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Abstract 64 
 65 

An operational multi-model forecasting system for air quality including 9 different chemical 66 
transport models has been developed and is providing daily forecasts of ozone, nitrogen 67 
oxides, and particulate matter for the 37 largest urban areas of China (population higher than 68 
3 million in 2010). These individual forecasts as well as the mean and median concentrations 69 
for the next 3 days are displayed on a publicly accessible web site (www.marcopolo-70 
panda.eu). The paper describes the forecasting system and shows some selected illustrative 71 
examples of air quality predictions. It presents an inter-comparison of the different forecasts 72 
performed during a given period of time (1-15 March 2017), and highlights recurrent 73 
differences between the model output as well as systematic biases that appear in the median 74 
concentration values. Pathways to improve the forecasts by the multi-model system are 75 
suggested.  76 
 77 
 78 
  79 
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1. Introduction  81 
 82 
The rapid economic growth in China has been accompanied with a substantial degradation of 83 
air quality, particularly in the densely populated areas of the eastern part of the country. Air 84 
pollution is the source of cardiovascular and respiratory illness, increased stress to heart and 85 
lungs and cell damage in the respiratory system, which in turn can result in fatalities resulting 86 
from ischemic heart disease, chronic obstructive pulmonary disease (COPD) and Lower 87 
Respiratory Infections. To address this problem, China is taking effective measures to reduce 88 
the emission of primary pollutants such as nitrogen oxides (NOx), volatile organic compounds 89 
(VOCs) and particulate matter (PM). In addition to these long-term mitigation measures, 90 
immediate action can be taken to avoid the occasional occurrence of acute air pollution 91 
episodes, particularly in winter during stable meteorological situations, by drastically 92 
reducing emissions associated with polluting activities during the periods of predicted events. 93 
The implementation of such measures requires that accurate forecasts of air quality be 94 
produced and made available to local and regional authorities. Alerts to warn the public of 95 
the imminence of acute pollution episodes can be released several days before the event on 96 
the basis of model predictions.  97 
  98 
Advanced forecast models include a detailed formulation of the chemical and physical 99 
processes responsible for the formation of secondary pollutants such as ozone and particulate 100 
matter in response to the emissions of primary species produced as a result of industrial, 101 
agricultural and residential activities, energy production and transportation. These models 102 
simulate the transport of these constituents by the atmospheric circulation as well as vertical 103 
exchanges by convective motions and turbulent boundary layer mixing. Meteorological 104 
information provided by weather forecast models is therefore an essential input to regional 105 
air quality models. Surface deposition of oxidized compounds and wet scavenging of soluble 106 
species are also taken into account. The atmospheric concentrations of the chemical and 107 
physically interacting species are obtained by solving a mathematically stiff system of partial 108 
differential equations with appropriate initial and boundary conditions.   109 
 110 
The approach used to produce predictions of air quality bears a lot of resemblance with the 111 
methods used for weather forecasts. In both cases, models make use of similar numerical 112 
algorithms, assimilate data, produce large amounts of output that have to be analysed and 113 
evaluated, and eventually disseminated to the public in the form of easily accessible 114 
information. The steady progress made in the numerical weather prediction since the 1980’s 115 
(Bauer et al., 2015), through combined scientific, computational and observational advances, 116 
has also considerably improved our capability of providing predictive information on air 117 
quality and on its impacts for human society (i.e., health, food production and the state of 118 
ecosystems). 119 
 120 
Many models are available for operationally forecasting air quality [Kukkonen et al., 2012] 121 
and have been tested in different contexts.  These models are usually driven by different input 122 
data (surface emissions, weather forecasts, chemical schemes, aerosol formulation, land use 123 
data, boundary conditions, etc.) and hence generate different output (e.g., different 124 
concentrations of chemical species). In most cases, it is difficult to clearly distinguish between 125 
models that perform well and models that perform poorly because the success of individual 126 
models varies with the conditions that are encountered (e.g., geographic location, season, 127 
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meteorological situation) and can be different for the different chemical species and for 128 
different statistical parameters. If the models involved have been developed rather 129 
independently from each other their results can be combined and their individual behaviours 130 
can be examined by comparing the predicted fields to the median or the mean derived from 131 
the ensemble of simulations. Much can be learned from a systematic day-by-day examination 132 
of the model behaviour operated in a forecast mode.  133 
 134 
Building ensemble of models is an attractive approach to forecast air quality, because the 135 
inter-model variability provides insight on the robustness of the results or conversely on their 136 
uncertainties [McKeen et al., 2004; Vautard et al., 2006; Solazzo et al., 2012]. Further, the 137 
composite products have usually better overall performance than the results produced by 138 
individual systems [Mc Keen et al., 2004; Galmarini et al., 2013; Riccio et al., 2007; Sofiev, 139 
2015; 2017]. This approach is especially useful in the context of decision-making since it 140 
samples the uncertainty space associated with the different individual forecasts. 141 
 142 
Numerical weather forecast is usually based on a single model ensemble in which the initial 143 
conditions are slightly perturbed so that different likely evolutions of the atmospheric 144 
dynamics can be projected. In the case of air quality forecasts, which are not only initial value 145 
problems, it is advisable to also perturb emissions, meteorology and boundary conditions as 146 
well as model parameters (kinetic reaction rates…), which is best performed by considering a 147 
multi-model ensemble [Dabberdt and Miller, 2000]. Nevertheless, in addition, it would also 148 
be useful to assess the behaviour of a single air quality model that is driven by different 149 
realizations of ensemble meteorological forecasts, different emission scenarios and different 150 
chemical schemes.   151 
 152 
The models used in the present study have been developed rather independently, and this 153 
leads to a rather broad range of model results. Model performance does not only depend on 154 
the quality of emissions datasets: they differ for a wide range of reasons, including dynamical 155 
and weather aspects but also the adopted formulation (e.g., parameterisations, operator 156 
splitting, time integration) and numerical algorithms. An inspection of the different choices 157 
made in the models can lead to some improvements in model configurations, and hence will 158 
reduce the “artificial” spread between calculated fields. This spread often results from errors 159 
in the configuration (e.g., set-up bugs) or from inaccuracies in the adopted input parameters 160 
(e.g., land-use). By including each model configuration within a large ensemble, the combined 161 
performance of the forecast system is considerably less affected by initial implementation 162 
issues or inadequate choice of input parameters applied in individual models. 163 
 164 
This paper describes the early phase of a system that forecasts air quality in eastern China. 165 
The system can be characterized as a multi-model “ensemble of opportunity” (as defined by 166 
a combination of models running in their default configurations) that is evolving into an 167 
operational air quality ensemble prediction system, similar to the system established in 168 
Europe under the Copernicus Atmospheric Monitoring Service (CAMS) [Marecal et al., 2015]. 169 
The concept adopted here will be briefly presented in Section 2. Section 3 presents a 170 
description of the different models and Section 4 briefly discusses the performance of the 171 
whole system and of the contributing models. A second paper (Petersen et al., 2018) discusses 172 
in more detail the performance of the forecast system including the representativeness of 173 
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the model-observation discrepancies, specifically in urban areas. Approaches to improve the 174 
performance of the system are presented in Section 5.  175 
 176 
The ensemble of models considered in the present study has been assembled under the 177 
Panda and MarcoPolo projects supported by the European Commission within the 178 
Framework Programme 7 (FP7). Seven models were initially included in the operational 179 
system: the global IFS model developed and operated by the European Centre for Middle 180 
Range Weather Forecasts (ECMWF), five regional models implemented by European research 181 
and service institutions (CHIMERE by the Royal Netherlands Meteorological Institute (KNMI), 182 
WRF-Chem-MPIM by the Max Planck Institute for Meteorology (MPIM), SILAM by Finnish 183 
Meteorological Institute (FMI), EMEP/MSC-W by the Norwegian Meteorological Institute 184 
(MET.Norway), LOTOS-EUROS by The Netherlands Organisation for Applied Scientific 185 
Research (TNO)), and one model (WRF-Chem-SMS) applied in China by the Shanghai 186 
Meteorological Service (SMS). In later steps, forecasts by additional regional models applied 187 
by Nanjing University (WRF-CMAQ) and by the Shanghai Meteorological Service (WARMS-188 
CMAQ) were added to the ensemble. In the following Section, we provide a brief overview of 189 
these different models. Only seven of them contribute to the inter-comparison presented in 190 
Section 4. 191 
 192 
 193 
2. Description of the Models included in the Ensemble 194 

 195 
In the following subsections, each of the 9 participating models will be described. Table 2a-b 196 
presents the key characteristics of each model involved in the inter-comparison and Table 3 197 
summarizes the emissions adopted in each model. 198 
 199 
2.1. IFS 200 
  201 
IFS (Integrated Forecasting System) is ECMWF’s global Numerical Weather Prediction system. 202 
As part of the past series of European projects MACC and now of CAMS, the Copernicus 203 
Atmosphere Monitoring Service, IFS has been developed to represent optionally chemical 204 
processes in the troposphere and in the stratosphere. Flemming et al. (2015) provide a 205 
detailed description of the modelling of chemical processes in the IFS, and Inness et al. (2015) 206 
describe the data assimilation aspects.  207 

For the work presented here, the version of IFS used is Cycle 43R1 (see documentation at 208 
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-209 
model/ifs-documentation). The model is run globally at a resolution of T511 (about 40km) on 210 
the horizontal, and with 60 levels on the vertical extending up to the top of the stratosphere. 211 
The chemical package used originates from the TM5 Chemistry and Transport Model (Huijnen 212 
et al., 2010). It has been fully integrated into the IFS code and comprises 54 tracers and 120 213 
reactions focusing on tropospheric ozone-CO-NMVOC-NOx chemistry. In the configuration 214 
used here, stratospheric ozone is modelled with a simple linearized scheme. Aerosols are 215 
represented using the scheme described by Morcrette et al. (2009), which includes 5 species: 216 
dust, sea-salt, black carbon, organic carbon and sulphates. Tracers are transported using the 217 
semi-Lagrangian scheme available in IFS with a mass fixer activated in order to minimise mass 218 
non-conservation.  219 



 8 

During the study period, IFS has been run twice daily (5-day forecasts) assimilating a range of 220 
satellite chemical data on top of the full list of meteorological satellite and non-satellite data 221 
that ECMWF uses for its medium-range weather forecasts. Table 1 indicates the satellite data 222 
streams actively assimilated for the experiments presented here. As a result, IFS forecasts 223 
benefit from all these observations to afford a realistic representation of large scales for 224 
weather parameters as well as, to some extent, for chemical variables (species assimilated). 225 

