found near the poles could be removed using
a polar filter or a relaxation of the model fields against a reference solution. These
methods have been used to stabilize conventional grid-point models near the poles in
the past. It is also possible that the pole problem can be solved via a change of the
network architecutre of the NNs that are used in the vicinity of the poles. However, a
more detailed investigation of this problem is beyond the scope of this paper.”

Specific comments

1. Page 2 Line 7: There is some relevant new literature on machine learning used
for atmospheric physical parameterization, e. g.:
Schneider et al. (2017). Earth system modeling 2.0: A blueprint for models
that learn from observations and targeted high-resolution simulations. GRL, 44,
12,396-12,417.
Brenowitz N.D., and C.S. Bretherton, 2018: Prognostic validation of a neural
network unified physics parameterization, Geophys. Res. Lett.
The Schneider et al. paper is particularly relevant to the discussion here, as it
uses a similar Lorenz 1995-type toy problem.

Response:

Yes, many thanks for the heads-up. We have updated the publication list with four
new entries:

Brenowitz, N. D. and Bretherton, C. S.: Prognostic Validation of a Neural Network
C3

Unified Physics Parameterization, Geophysical Research Letters, 2018.

O’Gorman, P. A. and Dwyer, J. G.: Using machine learning to parameterize moist
convection: potential for modeling of climate, climate change and extreme events,
ArXiv e-prints, 2018.

Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent sub-grid
processes in climate models, ArXiv e-prints, 2018.

Schneider, T., Lan, S., Stuart, A., and Teixeira, J.: Earth System Modeling
2.0: A Blueprint for Models That Learn From Observations and Targeted High-
Resolution Simulations, Geophysical Research Letters, 2018.

We have also changed the relevant text in the introduction:

“NNs have been used to post-process data from weather forecast models to
optimise predictions; see for example Krasnopolsky and Lin (2012) or Rasp
and Lerch (2018). NNs have also been used for radiation parametrisation in
operational forecasts at ECMWF in the past (Chevallier et al., 1998, 2000;
Krasnopolsky et al., 2005) as well as for the parametrisation of ocean physics
(Krasnopolsky et al., 2002; Tolman et al., 2005) and convection (Krasnopolsky
et al., 2013). Recently, the representation of atmospheric sub-grid processes
using techniques from machine learning was investigated in more detail with
promising results using both NNs (Brenowitz and Bretherton, 2018; Gentine
et al., 2018; Rasp et al., 2018) and random forest decision trees (O’Gorman
and Dwyer, 2018). For parametrisation, NNs can be trained from observations
or high-resolution model data, for example from high resolution simulations
of the same model, simulations that use superparametrisation, or large-eddy
simulations, with the ambition to provide better results compared to conventional
parametrisation schemes (see for example Schneider et al. (2018)). NN
parametrisation schemes can also be trained with input/output pairs of existing
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parametrisation schemes to emulate the behaviour and eventually replace
the parametrisation scheme within forecasts. The latter is useful since NNs
parametrisation schemes, that are based on very efficient HPC libraries such as
TensorFlow (Ten, 2018) for which co-designed hardware exists, will in general
be much more efficient compared to conventional parametrisation schemes that
have a very large codebase that is difficult to optimize. Speed-up factors of up
to 105 have been observed; see Krasnopolsky and Fox-Rabinovitz (2006). It is
possible that NNs may become a standard tool to be used within the complex en-
vironment of Earth System models to speed-up specific model components or to
improve the representation of processes that cannot be represented adequately
by physical equations. The use of NNs in the development of parametrisation
schemes may also enable new approaches for representing model uncertainty
in ensemble predictions.”

However, we do not feel that the results with the Lorenz model in Schneider et al.
are particularly relevant for this paper. Schneider et al. is using the Lorenz model
in the rather different context of model parameter estimation.

2. Page 2 Line 9: Add comma before “or”. Page 2 Line 14: Remove comma after
“possible”. Page 3 Line 30: Should be “degrees of freedom”.

Response:

Many thanks. All of this has been changed.
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Reviewer 2

The authors show that it will be a challenge to develop neural nets that will beat NWP
models. I agree. They also state that it will be difficult to beat long-range (e.g. sea-
sonal) forecasts. However, given the dominance of model error (biases not least) on
these longer timescales, here I am much less convinced. What evidence is there that
neural nets for ENSO, for example, could not at least equal in skill those based on
coupled models?

The authors correctly state that one of the reasons for developing neural nets for
parametrisations is to make them much cheaper computationally. Here the neural nets
can be trained on the parametrisations themselves. Unfortunately the Lorenz 95 sys-
tem is too simple to really test this idea - it would be trivial to develop a neural net for
the Y and Z variables which would be competitive with a simple cubic fit or whatever.
It would be good if the authors could speculate on how to test this latter idea in a way
which was challenging for the neural nets on the one hand, but without going to full
GCMs on the other.

