

Revisions of “The Monash Simple Climate Model Experiments (MSCM-DB v1.0): An interactive database of mean climate, climate change and scenario simulations”

Dear Editor,

Thank you for evaluating this manuscript again. We addressed all of your comments. Below we give a point-to-point response to your comments. We hope the manuscript is now ready for publication.

With best regards,

Dietmar Dommenget, Kerry Nice, Tobias Bayr, Dieter Kasang, Christian Stassen and Mike Rezny

Editor

Topical Editor Decision: Publish subject to minor revisions (review by editor) (02 Apr 2019) by Min-Hui Lo

Comments to the Author:

Dear Authors,

I have couple comments for your revised manuscript:

Response: Please see our response to all comments below.

1. *Can you acknowledge the issue of missing cloud feedback and its consequence on the abstract? I would also suggest that you can include couple sentences based on those references that you cited (about the cloud feedbacks) to illustrate the importance of cloud feedbacks or what the impacts could be without considering the cloud feedbacks.*

Response: We now state the missing cloud feedback in the abstract and also added a few more words to the cloud feedbacks in the modelling section where we cited the related references.

2. *Line 151: "In some aspects of these experiments", please be more specific.*

Response: We deleted the sentence, as it is indeed a bit too vague.

3. *Line 416: "It seems likely that the meridional heat transport is the main limitation in the GREB model, given the too warm tropical regions and the, in general, too cold polar regions and the too strong seasonal cycle in the polar regions in the GREB model without correction terms."*

You nicely mentioned the impacts of the meridional heat transport. Can you also indicate the consequence of lacking the cloud feedback on the simulations?

Response: We don't think a discussion of cloud feedback would make sense in this context. In these experiments we discuss the simulation of the mean state by the processes simulated in GREB. The cloud cover is given as a boundary condition, but formation of clouds is not a process simulated in this model. Cloud feedbacks can therefore not contribute to limitations in the simulation of the mean state, as the meridional heat transport can.

4. *Line 463-466: "Previous studies on the cloud cover effect on the overall climate mostly focus on the radiative forcings estimates, but to our best knowledge do not present the overall change in surface temperature [e.g. Rossow and Zhang 1995]."*

While it does not significantly affect the surface temperature, the lack of cloud feedbacks can affect the radiative forcings estimates. Thus, can you elaborate it more on how the radiative forcings might be affected?

Response: There may be some misunderstanding here. Clearly the mean cloud cover does affect the mean surface temperature. However, previous studies have not quantified by how much, as they did not conduct simulations as discussed in this study. They therefore only discussed by how much the radiation is affected. We slightly changed the wording in this paragraph to better highlight this.

5. *Line 825:826: "need to be studied with more complex climate models,"*

is it possible to study this using the GREB model? And how?.

Response: We added a few lines to discuss this. The current model does not allow for circulation or cloud cover changes in response to external forcings. However, the structure of the GREB model would allow to include such models.

1 The Monash Simple Climate Model
2 Experiments (MSCM-DB v1.0): An
3 interactive database of mean climate,
4 climate change and scenario simulations

5 By Dietmar Dommenget^{1*}, Kerry Nice^{1,4}, Tobias Bayr², Dieter Kasang³, Christian
6 Stassen¹ and Mike Rezny¹

7 *: corresponding author; dietmar.dommenget@monash.edu

8 1: Monash University, School of Earth, Atmosphere and Environment, Clayton, Victoria
9 3800, Australia.

10 2: GEMOAR Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, 24105 Kiel,
11 Germany

12 3: DKRZ, Hamburg, Germany

13 4: Transport, Health, and Urban Design Hub, Faculty of Architecture, Building, and
14 Planning, University of Melbourne, Victoria 3010, Australia

15 17 submitted the Geoscientific Model Development, 8 March 2018

18 **Abstract**

19 This study introduces the Monash Simple Climate Model (MSCM) experiment
20 database. The simulations are based on the Globally Resolved Energy Balance
21 (GREB) model to study three different aspects of climate model simulations: (1)
22 understanding processes that control the mean climate, (2) the response of the
23 climate to a doubling of the CO₂ concentration, and (3) scenarios of external
24 forcing (CO₂ concentration and solar radiation). A series of sensitivity experiments
25 in which elements of the climate system are turned off in various combinations
26 are used to address (1) and (2). This database currently provides more than 1,300
27 experiments and has an online web interface for fast analysis and free access to
28 the data. We briefly outline the design of all experiments, give a discussion of some
29 results, ~~put the findings into the context of previously published results from~~
30 similar experiments, ~~discuss the quality and limitations of the MSCM experiments~~
31 and also give an outlook on possible further developments. The GREB model
32 simulation is quite realistic, but the model without flux corrections has a root
33 mean square error in the mean state of the surface temperature of about 10°C,
34 which is larger than those of general circulation models (2°C). It needs to be noted
35 here that the GREB model does not simulate circulation changes or changes in
36 cloud cover (feedbacks). However, the MSCM experiments show good agreement
37 to previously published studies. Although GREB is a very simple model, it delivers
38 good first-order estimates, is very fast, highly accessible, and can be used to
39 quickly try many different sensitivity experiments or scenarios. It builds a basis
40 on which conceptual ideas can be tested to a first-order and it provides a null
41 hypothesis for understanding complex climate interactions in the context of
42 response to external forcing or the interactions in the climate subsystems.

Deleted: and

Deleted: . We briefly

45 **1. Introduction**

46 Our understanding of the dynamics of the climate system and climate changes is
47 strongly linked to the analysis of model simulations of the climate system using a
48 range of climate models that vary in complexity and sophistication. Climate model
49 simulations help us to predict future climate changes and they help us to gain a
50 better understanding of the dynamics of this complex system.

51 State-of-the-art climate models, such as used in the Coupled Model Inter-
52 comparison Project (CMIP; Taylor et al. 2012), are highly complex simulations that
53 require significant amounts of computing resources and time. Such model
54 simulations require a significant amount of preparation. The development of
55 idealized experiments that would help in the understanding and modelling of
56 climate system processes are often difficult to realize with the complex CMIP-type
57 climate models. In this context, simplified climate models are useful, as they
58 provide a fast first guess that help to inform more complex models. They also help
59 in understanding the interactions in the complex system.

60 In this article, we introduce the Monash Simple Climate Model (MSCM) database
61 (version: MSCM-DB v1.0). The MSCM is an interactive website
62 (<http://mscm.dkrz.de>, Germany and [http://monash.edu/research/simple-
climate-model](http://monash.edu/research/simple-climate-model), Australia) and database that provides access to a series of more
63 than 1,300 experiments with the Globally Resolved Energy Balance (GREB) model
64 [Dommenget and Floter 2011; here after referred to as DF11]. The GREB model
65 was primarily developed to conceptually understand the physical processes that
66 control the global warming pattern in response to an increase in CO_2
67 concentration. It therefore centres around the surface temperature (T_{surf})
68 tendency equation, and only simulates the processes and variables needed for
69 resolving the global warming pattern.

