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Abstract. In this paper, we describe the design of the coupling library Jcup and report its various applications including the

coupling between the global atmospheric and oceanic models with different grid systems. Jcup is a software library mainly

focused on weather/climate models and was developed for the purpose of coupling components of various models. Jcup has

flexibility in application to an unspecified number of components of earth system models. In order to achieve high order safety

and versatility, we divided the processes of a general coupling program into processes of changing and not changing the values5

of the data, and placed the former outside the program and under the control of the user. As a result, Jcup has two features:

1) that the correspondence relationship of grid indexes is used as input information, and 2) that the user can implement an

arbitrary interpolation code. Jcup was applied to atmosphere–ocean coupling, IO component coupling, and seismic model–

structure model coupling, and the validity and usefulness of the design were demonstrated.

1 Introduction10

Meteorological and climate models are constructed not only by the dynamic motion of the atmosphere but also by complex

interactions of physical processes, such as radiation and clouds, or of various atmospheric boundaries, such as the ocean and

land surface. After choosing what to include in the model among the elements constituting the phenomenon, weather/climate

phenomena can be accurately reproduced and predicted using a simulation model. These elements should be modeled with

the required accuracy to calculate the resolution and the integration period corresponding to the time-space scale of the phe-15

nomenon to be expressed. However, there is an upper limit to the performance of the computer executing the calculation.

Consequently, there is a trade-off between the number of model components, the accuracy of the modeling of each compo-

nent, and the time-space scale of the calculation. On the other hand, the modeling precision and the spatiotemporal scale are

interrelated, because the phenomena to be expressed in the model are determined to some extent by the spatial scale. Alter-

natively, the spatial scale of the calculation is determined according to the phenomena represented by the model. Therefore,20

the number of components that are modeled, and at what accuracy and to what degree of the spatiotemporal scale they are

calculated, is adjusted and determined by the capacity of the computer obtained at that time and the content of the modeled

phenomena. Although the performance improvement of the CPU alone slows down by increasing the degree of parallelization,

the computing performance of the entire system and the memory capacity increase at a speed generally following Moore’s

Law. Accordingly, the spatiotemporal scale on which the model can be computed also improves, and, as a result, it becomes25
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possible and necessary to incorporate more elements into the system or to model each element more precisely. For example,

according to the transition of the components of NCAR’s CCSM (CESM) as stated by Washington et al.(Washington et al.

(2009)), at the beginning of its development, the model comprised two components, namely the atmosphere (land surface) and

the ocean. In the 1990s, sea ice and aerosol were added, and vegetation and the carbon cycle are currently being incorporated.

Spatiotemporal scales can be improved relatively easily according to the performance of the computer. However, to improve5

the model’s accuracy, a series of procedures is required, such as constructing equations suitable for the phenomenon to be ex-

pressed, building the program, executing the program, and confirming its validity. For this reason, work by experts and research

institutes in this field is indispensable for incorporating new components into the system or elaborating each component. In

summary, in the modern meteorological/climate model, individual component models developed by individual groups agency

are executed at each spatiotemporal resolution in parallel. Such a structure is not only a natural analogy of weather and climate10

phenomena, but it is an appropriate mapping of the state of research communities involved in meteorological/climate research.

In the structure of such a model, the components interact as is the case of expressed subjects, and it is necessary to exchange

appropriate information on an appropriate spatiotemporal scale corresponding to each component when executing the model.

Appropriate grid remapping is required according to the spatial scale of each component, but it is not preferable from the view-

point of development efficiency and maintainability to separately develop and implement such a program for each component.15

For this reason, dedicated software responsible for coupling between components has been developed and used.

In this paper, software that executes such tasks is called coupling software or couplers. Generally, there are two types of cou-

pling software, one of which is a program targeting a specific model. In this case, because target components are predetermined,

it can be sufficient with coupling software specialized for a specific grid system, time scale, or coupling pattern. An example of

this type of coupling software is the coupler used in NCAR CESM. The other type is coupling software developed for the gen-20

eral use. Since the specific target is not assumed, the structures of both the interface and program are determined depending on

the extent of support on the grid system, the coupling pattern, and the interpolation method. As a representative of this type of

coupler, an OASIS coupler has been developed mainly by CERFACS and is widely used in European meteorological research

groups(Graig and Valcke (2017)). Scup was developed to target models of the Japanese Meteorological Agency and Meteo-

rological Research Institute, but has a general-purpose interface that can be used for other models(Yoshimura and Yukimoto25

(2008)). Furthermore, MCT was developed as a basic software library for constructing a coupling program and cannot perform

coupling alone. However, it can be thought of as a general-purpose coupling software (Larson et al. (2005), Jacob et al. (2005)).

In addition to being used for CESM couplers, MCT is also utilized as a basic library for constructing the latest version of the

OASIS coupler. These coupling software supports the existing grid system and interpolation method and provides coupled

computing environments, but in order to deal with grid systems and interpolation calculations that software does not suppose,30

some kind of software modification is required. On the other hand, Jcup is a library developed to corresponds to various lattice

systems and interpolation algorithms without modifing the program in the future and to enables coupled calculation of various

patterns.

In this paper, we describe the design features of Jcup and the reasons for adopting such a design. We further clarify the

usefulness of the design by cases where models were coupled. First, we explain Jcup’s design, focusing on two features35
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in particular. Next, the reason for Jcup having adopted such a design is described from the following three aspects: 1) the

characteristics of the weather/climate model as a simulation model, 2) the relationship between the research community and

the development community, and 3) the essence of coupling the models. Finally, we clarify the usefulness of the design adopted

by Jcup by three cases: atmosphere–ocean coupling, coupling of IO components, and coupling of earthquake structural models.