IFS used the MACCITY emission data set updated for the year 2017. Biogenic emissions of VOC 226 
were taken from a climatology of a multi-year MEGAN model simulation. Daily emissions from 227 
biomass burning were derived from satellite retrieval of fire radiative power (FRP) from the 228 
MODIS instruments by the Global Fire Assimilation System (GFAS, Kaiser et al. 2012). The 229 
observed fire emissions from the day before the forecast start are used for all five days of the 230 
forecast. Desert dust and sea salt emissions were simulated online for each time step based 231 
on the IFS meteorological fields and the land use.     232 

As part of CAMS, the chemical configuration of IFS benefits from routine detailed evaluations. 233 
Validation reports are produced quarterly and can be found here 234 
(http://atmosphere.copernicus.eu/quarterly_validation_reports). The report for the period 235 
March-May 2017 provides insight on the overall performance of the runs that are also 236 
presented here. Further information about the IFS code can be obtained from Vincent-Henri 237 
Peuch Vincent-henri.peuch@ecmwf.int and on the web site 238 
https://www.ecmwf.int/en/about/what-we-do/environmental-services/copernicus- 239 
atmosphere-monitoring-service  240 

  241 

 242 

Table 1. Satellite data streams (atmospheric composition variables only) assimilated in 243 
IFS. 244 
 245 

Instrument Satellite Space Agency Data Provider Species 
MODIS EOS-Aqua, EOS-Terra NASA NASA AOD 
MLS EOS-Aura NASA   O3 profile 
OMI EOS-Aura NASA KNMI O3, NO2, SO2 
SBUV-2 NOAA-19 NOAA NOAA O3 profile 
IASI METOP-A, METOP-B EUMETSAT/CNES ULB/LATMOS CO 
MOPITT EOS-Terra NASA NCAR CO 
GOME-2 METOP-A, METOP-B EUMETSAT/ESA AC-SAF O3, SO2 
OMPS Suomi-NPP NOAA EUMETSAT O3 
PMAp METOP-A, METOP-B EUMETSAT EUMETSAT AOD 

 246 
 247 
2.2. CHIMERE 248 
 249 
CHIMERE is a regional chemistry-transport model used for analysis, scenarios and forecast 250 
(Menut et al., 2013). When used in the forecast mode, the model provides local scale 251 
information (to be compared with data from numerous air quality networks), or regional scale 252 
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information (e.g., the French PREVAIR and the Copernicus CAMS systems). CHIMERE is an 253 
open-source model, freely distributed at www.lmd.polytechnique.fr/chimere. In this version, 254 
CHIMERE is used in off-line mode at a spatial resolution of 0.25 degrees (about 25 km). It is 255 
forced by pre-calculated hourly meteorological fields for the dynamics and by several 256 
emissions fluxes for the chemistry. The emissions are pre-calculated or on-line estimated in 257 
the model with anthropogenic emissions (MEIC 2010), biogenic emissions with the online 258 
model of emissions of gases and aerosols from nature (MEGAN, Guenther et al., 2006), 259 
mineral dust (Menut et al., 2013) and biomass burning emissions (Turquety et al., 2014). The 260 
gas phase chemistry is calculated using the MELCHIOR2 mechanism and the aerosols are 261 
represented using a distribution of 10 bins, from 40nm to 40μm to well describe both number 262 
and mass. The chemical boundary conditions are provided by the LMDz-INCA model for gas 263 
and particles (Szopa et al., 2009), except for mineral dust extracted from global GOCART 264 
simulations (Ginoux et al., 2001). Further information about the implementation of the model 265 
for air quality forecasts in China can be obtained from Ronald van der A (avander@knmi.nl) 266 
at KNMI and on the web site http://www.lmd.polytechnique.fr/chimere/CW-download.ph. . 267 
 268 
2.3. WRF-Chem-MPIM 269 
 270 
The Weather Research and Forecasting model coupled to chemistry (WRF-Chem) is a 271 
mesoscale non-hydrostatic meteorological model (Skamarock et al., 2008) coupled “online” 272 
with chemistry that simultaneously predicts meteorological and chemical components of the 273 
atmosphere (Grell et al., 2005; Fast et al., 2006).  274 
 275 
The model version used at the Max Planck Institute for Meteorology (MPIM), WRF-Chem-276 
MPIM, is based on version 3.6.1 of the WRF-Chem model coupled to the gas phase chemistry 277 
and the aerosol microphysics schemes provided by the Model for Ozone and Related 278 
Chemical Tracers (MOZART-4, Emmons et al., 2010) and the Model for Simulating Aerosol 279 
Interactions and Chemistry (MOSAIC, Zaveri et al., 2008), respectively. Aerosols sizes are 280 
represented by four consecutive bins, and the formation of secondary organic aerosol (SOA) 281 
from anthropogenic precursors is parameterized according to Hodzic and Jimenez (2011). 282 
 283 
Two nested model domains with horizontal resolutions of 60 km (Asian continent from India 284 
to Japan) and 20 km (eastern China), respectively are implemented. The vertical grid is 285 
composed of 51 levels extending from the surface to 10 hPa (~30 km).  A more complete 286 
description of the selected physical and chemical options is provided in the WRF and in the 287 
WRF-Chem user’s guides under  288 
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.6/ARWUsersGuideV3.6.1.pdf 289 
and https://ruc.noaa.gov/wrf/wrf-chem/Users_guide.pdf. 290 
 291 
The WRF-Chem-MPIM model forecasts are initialized and forced at the lateral boundaries 292 
every day by 6 hourly meteorological analysis data from the NCEP Global Forecast System 293 
(GFS) at 0.5 degree resolution. For the chemical and aerosol species, 6 hourly datasets are 294 
provided by the global operational forecasting system implemented within the Copernicus 295 
Atmospheric Monitoring Service project (Flemming et al., 2015).  More information on the 296 
model’s configuration can be obtained from Idir Bouarar (idir.bouarar@mpimet.mpg.de) at 297 
the Max Planck Institute for Meteorology and on the web site 298 
http://www2.mmm.ucar.edu/wrf/users/downloads.html. 299 
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 300 
2.4. SILAM 301 
 302 
FMI uses the System for Integrated Modeling of Atmospheric Composition (SILAM) version 303 
5.5 (Sofiev et al., 2015). SILAM includes a meteorological pre-processor for diagnosing the 304 
basic features of the boundary layer and the free troposphere from the meteorological fields 305 
provided by various meteorological models (Sofiev et al., 2010). The dry deposition scheme 306 
for particles is described in Kouznetsov and Sofiev (2012). The surface resistance model for 307 
gases is based on a modified Wesely scheme (Wesely, 1989). 308 
 309 
The gas phase chemistry was simulated with CBM-IV, with reaction rates updated according 310 
to the recommendations of IUPAC (http://iupac.pole-ether.fr) and JPL 311 
(http://jpldataeval.jpl.nasa.gov) and the terpenes oxidation added from CB05 reaction list 312 
(Yarwood et al., 2005). The sulphur chemistry and secondary inorganic aerosol formation is 313 
computed with an updated version of the DMAT scheme (Sofiev, 2000) and secondary organic 314 
aerosol formation with the Volatility Basis Set (VBS, Donahue et al., 2006), the volatility 315 
distribution of anthropogenic OC taken from Shrivastava et al. (2011). 316 
 317 
The MACCITY land-based emissions are used together with the Ship Traffic Emission 318 
Assessment Model (STEAM). The simulations include sea-salt emissions as in Sofiev et al. 319 
(2011), biogenic VOC (volatile organic compounds) emissions as in Poupkou et al. (2010) and 320 
wild-land fire emissions as in Soares et al. (2015) and desert dust. 321 
 322 
The grid cell size was roughly 15km ´ 10km (0.125° ´ 0.125°) covering the whole China, India, 323 
Japan and several countries of South-East Asia (67E, 7N) – (147E, 54N). The Asian forecasts 324 
are nested into the SILAM global AQ forecasts (http://silam.fmi.fi), from where they take 325 
lateral and top boundary conditions. The initial conditions for each run are taken from the 326 
previous-day forecast or, in case of failure, from global computations. Detailed information 327 
about the SILAM modelling system can be obtained from Mikhail Sofiev 328 
(Mikhail.Sofiev@fmi.fi)  and from Rostislav Kouznetsov (rostislav.kouznetsov@fmi.fi) and on 329 
the web site of the Finnish Meteorological Institute (http://silam.fmi.fi/). 330 
 331 
2.5. EMEP 332 
 333 
The EMEP/MSC-W model (European Monitoring and Evaluation Programme/Meteorological 334 
Synthesizing Centre-West Model hosted at the Norwegian Meteorological Institute, hereafter 335 
referred to as ‘EMEP model’) is a 3-D Eulerian Chemical Transport Model described in detail 336 
in Simpson et al. (2012). Although the model has traditionally been aimed at European 337 
simulations, global modelling has been possible for many years (Jonson et al., 2010; Wild et 338 
al., 2012). The EMEP configuration for the present study covers the East-Asian domain [15°N-339 
55°N] x [90°E-135°E] with a horizontal resolution of 0.1° x 0.1° (longitude-latitude). The model 340 
uses 20 vertical levels defined as sigma coordinates. The 10 lowest levels are within the PBL, 341 
and the top of the model domain is at 100 hPa.  342 
 343 
Particulate (PM) emissions are split into elementary carbon (EC), organic matter (OM) (here 344 
assumed inert) and the remainder, for both fine and coarse PM. The OM emissions are further 345 
divided into fossil fuel and wood-burning compounds for each source sector. As in Bergström 346 
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et al. (2012), the Organic Matter/Organic Carbon ratio of emissions by mass is assumed to be 347 
1.3 for fossil-fuel sources and 1.7 for wood-burning sources. The model also calculates 348 
windblown dust emissions from soil erosion. Secondary PM2.5 aerosol consists of inorganic 349 
sulphate, nitrate and ammonium, and SOA; the latter is generated from both anthropogenic 350 
and biogenic emissions (anthropogenic SOA and biogenic SOA respectively), using the ‘VBS’ 351 
scheme detailed in Bergström et al (2012) and Simpson et al (2012). 352 
 353 
Model updates since Simpson et al. (2012), resulting in EMEP model version rv4.9 as used 354 
here, have been described in Simpson et al. (2016) and references cited therein. The main 355 
changes concern a new calculation of aerosol surface area, revised parameterizations of N2O5 356 
hydrolysis on aerosols, additional gas-aerosol loss processes for O3, HNO3 and HO2, a new 357 
scheme for ship NOx emissions, and the use of new maps for global leaf-area (used to calculate 358 
biogenic VOC emissions) – see Simpson et al. (2015) for details. The EMEP model, including a 359 
user guide, is publicly available as Open Source code at https://github.com/metno/emep-ctm. 360 
For more details, please contact Michael Gauss (michael.gauss@met.no). 361 
 362 
The EMEP forecasts are driven by 3-hourly meteorological forecast data from the ECMWF IFS 363 
model at 0.1 degree resolution. As for WRF-Chem, 6-hourly datasets for the chemical and 364 
aerosol species are provided by the global operational forecasting system implemented 365 
within the Copernicus Atmospheric Monitoring Service project. 366 
 367 
2.6. LOTOS-EUROS 368 
 369 
LOTOS-EUROS (Long-term Ozone Simulations – European Operational Smog) is a three-370 
dimensional regional chemistry transport model (CTM) for simulation of trace gases and 371 
aerosol concentrations in the boundary layer. Meteorological input is obtained from an 372 
offline model, in this study from ECMWF. The model is of intermediate complexity allowing 373 
long-term model simulations. For a detailed model description we refer to Manders et al. 374 
(2017) and references therein. 375 
  376 
In this study LOTOS-EUROS version 1.10 was used to simulate air quality over China. The 377 
configuration is described by Timmermans et al. (2017) who adopted this version of the model 378 
to investigate the origin of fine particulate matter across China using a source apportionment 379 
technique. Through a one-way nesting procedure a simulation over East-China was 380 
performed on a resolution of 0.25° longitude by 0.125° latitude, approximately 21 by 15 km2. 381 
This domain is nested in a larger domain covering China almost entirely with a resolution 1° 382 
longitude by 0.5° latitude, approximately 84 by 56 km2. Chemical boundary conditions for the 383 
coarse resolution domain were taken from the CAMS global modelling framework (Flemming 384 
et al., 2015) and include trace gasses and aerosols. In the vertical, the model used a boundary 385 
layer approach with 5 layers: a surface layer of 25m, a well-mixed boundary layer, two 386 
reservoir layers, and a layer for the free troposphere. The boundary layer height therefore 387 
defines the vertical structure of the model, and is here taken from the meteorological input. 388 
More details about the code can be obtained by contacting Renske Timmermans 389 
(renske.timmermans@tno.nl) at TNO or by consulting the web site 390 
https://lotos`euros.tno.nl/. 391 
 392 
2.7. WRF-Chem-SMS 393 
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 394 
WRF-Chem-SMS hosted at the Shanghai Meteorological Service is based on WRF-Chem (Grell 395 
et al., 2005) version 3.2. The Regional Acid Deposition Model version 2 (RADM2, Chang et al., 396 
1989) is used to represent gas-phase chemistry. ISORROPIA II is implemented to treat 397 
thermodynamic equilibrium for inorganic aerosols (Fountoukis and Nenes, 2007), and the 398 
Secondary ORGanic Aerosol Model (SORGAM) (Schell et al., 2001) is used to parameterize 399 
secondary organic aerosol formation. Madronich TUV scheme is applied for photolysis 400 
(Madronich and Flocke, 1999; Tie et al., 2003). The model domain covers the eastern region 401 
of China with horizontal resolutions of 6 km and 28 vertical layers. Biogenic emissions are 402 
calculated online using MEGAN model (Guenther et al., 2012). The multi-resolution emission 403 
inventory for China (MEIC inventory, http://www.meicmodel.org/; Li et al., 2014; Liu et al., 404 
2015) for year 2010 is used to represent anthropogenic emissions. 405 
  406 
The modeling system is initialized and forced at the lateral boundaries every day by 6 hourly 407 
data from the NCEP GFS at 0.5-degree resolution. For chemical species, previous modeling 408 
result is used for initial conditions. MOZART-4 historic data are employed as the gaseous 409 
chemical lateral boundary, and real time forecast of dust from the WRF-Dust model is 410 
employed as dust lateral boundary every 6 hours. More detailed information can be found in 411 
Zhou et al. (2017) and by contacting Jianming Xu (metxujm@163.com) at the Shanghai 412 
Meteorological Service.  413 