70 Simplified climate models, such as Earth System Models of Intermediate
71 Complexity (EMICs), often aim at reducing the complexity to increase the
72 computation speed and therefore allow faster model simulations (e.g. CLIMBER
73 [Petoukhov et al. 2000], UVic [Weaver et al. 2001], FAMOUS [Smith et al. 2008] or
74 LOVECLIM [Goosse et al. 2010]). These EMICs are very similar in structure to
75 state-of-the-art Coupled General Circulation Models (CGCMs), following the
76 approach of simulating the geophysical fluid dynamics. The GREB model differs,
77 in that it follows an energy balance approach and does not simulate the
78 geophysical fluid dynamics of the atmosphere. It is therefore a climate model that
79 does not include weather dynamics, but focusses on the long term mean climate
80 and its response to external boundary changes. It further also does not include
81 cloud feedbacks or adjustments in the atmospheric circulation, as both are given
82 as boundary conditions. However, it does include the most important water vapor,
83 black-body radiation and ice-albedo feedbacks.

84 The purpose of the MSCM database for research studies are the following:

- 85 • **First Guess:** The MSCM provides first guesses for how the climate may
86 change in idealized or realistic experiments. The MSCM experiments can be
87 used to test ideas before implementing and testing them in more detailed
88 CGCM simulations.
- 89 • **Null Hypothesis:** The simplicity of the GREB model provides a good null
90 hypothesis for understanding the climate system. Because it does not
91 simulate weather dynamics or circulation changes of neither large nor

94 small scale it provides the null hypothesis of a climate as a pure energy
95 balance problem.

96 • **Conceptual understanding:** The simplicity of the GREB model helps to
97 better understand the interactions in the complex climate and, therefore,
98 helps to formulate simple conceptual models for climate interactions.

99 • **Education:** Studying the results of the MSCM helps to understand the
100 interactions that control the mean state climate and its regional and
101 seasonal differences. It helps to understand how the climate will respond
102 to external forcings in a first-order approximation.

103

104 The MSCM provides interfaces for fast analysis of the experiments and selection
105 of the data (see Figs. 1-3). It is designed for teaching and outreach purposes, but
106 also provides a useful tool for researchers. The focus in this study will be on
107 describing the research aspects of the MSCM, whereas the teaching aspects of it
108 will not be discussed. The MSCM experiments focus on three different aspects of
109 climate model simulations: (1) understanding the processes that control the mean
110 climate, (2) the response of the climate to a doubling of the CO_2 concentration, and
111 (3) scenarios of external CO_2 concentration and solar radiation forcings. We will
112 provide a short outline of the design of all experiments, give a brief discussion of
113 some results, and put the findings into context of previously published literature
114 results from similar experiments.

115 The DF11 study focussed primarily on the development of the model equations
116 and the discussion of the response pattern to an increase in CO_2 concentration.
117 This study here will give a more detailed discussion on the performance of the
118 GREB model on simulation of the mean state climate and on a wider range of
119 external forcing scenarios, including solar radiation changes.

120 The paper is organized as follows: The following section describes the GREB
121 model, the experiment designs, the MSCM interface, and the input data used. A
122 short analysis of the experiments is given in section 3. This section will mostly
123 focus on the GREB model performance in comparison to observations and
124 previously published simulations in the literature, but it will also give some
125 indications of the findings in the model experiments and the limitations of the
126 GREB model. The final section will give a short summary and outlook for potential
127 future developments and analysis.

128 **2. Model and experiment descriptions**

129 The GREB model is the underlying modelling tool for the MSCM interface. The
130 development of the model and all equations have been presented in DF11. The
131 model is simulating the global climate on a horizontal grid of 3.75° longitude x
132 3.75° latitude and in three vertical layers: surface, atmosphere and subsurface
133 ocean. It simulates four prognostic variables: surface, atmospheric and subsurface
134 ocean temperature, and atmospheric humidity (column integrated water vapor),
135 see appendix eqs. A1-4. It further simulates a number of diagnostic variables, such
136 as precipitation and snow/ice cover, resulting from the simulation of the
137 prognostic variables.

138 The main physical processes that control the surface temperature tendencies are
139 simulated: solar (short-wave) and thermal (long-wave) radiation, the hydrological
140 cycle (including evaporation, moisture transport and precipitation), horizontal

141 transport of heat and heat uptake in the subsurface ocean. Atmospheric
142 circulation and cloud cover are seasonally prescribed boundary condition, and
143 state-independent flux corrections are used to keep the GREB model close to the
144 observed mean climate. Thus, the GREB model does not simulate the atmospheric
145 or ocean circulation and is therefore conceptually very different from CGCM
146 simulations.

147 The model does simulate important climate feedbacks such as the water vapour
148 and ice-albedo feedback, but an important limitation of the GREB model is that the
149 response to external forcings or model parameter perturbations do not involve
150 circulation or cloud feedbacks [Bony et al. 2006; Boucher et al. 2013; Bony et al.
151 2015]. Circulation and cloud feedbacks do alter the climate response to external
152 forcings on regional and, to a lesser extent on the global scale. The experiments of
153 this database neglect any effects resulting from cloud or circulation feedbacks.
154 These experiments should therefore only be considered as first guess estimates.
155 In the context of some of the results discussed further below we will point out
156 some of the limitations of the GREB model approach.

157 Input climatologies (e.g. T_{surf} or atmospheric humidity) for the GREB model are
158 taken from the NCEP reanalysis data from 1950-2008 [Kalnay et al. 1996], cloud
159 cover climatology from the ISCCP project [Rossow and Schiffer 1991], ocean
160 mixed layer depth climatology from Lorbacher et al. [2006], and topographic data
161 was taken from ECHAM5 atmosphere model [Roeckner et al. 2003].

162 GREB does not have any internal (natural) variability since daily weather systems
163 are not simulated. Subsequently, the control climate or response to external
164 forcings can be estimated from one single year. The primary advantage of the
165 GREB model in the context of this study is its simplicity, speed, and low
166 computational cost. A one year GREB model simulation can be done on a standard
167 PC computer in about 1 s (about 100,000 simulated years per day). It can do
168 simulations of the global climate much faster than any state-of-the-art climate
169 model and is therefore a good first guess approach to test ideas before they are
170 applied to more complex CGCMs. A further advantage is the lag of internal
171 variability which allows the detection of a response to external forcing much more
172 easily.