2 Overview of Jcup5

The execution pattern is implemented independently of the model components in some couplers, including the older version of

the OASIS coupler (Valcke (2013)) or the JAEA coupler(Nagai et al. (2011)). However, under a massively parallel computing

environment, which is mainstream today, it is not preferable in terms of computational efficiency to occupy a plurality of

computation nodes by a coupling process with a relatively light computing load. Therefore, Jcup adopted an execution form

that operates as a part of each model component.10

Furthermore, there is generally a number of data exchange patterns: a parallel exchange in which the models use data from

a preceding step of target models alternatively, and a serial exchange in which subsequent models continuously use data from

preceding models. There is also a number of execution patterns for each component model: each component is executed in

parallel as an independent binary, or a plurality of components is sequentially executed in one binary. As shown in Fig.1, Jcup

supports a total of four patterns, namely two of data exchange and two of model execution. In addition, it is applicable to the15

case where these patterns are complexly combined by three or more component models as shown in Fig.2. There are three

binaries, namely A, B, and C, in the figure. Component A is executed in binary A, components B, C, and D are executed in

binary B, and component E is executed in binary C. In binary B, component B is executed in all MPI processes. Subsequently,

component C is executed in certain processes, and component D is executed in the other process in parallel. The solid line in

the figure indicates parallel exchange, and the dotted line indicates serial exchange. In reality, it seems that there is no case20

where such complicated execution and data exchange patterns are required, but Jcup is designed to be able to deal with such

complicated cases. The interface related to data exchange and the data flow in the program are detailed in Arakawa et al. (2011).

As described in the next section, Jcup is not completed as a coupling software, and to use it, procedures such as implementation

of interpolation code by the user and the making of a mapping table are required. Therefore, Jcup is called a "coupling library"

and not a "coupler." In this paper we use "coupling program" or "coupling software" as broad terms that include couplers and25

coupling libraries.

3 Design philosophy

3.1 Characteristics of a climate model as a target of coupled simulation

The objective of coupling software is to provide users with a software environment that enables them to couple multidisciplinary

simulation models and to perform coupled simulation. Jcup was developed for being used for various coupled calculations30

without limiting the field.
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(a) parallel execution, parallel exchange 

(c) parallel execution, serial exchange 

(b) serial execution, parallel exchange 

(d) serial execution, serial exchange 

Figure 1. Coupling pattern:(a) and (b) show parallel data exchange, and (c) and (d) show sequential data exchange.(b) and (d) represent

single-program coupling, and (a) and (c) represent multiprogram coupling.

For this purpose, the external conditions confronted by the coupling program can be summarized as follows:

– Each model has a grid structure suitable for the physical state expressed by the model. In addition, the optimum grid

structure may change depending on external factors, such as computer architecture.

For example, in the conventional global atmospheric model, latitude and longitude grids and spectral methods were

used. However, to avoid an increase in calculation cost of Legendre transformation, models using grid structures that5

differ from those in conventional models, such as icosahedral grids, Yinyang grids(Baba et al. (2010)), and Cubic grid

(Adcroft et al. (2004)), have recently been developed. Regarding the ocean model, grid point concentration in the polar

region (Arctic Ocean) is a classical problem, and Stretch and tri-polar grids are therefore widely used. Furthermore,

river models, which adopt an irregular grid system that expresses the catchment along the river channel(Yamazaki et al.

(2014)) might become a coupling target.10

– The interpolation method between models varies depending on the physical requirements of each model and cannot be

uniquely determined.

In cases where the integration period is relatively short or when the system is not physically closed, it is unnecessary

to strictly satisfy conservativity, and in such cases, simple linear interpolation might be sufficient. On the other hand,
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Binary B Binary A Binary C 

Comp.A 

Comp.B 

Comp.C Comp.D 

Comp.E 

Serial exchange 

Parallel exchange 

Figure 2. Example of complex coupling pattern. The solid line indicates parallel exchange, and the dotted line indicates serial exchange.

in simulations that require long integration times and have physically closed systems, such as climate simulation, the

preservation of physical quantities is crucial, and interpolation algorithms that satisfy conservativity are required. Fur-

thermore, it can be assumed that the physical quantity to be interpolated or the interpolation algorithm might change

depending on the physical condition in the model, for example, the solar altitude and coverage degree of ice.

– In many cases, coupled simulation entails multiphysics and multiscale nonlinear calculations, and computational bugs5

are extremely difficult to find.

In complex-system simulation, results are difficult to predict because of the system’s nonlinearity and are complexly

altered by slight changes in the parameters. Therefore, even if there are bugs in the program, their detection is generally

difficult and requires intensive labor, except for fatal bugs where the results change radically.

– In general, climate models have a large program scale and are physically complex. It is also laborious to construct10

programs and verify the scientific validity. Therefore, once established, these models continue to be used for a long time

while being improved.

For example, AGCM of GFDL was developed in the 1950s. It has been improved up to the present and continues to

be one of the representative general circulation models. In addition, many of the modern representative atmospheric

models, such as NCAR’s CESM, the ECMWF model, and the Hadley Center model, are rooted in models developed15
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in the 1960s, and, including the aforementioned GFDL model, they have long development histories, which can be

expressed as a phylogenetic tree(Edwards (2011)).

3.2 Relationship between research community and development community

As mentioned in the introduction, coupling programs are roughly divided into those targeting specific models and those in-

tended to be used generically without specifying a model. In the former case, the majority of the coupling program development5

community is close to or included in the model research and development community. The range of the direction of model

improvement is narrow, and the development community also deals with limited partners. Consequently, the coupling program

can respond quickly and appropriately to changes in model components. On the other hand, in the case of coupling software

developed for general- purpose use, the relationship between the development entity and the user community varies. For ex-

ample, they can belong to the same community, such as Scup, they can develop software independently without belonging to a10

specific research community, such as MCT, or development can be promoted by maintaining a relatively close relationship with

multiple research institutions, such as OASIS. In particular, when the development community does not have a relationship

with a specific research community and develops combined software targeting an unspecified number of models, the direction

of model improvement is not determined. In such a case, the relationship between the research community and the development

community tends to be distant. From the research community’s view, this means that the required improvement of the coupling15

software accompanying the improvement of their own model might not be performed promptly or at all. Moreover, for research

communities, the coupler code is a black box, which means that it is difficult to detect and trace a non-fatal bug.

3.3 Essential functions of coupling program

The essential functions of a coupling program in the large-scale parallel computing environment is as follows: 1) coupling

between two or more component models, 2) appropriate timing, 3) performing appropriate time interpolation according to the20

time scale of each model, 4) performing appropriate interpolation calculations according to the lattice shape, and 5) exchanging

data between appropriate nodes. Here, the condition that the time step of each model is a divisor of the data exchange interval

is set. This condition seems to be reasonable in coupling components such as atmospheric and ocean models, which involve

large-scale phenomena and long- term, constant interaction. In this case, an essential function of the coupling program is

to execute interpolation calculation and data exchange at an appropriate time, because it is not necessary to consider time25

interpolation. The functions required for the coupling software are summarized into the following three functions: 1) decision

of data exchange timing, 2) data exchange, and 3) interpolation calculation.