2.8. WRF-CMAQ 414 
 415 
A regional air quality operational forecasting system was developed at Nanjing University, 416 
China, on the basis of the WRF-CMAQ model. The version adopted for the WRF (Weather and 417 
Forecasting) and CMAQ (Community Multiscale Air Quality) models are V3.5 and V4.7.1, 418 
respectively. Two nested domains with horizontal resolutions of 36 km and 12 km are adopted 419 
for the forecasts. The outer domain covers the entire continental region of China as well as 420 
surrounding countries in East Asia. The inner domain mainly focuses on the densely populated 421 
area of eastern China. The number of grid points adopted for the WRF model are 170 × 130 422 
and 202 × 226, respectively with 51 sigma layers in vertical (12 layers below 1.5 km AGL) 423 
between the surface and the model top at 50 hPa. The CMAQ model is applied to the same 424 
domains but with three grid cells removed at each lateral boundary of the WRF domains. 15 425 
vertical layers are selected from the 51 WRF layers, including about 8 layers in the boundary 426 
layer and 7 layers in the free troposphere. 427 
 428 
Anthropogenic emissions are supplied offline from the MIX inventory (Li et al., 2017). 429 
Terrestrial biogenic emissions are calculated offline using MEGAN v2.04 (Guenther et al., 430 
2006). Sea salt emissions are incorporated into the AERO4 aerosol module, and calculated 431 
online in CMAQ. Wind-blown dust is derived online from the WRF-Dust model. Open biomass-432 
burning emissions are not considered here. It should be noted that the anthropogenic 433 
emissions are not fixed in this system, but are automatically adjusted every week according 434 
to the system performance in the past week. The adopted scaling factors are determined 435 
from the deviation between the weekly averaged calculated and observed concentrations of 436 
SO2, NOx, CO, PM2.5 and PM10 in 334 Chinese prefectures.   437 

 438 
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The system provides every day a forecast for the next 192 hours. The NCEP Global Forecast 439 
System (GFS)’s products at 00 UTC are used for the initial and boundary conditions of the WRF 440 
model with a resolution of 0.5-degree and with a 3-hour interval. For the CMAQ model, the 441 
boundary conditions are created using ideal profiles, and the chemical initial fields are 442 
initialized from the previous forecasting. In addition, hourly averaged observed 443 
concentrations of SO2, NO2, CO, O3, PM2.5 and PM10 from 1415 national control air quality-444 
monitoring sites are assimilated into the initial fields using an optimal interpolation method 445 
[Lorenc, 1981]. More information on the code can be obtained from Fei Jiang 446 
(jiangf@nju.edu.cn) at Nanjing University. Information on WRF-CMAQ is also available on the 447 
web site http://carbon.nju.edu.cn/cn/ and https://www.epa.gov/cmaq/cmaq-models-0. 448 
 449 
2.9. WARMS-CMAQ 450 
 451 
The Community Multiscale Air Quality (CMAQ) model is a 3-D Eulerian chemical transport 452 
model that explicitly simulates emissions, gas-phase, aqueous, and mixed-phase chemistry, 453 
advection and dispersion, aerosol thermodynamics and physics, and wet and dry deposition. 454 
A detailed description and an evaluation of the CMAQ model are available in the papers by 455 
Byun and Schere (2006), Foley et al. (2010), and Appel et al. (2017). Several studies have 456 
applied the CMAQ model to study the air quality in China. For example, Zheng et al. (2015) 457 
used WRF-CMAQ model to study the impact of heterogeneous chemistry during the January 458 
2013 haze episode. Hu et al. (2016) performed a one-year retrospective simulation using 459 
WRF-CMAQ model to study the O3 and particulate matter formation with detailed evaluation. 460 
Here the CMAQ version 5.0.2 is adopted and includes the 2005 Carbon Bond (CB05) chemical 461 
mechanism (Yarwood et al., 2005) to represent the gas-phase chemistry. The fifth-generation 462 
modal CMAQ aerosol model (aero5) is adopted to formulate the aerosol chemistry and 463 
dynamics (Carlton et al., 2010).  464 
 465 
In this version, CMAQ is used in an off-line mode. It is forced by pre-calculated hourly 466 
meteorological fields for the dynamics and by several emissions fluxes for the chemistry. 467 
Meteorology fields that drive chemical transport are produced by the Shanghai 468 
Meteorological Service (SMS) WRF ADAS Real-time Modeling System (WARMS). The SMS-469 
WARMS has been extensively evaluated and is providing weather predictions in Eastern 470 
China. The modelling domain consists of 760 by 600 horizontal grids at 9-km resolution, with 471 
51 layers in the vertical. As a subdomain of the SMS-WARMS run, the CMAQ domain consists 472 
of 430 by 370 horizontal grid cells at 9-km resolution. In the vertical, 26 layers are applied.  473 
 474 
The anthropogenic emissions are based on monthly HTAP v2 dataset 475 
(http://edgar.jrc.ec.europa.eu/htap_v2/) (Janssens-Maenhout et al., 2015) for year 2010. As 476 
suggested by operational forecasting results, the HTAP NOx, SO2 emissions are adjusted to 477 
account for rapid economic growth in the region. Biogenic emissions are estimated by the 478 
MEGAN model version 2.10 (Guenther et al., 2012). Currently, dust and biomass burning 479 
emissions are not included.  480 
 481 
For the SMS-WARMS model forecasts, the NCEP GFS output at 0.5 degree is used as a 482 
background for ADAS data assimilation scheme, which ingests many local observations (e.g. 483 
radar and buoys), and to provide lateral boundary conditions. The chemical boundary 484 
conditions are currently based on the default vertical profiles of gaseous species and aerosols 485 
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in CMAQ that represent clean air conditions. For more details, please contact Ying Xie 486 
(yxie33@outlook.com) at the Shanghai Meteorological Service. The CMAQ code available on 487 
the US-EPA modeling site https://github.com/USEPA/CMAQ/). 488 
 489 
 490 
 491 
Table 2a. Description of the Different Models 492 
 493 