173 a. Experiments for the mean climate deconstruction

174 The conceptual deconstruction of the GREB model to understand the interactions
175 in the climate system that lead to the mean climate characteristics is done by
176 defining 11 processes (switches; see Fig. 1). For each of these switches, a term in
177 the model equations is set to zero or altered if the switch is "OFF". The processes
178 and how they affect the model equations are briefly listed below (with a short
179 summary in Table 1). The model equations relevant for the experiments in this
180 study are briefly restated in the appendix section A1 for the purpose of explaining
181 each experimental setup in the MSCM.

182

183

184 **Ice-albedo:** The surface albedo (α_{surf}) and the heat capacity over ocean points
185 (γ_{surf}) are influenced by snow and sea ice cover. In the GREB model these are a
186 direct function of T_{surf} . When the ice-albedo switch is OFF the surface albedo of all
187 points is constant (0.1) and, for ocean points, γ_{surf} follows the prescribed ocean
188 mixed layer depth independent of T_{surf} (i.e. no ice-covered ocean).

Deleted: , which are relevant in CGCM simulations

Deleted: Subsequently, t

Deleted: In some aspects of these experiments the missing feedbacks and processes will be important.

Deleted: discuss

Deleted: se

195
196 **Clouds:** The cloud cover, CLD , influences the amount of solar radiation reaching
197 the surface (α_{clouds} in eq. [A5]) and the emissivity of the atmospheric layer, ε_{atmos} ,
198 for thermal radiation (eq. [A8]). When the clouds switch is OFF, the cloud cover is
199 set to zero.
200
201 **Oceans:** The ocean in the GREB model simulates subsurface heat storage with the
202 surface mixed layer (~upper 50-100m). When the ocean switch is OFF, the F_{ocean}
203 term in eq. [A1] is set to zero, eq. [A3] is set to zero and the heat capacity off all
204 ocean points is set to that of land points.
205
206 **Atmosphere:** The atmosphere in the GREB model simulates a number of
207 processes: The hydrological cycle, horizontal transport of heat, thermal radiation,
208 and sensible heat exchange with the surface. When the atmosphere switch is OFF,
209 eq. [A2] and [A4] are set to zero, the heat flux terms, F_{sense} and F_{latent} in eq. [A1] are
210 set to zero and the downward atmospheric thermal radiation term in eq. [A6] is
211 set to zero.
212
213 **Diffusion of Heat:** The atmosphere transports heat by isotropic diffusion (4th
214 term in eq. [A2]). When this process is switched OFF, the term is set to zero.
215
216 **Advection of Heat:** The atmosphere transports heat by advection following the
217 mean wind field, \vec{u} (5th term in eq. [A2]). When this process is switched OFF, the
218 term is set to zero.
219
220 **CO₂:** The CO₂ concentration affects the emissivity of the atmosphere, ε_{atmos} (eq.
221 [A9]). When this process is switched OFF, the CO₂ concentration is set to zero.
222
223 **Hydrological cycle:** The hydrological cycle in the GREB model simulates the
224 evaporation, precipitation, and transport of atmospheric water vapour (eq. [A4]).
225 It further simulates latent heat cooling at the surface and heating in the
226 atmosphere. When the hydrological cycle is switched OFF, eq. [A4] is set to zero,
227 the heat flux term F_{latent} in eq. [A1] is set to zero, and vwv_{atmos} in eq. [A9] is set to
228 zero. Subsequently, atmospheric humidity is zero.
229 It needs to be noted here, that the atmospheric emissivity in the log-function
230 parameterization of eq. [A9] can become negative, if the hydrological cycle, cloud
231 cover and CO₂ concentration are switched OFF (set to zero). This marks an
232 unphysical range of the GREB emissivity function and we will discuss the
233 limitations of the GREB model in these experiments in Section 3b.
234
235 **Diffusion of Water Vapour:** The atmosphere transports water vapour by
236 isotropic diffusion (3rd term in eq. [A4]). When this process is switched OFF, the
237 term is set to zero.
238
239 **Advection of Water Vapour:** The atmosphere transports water vapour by
240 advection following the mean wind field, \vec{u} (5th term in eq. [A2]). When this
241 process is switched OFF, the term is set to zero.
242

243 **Model Corrections:** The model correction terms in eqs. [A1, A3 and A4]
244 artificially force the mean T_{surf} , T_{ocean} , and q_{air} climate to be as observed. When
245 the model correction is switched OFF, the three terms are set to zero. This will
246 allow the GREB model to be studied without any artificial corrections and
247 therefore help to evaluate the GREB model equations' skill in simulating the
248 climate dynamics.

249 It should be noted here that the model correction terms in the GREB model have
250 been introduced to study the response to doubling of the CO_2 concentration for the
251 current climate, which is a relative small perturbation if compared against the
252 other perturbations considered above. They are meaningful for a small
253 perturbation in the climate system, but are less likely to be meaningful when large
254 perturbations to the climate system are done (e.g. cloud cover set to zero).

255
256 Each different combination of the above-mentioned process switches defines a
257 different experiment. However, not all combinations of switches are possible,
258 because some of the process switches are depending on each other (see Table 1
259 and Fig. 1). The total number of experiments possible with these process switches
260 is 656. For each experiment, the GREB model is run for 50 years, starting from the
261 original GREB model climatology and the final year is presented as the climatology
262 of this experiment in the MSCM database.

263 **b. Experiments for the $2xCO_2$ response deconstruction**

264 In a similar way, as described above for the mean climate, the climate response to
265 a doubling of the CO_2 concentration can be conceptually deconstructed with a set
266 of GREB model experiments. These experiments help to understand the
267 interactions in the climate system that lead to the climate response to a doubling
268 of the CO_2 concentration. However, there are a number of differences that need to
269 be considered.

270 A meaningful deconstruction of the response to a doubling of the CO_2
271 concentration should consider the reference control mean climate since the
272 forcings and the feedbacks controlling the response are mean state dependent. We
273 therefore ensure that all sensitivity experiments in this discussion have the same
274 reference mean control climate. This is achieved by estimating the flux correction
275 term in eqs. [A1, A3 and A4] for each sensitivity experiment to maintain the
276 observed control climate. Thus, when a process is switched OFF, the control
277 climatological tendencies in eqs. [A1, S3 and S4] are the same as in the original
278 GREB model, but changes in the tendencies due to external forcings, such as
279 doubling of the CO_2 concentration are not affected by the disabled process. This is
280 the same approach as in DF11.