3.4 Basic design of Jcup

Jcup is a general-purpose coupler that does not cover specific models, and the relationship between coupler developer and user

community is one-to-many and not dense. In this case, the performance requirements of the coupler are as follows:30

– Since Jcup is a black box for users, it is desirable to minimize the possibility of mixing bugs caused by the coupler.
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– Since Jcup is used over a wide range and long term, it must respond flexibly to various grid systems and interpolation

methods that exist or will be newly developed. Jcup’s design philosophy is to realize the abovementioned three functions

under these requirements.

3.4.1 Time control

In judging the data exchange timing, we assumed that the data are exchanged at predetermined time intervals. Under this5

assumption, the condition of data exchange timing is that the elapsed time from the start of integration is a multiple of the data

exchange interval. Therefore, in the coupler, it suffices to hold and manage elapsed model time from the start of integration.

On the other hand, the time information handled by the weather/climate model during calculation is generally the current time

and ∆T . Therefore, there are two ways to obtain the elapsed time: 1) to find the difference between integration start time

and current time and 2) to integrate ∆T . The former method is considered to be valid when only the Gregorian calendar is10

used in the model. In reality, however, the calendar is not limited to the Gregorian calendar but is diverse, including the Julian

calendar, the calendar without leap years, or the calendar that limits the number of days in a month to 30. Furthermore, it may

be necessary to consider the changeover of the calendar to the calculation of the time difference. Therefore, the method of

calculating the time difference is not preferable in terms of versatility and computational safety. Jcup consequently adopted a

method of integrating ∆T at each time step of the latter method. In this case, to avoid errors and erroneous judgment because15

of real number operation, input is limited to integer, and milliseconds/microseconds can be set as time unit to correspond to

∆T of less than 1 s.

3.4.2 Data exchange

To simplify the condition and description, we assumed that the spatial interpolation calculation was performed by the receiving-

side component. Furthermore, we assumed that each component was parallelized by region. In this case, data exchange means20

that the value of each grid point of the sending component is transmitted and received by an area that requires its value in the

receiving component, that is, uses the value of that point in the interpolation calculation. Therefore, to perform appropriate data

exchange, information on the grid point index of the sending-side component used for calculating each grid point value of the

receiving-side component was necessary. The correspondence between the grid point index of the sending-side component and

that of the receiving-side component in interpolation calculation is referred to as a mapping table here. Moreover, since each25

component is parallelized by region in the considered condition, it suffices to be given a point index of each grid point assigned

to each region of each component to perform appropriate data exchange. The problem here is how to obtain the mapping table.

In general coupling software, the position of grid points, and the grid shape are given as input information, and mapping tables

and interpolation coefficients are calculated in the coupling software. This method, however, has the following problems:

1. Coupling software can only deal with grid shapes and interpolation algorithms that are already installed, and portabil-30

ity/extensibility is poor.
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2. Depending on the lattice shape, it might be difficult to eliminate the possibility of bug contamination, for example,

requiring complicated calculations or accurate judgment considering rounding error.

This can be a serious disadvantage for general-purpose coupling software, for which there is a distance between the software

developer and users and which is recognized as a black box by the users. Therefore, Jcup does not calculate the mapping table

internally but uses the mapping table itself as input information. This enables the elimination of problems caused by mapping5

table calculation from the coupling software as described above. The idea of using the mapping table as input information is

not unique to Jcup, but there are other coupling software that can give a mapping table in addition to grid information, such as

the YAC coupler(Hanke et al. (2016)). What is significant about Jcup is not that the mapping table can "also" be used as input

information but that input information is limited to the mapping table only. As a result, increases in the size and complexity of

the code of the coupling software are suppressed, and the future extensibility and security in the software are "clearly" secured.10

This is considered to be an essential condition for an unspecified number of research communities that cannot necessarily

uniquely control the tendency of a coupling software developer.

3.4.3 Interpolation calculation

As with data exchange, in interpolation calculation, it is important to ensure future extensibility and portability and to eliminate

the possibility of bug contamination. For this purpose, the interpolation calculation program should not be implemented as a15

black box in Jcup but should be placed in a location that can be viewed in such a way that it can be controlled by users. The

difference between the mapping table and the interpolation calculation is that the former can be calculated with a program

independent of the model before model execution, whereas the interpolation calculation must be performed at each data ex-

change step during model execution. This means that the calculation performed during model execution as part of the operation

of the coupling software must be placed under the user’s control. To realize this in the interpolation calculation, we ensured20

that the interface subroutine was provided by the coupling-software side and that the concrete interpolation calculation code

was implemented in the interface subroutine by the user side. The following conditions were considered:

1. Interpolation algorithms used for one set of coupling are not necessarily limited to one type but may vary depending on

data or other conditions.

2. Interpolation calculation is executed not only for each type of data, but, in addition to that, it can be computed by25

combining multiple types of data, such as vector calculation.

Therefore, in the interface subroutine implementing the interpolation calculation, it is indispensable to have functions for

identifying individual data points and for simultaneously processing multiple kinds of data. Conversely, if these functions are

provided, arbitrary interpolation calculation code can be implemented with a high degree of freedom.

3.5 Section summary30

In this section, Jcup’s design philosophy, which is based on three basic functions indispensable for coupling software, was

described. The philosophy underlying and informing the design can be summarized as follows:
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1. The relationship between the developer and the user community should be considered. In the case of Jcup, since there is a

distance between the developer and the user without specifying the user, extensibility/portability and safety are required.

2. On the other hand, considering the series of coupling software operations, it is possible and important to set the classifi-

cation axis on operations that may change the value of the data and that do not change their values.

3. Therefore, operations that may change the data values should be excluded from the coupling software, which is a black5

box for users, and should be placed in a visible location and under the control of users.

The next section explains how these basic designing points were realized.