Model and 
Institution 

Model 
Docume
ntation 

Type of 
Model 

Spatial 
Domain 

Vertical and 
Horizontal 
Resolution 

Meteo 
Data 

Initial and 
Boundary 
Conditions 

IFS 
ECMWF 

CAMS Global 
On-line 

Global 60 vertical levels 
 
T511  (40 km) 

ECMWF-IFS IC: previous 
forecast 
corrected 
by data 
assimilation 
(analysis) 
 
 
 
 
 

CHIMERE 
KNMI 

Version 
2013b 

Regional 
Off-line 

18-500N 
102-1320E 

8 levels (surface 
to 500 hPa) 
 
0.25 degree 

ECMWF 
operational 
data 

IC: previous 
forecast 
BC: LMDz-
INCA (gas 
and 
particles), 
GOCART 
(mineral 
dust) 
 
 
 

WRF-
Chem-
MPIM 

Version 
3.6 

Regional 
On-line 

Domain 1: 8S-
51N 
59-152E 
 
Domain 2: 
18-45N 
95-125E 

51 levels (surf. 
to 10 hPa) 
 
Domain 1: 
60 km x 60 km 
 
Domain 2: 
20 km x 20 km 

NCEP-FNL 
6 hours  
10 x 10 

IC: previous 
forecast 
BC: IFS 

SILAM 
FMI 

Version 
5.5 

Regional 
Off-line 

7-54N 
67-147E 

14 hybrid sigma-
pressure levels 
up to ~ 400hPa 
0.1250 x 0.1250 

 

 ECMWF-
IFS 

IC: previous 
forecast 
BC: Silam 
global 
forecast 
 

EMEP Svn3064 Regional 
Off-line 

15-55N 
90-135E 

20 sigma levels 
(surf. to 50 hPa) 

ECMWF-IFS IC: previous 
forecast 
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MET 
Norway 

BC: ECMWF 
IFS (3-
hourly) 
 

LOTOS-
EUROS 

Version 
1.10 

Regional 
Off-line 

Domain 1: 
15-50 N 
71-139 E 
 
Domain 2: 
20-45N 
105-130E 

5 layers (surf. to 
5 km) 
 
Domain 1: 
0.50 x 0.250 

 

Domain 2: 
0.250 x 0.1250 

ECMWF-IFS IC: previous 
forecast 
BC: CAMS 
C-IFS (3-
hourly) 

WRF-Chem 
SMS 

Version 
3.2 

Regional 
On-line 

20-44N 
110-126E 

28 vertical 
layers (surf. to 
50 hPa) 
 
6 km 

NCEP GFS 
6 hours  
0.50 x 0.50 

IC: Previous 
run 
BC: 
MOZART 
monthly 
averages 
for 2009 
 

WRF-
CMAQ 
NJU 

WRFv3.5 
CMAQv
4.7.1 

Regional 
Off-line 

Domain 1: 18-
52N, 78-136E 
Domain 2: 21-
44N, 102-125E 
 

Domain 1: 36 
km x 36 km 
Domain 2: 12 
km x 12 km 
WRF: 51 sigma 
levels 
CMAQ: 15 sigma 
levels 

NCEP GFS 
3 hours  
0.50 x 0.50 

IC: Previous 
run 
BC: CMAQ 
default 
vertical 
profile 
 
 
 
 

WARMS-
CMAQ 
SMS 

Version 
5.0.2 

Regional 
Off-line 

14-53 N 
100-144 E 
 

26 sigma levels 
(from surf. to 50 
hPa) 
 
9 km 

NCEP GFS 
6 hours  
0.50 x 0.50 

IC: Previous 
run 
BC: CMAQ 
default 
vertical 
profile  
 

 494 
 495 
 496 
Table 2b.  Continued 497 
 498 

Model and 
Institution 

PBL  
 

Land-Use Deposition Chemistry Data 
Assimilation 

IFS 
ECMWF 

IFS PBL 
scheme 

IFS-Land use Dry: Resistance 
Wet: in-cloud 
and below 
cloud 
scavenging and 
evaporation 

Gas: CB05 
Aerosol: 
LMDz/MACC 

yes 
(O3,CO,NO2, 
SO2,HCHO) 
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CHIMERE 
KNMI 

bulk 
Richardson 
number 
(Menut et al., 
2013)  
 

GlobCover 
LandCover 
verion 2.3, 
2009 

 
Dry: Resistance 
Wet: in-cloud 
and below 
cloud 
scavenging 

gas: 
MELCHIOR2 
aerosol: 
Schemes for 
nucleation, 
absorption(ISO
RROPIA), and 
coagulation 

no 

WRF-Chem-
MPIM 

YSU MODIS Dry: Resistance 
Wet: in-cloud 
scavenging 

gas: MOZART4 
aerosol: 
GOCART 

no 

SILAM 
FMI 

Bulk-
Rishardson 
number, 
modified to 
use 2t and U*. 
 
 

Maps of 
roughness, LAI 
from C-IFS 

Dry: Resistance 
for gases, 
Kouznetsov&S
ofiev (2012) 
for particles 
Wet: Rainout 
and washout 
with air-water 
equilibria 

gas: CBM-IV 
aerosol: 
DMAT/VBS 

not used 

EMEP 
MET Norway 

Slightly 
modified bulk 
Richardson 
number, PBL 
height always 
between 100-
3000 m 

GLC2000 Dry: Resistance 
Wet: in-cloud 
and below 
cloud 
scavenging 

MARS module 
for aerosols 
 
Gas: 
EmChem09  

no 

LOTOS-
EUROS 

Version 1.10 Regional 
Off-line 

Domain 1: 
15-50 N 
71-139 E 
 
Domain 2: 
20-45N 
105-130E 

5 layers (surf. 
to 5 km) 
 
Domain 1: 
0.50 x 0.250 

 

Domain 2: 
0.250 x 0.1250 

ECMWF-IFS 

WRF-Chem 
SMS 

YSU MODIS Dry: Resistance 
Wet: in-cloud 
scavenging 

gas:RADM2 
aerosol: 
ISORROPIA/SO
RGAM 

no 

WRF-CMAQ 
NJU 

YSU  
 

USGS modified 
with MODIS 
urban cover 
data 

Dry: Resistance 
Wet: in-cloud 
and below 
cloud 
scavenging 

Gas: CB05 
Aerosol: aero4 

Yes (SO2, 
NO2, CO, O3, 
PM2.5, 
PM10) 

WARMS-
CMAQ 
SMS 

YSU MODIS Dry: Resistance 
Wet: in-cloud 
and below 
cloud 
scavenging 

gas: CB05 
aerosol: CMAQ 
aero5 

no 

 499 
 500 



 17 

 501 
3. Adopted Emissions 502 

 503 
The choice of the adopted surface emissions for primary chemical species has a significant 504 
influence on the atmospheric concentrations calculated for these species and for related 505 
secondary pollutants. In this inter-comparison exercise, the different groups involved have 506 
adopted their preferred anthropogenic emissions based on published inventories such as 507 
MEIC (Li et al., 2014; Liu et al., 2015), MACCity (Granier et al., 2011), EDGAR (Muntean et al., 508 
2014; Crippa et al., 2016) and HTAP (Janssens-Maenhout et al., 2015). An inventory developed 509 
specifically for the PANDA project called PanHam has been obtained by combining 510 
information from the MEIC and HTAP inventories.  Each model uses its own formulation for 511 
dust mobilization or seal salt emissions. In most cases, the biogenic emissions are derived 512 
online or offline from the MEGAN model (Guenther et al., 2006, 2012). Table 3 provides more 513 
details about the specified emissions and Figure 1 shows the mean distribution of the 514 
anthropogenic emissions for CO, NO and SO2 adopted by different models during the period 515 
1-14 March 2017. In the case of carbon monoxide, the adopted emissions are relatively similar 516 
in all models with mean emissions ranging from 4.0 to 4.6 mg m-2 h-1. In the case of nitric 517 
oxide, however, there are substantial differences with mean emissions ranging from 0.31 mg 518 
m-2 h-1 (WRF-Chem-MPIM) to 0.99 mg m-2 h-1 (EMEP), but with values around 0.30 – 0.45 mg 519 
m-2 h-1 used by most models. For sulphur dioxide, produced primarily from coal combustion, 520 
the adopted values range from 0.31 mg m-2 h-1 (WRF-Chem-SMS) to 0.73 mg m-2 h-1 (IFS), but 521 
with values around 0.67 mg m-2 h-1 adopted in most models. The low values adopted for WRF-522 
Chem-SMS reflect the likely impact of the recent measures taken in China to limit the 523 
emissions from coal burning facilities. 524 
 525 
Emission inventories that are currently available to the modelling community usually account 526 
for anthropogenic emissions for years 2010 to 2012, and hence do not account for the 527 
substantial reduction in the emissions that took place since around 2014 as a result of actions 528 
taken by the Chinese authorities. The lower emission values adopted by several models may 529 
therefore be more realistic for providing chemical weather forecasts in 2017. 530 
 531 
 532 
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 533 
Figure 1. Surface emissions of CO, NO and SO2 [mg m-2 h-1] adopted by the different models (average 534 
for the period 1-14 March 2017). Note that the SCUEM emissions are those used in the WRF-Chem-535 
SMS model. 536 
 537 
 538 
 539 
Table 3. Adopted Emissions 540 
 541 

Model and 
Institution 

Anthro. 
dataset 

Dust Seasalt Biogenic Biomass 
burning 

Special 
Treatment/
Modification 

IFS 
ECMWF 

MACCity 
 
 

Ginoux et 
al (2001) 

Monahan 
et al. (1986) 

Monthly 
climatology 
of MEGAN 
v2 run 

GFAS Diurnal cycle 
for isoprene 

CHIMERE 
KNMI 

MEIC 2010 
 
 

none none MEGAN none none 

WRF-Chem-
MPIM 

HTAPv2 
 
 

GOCART MOSAIC MEGAN none Diurnal 
profiles by 
sector; 
Anthro NOx 
emission -
50%; 

SILAM 
FMI 

MACCity 
with 
excluded 
Shippig, 

SILAM 
Scheme 
after 
Zender 
(2003) 

SILAM 
Scheme 
Sofiev et al 
(2012) 

MEGAN-
MACC 
 

GFAS 
(gases), 
IS4FIRES 
(PM) 

Diurnal 
profiles by 
sector 
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STEAM2015 
Shipping, 
PanHam for 
Coarse PM 