281 For the $2xCO_2$ response deconstruction experiments, we define 10 boundary
282 conditions or processes (switches; see Fig. 2). The Ice-albedo, advection and
283 diffusion of heat and water vapour, and the hydrological cycle processes are
284 defined in the same way as for the mean climate deconstruction (section 2a). The
285 remaining boundary conditions and processes are briefly listed below (and a short
286 summary is given in Table 2).

287
288 The following boundary conditions are considered:
289

290 **Topography:** The topography in the GREB model affects the amount of
291 atmosphere above the surface and therefore affects the emissivity of the
292 atmosphere in the thermal radiation (eq. [A9]). Regions with high topography
293 have less greenhouse gas concentrations in the thermal radiation (eq. [A9]). It
294 further affects the diffusion coefficient (κ) for transport of heat and moisture (eq.
295 [A2 and A4]). When the topography is turned OFF, all points of the GREB model
296 are set to sea level height and have the same amount of CO_2 concentration in the
297 thermal radiation (eq. [A9]).

298
299 **Clouds:** The cloud cover in the GREB model affects the incoming solar radiation
300 and the emissivity of the atmosphere in the thermal radiation (eq. [A9]). In
301 particular, it influences the sensitivity of the emissivity to changes in the CO_2
302 concentration. A clear sky atmosphere is more sensitive to changes in the CO_2
303 concentration than a fully cloud-covered atmosphere. When the cloud cover
304 switch is OFF, the observed cloud cover climatology boundary conditions are
305 replaced with a constant global mean cloud cover of 0.7. It is not set to zero to
306 avoid an impact on the global climate sensitivity, and to focus on the regional
307 effects of inhomogeneous cloud cover.

308
309 **Humidity:** Similarly, to the cloud cover, the amount of atmospheric water vapour
310 affects the emissivity of the atmosphere in the thermal radiation and, in particular,
311 the sensitivity to changes in the CO_2 concentration (eq. [A9]). A humid atmosphere
312 is less sensitive to changes in the CO_2 concentration than a dry atmosphere. When
313 the humidity switch is OFF, the constraint to the observed humidity climatology
314 (flux correction in eq. [A4]) is replaced with a constant global mean humidity of
315 0.0052 [kg/kg]. It is again not set to zero to avoid an impact on the global climate
316 sensitivity, but to focus on the regional effects of inhomogeneous humidity.

317
318 The additional feedbacks and processes considered are:
319

320 **Ocean heat uptake:** The ocean heat uptake in GREB is done in two ocean layers.
321 The largest part of the ocean heat is in the subsurface layer, T_{ocean} (eq. [A3]). When
322 the ocean switch is OFF the F_{ocean} term in eq. [A1] is set to zero, equation [A3] is
323 set to zero and the heat capacity (γ_{surf}) off all ocean points in eq. [A1] is set to that
324 of a 50m water column.

325
326 The total number of experiments with these process switches is 640. For each
327 experiment, the GREB model is run for 50 years, starting from the original GREB
328 model climatology, and doubling of the CO_2 concentrations in the first time-step.
329 The changes over the 50yrs period relative to the original GREB model climatology
330 of these experiments are presented in the MSCM database.

331 **c. Scenario experiments**

332 A number of different scenarios of external boundary condition changes exist in
333 the MSCM experiment database. They include different changes in the CO_2
334 concentration and in the incoming solar radiation. A complete overview is given
335 in Table 3. A short description follows below.

336
337 **RCP-scenarios**

338 In the Representative Concentration Pathways (RCP) scenarios the GREB model is
339 forced with time varying CO_2 concentrations. All five different simulations have
340 the same historical time evolution of CO_2 concentrations starting from 1850 to
341 2000, and from 2001 follow the RCP8.5, RCP6, RCP4.5, RCP2.6 and the A1B CO_2
342 concentration pathways until 2100 [van Vuuren et al. 2011].
343

344 **Idealized CO_2 scenarios**

345 The 15 idealized CO_2 concentration scenarios in the MSCM experiment database
346 focus on the non-linear time delay and regional differences in the climate response
347 to different CO_2 concentrations. These were implemented in five simulations in
348 which the control CO_2 concentration (340ppm) was changed in the first time step
349 to a scaled CO_2 concentration of 0, 0.5, 2, 4, and 10 times the control level. The
350 0.5x CO_2 and 2x CO_2 simulations are 50yrs long and the others are 100yrs long.
351

352 Two different simulations with idealized time evolutions of CO_2 concentrations are
353 conducted to study the time delay of the climate response. In one simulation, the
354 CO_2 concentration is doubled in the first time-step, held at this level for 30yrs then
355 returned to control levels instantaneously (2x CO_2 abrupt reverse). In the second
356 simulation, the CO_2 concentration is varied between the control and 2x CO_2
357 concentrations following a sine function with a period of 30yrs, starting at the
358 minimum of the sine function at the control CO_2 concentration (2x CO_2 wave). Both
359 simulations are 100yrs long.

360 The third set of idealized CO_2 concentration scenarios double the CO_2
361 concentrations restricted to different regions or seasons. The eight regions and
362 seasons include: the Northern or Southern Hemisphere, tropics (30° S- 30° N) or
363 extra-tropics (poleward of 30°), land or oceans and in the month October to March
364 or in the month April to September. Each experiment is 50yrs long.
365

Solar radiation

366 Two different experiments with changes in the solar constant were created. In the
367 first experiment, the solar constant is increased by about 2% (+27W/m²), which
368 leads to about the same global warming as a doubling of the CO_2 concentration
369 [Hansen et al. 1997]. In the second experiment, the solar constant oscillates at an
370 amplitude of 1W/m² and a period of 11yrs, representing an idealized variation of
371 the incoming solar short wave radiation due to the natural 11yr solar cycle
372 [Willson and Hudson 1991]. Both experiments are 50yrs long.
373

374 **Idealized orbital parameters**

375 A series of five simulations are done in the context of orbital forcings and the
376 related ice age cycles. In one simulation, the incoming solar radiation as function
377 of latitude and day of the year was changed to its values as it was 231Kyrs ago
378 [Berger and Loutre 1991 and Huybers 2006]. In an additional simulation, the CO_2
379 concentration is reduced from 340ppm to 200ppm as observed during the peak of
380 ice age phases in combination with the incoming solar radiation changes. Both
381 simulations are 100yrs long.