4 Interface

In this section, we describe the interface related to the judgment of data exchange timing and the setting of the grid number and

implementation of the interpolation calculation code mentioned in the previous section. Jcup specifications as a prerequisite10

for explanation are summarized as follows:

1. A single binary can have multiple model components.

For example, when the program of the atmospheric model has atmospheric, land surface, and river models.

2. A single model component can have multiple grid systems.

For example, when the model component uses a staggered grid system.15

3. A set of grid systems can have multiple mapping tables.

This specification corresponds to cases where the interpolation method varies depending on the data to be exchanged.

For example, if one data point is used for linear interpolation and the other data point for nearest neighbor approximation,

two mapping tables are used for a set of grid systems.

4.1 Interface for time control20

There are three interface subroutines for exchanging appropriate data at appropriate times, namely jcup_def_grid, jcup_init_time,

and jcup_set_time. The arguments for these three subroutines are shown in Table 1. The subroutine jcup_def_varg is for setting

the attributes of the received data. The argument data_ptr is a structured type variable pointer for the model component to

identify the data. The arguments comp_name, data_name, and grid_name are the components, variable names, and grid names

to which the variable belongs, respectively. The arguments send_comp_name and send_data_name are the sender component25

and data names, respectively. The argument interval is an argument related to the control of the time exchange and represents

the data exchange interval. The argument mapping_tag is a tag for specifying the mapping table to be used for interpolation

calculation. The argument data_tag is a tag for identifying data in the interpolation calculation subroutine to be described later.

9
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Among these arguments, intervals are used to control the timing of data exchange. This argument is an integer type and defaults

to seconds, but it can be changed to milliseconds or microseconds depending on the Jcup initialization subroutine setting.

The subroutine jcup_init_time gives Jcup the initial coupling time. The argument time_array defaults to an array of size 6,

representing year/month/day/hour/minute/second. However, depending on Jcup’s initial setting, it is also possible to pass an

array of size 7 or 8 in milliseconds or microseconds, respectively.5

The subroutine jcup_set_time is used in the time integration loop and sets the current time and ∆T of each component. Each

argument is a component name, current time, and ∆T . From these pieces of information, whether it is the time to exchange

data is determined at each time step, and these data are transmitted and received.

Table 1. APIs for time control

subroutine name argument type argument name description

jcup_def_varg type(varg_type), pointer data_ptr data identifier

character(len=*), intnet(IN) comp_name name of component

character(len=*), intnet(IN) data_name name of data

character(len=*), intent(IN) grid_name name of grid

character(len=*), intnet(IN) send_comp_name name of send component

character(len=*), intnet(IN) send_data_name name of send data

integer, intent(IN) interval data exchange interval

integer, intent(IN) mapping_tag tag of mapping table

integer, intent(IN) data_tag tag of the data

jcup_init_time integer, intent(IN) time_array(:) array of initial time

jcup_set_time character(len=*), intent(IN) comp_name name of component

integer, intent(IN) time_array(:) array of current time

integer, intent(IN) delta_t delta t

4.2 Interface for grid index

The setting of the grid number and mapping table is realized in the following procedure:10

1. Set the name of the model component of the individual binary.

2. Set the grid index of each component.

3. Set the mapping table for each grid pair.

The interface subroutines corresponding to each procedure are summarized in Table 2. These subroutines can be called

multiple times.15
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The subroutine jcup_set_new_comp sets the name of each component, and the subroutine jcup_def_grid sets the grid index

number. The argument grid_index is one-dimensional, and even in cases of a two- or three-dimensional grid, the grid index

number is given as a one-dimensional array. The optional argument num_of_vgrid assumes the number of vertical layers. This

is set, for example, where the data to be exchanged are three- dimensional, but the interpolation calculation is only in the

horizontal direction, as in the case of coupling an atmospheric model with an atmospheric/chemical model having different5

horizontal resolutions.

The subroutine set_mapping_table sets the mapping table. Since this subroutine performs data communication between the

send and receive models, it needs to be called synchronously. The arguments send_grid_index and recv_grid_index are corre-

spondence tables of the grid numbers of the send and receive models, respectively, and they can be given on either the send or

receive model. The argument mapping_tag is an identification number to identify the mapping table. By appropriately using10

this argument, it becomes possible to apply multiple mapping tables to a pair of grid systems. It should be noted here that the

information given by set_mapping_table is only the correspondence relationship of grid numbers in the interpolation calcula-

tion, and no interpolation coefficient is given. As mentioned in the previous section, Jcup adopts the following design policy:

1) the operations of changing and not changing the value are separated, 2) the coupling software takes charge of the operation

of not changing the value, and 3) the operation of changing the value is disclosed to the user. The interpolation coefficient15

is a value related to interpolation calculation changing the value. Therefore, it is handled separately from the correspondence

relationship of the grid numbers. The handling of interpolation coefficients is described in the next section.

Table 2. APIs for grid setting

subroutine name argument type argument name description

jcup_set_new_comp character(len=*), intent(IN) component_name name of search model component

jcup_def_grid integer, intent(IN) grid_index(:) array of grid index

character(len=*), intnet(IN) comp_name name of component

character(len=*), intent(IN) grid_name name of grid

integer, optional, intent(IN) num_of_vgrid number of vertical layers

jcup_set_mapping_table character(len=*), intent(IN) my_comp_name name of my component

character(len=*), intent(IN) send_comp_name name of send component

character(len=*), intent(IN) send_grid_name name of send grid

character(len=*), intent(IN) recv_comp_name name of receive component

character(len=*), intent(IN) recv_grid_name name of receive grid

integer, intent(IN) mapping_tag identifier of mapping table

integer, optional, intent(IN) send_grid_index(:) index of send grid

integer, optional, intent(IN) recv_grid_index(:) index of receive grid
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4.3 Interface for spatial interpolation

Jcup’s design is that the interpolation calculation code is implemented by the user, and the coupling software provides only the

interface. Subroutine interfaces for interpolation calculation are as shown in Table 3. The argument mapping_tag corresponds

to the argument of the subroutine jcup_set_mapping_table. By the arguments send_comp_name, recv_comp_name, and map-

ping_tag, users can identify the mapping_table used for interpolation calculation. The arguments sn1 and sn2, and rn1 and5

rn2 indicate the size of array send_data and recv_data, respectively. Jcup treats the spatial dimension as interpolated in one

dimension. Therefore, for example, assuming horizontal interpolation, sn1 and rn1 are the number of horizontal grid points of

the send- and receive-components respectively. However, Jcup extracts only grid points related to interpolation calculation and

exchanges, and sn1 and rn1 therefore do not necessarily match the size of the grid defined by the subroutine jcup_def_grid.