EMEP 
MET Norway 

PanHam 
(HTAP + 
MEIC2012) 
 
 

none Tsyro et al. 
(2011) 

EMEP 
scheme 

GFAS none1 

LOTOS-
EUROS 

EDGAR + 
MEIC2010 
 
 

online online MEGAN GFAS Anthro NOx 
emission 
 -35%; 
Anthro SO2 
emission  
-50% 

WRF-Chem 
SMS 

MEIC 2010 
 
 

With dust 
BC from 
WRF-Dust 

none MEGAN v2 none Diurnal 
profiles by 
sector; 
Anthro NOx 
emission 
 -40%; 
Anthro SO2 
emission  
-60% 

WRF-CMAQ 
NJU 

MIX 
 
 

WRF-Dust CMAQ 
scheme 

MEGAN 
v2.04 

none Adjusted by 
performance 
of last week 

WARMS-
CMAQ 
SMS 

HTAPv2 
 
 

none CMAQ 
scheme 

MEGAN 
v2.10 

none Diurnal 
profiles by 
sector; 
Anthro NOx 
emission  
 -50%; 
Anthro SO2 
emission  
-70% 

 542 
 543 
4. Operational Forecasts provided by the MarcoPolo-Panda System. 544 
 545 
As stated above, the MarcoPolo-Panda system is used operationally to provide daily forecast 546 
of air quality in eastern China. In its present configuration (Figure 2), the system is based on 547 
9 models, which are executed independently on the computing system available in each 548 
respective partner institution. The outputs of the models are locally processed and the 549 
surface concentrations of the key chemical species are forwarded to a central database 550 
operated by the Royal Netherlands Meteorological Institute (KNMI). Ensemble mean and 551 

                                                        
1 None during the inter-comparison exercise. Since summer 2017, however, the NOx emissions have been 
reduced by 35% in this particular model. The present version of the model also calculates windblown dust 
emissions from soil erosion. 
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median concentrations are derived and, in addition to the forecasts from individual models, 552 
are posted on a dedicated website (www.marcopolo-panda.eu) and Chinese mirror site 553 
(http://116.62.195.108/). For the 37 Chinese cities with a population above 3 million in 2010, 554 
the predicted concentration values of ozone, NO2, PM2.5 and PM10 are compared each hour 555 
to local measurements reported by the Chinese monitoring network (www.pm25.int). 556 
Observations for each city represent the mean of several measurements performed within 557 
one city (usually 5-12 stations). The data are averaged to city-centre coordinates. 558 
 559 
We start by presenting a few examples of randomly selected forecasts as provided by the 560 
MarcoPolo-Panda system to illustrate the diversity among the models and the differences 561 
obtained under different situations. The performance of each individual model varies from 562 
day to day because it strongly depends on the individual weather forecast (meteorological 563 
situation, cloudiness, precipitation, etc.) that is adopted to simulate transport, 564 
photochemistry and deposition.  Therefore this first description of model forecasts does not 565 
provide reliable information on the accuracy of the forecasts provided by the different models 566 
included in the ensemble. 567 
 568 

 569 
 570 
Figure 2. Structure of the operational multi-model forecast system with the 9 model components. 571 
Postprocessed forecasts for the next 3 days provided by each model are sent to a central database 572 
maintained by the Royal Netherlands Meteorological Institute (KNMI). Ensemble medians and means 573 
are calculated and information (predicted daily variations of surface concentrations for 37 major 574 
Chinese cities, and maps of predicted diurnal mean surface concentrations) and are posted on the 575 
http://www.marcopolo-panda.eu/forecast website.  Users in China are redirected to the mirror 576 
website maintained by SMS (http://116.62.195.108/). The forecasts are compared with the median 577 
and mean observations provided by monitoring stations at different locations of the 37 cities. 578 
 579 
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The first example presents a relatively successful forecast made for the coastal city of Xiamen 580 
in southeast China on 13 October 2017. The panels in Figure 3 show the excellent agreement 581 
in the case of NO2, ozone and PM2.5, suggesting that the median values derived from the 582 
individual models capture well the features associated with the meteorological situation, 583 
atmospheric transport and with the emissions in the region on that particular day. The 584 
situation corresponds to very clean conditions with PM2.5 and NO2 concentrations of the 585 
order of 10 - 15 μg m-3. The predicted ozone concentration ranges from 70 - 90 μg m-3 (35 to 586 
45 ppbv). Interestingly, however, the predicted PM10 concentrations are underestimated 587 
during most of the day. The model predicts concentrations close to 20-25 μg m-3, while the 588 
measurements indicate that the concentration reached values as high as 30-40 μg m-3. The 589 
presence on October 13 of a strong wind flow in the strait between Mainland China and 590 
Taiwan and associated with the Khanun tropical depression present on this particular day 591 
west of the Philippines was likely a source of elevated sea salt emissions and dust mobilization 592 
that may not have been properly captured by the models. Under such strong meteorological 593 
disturbance, the forecast could be strongly resolution dependent.  594 
 595 

596 

 597 
 598 
Figure 3. Median concentrations of NO2 (upper, left), ozone (upper, right), PM2.5 (lower, left) and 599 
PM10 (lower, right) predicted for the city of Xiamen on 13 October, 2017 (black curve) and compared 600 
with the measured values (red curves). The dispersion of the forecasts by the individual models belong 601 
to the ensemble is shown by the grey range and the dispersion of the measured values at different 602 
stations in the city are depicted by the pink band. 603 
 604 
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The second example of predictions (Figure 4) refers to the forecast of PM2.5 in Shanghai on a 605 
relatively polluted day (3 November, 2017). All models predict the presence of relatively high 606 
concentrations over land (diurnal mean values of typically 100 -150 μg m-3) with a steep 607 
negative gradient towards the Chinese sea, where the concentrations are of the order of only 608 
25-40 μg m-3. Observations made at different stations in this urban area show the occurrence 609 
of two successive concentration peaks, one around 9:00-10:00 with concentrations reaching 610 
about 180 μg m-3 and the second one at 15:00-16:00 with concentrations as high as 150 μg 611 
m-3.  The ensemble mean forecast system predicts the occurrence of a single peak at about 612 
7:00 am with a PM2.5 concentration of about 220 μg m-3. The forecast shows a gradual 613 
decrease in the concentration during the afternoon that is in good agreement with the 614 
observation. The occurrence of the second peak in the afternoon, however, is missed by the 615 
ensemble prediction, even though a peak appears in some of the individual model 616 
calculations (WRF-Chem SMS, EMEP and WRF-CMAQ), but often a few hours before it was 617 
actually detected by the monitoring stations. An inspection of the forecasts by the different 618 
models highlights the diversity in the model results. IFS, CHIMERE, WRF-Chem-SMS, and 619 
EMEP overestimate the PM2.5 concentrations before mid-day, while they provide values in 620 
good agreement with the observations in the afternoon and evening. WRF-Chem-MPIM 621 
underestimates the concentrations during the entire day. LOTOS-EUROS as well as WRF-622 
CMAQ provide values that are in fair agreement with the observations in the morning, but 623 
underestimate the concentrations in the afternoon. 624 
 625 
 626 

 627 

 628 
 629 

Figure 4. Forecast by different models of PM2.5 concentration during a polluted day in Shanghai on 3 630 
November 2017. The graph at the top left represents the median concentration, and the individual 631 
forecasts provided by CHIMERE, IFS, WRF-Chem-SMS, WRF-Chem-MPIM, EMEP, LOTOS-EUROS, and 632 
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WRF-CMAQ are shown by the other panels. Measured concentrations are represented by the red 633 
curves and model concentrations by the black curves. 634 
 635 
 636 
A third example (Figure 5) refers to the predicted concentration of PM2.5 on 25 October 2017 637 
in Beijing. In this particular case, the ensemble forecast system predicts the occurrence of a 638 
rather polluted day with stagnant air and high concentrations of aerosol particles over Beijing 639 
as a band stretching from the southwest to the northeast. The median concentration 640 
predicted for this day is close to 200 μg m-3, but is a factor 2 higher than the observation. 641 
Most individual models produce this band of high PM2.5 concentrations with the exception 642 
of the WRF-Chem-MPIM model that shows moderate levels of pollution with an aerosol cloud 643 
localized in the urban area of Beijing. An examination of the results provided by the individual 644 
models shows again large differences. Some models (CHIMERE, EMEP, LOTOS-EUROS, WRF-645 
Chem-MPIM) calculate a slow and rather steady concentration increase during the day, while 646 
other models (WRF-Chem-SMS, WARMS-CMAQ-SMS, SILAM and IFS) exhibit some irregular 647 
variations during the day. Most models overestimate the PM2.5 concentrations except LOTOS-648 
EUROS and WRF-Chem-MPIM, which predict concentrations with the same order of 649 
magnitude as the observations at the monitoring stations.   650 
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 651 

652 

653 

 654 
 655 

Figure 5.  Diversity of PM2.5 forecasts in Beijing on 25 October 2017 by several models included in the 656 
ensemble of the MarcoPolo-Panda prediction system. The ensemble median is shown by the top 657 
panels, and the individual forecasts provided by CHIMERE, IFS, WRF-Chem-MPIM, EMEP, WRF-Chem-658 
SMS, SILAM, LOTOS-EUROS, and WARMS-CMAQ-SMS are shown by the other panels. Measurements 659 
are in red and model data in black. 660 