382 In three sensitivity experiments, we changed the incoming solar radiation
383 according to some idealized orbital parameter changes to study the effect of the
384 most important orbital parameters. The orbital parameters changed are: the
385 distance to the sun, the Earth axis tilt relative to the Earth-Sun plane (obliquity)
386 and the eccentricity of the Earth orbit around the sun. The orbit radius was

387 changed from 0.8AU to 1.2AU in steps of 0.01AU, the obliquity from -25° to 90° in
388 steps of 2.5° and the eccentricity from 0.3 (Earth closest to the sun in July) to 0.3
389 (Earth furthest from the sun in July) in steps of 0.01. Each sensitivity experiment
390 was started from the control GREB model (1AU radius, 23.5° obliquity and 0.017
391 eccentricity) and run for 50yrs. The last year of each simulation is presented as
392 the estimate for the equilibrium climate.

393 **3. Some results of the model simulations**

394 The MSCM experiment database includes a large set of experiments that address
395 many different aspects of the climate. At the same time, the GREB model has
396 limited complexity and not all aspects of the climate system are simulated in the
397 GREB experiments. The following analysis will give a short overview of some of
398 the results that can be taken from the MSCM experiments. In this we will focus on
399 aspects of general interest and on comparing the outcome to results of other
400 published studies to illustrate the strength and limitations of the GREB model in
401 this context. The discussion, however, will be incomplete, as there are simply too
402 many aspects that could be discussed in this set of experiments. We will therefore
403 focus on a general introduction and leave space for future studies to address other
404 aspects.

405 **a. GREB model performance**

406 The skill of the GREB model is illustrated in Figure 4, by running the GREB model
407 without the correction terms. For reference, we compare this GREB run with the
408 observed mean climate and seasonal cycle (this is identical to running the GREB
409 model with correction terms) and with a bare world. The latter is the GREB model
410 with all switches OFF (radiative balance without an atmosphere and a dark
411 surface). In comparison with the full GREB model, this illustrates how much all the
412 climate processes affect the climate.

413 The GREB model without correction terms does capture the main features of the
414 zonal mean climate, the seasonal cycle, the land-sea contrast and even smaller
415 scale structures within continents or ocean basins (e.g. seasonal cycle structure
416 within Asia or zonal temperature gradients within ocean basins). For most of the
417 globe (<50° from the equator), the GREB model root-mean-squared error (RMSE)
418 for the annual mean T_{surf} is less than 10°C relative to the observed (see Fig. 4g).
419 This is larger than for state-of-the-art CMIP-type climate models, which typically
420 have an RMSE of about 2°C [Dommelenget 2012]. In particular, the regions near the
421 poles have high RMSE. It seems likely that the meridional heat transport is the
422 main limitation in the GREB model, given the too warm tropical regions and the,
423 in general, too cold polar regions and the too strong seasonal cycle in the polar
424 regions in the GREB model without correction terms.

425 The GREB model performance can be put in perspective by illustrating how much
426 the climate processes simulated in the GREB model contribute to the mean climate
427 relative to the bare world simulation (see Fig. 4). The GREB RMSE to observed is
428 about 20-30% of the RMSE of the bare world simulation (not shown), suggesting
429 that the GREB model has a relative error of about 20-30% in the processes that it
430 simulates or due to processes that it does not simulate (e.g. ocean heat transport).

431 **b. Mean climate deconstruction**

432 Understanding what is causing the mean observed climate with its regional and
433 seasonal difference is often central for understanding climate variability and
434 change. For instance, the seasonal cycle is often considered as a first guess
435 estimate for climate sensitivity [Knutti et al. 2006]. In the following analysis, we
436 will give a short overview on how the 10 processes of the MSCM experiments
437 contribute to the mean climate and its seasonal cycle. For these experiments, we
438 use the GREB model without flux correction terms.

439 In the discussion of the experiments, it is important to consider that climate
440 feedbacks are contributing to the interactions of the climate processes. The effect
441 of a climate process on the climate is a result of all the other active climate
442 processes responding to the changes that the climate process under consideration
443 introduces. It also depends on the mean background climate. Therefore, it does
444 matter in which combination of switches the GREB model experiments are
445 discussed. For instance, the effect of the Ice/Snow cover, is stronger in a much
446 colder background climate, but is also affected by the feedback in other climate
447 processes, such as the water vapour feedback. We will therefore consider different
448 experiments or different experiment sets to shade some light into these
449 interactions.

450 In Figures 5 and 6 the contribution of each of the 10 processes (except the
451 atmosphere) to the annual mean climate (Fig. 5) and its seasonal cycle (Fig. 6) are
452 shown. In each experiment, all processes are active, but the process of interest and
453 the model correction terms are turned OFF. The results are compared against the
454 complete GREB model without the model correction terms (all processes active;
455 expect model correction terms). For the hydrological we will discuss some
456 additional experiments in which the ice-albedo feedback is turned OFF as well.

457 The Ice/Snow cover (Fig. 5a) has a strong cooling effect mostly at the high
458 latitudes in the cold season, which is due to the ice-albedo feedback. However, in
459 the warm season (not shown) the insulation effect of the sea ice actually leads to
460 warming, as the ocean cannot cool down as much during winter as it does without
461 sea ice.

462 The cloud cover in the GREB model is only considered as a given boundary
463 condition, but does not simulate the formation of clouds. Therefore, it does not
464 include cloud feedbacks. However, the mean cloud cover does influence the
465 radiation balance of solar and thermal radiation, and therefore affects the mean
466 climate and its seasonal cycle. Fig. 5b illustrates that cloud cover has a large net
467 cooling effect globally due to the solar radiation reflection effect dominating over
468 the thermal radiation warming effect. Previous studies on the cloud cover effect
469 on the overall climate mostly focus on the radiative forcings estimates, but to our
470 best knowledge, do not discuss by how much the mean surface temperature is
471 affected by the mean cloud cover [e.g. Rossow and Zhang 1995].

472 It is interesting to note that the strongest cooling effect of cloud cover is over
473 regions with fairly little cloud cover (e.g. deserts and mountain regions). Here it is
474 important to point out that the climate system response to any external forcing or
475 changes in the boundary conditions, such as CO₂-forcing or removing the cloud
476 cover, is dominated by internal positive feedback rather than the direct local
477 forcing effect (e.g. see discussion of the global warming pattern in DF11).

478 The most important internal positive feedback is the water vapor feedback, which
479 amplifies the effect of removing the cloud cover. This feedback is stronger over

Deleted: present

Deleted: overall change

Deleted: in

483 dry and cold regions (DF11) and therefore amplifies the effects of removing the
484 cloud cover over deserts and mountain regions.

485 The large ocean heat capacity slows down the seasonal cycle (Fig. 6c).
486 Subsequently, the seasons are more moderate than they would be without the
487 ocean transferring heat from warm to cold seasons. This is, in particular,
488 important in the mid and higher latitudes. The effect of the ocean heat capacity,
489 however, has also an annual mean warming effect (Fig. 5c). This is due to the non-
490 linear thermal radiation cooling. The non-linear black body negative radiation
491 feedback is stronger for warmer temperatures, which are not reached in a
492 moderated seasonal cycle with the larger ocean heat capacity. Studies with more
493 complex climate models do fine similar impacts of the ocean heat capacity on the
494 annual mean and on the seasonal cycle (e.g. Donohoe et al. 2014).