The arguments sn2 and rn2 representing the size of the array of the second dimension have two meanings depending on the10

condition. The first is the number of vertical layers, for example, a three-dimensional variable that performs only horizontal

interpolation corresponds to this condition. Here, the maximum value of the number of vertical layers is defined by the op-

tional argument num_of_vlayer of the subroutine jcup_def_grid, but apart from that, the number of layers can be specified

for each data point. The number of layers for each data point is determined by the optional argument of the API subroutine

jcup_def_varg, which defines the receive data. The second is the number of data sent and received together and brought into the15

interpolation subroutine. To reduce the number of calls of the MPI subroutines, Jcup has the function of exchanging multiple

pieces of data at once, which is realized through the argument data_tag of the API subroutine jcup_def_varg. Data having the

same value of data_tag are grouped together, sent and received, and passed to the interpolation subroutine interpolate_data.

The last argument data_tag is an identifier for identifying the type of data, and the value given by jcup_def_varg is passed. For

future extension data_tag is to be given as an array, but each value of array is the same.20

Table 3. Interface of interpolation subroutine

subroutine name argument type argument name description

interpolate_data character(len=*), intent(IN) recv_comp_name name of receive component

character(len=*), intent(IN) send_comp_name name of send component

integer, intent(IN) mapping_tag identifier of mapping table

integer, intent(IN) sn1, sn2 array size of send_data

real(kind=8), intnet(IN) send_data(sn1, sn2) array of send data

integer, intent(IN) rn1, rn2 array size of receive data

real(kind=8), intent(INOUT) recv_data(rn1, rn2) array of receive data

integer, intent(IN) num_of_data number of data

integer, intent(IN) tn number of data tag

integer, intent(IN) data_tag(tn) array of data tag
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As described above, Jcup exchanges only data used for interpolation calculation and passes to an interpolation subroutine.

Furthermore, to reduce the calculation for data rearrangement, the region divided data are passed to the interpolation subroutine

as one block for each region. Fig.3 illustrates these situations. In the figure, data are exchanged from component A to component

B. Both of these components have a grid with a size of 6 x 6, and the positions of the grid points are the same. Therefore, the

interpolation calculation is a copy of the value for each grid point. The red lines drawn on each grid represent the dividing5

line of the region. In the figure, component A is divided into six parts of 2 x 3, and component B is divided into three parts of

1 x 3. The grid points of component B are color-coded because this simulates the ocean–land distribution. In this case, only

the value of the lattice point represented by the blue circle is meaningful and is to be transmitted and received. In the figure,

transmission and reception and interpolation calculations relating to Rank 2 of component B are shown in detail. The grid point

values required by Rank 2 of Component B are 33 for Rank 3 of Component A, 28, 33, and 34 for Rank 4, and 29, 30, 35,10

and 36 for Rank 5. Therefore, Ranks 3, 4, and 5 of Component A send these lattice point values held by itself to Rank 2 of

Component B. Rank 2 of Component B receives these values and passes them to the interpolation subroutine in the received

order. After receiving the data, the interpolation calculation is executed inside the interpolation subroutine of the receiving-side

component. At this time, rearranging the array is the index conversion table is, ir of equation (1). The calculation result is held

in Jcup’s data buffer, and it is passed from the data buffer to the component when requested by the component.15

Most importantly, the data array of the send component passed to the interpolation subroutine is arranged according to

the divided region of the send component. As shown in the example, since the order of the array passed to the interpolation

subroutine is different from that of the grid, even if the grid points of the sending component and those of the receiving

component are the same, the interpolation calculation is not a simple array copy, and a grid index conversion table is necessary.

For example, we assumed that the value of a certain grid point on the receiving component can be calculated from the grid20

point value on the sending component and the interpolation coefficients as shown in equation (1).

In this case, the code representing the equation is as follows:

do i = 1, N

R(ir(i)) = R(ir(i)) + S(is(i)) * C(i)

end do25

Here, the arrays ir and is correspond to the conversion tables of the grid indexes. This conversion table is calculated in

Jcup from the two information sets given by the interface subroutines jcup_def_grid and jcup_set_mapping_table, that is, the

number of the grid point in charge of each area and the correspondence of grid point indexes in the interpolation calculation.

The calculated table can be obtained through Jcup’s interface subroutine jcup_get_interpolation_table. Since Jcup assumes that

the grid shape does not change over time, it is sufficient for the user to call this subroutine only once before time integration.30

Next, we describe how interpolation coefficients are treated in Jcup. As mentioned above, Jcup’s basic functions are to

send and receive individual grid point values between appropriate components with appropriate timing. The grid point indexes

assigned to each region of the component and the correspondence relation between the grid point indexes on the interpolation

calculation are necessary to realize these basic functions, and the management of interpolation coefficients is left to the user.
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Figure 3. Data exchange diagram. Component B is assumed to be an ocean model, and gray circles represent grid points of the land area.

Therefore, only the grid point value indicated by the blue circle is passed from Component A to Component B.

However, since information for properly processing interpolation coefficients are held in Jcup, subroutines for processing

interpolation coefficients are provided to the user.

Among the interpolation coefficient subroutines, the most frequently used subroutine is jcup_set_local_coef.

This subroutine is used when the interpolation coefficient Cg for interpolation calculation of the whole area is defined by

the following code:5

Do i = 1, Ng

R (irg (i)) = R (irg (i)) + S (isg (i)) * Cg(i)

End do
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The subroutine jcup_set_local_coef returns the interpolation coefficients for each region represented by Cl in the lower code

from Cg:

Do i = 1, Nl

R (ir (i)) = R (ir (i)) + S (is (i)) * Cl(i)

End do5

The arguments of the subroutine are as shown in Table 4.