 661 
 662 

The last illustrative example refers to the forecast of nitrogen oxides and ozone in the 663 
Shanghai area on 31 October 2017 (Figure 6a, b and c). All models show that the NO2 664 
concentrations are highest in the boundary layer of the urban areas, even though the 665 
calculated values may be different from model to model, and the dispersion of the species 666 
away from the urban centres may also be uneven. In all cases, predicted values above the 667 
ocean are very low, i.e., less than a few μg m-3. A band of high NO2 concentrations extends 668 
from Shanghai in the northwest direction. 669 
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 670 
The median values of NO2 in the city (top panels) are in good agreement with the observed 671 
values, with night-time concentrations on the order of 60-80 μg m-3, and substantially lower 672 
values during daytime resulting from the photolysis of the molecule by solar radiation. A 673 
minimum concentration of 25 μg m-3 is reached around noon.  674 
 675 
The diurnal variation of NO2 is well captured by most models, in particular by CHIMERE 676 
(although the absolute values are too low), IFS, WRF-Chem-SMS, WRF-Chem-MPIM and 677 
WARMS-CMAQ-SMS. The diurnal variation is somewhat underestimated in EMEP, LOTOS-678 
EUROS and WRF-CMAQ. 679 
 680 
The ozone concentration (right panels) also exhibits a strong diurnal variation that, to a large 681 
extent, mirrors the NO2 variation. Measurements show a maximum value of nearly 100 μg m-682 
3 reached at 15:00 and low night-time concentrations (typically 10-30 μg m-3). The median 683 
concentrations, provided by the ensemble forecast system upper panel on the right), are 684 
characterized by a similar diurnal variation but with lower amplitude. The concentration 685 
reaches its maximum at 14:00, but the value of this maximum is only equal to 60 μg m-3. The 686 
values predicted for the night are generally somewhat smaller than the observation, with 687 
values of the order of 5-10 μg m-3.  688 
 689 
In the case of ozone, differences between model forecasts are again substantial. The 690 
maximum concentration values in the early afternoon are 50 μg m-3 for CHIMERE, 62 μg m-3 691 
for IFS, 85 μg m-3 for WRF-Chem-SMS, 65 μg m-3  for WRF-Chem-MPIM, 30 μg m-3 for EMEP, 692 
42 μg m-3 for LOTOS-EUROS, 57 μg m-3  for WRF-CMAQ and 100 μg m-3  for WARMS-CMAQ-693 
SMS.  694 

 695 
 696 
 697 
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 698 
Figure 6a.  Diversity in the NO2 and ozone forecasts made for Shanghai on 31 October 2017 as 699 
highlighted by the predictions from several models included in the ensemble of the MarcoPolo-Panda 700 
system. The left and right panels show the diurnal variation of the predicted (black) and observed 701 
(red) NO2 and ozone concentrations (μg m-3), respectively. The center panel presents the geographical 702 
distribution in the vicinity of Shanghai of the diurnal average predicted for the NO2 concentration. The 703 
ensemble median is shown in the top panels, and two individual forecasts as provided by CHIMERE 704 
and IFS are shown in the middle and lower panels.  705 

 706 
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 707 
 708 
Figure 6b.  Same as in Figure 6a, but for the individual forecasts from WRF-Chem-SMS, WRF-Chem-709 
MPIM and EMEP.  710 

 711 
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 712 

 713 
 714 

Figure 6c. Same as Figure 6a but for the individual forecasts from LOTOS-EUROS, WRF-CMAQ and 715 
WARMS-CMAQ. 716 

 717 
 718 
  719 
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 720 
 721 
 722 
5.  Inter-comparison of Individual Models 723 

 724 
We now present an inter-comparison of most of the models included in the operational 725 
MarcoPolo-Panda System. The participants to this inter-comparison examined in detail the 726 
daily forecasts performed for the month of March 2017 with particular emphasis on the 727 
results obtained during the first two weeks of the month.  728 
 729 
In the following Sections, we present selected chemical fields derived by the different models 730 
that participated in the comparison exercise, and highlight similarities and differences with 731 
the purpose of identifying the causes of the discrepancies between models and between 732 
models and observations. We first examine monthly mean surface concentrations obtained 733 
from a subset of the models involved in the inter-comparison. We then compare the time 734 
evolution associated with the model forecasts with observations made at specific surface 735 
measurement sites and present some correlations between calculated and measured 736 
concentrations at these sites. 737 
 738 

5.1.  Comparison of average fields 739 
 740 

We first compare the March 2017 monthly mean concentrations of different chemical species 741 
calculated by 7 models (IFS, LOTOS-EUROS, EMEP, SILAM, WRF-Chem-MPIM, WRF-Chem-SMS 742 
and CHIMERE) with surface measurements reported at different sites in the eastern part of 743 
China (www.pm25.int).  744 
 745 
Figure 7a shows the calculated and observed surface concentrations of carbon monoxide 746 
(CO).  We first note the substantial differences that exist between the individual model 747 
forecasts, probably reflecting differences in the adopted emissions or in the atmospheric 748 
production resulting from the oxidation of volatile organic compounds in the planetary 749 
boundary layer. Observations indicate that CO concentrations are generally higher than 900 750 
ppbv, except near the south-eastern coast and in the south-western part of the country, 751 
where the values are as low as 500 to 700 ppbv. The models show considerably lower values, 752 
ranging from about 300-500 ppbv. The regions with the highest mean concentrations are 753 
located in the North China Plain (NCP), where values higher than 1200 ppbv are recorded. 754 
Relatively high values (close to 1000 ppbv) are also found in some urban areas (e.g., Hong 755 
Kong) near the south coast of the country. 756 
 757 
The models provide a rather different picture: most of them substantially underestimate the 758 
CO concentrations, in particular WRF-Chem-SMS, WRF-Chem-MPIM, EMEP and LOTOS 759 
EUROS. Higher concentrations are derived by SILAM and IFS. These models, however, produce 760 
peak concentrations in the region of Sichuan Basin in contrast with the observations. Only IFS 761 
reproduces the high concentrations observed in northern China, probably because in this 762 
particular model the initial conditions are constrained by assimilated observations. Clearly, 763 
the performance of the models regarding the calculation of CO concentrations is not 764 
satisfactory. The discrepancies may be attributed to an underestimation of CO emissions, 765 
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errors in the lateral boundary conditions or indirectly to an underestimation of the emissions 766 
for primary hydrocarbons. 767 
 768 
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 774 
 775 
Figure 7. Monthly mean surface concentrations of CO, NO2, ozone (ppbv), and PM2.5 (µg m-3) provided 776 
for the month of March 2017 by different models: CHIMERE (no CO), IFS, WRF-Chem-SMS, SILAM, 777 
WRF-Chem-MPIM, EMEP and LOTOS-EUROS. The monthly mean concentration values derived from 778 
observations at different monitoring stations are represented by dots in one of the lowest panels. The 779 
adopted colour scales are the same as the colour scales adopted to represent the model results.  780 

 781 
 782 

In the case of NO2 (Figure 7b), the observations show that the surface concentrations are 783 
highest in the north-eastern portion of China with a few urban hotspots. These patterns are 784 
well reproduced by the EMEP, SILAM and IFS models. The other models also produce high 785 
concentrations in urban areas, but with values that are lower than those provided by the 786 
monitoring stations. 787 
 788 
The mean surface ozone concentrations derived from measurements are lowest (about 20 789 
ppbv) in the central part of China and highest (30-40 ppbv) near the east coast (Shanghai 790 
region), the south coast and the western part of China. Since nitrogen oxides tend to titrate 791 
ozone, the models that predict high NO2 concentrations derive the lowest ozone values 792 
(EMEP, SILAM, IFS).  The high NO2 concentrations predicted by EMEP are probably related to 793 
the large emissions used as shown in Fig 1. CHIMERE, WRF-Chem-SMS and to a lesser extent 794 
WRF-Chem-MPIM overestimate the mean ozone concentration during March. All models, 795 
however, produce a minimum in the ozone concentrations in north-eastern China, a pattern 796 
that is not visible in the observational data (Figure 7c). 797 
 798 
Finally, in the case of PM2.5 (Figure 7d), the measurements suggest the presence of high 799 
concentrations (higher than 80 μg m-3) in the region between Beijing and Shanghai. High 800 
abundances of PM2.5 are derived in this region by IFS, SILAM and to a lesser extent by LOTOS-801 
EUROS, EMEP, CHIMERE and WRF-Chem-SMS. Interestingly, most models produce another 802 
marked hotspot in the region of Sichuan Basin, while the observations suggest a less 803 
pronounced maximum with a more limited geographical extent.  804 
 805 

5.2.  Time Evolution of Median Forecasts 806 
 807 
We now focus on the time period during which the most intensive comparison between 808 
models has been performed. We first examine the time evolution of surface ozone, NO2 and 809 
PM2.5 produced by the different models for the time period ranging from 1 to 15 March 2017, 810 
and for the three large metropolitan areas: Beijing, Shanghai and Guangzhou. In Figure 8, we 811 
compare the median concentrations of the three species with the median values derived from 812 
the different measurements provided by the network of instruments deployed in the three 813 
cities. The median model values are represented by the red curves, while the shaded areas 814 
highlight the dispersion of the calculated concentrations around the median values.  815 
 816 
Beijing. Here the predictions of the PM2.5 concentrations follow very closely the observations. 817 
Two events with relatively high aerosol loads are visible, the first one between 2 and 5 March 818 
and the second one on 11 March. In the case of NO2, the models reproduce fairly well the 819 
daily variability reported by the monitoring stations, but on the average, they slightly 820 
overerestimate the concentrations values. The high concentrations appearing between 2 and 821 
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5 March and between 10 and 11 March are well captured by the median of the models. 822 
Finally, the models reproduce the diurnal variability in the ozone concentrations, but they 823 
underestimate these concentrations by typically 20 µg m-3. 824 
 825 
Shanghai. The calculated median concentrations of PM2.5 are in good agreement with the 826 
observations, especially between 10 and 15 March. During the first part of the simulation, the 827 
mean measured and calculated values are close, but the models produce peaks in the 828 
concentrations on 3, 6, 8 and 9 March that are higher than the observation. In the case of 829 
NO2, the agreement between calculated and measured concentrations is good. Again, the 830 
models severely underestimate the ozone concentrations. 831 
 832 
Guangzhou. The median concentration of PM2.5 provided by the model is similar to the 833 
observation between 1 and 7 March. However, the model overestimates the concentrations 834 
between 7 and 11 March and underestimates them between 12 and 14 March. For NO2, the 835 
agreement between models and measurements is relatively good during the first days of the 836 
month, but the models overestimates the amplitude of the daily variability observed after 6 837 
March. Ozone is well simulated in this particular urban area, even though the daily peaks are 838 
sometimes over- or underestimated. 839 
 840 

 841 
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 842 

 843 
 844 
 845 
 846 
 847 
 848 
Figure 8. Evolution of the surface concentrations of ozone, nitrogen dioxide and particulate matter 849 
(diameter less than 2.5 microns). In black: median of calculated values by the different models, and in 850 
red: observed median concentrations. 851 

 852 
 853 

5.3.  Statistical Errors 854 
 855 
In order to measure the performance of the individual models involved in the present inter-856 
comparison, we have calculated statistical measures of the model results for the chosen 857 
period of 1-15 March 2017. These measures include the mean bias (BIAS), the mean 858 
normalized bias (MNMBIAS), the root mean square error (RMSE), the fractional gross error 859 
(FGE) and the correlation coefficient for ozone, NO2 and PM2.5 (Table 4). They apply to the 860 
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data for the 37 cities considered in the MarcoPolo-Panda forecast system. The same statistical 861 
measures are also provided for the ensemble median. 862 
 863 