495 The diffusion of heat reduces temperature extremes (Fig. 5d). It therefore warms
496 extremely cold regions (e.g. polar regions) and cools the hottest regions (e.g. warm
497 deserts). In global averages, this is mostly cancelled out. The advection of heat has
498 strong effects where the mean winds blow across strong temperature gradients.
499 This is mostly present in the Northern Hemisphere (Fig. 5e). The most prominent
500 feature is the strong warming of the northern European and Asian continents in
501 the cold season. In global average, warming and cooling mostly cancel each other
502 out.

503 Literature discussions of heat transport are usually based on heat budget analysis
504 of the climate system (in observations or simulations) instead of 'switching off' the
505 heat transport in fully complex climate models, since such experiments are
506 difficult to conduct. A similar heat budget analysis of the GREB model experiments
507 is beyond the scope of this study, but the results in these experiments appear to
508 be largely consistent with the findings in heat budget analysis. For instance, the
509 regional contributions of diffusion and advection are similar to those found in
510 previous studies (e.g. Peixoto 1992; Yang et al. 2015).

511 The CO_2 concentration leads to a global mean warming of about 9 degrees (Fig.
512 5f). Even though it is the same CO_2 concentration everywhere, the warming effect
513 is different at different locations. This is discussed in more detail in DF11 and in
514 section 3c.

515 The input of water vapour into the atmosphere by the hydrological cycle leads to
516 a substantial amount of warming globally (Fig. 5g). However, we need to consider
517 that the experiment with switching OFF the hydrological cycle is the only
518 experiment in which we have a significant amount of global cooling (by about -
519 44°C). As a result, most of the earth is below freezing temperatures and therefore
520 has a much stronger ice-albedo feedback than in any other experiment. This leads
521 to a significant amplification of the response.

522 It is instructive to repeat the experiments with the ice-albedo feedback switched
523 OFF (see supplementary Fig. 1). In these experiments, all processes show a
524 reduced impact on the annual mean temperatures, but the hydrological cycle is
525 most strongly affected by it. The ice-albedo effect almost doubles the hydrological
526 cycle response, while for all other processes the effect is about a 10% to 40%
527 increase. In the following discussions, we will therefore consider the hydrological
528 cycle impact with and without ice-albedo feedback. In the average of both
529 response (Fig. 5g and SFig. 1g) the hydrological cycle has a global mean impact of
530 about +34°C with strongest amplitudes in the tropics. It is still the strongest of all
531 processes.

532 Similar to the oceans, the hydrological cycle dampens the seasonal cycle (Fig. 6g),
533 but with a much weaker amplitude. The transport of water vapour away from
534 warm and moist regions (e.g. tropical oceans) to cold and dry regions (e.g. high
535 latitudes and continents) leads to additional warming in the regions that gain
536 water vapour and cooling to those that lose water vapour (Fig. 6h). The effect is
537 similar in both hemispheres. The transport of water vapour along the mean wind
538 directions has stronger effects on the Northern Hemisphere than on the Southern
539 Hemisphere, since the northern hemispheric mean winds have more of a
540 meridional component, which creates advection across water vapour gradients
541 (Fig. 6i). This effect is most pronounced in the cold seasons.

542 Most processes have a predominately zonal structure. We can therefore take a
543 closer look at the zonal mean climate and seasonal cycle of all processes to get a
544 good representation of the relative importance of each process, see Fig. 7. The
545 annual mean climate is most strongly influenced by the hydrological cycle (here
546 shown as the mean of the response with and without the ice-albedo feedback). The
547 cloud cover has an opposing cooling effect, but is weaker than the warming effect
548 of the hydrological cycle. The warming effect by the ocean's heat capacity is similar
549 in scale to that of the CO_2 concentration.

550 An interesting aspect of the climate system is that the Northern hemisphere is
551 warmer than the Southern counterpart (by about 1.5°C ; not shown), which may
552 be counterintuitive given the warming effect of the ocean heat capacity (see above
553 discussion; Kang et al. 2015). The GREB model without flux correction also does
554 have a warmer Northern hemisphere than the Southern counterpart (by about
555 0.3°C ; not shown), whereas the bare earth (pure blackbody radiation balance;
556 GREB all switches OFF) would have the Northern hemisphere colder than the
557 Southern counterpart (by about -0.6°C ; not shown). A number of processes play
558 into this inter-hemispheric contrast, with the most important contribution coming
559 from the cross-equatorial heat and moisture advection (see Fig. 7a). This is largely
560 consistent with Kang et al. (2015).

561 The seasonal cycle is damped most strongly by the ocean's heat capacity and by
562 the hydrological cycle. The latter may seem unexpected, but is due to the effect
563 that the increased water vapour has a stronger warming effect in the cold seasons,
564 similarly to the greenhouse effect of CO_2 concentrations. In turn, the ice/snow
565 cover and cloud cover lead to an intensification of the seasonal cycle at higher
566 latitudes. Again, the latter may seem unexpected, but is due to the interaction with
567 other climate feedbacks such as the water vapour feedback, which also makes the
568 climate more strongly respond to changes in cloud cover in regions where there
569 actually is very little cloud cover (e.g. deserts).

570 As an alternative way of understanding the role of the different process we can
571 build up the complete climate by introducing one process after the other, see Figs.
572 8 and 9. We start with the bare earth (e.g. like our Moon) and then introduce one
573 process after the other. The order in which the processes are introduced is mostly
574 motivated by giving a good representation for each of the 10 processes. However,
575 it can also be interpreted as a build up the Earth climate in a somewhat historical
576 way: We assume that initially the earth was a bare planet and then the
577 atmosphere, ocean, and all the other aspects were build up over time.