Table 4. Arguments of jcup_set_local_coef

subroutine name argument type argument name description

jcup_set_local_coef character(len=*), intent(IN) recv_comp_name name of receive component

character(len=*), intent(IN) send_comp_name name of send component

integer, intent(IN) mapping_tag mapping table indentifier

real(kind=8), intent(IN) Cg(:) global coefficient

real(kind=8), pointer Cl(:) local coefficient

To perform interpolation calculation, the interpolation calculation code is added to the subroutine interpolate_data after

acquiring the necessary information using the subroutines jcup_get_interpolation_table and jcup_get_local_coef.

5 Application case studies

In this section we describe cases where Jcup was applied, thereby showing that the Jcup features mentioned above are effective10

for coupling various models.

5.1 MIROC coupling

The first case is the coupling of the atmospheric and ocean models in the climate model MIROC. MIROC is a global climate

model jointly developed by the University of Tokyo, Japan Agency for Marine-Earth Science and Technology, and the Institute

for Environmental Studies. It is a representative climate model in Japan, and its results have been referenced in the Inter-15

governmental Panel on Climate Change report(Watanabe et al. (2010)). MIROC consists of four subcomponents: atmosphere,

ocean, land surface, and rivers. Among these components, the atmosphere, land surface, and rivers are executed sequentially

in one binary. On the other hand, the atmospheric model "MIROC AGCM" and the ocean model "COCO" (Hasumi (2007))

are usually executed in parallel as different binaries and are coupled by MIROC’s proprietary coupling program. The first

test case in Jcup’s development is to replace MIROC’s original coupling program with Jcup. Importantly, when replacing the20

coupling program with Jcup, the calculation results do not change before and after the replacement, that is, the results of both
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are identical at the binary level. By guaranteeing matching at the binary level, there will be no bug in Jcup internally or in the

coupling code using Jcup.

In the coupling of the original MIROC, the coupling procedure consists of three steps, namely 1) collecting data to the root

processor and transmitting it to the root processor of the other component, 2) executing the interpolation calculation by the root

processor of the receiving-side component, and 3) distributing the result to each processor. On the other hand, in Jcup, data5

exchange is performed local-to-local, and interpolation calculation is individually performed in each processor on the receiving

side.

Since there is no change in values during data transfer, the interpolation calculation must at least be the same, including the

calculation order, to match the results at the binary level. This was made possible by Jcup’s design in that users can arbitrarily

implement interpolation calculation code. A part of interpolation calculation code implemented in MIROC is shown in Fig.4.10

The figure shows an interpolation calculation code when the atmosphere receives information on sea ice calculated by

COCO. In this calculation, coefficients corresponding to the proportion of sea ice that changes with time are calculated at grid

points where both the ocean area ratio and the sea ice area ratio are larger than 0; the grid point value of the reception side is

calculated according to the calculation equation R = R + S ∗C. Although not shown in the figure, another type of calculation

code is also used depending on the type of data.15

One of the advantages of Jcup’s design is that it is possible to shift the coupling with such complicated interpolation calcu-

lation to coupling using local calculation, which has higher efficiency while maintaining compatibility at the binary level.

5.2 NICAM–COCO coupling

As a second example, we describe the coupling of the atmospheric model NICAM and the ocean model COCO. NICAM is a

global atmospheric model using a non- hydrostatic equation system (Tomita and Satoh (2004), Satoh et al. (2008), Satoh et al.20

(2014)). The discretization method is a finite volume method, and the grid system employs an icosahedral grid. This model has

been mainly utilized for research on phenomena with time scales of several days to months, such as typhoons and MJO, and in

such research, simulation is carried out with the atmosphere only model by specifying sea surface temperature (SST) or with a

slab ocean model (Miyakawa et al. (2014)). However, NICAM is expected to be applied not only to such short- to medium- term

simulations but also to climate simulations with time scales of several decades to centuries (Kodama et al. (2015), Haarsma25

et al. (2016)). In such long-term simulations, although the current simulations are conducted with the atmosphere only model

under specified sea surface temperature (SST) condition, it is natural to extend NICAM to be coupled with an ocean model to

be used as an atmosphere-ocean coupled model to internally reproduce SST in the model. The ocean model coupled to NICAM

in this study was COCO. COCO is a global ocean model using the Boussinesq approximate hydrostatic equation and a general

orthogonal coordinate system. The version of COCO used for this coupling adopts the Tri-polar grid. At a certain latitude, the30

Tri-polar grid does not have a regular latitude and longitude grid but an irregular grid shape, such that the North Pole is moved

onto the North American and Eurasian continents. In fact, the study with the coupled model with NICAM and COCO using

Jcup is already conducted by Miyakawa et al. (2017) and Kubokawa et al. (2018).
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 DO N = 1, IJ_OMAX 
       DO M = IJ_OHEAD(N), IJ_OHEAD(N+1) - 1 
                  LA = IJRECOV_O2A(M) 
                  IF (BFSOCNG(LA).GT.0.0D0 
     $                 .and.BFOxxG(LA,2).GT.0.0D0) THEN 
                     LO   = IJO2C(LA,N) 
                     AOCN2 = SOCN(LA,N) * BFOyyG(LO,2) 
     &                       / (BFSOCNG(LA)* BFOxxG(LA, 2)) 
                     BFOxxG(LA,3) = BFOxxG(LA,3) 
     &                  + ( BFOyyG (LO,3) * 1.D-2 ) *AOCN2 
                     BFOxxG(LA,4) = BFOxxG(LA,4) 
     &                  + ( BFOyyG (LO,4) * 1.D-2 ) *AOCN2 
                    BFOxxG(LA,5) = BFOxxG(LA,5) 
     &                  + ( BFOyyG (LO,5) + kelvin )*AOCN2 
                     BFOxxG(LA,6) = BFOxxG(LA,6) 
     &                  + ( BFOyyG (LO,6) + kelvin )*AOCN2 
       ENDIF 
         END DO 
  END DO 

Figure 4. Example of MIROC interpolation code.

In this way, both NICAM and COCO are irregular grid-system models covering a spherical surface, and a large number of

calculations is required to determine the grid point correspondence and interpolation coefficients necessary for coupling. This

is because it is necessary to search for polygons, including individual grid points in the calculation of the grid correspondence,

and to calculate the area of the overlapped portion of the polygons to obtain the interpolation coefficient. On the other hand, in

meteorological simulations, the shape of the grid is generally constant irrespective of time, and the resolution does not change5

frequently. In addition, the resolution used has a certain pattern. For example, in an atmospheric model of the spectral method,

frequently used resolutions are T42, T85, T128, and T256, and those in ocean models are 1degree, 0.25degree, and 0.1degree.