 864 
Table 4: For the period 1st to 15th March 2017, statistical measures (mean bias (BIAS), 865 
mean normalized bias (MNB), root mean square error (RMSE), FGE (fractional gross error) 866 
and correlation coefficient calculated for the forecast of O3, NO2 and PM2.5 concentrations 867 
for all models and for the ensemble median at all stations/cities, for which the MarcoPolo-868 
Panda Forecast is available. The correlation is based on 1-hourly data. 869 
 870 

 Ensemble 
Median 

CHIMERE IFS WRF-
Chem 
SMS 

SILAM WRF-
Chem 
MPIM 

EMEP LOTOS-
EUROS 

BIAS 
(μg m-3) 

O3 -14.7 -5.9 -13.1 13.2 -25.8 -23.9 -23.3 -4.0 

NO2 -3.0 -4.8 -2.0 -4.2 -3.1 8.4 11.2 -20.7 

PM2.5 3.7 -2.0 39.7 -4.5 21.7 5.5 12.4 -4.7 

MNB 
(%) 

O3 -41% -24% -51% 13% -74% -69% -74% -7% 

NO2 -8% -18% -13% -19% -11% 13% 15% -52% 

PM2.5 8% -4% 44% -18% 22% 11% 9% -7% 

RMSE 
(μg m-3) 

O3 32.8 27.0 29.4 41.8 44.6 44.7 42.9 37.2 

NO2 21.8 24.4 23.1 31.9 28.5 28.9 34.0 34.4 

PM2.5 30.2 31.5 71.3 35.8 47.7 39.1 52.4 27.3 

FGE 
(%) 

O3 70% 58% 72% 64% 99% 97% 99% 65% 

NO2 38% 45% 44% 53% 51% 43% 48% 66% 

PM2.5 38% 44% 62% 54% 52% 49% 47% 39% 

Corr. 
Coeff. 

O3 0.60 0.70 0.72 0.45 0.32 0.32 0.39 0.38 

NO2 0.64 0.62 0.65 0.47 0.41 0.50 0.46 0.31 

PM2.5 0.62 0.55 0.47 0.54 0.66 0.36 0.49 0.64 

 871 
When examining the mean bias of the ensemble median, the values are equal to -14.7, -3.0 872 
and +3.7 μg m-3 for ozone, NO2 and PM2.5, respectively, to be compared to mean 873 
concentration values of the order of 50 μg m-3 for these three different species. Table 4 shows 874 
in the case of ozone, individual models are characterized by biases ranging from -25.8 (SILAM) 875 
to +13.2 μg m-3 (WRF-Chem-SMS) with the smallest absolute value equal to 5.9 μg m-3 876 
(CHIMERE) The corresponding numbers range from – 20.7 μg m-3 (LOTOS-EUROS) to + 11.2 μg 877 
m-3 (EMEP) with the smallest absolute bias of -2.0 μg m-3 (IFS) for NO2. For PM2.5, they range 878 
from -4.7 μg m-3 (LOTOS-EUROS) to +39.6 μg m-3 (IFS) with the smallest absolute value equal 879 
to -2.0 μg m-3 (CHIMERE). In general, during the period chosen for the inter-comparison, the 880 
models underestimate the ozone and NO2 concentrations and overestimate the 881 
concentration of PM2.5. The table also shows that the RMSE for the median values for ozone, 882 
NO2 and PM2.5 are 32.8, 21.8 and 30.2 μg m-3, respectively. With some exception (CHIMERE 883 
and IFS for ozone, LOTOS-EUROS for PM2.5), these values are lower than the RMSE derived 884 
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by individual models. The highest values for RMSE are 44.7 μg m-3  (WRF-Chem-MPIM) in the 885 
case of ozone, 34.4 (LOTOS EUROS) in the case of NO2, and 71.3 (IFS) in the case of PM2.5. 886 
The smallest RMSE are equal to 27.0 μg m-3 (CHIMERE) in the case of ozone, 23.1 μg m-3 (IFS) 887 
in the case of NO2 and 27.3 μg m-3 in the case of PM2.5 (LOTOS-EUROS). The correlation 888 
coefficient for the ensemble median is of the order of 0.6 for the three species, which in most 889 
cases is higher than the values derived from individual model forecasts. There are few 890 
exceptions, however.  The correlation coefficients are higher in the forecast of ozone by 891 
CHIMERE (0.70) and IFS (0.72), in the case of NO2 by IFS (0.65) and in the case of PM2.5 by 892 
SILAM (0.66) and LOTOS-EUROS (0.64). Table 5 summarizes the models that have achieved 893 
the best performance from the point of view of the mean bias, the RMSE and the correlation 894 
coefficient. 895 
 896 
 897 

Table 5. Best Model Performance 898 

Statistical 

Variable 

Best performance  

ozone 

Best performance  

NO2 

Best performance 

PM2.5 

Mean Bias LOTOS-EUROS IFS CHIMERE 

RMSE CHIMERE IFS LOTOS-EUROS 

Correlation coefficient IFS WRF-Chem MPIM SILAM 

 899 
 900 

5.4.  Time Evolution of Individual Forecasts 901 
 902 
The time evolution of predicted concentration values at Beijing by 5 different models involved 903 
in the inter-comparison is provided in Figure 9 for the period of 1-15 March 2017.  An 904 
examination of the figure shows that, during most days, the daytime height of the PBL reaches 905 
2500 – 3000 m with an exception on 2 to 5 March, when the height does not exceed 1000 m. 906 
Interestingly, during this period, the observed concentration of particulates, of NO2 and of 907 
SO2, strongly influenced by surface emissions, are significantly higher than during the 908 
following days. During the same days, the night-time concentration of ozone is relatively low. 909 
On March 10, one also observes high surface concentrations of emitted species and low 910 
concentration of night-time ozone, even though the calculated PBL height is not particularly 911 
low. One should mention here that, in several models (i.e., EMEP, LOTOS-EUROS), the 912 
information on the PBL is deduced from the IFS forecast, while in other models (such as WRF-913 
Chem-MPIM and WRF-Chem-SMS) the PBL height is derived independently. In the case of 914 
WRF-Chem-MPI, however, the calculation of the PBL height makes use of meteorological data 915 
provided by the IFS model. 916 
 917 
In most cases, the models capture relatively well the day-to-day variability in the species 918 
concentrations. The agreement with observations is generally good in the case of PM2.5 and 919 
PM10, except in the case of the IFS model, which considerably overestimates the 920 
concentrations, mainly because of a regional overestimation of the OM emissions and a lack 921 
of a diurnal variation in the emission. The anthropogenic OM emissions in IFS are 922 
parameterised based on anthropogenic CO emissions following Spracklen et al. (2017). The 923 
relatively high CO emission in this region may require a reduced conversion factor between 924 
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OM and CO emissions. The main contribution to PM overestimation of IFS came from the 925 
night-time values (see next Section). Since night-time overestimation also occurs for NO2, a 926 
lack of vertical mixing during the night in IFS could cause the night time overestimation of the 927 
surface values. As already noted, the models tend to underestimate the ozone 928 
concentrations, perhaps due to a slight overestimation of the nitrogen oxide concentrations. 929 
Another possible explanation is an underestimation of the VOC sources. Routine 930 
measurements of VOCs, however, are not available. The need for such measurements, 931 
however, needs to be stressed.  932 
 933 
The model comparison reported here also shows differences between models in the case of 934 
NO, which should probably be attributed to differences in the emissions and emission 935 
injection heights of this species and in the formulation of vertical mixing in the boundary 936 
layer. Here again, measurements of NO in addition to those of NO2 and ozone would be 937 
useful. Finally, one notes in Figure 9 the relatively good agreement between models (with the 938 
exception of the IFS and the WRF-Chem-SMS model) regarding the time evolution of odd 939 
oxygen (Ox = O3 + NO2). The models, however, slightly underestimate the absolute values of 940 
the Ox concentration. 941 
 942 
 943 

 944 
 945 
Figure 9. Forecast of the chemical concentrations of ozone, NO2, PM2.5, and PM10 at Beijing between 946 
1 and 15 March 2017 by the different models involved in the inter-comparison conducted in the 947 
present study. The calculated values of OX = O3 + NO2 as well as the height of the planetary boundary 948 
layer (PBL) are also shown. The mean values from the measurements made at the different monitoring 949 
stations of Beijing are shown by the thick red line. 950 
 951 
 952 
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5.5.  Diurnal Variations 953 
 954 