578 The Bare Earth (all switches OFF) is a planet without atmosphere, ocean or ice. It
579 has an extremely strong seasonal cycle (Fig. 9a) and is much colder than our
580 current climate (Fig. 8a). It also has no regional structure other than meridional

581 temperature gradients. The combination of all climate processes will create most
582 of the regional and seasonal difference that make our current climate.
583 The atmospheric layer in the GREB model simulates two processes, if all other
584 processes are turned off: a turbulent sensible heat exchange with the surface and
585 thermal radiation due to residual trace gasses other than CO_2 , water vapour or
586 clouds. However, as mentioned in the appendix A1 the log-function approximation
587 leads to negative emissivity if all greenhouse gasses (CO_2 and water vapour)
588 concentrations and cloud cover are zero. The negative emissivity turns the
589 atmospheric layer into a cooling effect, which dominates the impact of the
590 atmosphere in this experiment (Figs. 8b, c). This is a limitation of the GREB model
591 and the result of this experiment as such should be considered with caution. In a
592 more realistic experiment we can set the emissivity of the atmosphere to zero or
593 a very small value (0.01) to simulate the effect of the atmosphere without CO_2 ,
594 water vapour and cloud cover, see SFig. 2. Both experiments have very similar
595 warming effects in polar regions. Suggesting that the sensible heat exchange
596 warms the surface. The residual thermal radiation effect from the emissivity of
597 0.01 has only a minor impact (SFIG. 2f and g).
598 The warming effect of the CO_2 concentration is nearly uniform (Figs. 8d, e) and
599 without much of a seasonal cycle (Figs. 9d, e), if all other processes are turned OFF.
600 This accounts for a warming of about +9°C.
601 The large ocean heat capacity reduces the amplitude of the seasonal cycle (Figs.
602 9f, g). The effective heat capacity of the oceans is proportional to the observed
603 mixed layer in the GREB model, which causes some small variations (differences
604 from the zonal means) as seen in the seasonal cycle of the oceans. Land points are
605 not affected, since no atmospheric transport exist (advection and diffusion turned
606 OFF). The different heat capacity between oceans and land already make a
607 significant element of the regional and seasonal climate differences (Figs. 8f, g).
608 Introducing turbulent diffusion of heat in the atmosphere now enables interaction
609 between points, which has the strongest effects along coastlines and in higher
610 latitudes (Figs. 8h, i). It reduces the land-sea contrast and has strong effects over
611 land with warming in winter and cooling in summer (Figs. 9h, i). The extreme
612 climates of the winter polar region are most strongly affected by the turbulent
613 heat exchange with lower latitudes. The turbulent heat exchange makes the
614 regional climate difference again a bit more realistic.
615 The advection of heat is strongly dependent on the temperature gradients along
616 the mean wind field directions. It provides substantial heating during the winter
617 season for Europe, Russia, and western North America (Figs. 8j, k, 9j, k). The
618 structure (differences from the zonal mean) created by this process is mostly
619 caused by the prescribed mean wind climatology. In particular, the milder climate
620 in Europe compared to northeast Asia on the same latitudes, are created by wind
621 blowing from the ocean onto land. The same is true for the differences between
622 the west and east coasts of northern North America. The climate regional and
623 seasonal structures are now already quite realistic, but the overall climate is much
624 too cold. The ice/snow cover further cools the climate, in particular, the polar
625 regions (Figs. 8l, m). This difference illustrates that the ice-albedo feedback is
626 primarily leading to cooling in higher latitudes and mostly in the winter season.
627 Introducing the hydrological cycle brings the most important greenhouse gas into
628 the atmosphere: water vapour. This has an enormous warming effect globally
629 (Figs. 8n, o) and a moderate reduction in the strength of the seasonal cycle (Figs.

630 9n, o). The resulting modelled climate is now much too warm, but introducing the
631 cloud cover cools the climate substantially (Figs. 8p, q) and leads to a fairly
632 realistic climate.

633 The atmospheric transport (diffusion and advection) brings water vapour from
634 relative moist regions to relatively dry regions (Figs. 8r, s). This leads to enhanced
635 warming in the dry and cold regions (e.g. Sahara Desert or polar regions) by the
636 water vapour thermal radiation (greenhouse) effect and cooling in the regions
637 where it came from (e.g. tropical oceans). The heating effect is similar to the
638 transport of heat and has also a strong seasonal cycle component.

639 In the above discussion on how the individual climate processes affect the climate
640 we have to keep in mind the limitations of the GREB model and the experimental
641 setups. The climate response to changing a single climate element is more complex
642 in the real world than simulated in these GREB experiments. For instance, if the
643 ocean heat capacity is turned 'OFF' it will not just have an effect on the effective
644 heat capacity, but the resulting changes in surface temperature gradients will also
645 affect the atmospheric circulation patterns and subsequently the cloud cover. Such
646 effects on the atmospheric circulation and cloud cover are neglected in the GREB
647 model, as they are given as fixed boundary conditions. Regionally such effects can
648 be significant and CGCM simulations are required to study such effects.

649 **c. $2\times CO_2$ response deconstruction**

650 The doubling of the CO_2 concentrations leads to a distinct warming pattern with
651 polar amplification, a land-sea contrast and significant seasonal differences in the
652 warming rate. These structures in the warming pattern reflect the complex
653 interactions between feedbacks in the climate system and regional difference in
654 CO_2 forcing pattern. The MSCM $2\times CO_2$ response experiments are designed to help
655 understand the interactions causing this distinct warming pattern. DF11
656 discussed many aspects of these experiments with focus on the land-sea contrast,
657 the seasonal differences, and the polar amplification. We therefore will focus here
658 only on some aspects that have not been previously discussed in DF11.

659 In the GREB model, we can turn OFF the atmospheric transport and therefore
660 study the local interaction without any lateral interactions. Figure 10 shows three
661 experiments in which the atmospheric transport and other processes (see Figure
662 caption) are inactive. The three experiments highlight the regional difference in
663 the CO_2 forcing pattern and in the two main feedbacks (water vapour and ice-
664 albedo).

665 In the first experiment (Fig. 10a) without feedback processes, the local T_{surf}
666 response is approximately directly proportional to the local CO_2 forcing. The
667 regional differences are caused by differences in the cloud cover and atmospheric
668 humidity, since both influence the thermal radiation effect of CO_2 [DF11, Kiehl and
669 Ramanathan 1982 and Cess et al. 1993]. This causes, on average, the land regions
670 to see a stronger forcing than oceanic regions (see Fig. 10b). However, even over
671 oceans we can see clear differences. For instance, the warm pool of the western
672 tropical Pacific sees less CO_2 forcing than the eastern tropical Pacific.
673 The ice-albedo feedback is strongly localized and it is strongest over the mid-
674 latitudes of the northern continents and at the sea ice edge of around Antarctica
675 (Figs. 10c and d). The water vapour feedback is far more wide-spread and stronger
676 (Figs. 10e and f). It is strongest in relatively warm and dry regions (e.g. subtropical

677 oceans), but also shows some clear localized features, such as the strong Arabian
678 or Mediterranean Seas warming.

679 **d. Scenarios**

680 The set of scenario experiments in the MSCM simulations allows us to study the
681 response of the climate system to changes in the external boundary conditions in
682 a number of different ways. In the following, we will briefly illustrate some results
683 from these scenarios and organize the discussion by the different themes in
684 scenario experiments.