Particularly in NICAM, there is a constraint condition that the number of grid points is specified by the power of 2, and the

pattern of resolution that can normally be employed is limited to five to six patterns. For these reasons, Jcup’s design, involving

computation of expensive and infrequently updated mapping tables by an external program beforehand and the coupler using10

the mapping table as input information, is well adapted to NICAM-COCO coupling.

5.2.1 Performance evaluation

The experiment was divided into three cases according to the number of horizontal grid points of NICAM, which could be

calculated by a function 10 ∗ (2glevel)2. Correspondence between the cases and grid points is shown in Table 5
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Table 5. Correspondence between the cases and grid points

case glevel grid points

Case 1 5 10240

Case 2 7 163840

Case 3 9 2621440

Experimental conditions are listed in Table 6. The conditions of COCO were fixed in all experiments. Size m52 corresponded

to the number of horizontal grid points 360 (West– East) x 256 (South–North). The number of the process was 16, and ∆T was

15 min. The number of NICAM processes was represented by r-level as equation 10 ∗ 4rlevel. DeltaT and duration time are

shown in Table. The data exchange interval between NICAM and COCO occurred every hour.

Table 6. Experimental conditions of NICAM–COCO coupling

Case 1 Case 2 Case 3

COCO size m52 m52 m52 m52 m52 m52 m52 m52 m52

process 16 16 16 16 16 16 16 16 16

∆T[min] 15 15 15 15 15 15 15 15 15

NICAM glevel 5 5 5 7 7 7 9 9 9

rlevel 0 1 2 0 1 2 1 2 3

process 10 40 160 10 40 160 40 160 640

∆T[min] 15 15 15 4 4 4 1 1 1

duration time[day] 10 10 10 2 2 2 1 1 1

Results of the performance measurement are shown in Fig.5. The bar graph indicates the number of days that can be simu-5

lated by one day’s calculation. The line graph is a scaling factor on the basis of 10 (or 40) processes.

The most notable difference between the cases was the state of the change in the scaling factor. In Case 1, the scaling factor

was reduced according to the number of processors, but it was almost constant in Case 3.

Two reasons can be postulated for this difference:

1. Efficiency of NICAM itself10

The number of grid points per processor was smaller in Case 1 than in Cases 2 or 3 as shown in Table 7. Therefore,

calculation time, which was scalable, became relatively short, and the non-parallelized process became longer. This

could have caused the low scalability.

2. Load imbalance between NICAM and COCO
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Figure 5. Results of performance measurement on NICAM–COCO coupling. Bar graph is the number of days that can be simulated in one

days calculation. Line graph is a scaling factor.

In Case 1, time step calculation of NICAM was faster, and NICAM had to wait for data from COCO. Execution time

therefore did not decrease with an increase in the number of processors. In contrast, in Case 3, NICAM did not need to

wait for the data. Execution time was therefore determined by the number of processors assigned to NICAM.

Table 7. Number of horizontal grid points per processor

Case 1 Case 2 Case 3

glevel 5 5 5 7 7 7 9 9 9

rlevel 0 1 2 0 1 2 1 2 3

The number of grid points 1024 256 64 16384 4096 1024 65536 16384 4096

To confirm these assumptions, the execution time of NICAM’s time integration loop is listed in Table 8. "Main ALL" is the

execution time of the entire time integration loop. "Coupler Put" is the time for moving the data from NICAM to the coupler,5

and "Coupler Get" is the reverse. "Coupler Exchange" is the time for data exchange; load imbalance is included in this time.

"Atmos" is the calculation time without coupling.
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To examine the scalability of NICAM itself, we calculated the scalability factor from the execution time of "Atmos." The

result is shown in Fig.6. In Case 1, the scalability factor decreased even though there was no data exchange.

On the other hand, it should be noted that to examine load imbalance the time "Coupler Exchange" in Case 1 was significantly

longer than that in the other cases. This suggests that the reception waiting occurred on the NICAM side during data exchange.

The latency became larger as the execution time became shorter so as to keep the time of "Main All" constant. This constant5

time was determined by the execution time of COCO, and it can be concluded that the decrease of parallel efficiency was

mainly caused by load imbalance.

Table 8. Execution time of NICAM (s)

Case 1 Case 2 Case 3

glevel 5 5 5 7 7 7 9 9 9

rlevel 0 1 2 0 1 2 1 2 3

Main ALL 386 265 258 2096 564 177 19070 4379 1318

Coupler Put 2 3 3 3 12 6 305 127 106

Coupler Exchange 36 114 172 4 1 1 18 17 3

Coupler Get 1 2 3 1 1 1 2 6 19

Atmos 338 141 75 2039 538 163 17613 3969 1078

In contrast to Case 1, the scaling factor in high-resolution Case 3 remained mostly constant. It can therefore be concluded

that the effect of coupling was minimal.

5.3 NICAM–IO Coupling10

The coupling of NICAM and IO components shows that a "user can implement their own interpolation code", which is one of

Jcup’s features that worked effectively.

Firstly, IO components are described. As mentioned above, NICAM is a model of an icosahedral grid. Since this grid system

covers the whole globe with substantially uniform polygons, it is possible to avoid the CLF condition, because there is no

singular point as in the latitude–longitude grid. On the other hand, there are disadvantages, such as lack of suitable drawing15

tools or difficulty in calculating zonal mean values. Therefore, a program named "ico2ll" is provided as one of NICAM’s

software packages. This program converts each physical quantity of NICAM outputted as an icosahedral grid into the latitude–

longitude grid. Ico2ll is executed as a post process after NICAM calculations have been completed. In addition, it is not

parallelized and operates in a single process. Consequently, converting calculation results requires time and effort to move

and calculate data, and, as a result, it is one of the bottlenecks in research using NICAM. For this reason, a program was20

developed to more efficiently convert the results of NICAM into a latitude–longitude grid. This program is called NICAMIO.

The overview of NICAMIO is shown in Fig.7.
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Figure 6. Execution time and scaling factor of "Atmos." Bar graph illustrates execution time (s). Line graph represents scaling factor.