I recommend this paper for publication subject to the authors addressing these two
points.

Response:

Many thanks for the positive review and the very useful feedback.

Regarding point 1: Yes, it is very true that we should not cover all applications of NNs in
our statements about predictability of longer timescales at the end of the conclusions.
We are convinced that NN forecast models that learn the equation of the atmospheric
state and rely on high complexity and short timesteps (as discussed in the paper) will
have problems with biases similar to the problems observed in conventional models.
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This is for example discussed on page 13:

“These biases will also be a problem for models based on NNs and may change the
local ”climate“ within a couple of days of simulations and push the network to weather
regimes that were not covered by the training data.”

However, we agree that the results of this paper cannot be used to judge whether NNs
that are trained to predict large-scale features such as ENSO may be able to beat
conventional models. We have therefore changed the discussion of the paper in the
final paragraph of the conclusion:

“The development of a NN forecast model that is based on a model grid as discussed
in this paper will face similar challenges when compared to the development of
conventional models such as the complexity of the Earth System with non-linear
interactions between model components, scale interactions, exponential growth of
errors in initial conditions, numerical instabilities and the discrete representation
of model fields on the sphere (leading to the pole problem in our toy-model), the
treatment of conservation properties, model biases in long-term simulations, errors in
observations and insufficient data coverage of observations. On the one hand, it is
likely that NN models could make better use of future computing hardware and use
more observations and higher resolution. On the other hand, it is also likely that it
will be difficult to stabilize long-term integrations (in particular in a changing climate)
and to represent complex interactions between model features in long simulations
since it will be hard to improve physical consistency within networks. For NN forecast
systems that try to describe the evolution of the atmosphere based on gridpoints after
learning the right hand side of the equations of motion from data, it therefore seems
obvious to focus on short-term forecasts and potentially also regional predictions in
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a first approach. It will be difficult for these models to compete with conventional
models in long-range weather forecasts and climate predictions. However, the same
statement may not be true for other applications of NNs that do not propagate the full
atmosphere to make long-term forecasts but rather focus on predictions of large-scale
flow patterns such as ENSO and weather regimes.”

Regarding point 2: Yes, to train a NN to represent the impact of sub-grid-scale vari-
ables that are truncated (Y and Z) in a “coarse model” that is only using X variables
is almost too simple. This was in fact a task for John Griffith (a Master student at
Bristol University who was co-supervised by Peter Dueben). The results for forecast
errors with a NN and a conventional parametrisation scheme can be seen in Figure
1. The model configuration that used a NN to learn the sub-grid-scale parametrisation
term is showing a lower forecast error. The next step could be to learn the terms for
sub-grid-scale closure for models of medium complexity such as shallow water or QG
when comparing simulations at low and high resolution. However, it can be argued that
the replacement of parametrisation schemes has already left the level of “toy-models”
with (1) the successful application of Neural Networks to replace the radiation scheme
of IFS by Chevallier et al. or (2) the replacement of atmospheric sub-grid processes
by a NN that was trained from super-parametrisation runs and successfully applied in
free-running aqua-planet simulations by Rasp et al. (both papers are cited in this pa-
per). We are currently also trying to repeat the work of Chevallier at ECMWF to replace
the existing radiation scheme of IFS at full complexity for weather forecasts by Neural
Networks to speed-up model integrations. Therefore, and also since the paper is not
focussing on parametrisations but rather the learning of the entire equations of motion,
we would like to avoid a more detailed discussion on how to use the Lorenz model to
learn more about the replacement of parameterisations within this paper.

However, there are indeed still very interesting questions regarding the use of NNs
for parametrisation schemes that can be studied in the Lorenz model. One of the
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questions is how to represent sub-grid-scale variability when using NNs. Figure 2
shows more results of John Griffith on the use of concrete dropout and Generative
Adversarial networks to represent this variability in a NN parametrisation scheme. The
results show, that it is indeed possible to represent some of the variability when using
neural networks to develop parametrisation schemes. However, the AR1 stochastic
parametrisation scheme is still performing best for the representation of sub-grid-scale
variability and further work would be needed to achieve competetive results with NNs.

Interactive comment on Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-148,
2018.
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Fig. 1. Forecast error in the Lorenz system using a conventional parametersation scheme
based on a polynomial fit as well as a parametrisation scheme that was using a NN to learn the
sub-grid-scale parametris
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Fig. 2. Spread-error plots for simulations with the Lorenz model that use a stochastic AR1
parametrisation scheme (left), a NN that is using the concrete dropout technique (middle) as
well as a NN that is usi
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