In order to evaluate the behaviour of the different models regarding their ability to reproduce 955 
the diurnal variation in the surface concentrations of ozone, NO2 and PM2.5, we have 956 
calculated the mean diurnal variations over the period of 1-15 March 2017 averaged for the 957 
34 cities included in our analysis (3 of the 37 cities, located in the western part of the country, 958 
and adopted in the MarcoPolo-Panda prediction system have not been considered in this 959 
analysis). The resulting results are shown in Figure 10 for ozone and NO2 (expressed in μg m-960 
3). We have added the corresponding diurnal evolution of Ox (expressed in ppbv) defined as 961 
the sum of the ozone and NO2 mixing ratios. This last chemical variable has the advantage 962 
that it is not affected by the fast interchange (null cycle) between ozone and NO2 by the 963 
reactions NO + O3, NO2 + hv and O + O2 +M. Since this cycle tends to transfer “odd oxygen” 964 
from ozone to NO2 after sunset and from NO2 to ozone after sunrise, the Ox variable is less 965 
variable than its two components NO2 and O3 over a diurnal cycle. Figure 10 shows that, when 966 
averaging over the 34 largest Chinese cities, the diurnal variation of the ensemble median is 967 
in good agreement with the observation in the case of NO2. In the case of ozone, the median 968 
values are somewhat underestimated in late morning and in the afternoon. A similar situation 969 
is found in the case of Ox. The RMSE for ozone and NO2, also shown on the figure, is generally 970 
lower in the case of the ensemble median than for the individual models. In the case of PM2.5, 971 
however, the RMSE of two models, CHIMERE and IFS are smaller than the RMSE of the 972 
ensemble median (not shown here). The mean bias of the ensemble median for NO2 and 973 
ozone is generally smaller than that of the individual models. In the case of Ox, some models 974 
exhibit a positive bias (WRF-Chem SMS), while others (e.g. SILAM) are characterized by a 975 
negative bias. 976 
 977 
Figures 11. a, b, c show similar estimates of the diurnal variation in the three large cities of 978 
China: Beijing, Shanghai and Guangzhou.  These graphs show that the ozone forecast from 979 
the ensemble median is lower than observed values during the entire day both in Beijing and 980 
in Shanghai. In Guangzhou, however, ozone is slightly overestimated by the prediction. In the 981 
case of NO2, the surface concentrations are overestimated in Beijing and to a lesser extent in 982 
Shanghai, with the largest over-prediction occurring during night-time, when the planetary 983 
boundary layer is very thin and vertical mixing almost shut off. At the same time, ozone is 984 
negatively biased due to its efficient titration by NOx. In the three cities, the RMSE of NO2, 985 
ozone and Ox appear to be largest at sunset. Thus, a general issue with the MarcoPolo-Panda 986 
prediction system is the overestimation of surface NO2 and the underestimation of ozone 987 
concentrations during night-time.  988 
 989 
In the case of PM2.5, one of the models involved (IFS) strongly overestimates the 990 
concentrations during night-time, but is in fair agreement with observations during daytime.  991 
This issue may again reflect a problem with the formulation of species dispersion in the 992 
planetary boundary layer. It may also be due to the lack of specified diurnal variation in the 993 
emission of primary pollutants as well as to the increased night-time stability. 994 
 995 
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 996 
 997 
Figure 10. Upper panel: Diurnal variation of ozone (left), NO2 (middle) and Ox = NO2 + O3 (right) for 998 
the period 1st - 15th March 2017 for all cities included in the MarcoPolo-Panda Prediction system for 999 
all seven models and the ensemble median, and the observations (red line).  Middle panel: Root Mean 1000 
Square Error (RMSE) for ozone (left), NO2 (middle) and Ox (right). Lower panel: Bias for ozone (left), 1001 
NO2 (middle) and Ox (right) for all models and for the ensemble median (black line). 1002 

 1003 
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 1004 
 1005 
Figure 11.a. Same as Figure 10, but for the urban area of Beijing. The statistical variables for PM2.5 1006 
are also included. 1007 
 1008 

 1009 

 1010 

 1011 
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 1012 
 1013 
Figure 11b. Same as Figure 10, but for the urban area of Shanghai. The statistical variables for PM2.5 1014 
are also included. 1015 
 1016 

 1017 

 1018 
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 1019 
 1020 

Figure 11c. Same as Figure 10, but for the urban area of Guangzhou. The statistical variables for PM2.5 1021 
are also included. 1022 

 1023 
 1024 
6.  Approaches to Improve the Forecasts 1025 
 1026 
The inter-comparison presented in the previous sections provides useful information and 1027 
represents the basis on which the accuracy of the model predictions can be improved. Since 1028 
the models have been developed rather independently and the choices about input 1029 
parameters such as emissions, chemical schemes and adopted weather forecasts have been 1030 
based on best judgement by these individual teams, a statistical treatment of the model 1031 
results (e.g., determination of averages and standard deviation) provides in general more 1032 
reliable information than the data provided by the individual model components of the 1033 
ensemble. The examination of the model output reveals, however, some systematic biases 1034 
that could be reduced by identifying the likely cause of these errors.  1035 
 1036 
A simple approach is to recognize that the failure of models to correctly predict air quality 1037 
could result from several factors: (1) errors in the adopted emissions and the formulation of 1038 
boundary layer dispersion best diagnosed by analysing the ability of the model to reproduce 1039 
the monthly mean surface concentrations of chemical species; (2) errors or omission in the 1040 
adopted chemical scheme leading to inaccuracies in the calculated mean diurnal variations in 1041 
the concentrations of secondary species; and (3) inaccuracies in the adopted weather 1042 
forecasts leading to poorly calculated day-to-day variations in the calculated chemical fields. 1043 
In this later case, one should distinguish between fundamental model biases (i.e., the 1044 
representation of PBL mixing, a bias that is intrinsic to the models) and the increasing error in 1045 



 46 

the forecast of synoptic weather patterns as the model integration proceeds. This probably 1046 
provides an oversimplified view of the causes of errors in chemical weather forecasts, but it 1047 
offers a simple approach to address some issues in the models and hence to improve the 1048 
predictions.  1049 
 1050 
A first step towards the improvement of the different model components will be to conduct 1051 
additional simulations by adopting the same best available emissions data and the same 1052 
meteorological forecasts. Remaining differences between the models will be due in large part 1053 
(although not exclusively) to the adopted chemical scheme and the formulation of boundary 1054 
layer processes. An additional step would be to bring the different formulations of chemistry 1055 
closer together by at least harmonizing the adopted rate constants and using the same 1056 
module to calculate photodissociation rates. Finally, it would be interesting to assess the 1057 
differences in chemical weather predictions resulting from the adopted meteorological 1058 
forecasts. In particular, it would be important to better constraint the differences in the 1059 
photolysis rates resulting from the adopted or calculated concentrations of aerosols and in 1060 
cloudiness. One single model could be run for several days with the weather predictions 1061 
produced by different meteorological centres. 1062 
 1063 
Finally, a few specific issues from the present inter-comparison require attention: 1064 
 1065 

(1) Most models overestimate the surface levels of NO2 and PM2.5 as well as other 1066 
species emitted at the surface, specifically during night-time. The largest discrepancies 1067 
appear around 18”00 LT when the surface cools and the boundary layer collapses and 1068 
the emitted species remain trapped in the lowest model layers. Evidently, these 1069 
models underestimate the vertical exchanges between layers probably produced by 1070 
the turbulence thermally or mechanically generated by the presence of buildings. 1071 
Such effects are not accounted for in models that do include a specialized urban 1072 
formulation. The overestimation of NO2 during night-time leads to the titration of 1073 
ozone near the surface and hence an underestimation of the concentration of this gas. 1074 
The emission injection height is also a relevant factor here, which can largely influence 1075 
results. During night-time emissions from stacks may be emitted above the mixing 1076 
layer. However if the injection height in the model is put at lower altitude (or even at 1077 
the surface) this could lead to overestimation of emissions. The LOTOS-EUROS model 1078 
evaluated the impact of emission injection heights. An update of the emission heights 1079 
was tested that injects emissions from industry at lower heights, representing that the 1080 
number of high stacks is limited (not that contrarily to most models, in the case of 1081 
LOTOS-EUROS the concentrations at night-time are often underestimated (see Figures 1082 
10 and 11). Figure 12 shows diurnal cycles of the simulated PM2.5 concentrations in 1083 
the city of Chengdu, averaged over an entire year. The updated emission heights 1084 
clearly have a large (positive) impact on the simulations. 1085 

(2) Daytime concentrations of ozone are generally underestimated in most regions of 1086 
eastern China, even when the level of NO2 is in reasonable agreement with the values 1087 
reported by the monitoring stations. The discrepancy could be caused by an 1088 
underestimation of the emissions of some VOCs, especially in urban areas where 1089 
ozone is often VOC-limited. More work is required to investigate this question. 1090 

(3) Emissions of primarily pollutants are changing extremely rapidly in China. The adopted 1091 
emissions inventories usually reflect to the situation a few years before present-day. 1092 
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Since the current emissions have decreased significantly in some urban areas of China 1093 
in response to measures taken by the authorities, the emissions used in this case for 1094 
current forecasts may be overestimated. For example, the EMEP model team applied 1095 
a reduction in NOx emissions after the study period of March 2017 and thereby, 1096 
through less ozone titration, reduced the severe underestimation of ozone.  1097 

(4) Land-use data. Due to the rapid development occurring in particular in the Eastern 1098 
part of China, land-use data and vegetation change rapidly, and data sets in the model 1099 
may not accurately reflect the current situation. This has an influence on emissions 1100 
(including biogenic) but also deposition of pollutants and even meteorology. Land-use 1101 
data should be updated using satellite observations, urban planning maps and other 1102 
data sources. 1103 

 1104 

 1105 
 1106 
Figure 12.   Annually averaged diurnal evolution of the PM2.5 concentrations in the city of Chengdu 1107 
simulated for different values of the particulate injection height. 1108 
 1109 
 1110 
7. Conclusions 1111 
 1112 
An operational multi-model air quality forecast system has been established through a close 1113 
cooperation between European and Chinese research groups and with the support of the 1114 
European Commission (7th Framework Programme). This system provides daily forecasts for 1115 
the surface concentration of key pollutants in eastern China, and particularly in the major 1116 
urban centres of the country. These predictions are posted on a dedicated website 1117 
(www.marcopolo-panda.eu), where they are compared hour by hour to surface 1118 
measurements for each city, performed at the monitoring stations deployed in China by the 1119 
PM2.5 network (www.pm25.int). 1120 
 1121 
The discussions presented in this paper show that in most cases, the model ensemble 1122 
reproduces quite satisfactorily the synoptic behaviour and the day-to-day variability of the 1123 
concentrations of ozone and particulate matter and, in particular, predicts the development 1124 
of most air pollution episodes a few days before their occurrence. This must be attributed to 1125 
the quality of the weather forecasts at the synoptic scales that are used for the calculation of 1126 
chemical species. Overall and in spite of some discrepancies that have been highlighted in the 1127 
previous sections, the forecast system can therefore be regarded as successful.  1128 
 1129 
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The system is in its early phase of development and the purpose of the inter-comparison 1130 
exercise presented here was to diagnose differences between models and perhaps identify 1131 
errors. An important objective was to determine ways by which the models could be 1132 
improved. Even though, in many instances, the surface concentrations are in good or fair 1133 
agreement with the measured values, differences between calculated and observed values 1134 
can occasionally be substantial. These occasional differences are often attributed to 1135 
inaccuracies in the weather forecasts for specific days, but errors in the adopted surface 1136 
emissions and PBL exchanges or the simplifications introduced in the adopted chemical and 1137 
aerosol schemes can also be substantial. 1138 
 1139 
The degree by which the concentrations derived by global and regional models, even at high 1140 
spatial resolution, can be compared with local measurements made in a complex urban 1141 
canopy remains an important issue that requires further investigation. The insertion of more 1142 
detailed land-use modules or of a large eddy simulation system in the chemical transport 1143 
models should be considered in future studies. 1144 
 1145 
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