NICAMIO operates in parallel with NICAM in multiple processes, simultaneously converts the result to latitude–longitude

grid with the calculations of NICAM, and outputs them to files. Jcup is utilized for coupling NICAM and NICAMIO, and the

code for grid conversion is implemented in Jcup’s interpolation interface.

The interpolation algorithms implemented for grid transformation of NICAMIO are as follows:

1. Distance weighting method by three grid points5

2. Area weighting method

3. Nearest neighbor method

The distance weighting method is an interpolation method used in ico2ll. The mapping table and interpolation coefficient

using this formula can be utilized the one calculated for ico2ll.

The area weighting method is an interpolation method used for NICAM-COCO coupling, and the mapping table and inter-10

polation coefficient can be prepared by using the table calculation program for NICAM-COCO coupling as it is.

In the nearest neighbor method, the user can implement an arbitrary interpolation calculation code (in Jcup’s design), which

worked effectively. When the nearest neighbor method is strictly applied, the nearest point of the lattice point group of NICAM

is searched for each latitude and longitude point of NICAMIO, and the result is provided to Jcup as a mapping table. Since this
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method uses another type of table in addition to the above two kinds of mapping tables, resources, such as a table calculation,

a coupler initialization process, or a memory for holding table information, are required. However, as an approximate nearest

neighbor method, when using the algorithm of selecting the nearest point from three points of 1), it is possible to respond easily

by using the mapping table of 1) and by only partially modifying the distance weighting interpolation code. The interpolation

calculation code thus implemented in Jcup is shown in Fig.8. In the left figure, the code that performs the interpolation calcu-5

lation by the distance weighting method. Here, the following simple calculation is executed: R = R + S * C. In the right figure,

among the three points used for distance weight interpolation, the grid point value having the largest coefficient is substituted

for the receiving-side grid point value as it is. As shown in the example above, Jcup’s design, where interpolation calculation

code can be implemented, enables the use of not only a standard interpolation algorithm but also an appropriate interpolation

algorithm according to the situation.10

An example of outputting NICAM’s ground surface temperature by NICAMIO is shown in Fig.9. The upper figure shows

the case of interpolation by the distance weighting method and the lower figure shows that of outputting the grid point value of

NICAM as it is with the nearest neighbor approximation. In the distance weighting method, the contour lines are smoothed by

interpolation, but in the nearest neighbor approximation, the contour lines become more stepped because they are not smoothed.

One Large File 

grid system: Icosahedral 

・・・ 

・・・ 

Jcup 

NICAM nodes 

I/O nodes grid system: rectangle 

merged global data 

MPI-IO 

Real-time 
 process 

Figure 7. The overview of IO component for NICAM

22

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-147
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 2 July 2018
c© Author(s) 2018. CC BY 4.0 License.



do j = 1, size(coi%recv_data_index)/3 
    max_coef = 0.d0 
    max_point = 0 
 
    do i = 1, 3 
      send_coef = coi%coef(i + 3*(j-1)) 
      if (send_coef > max_coef) then 
        max_coef = send_coef 
        max_point = i + 3*(j-1) 
      end if 
    end do 
 
    send_point = coi%send_data_index(max_point) 
    recv_point = coi%recv_data_index(1+3*(j-1)) 
    recv_data(recv_point) = send_data(send_point) 
 
 end do 

 do i = 1, size(coi%send_data_index) 
    send_point = coi%send_data_index(i) 
    recv_point = coi%recv_data_index(i) 
    send_coef = coi%send_coef_index(i) 
 
    if (recv_data(recv_point) == UNDEF) cycle  
 
    if (send_data(send_point) == UNDEF) then 
      recv_data(recv_point) = UNDEF 
    else 
      recv_data(recv_point) = recv_data(recv_point)  
     &                  + send_data(send_point)*coi%coef(i) 
    end if 
 
  end do 

Figure 8. Interpolation code implemented in NICAMIO. Left panel: distance weighting method; Right panel: nearest neighbor method

6 Conclusions

In this paper, we discussed the design concept and implementation of a coupling software to couple multiple model components

for a meteorological/climate model. The main aim of this paper was to indicate how coupling software should be under external

and internal conditions. The external conditions are that the developer does not belong to a specific research community, and

the software is used generically. The internal conditions are that the coupling software must adapt to changes in the grid5

system and interpolation algorithm, and the possibility of bug contamination is as low as possible. Conceptual answers to these

issues can be summarized as dividing the function of the coupling software into changing and not changing the values of the

data and enabling users to manage and implement the function of changing the value as a glass box. Based upon this basic

concept, Jcup is constructed so that 1) correspondence relations of grid points in interpolation calculation (mapping table) are

utilized as input information and 2) interpolation calculation codes can be freely implemented by users. Jcup is flexible and10

multifunctional with respect to the function that does not change the value, while leaving the functions changing the value to

users. It is consequently possible to couple multiple model components in series and parallel. Furthermore, there is no limit

to the assignment pattern of each component in the MPI process. As described above, Jcup has high flexibility with respect

to coupling methods and component combinations, but there are restrictions on time. That is, data exchange is performed at

predetermined time intervals for each data point, and the time must match the model time. This constraint is unlikely to be15
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Figure 9. Surface temperature of NICAMIO output. Upper panel: distance weighting method; Lower panel: nearest neighbor method

a problem when the time constant of interaction is long, such as in atmosphere–ocean coupling. However, when physically

and computationally intensive interaction is required, such as with the atmosphere and land surface, and the component ∆T

varies irregularly depending on the internal situation of each component, the current Jcup cannot cope. The refinement of

each component of the climate model and enlargement of the code will continue, and, as a result, it can be anticipated that

components that were not conventionally coupled can also be targets of coupling. Therefore, in the future, Jcup will be extended5

so that data at arbitrary time intervals can be freely exchanged.

Code availability. The version of Jcup described in this paper is v.3.150100. Jcup code (doi:10.5281/zenodo.1297240) is available from sup-

plement files, and also, available from github website. In addition, for readers who want to tray Jcup, sample programs (doi:10.5281/zenodo.1297250)

also available from github website.

10

The urls of github are as follows.

https://github.com/Jcuplib/jcup/releases/tag/3.150100

https://github.com/Jcuplib/jcup_sample/releases/tag/3.150100
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