685 The CMIP project has defined a number of standard CO_2 concentration projection
686 simulations, that give different RCP scenarios for the future climate change, see
687 Fig. 11a. The GREB model sensitivity in these scenarios is similar to those of the
688 CMIP database [Forster et al. 2013].

689 Idealized CO_2 concentration scenarios help to understand the response to the CO_2
690 forcing. In Figure 11b, we show the global mean T_{surf} response to different scaling
691 factors of CO_2 concentrations. To first order, we can see that the global mean T_{surf}
692 response follows a logarithmic CO_2 concentration (e.g. any doubling of the CO_2
693 concentration leads to the same global mean T_{surf} response; compare $2xCO_2$ with
694 $4xCO_2$ or with in Fig.11b) as suggested in other studies [Myhre et al. 1998].
695 However, this relationship does breakdown if we go to very low CO_2
696 concentrations (e.g. zero CO_2 concentration) illustrating that the log-function
697 approximation of the CO_2 forcing effect is only valid within a narrow range far
698 away from zero CO_2 concentration.

699 The transient response time to CO_2 forcing can be estimated from idealized CO_2
700 concentration changes, see Fig. 11c. The step-wise change in CO_2 concentration
701 illustrates the response time of the global climate. In the GREB model, it takes
702 about 10yrs to get 80% of the response to a CO_2 concentration change (see step-
703 function response, Fig. 11c). In turn, the response to a CO_2 concentration wave
704 time evolution is a lag of about 3yrs. The fast versus slow response also leads to
705 different warming patterns with strong land-sea contrasts (not shown), that are
706 largely similar to those found in previous studies [Held et al. 2010].

707 The regional aspects of the response to a CO_2 concentration can also be studied by
708 partially increasing the CO_2 concentration in different regions, see Fig. 12. The
709 warming response mostly follows the regions where we partially changed the CO_2
710 concentration, but there are some interesting variations in this. The partial
711 increase in the CO_2 concentration over oceans has a stronger warming impact than
712 the partial increase in the CO_2 concentration over land for most Southern
713 Hemisphere land regions. In turn, the land forcing has little impact for the ocean
714 regions. The boreal winter forcing has stronger impact on the Southern
715 Hemisphere than boreal summer forcing, suggesting that the warm season forcing
716 is, in general, more important than the cold season forcing. The only exception to
717 this is the Tibet-plateau region.

718 A series of scenarios focus on the impact of solar forcing. In Figure 11d, we show
719 the response to an idealized 11yr solar cycle. The global mean T_{surf} response is two
720 orders of magnitude smaller than the response to a doubling of the CO_2
721 concentration, reflecting the weak amplitude of this forcing. This result is largely
722 consistent with the response found in GCM simulations [Cubasch et al. 1997], but
723 does not consider possible more complicated amplification mechanisms [Meehl et
724 al. 2009]. A change in the solar constant of $+27W/m^2$ has a global T_{surf} warming

725 response similar to a doubling of the CO_2 concentration, but with a slightly
726 different warming pattern, see Fig. 13. The warming pattern of a solar constant
727 change has a stronger warming where incoming sun light is stronger (e.g. tropics
728 or summer season) and a weaker warming in region with less incoming sun light
729 (e.g. higher latitudes or winter season). This is in general agreement with other
730 modelling studies [Hansen et al. 1997].

731 On longer paleo time scales (>10,000yrs), changes in the orbital parameters affect
732 the incoming sun light. Figure 14 illustrates the response to a number of orbital
733 solar radiation changes. Incoming radiation (sunlight) typical of the ice age
734 (231kyrs ago) has less incoming sunlight in the Northern Hemispheric summer.
735 However, it has every little annual global mean changes (Fig. 14a) due to increases
736 in sunlight over other regions and seasons. The T_{surf} response pattern in the zonal
737 mean at the different seasons is very similar to the solar forcing, but the response
738 is slightly more zonal and seasonal differences are less dominant (Fig. 14b). The
739 response is also amplified at higher latitudes. However, in the global mean there
740 is no significant global cooling as observed during ice ages. If the solar forcing is
741 combined with a reduction in the CO_2 concentration (from 340ppm to 200ppm),
742 we find a global mean cooling of -1.7°C (Fig. 14c), which is still much weaker than
743 observed during ice ages, but is largely consistent with previous studies of
744 simulations of ice age conditions [Weaver et al. 1998, Braconnot et al. 2007]. This
745 is not unexpected since the GREB model does not include an ice sheet model and,
746 therefore, does not include glacier growth feedbacks that would amplify ice age
747 cycles.

748 A better understanding of the orbital solar radiation forcing can be gained by
749 analysing the response to idealized orbital parameter changes. We therefore vary
750 the Earth distance to the sun (radius), the earth axis tilt to the earth orbit plane
751 (obliquity) and shape of the earth orbit around the sun (eccentricity) over a wider
752 range, see Figs. 14 d-f. When the radius is changed by 10%, the Earth climate
753 becomes essentially uninhabitable, with either global mean temperature above
754 30°C (approx. summer mean temperature of the Sahara) or a completely ice-
755 covered snowball Earth. This suggests that the habitable zone of the Earth radius
756 is fairly small due to the positive feedbacks within the climate system simulated
757 in the GREB model (not considering long-term or more complex atmospheric
758 chemistry feedbacks) and largely consistent with previous studies [Kasting et al.
759 1993].

760 When the obliquity is zero, the tropics become warmer and the polar regions cool
761 down further than today's climate, as they now receive very little sunlight
762 throughout the whole year. In the extreme case, when the obliquity is 90° , the
763 tropics become ice covered and cooler than the polar regions, which are now
764 warmer than the tropics today and ice free. The polar regions now have an
765 extreme seasonal cycle (not shown), with sunlight all day during summer and no
766 sunlight during winter. Any eccentricity increase in amplitude would lead to a
767 warmer overall climate. Thus, a perfect circle orbit around the sun has, on average,
768 the coldest climate and all of the more extreme eccentricity (elliptic) orbits have
769 warmer climates. This suggests that the warming effect of the section of the orbit
770 that has a closer transit around the sun in an eccentricity orbit relative to the
771 perfect circle orbit overcompensates the cooling effect of the more remote transit
772 around the sun in the other half of the orbit relative to the perfect circle orbit.

773 **4. Summary and discussion**

774 In this study, we introduced the MSCM database (version: MSCM-DB v1.0) for
775 research analysis with more than 1,300 experiments. It is based on model
776 simulations with the GREB model for studies of the processes that contribute to
777 the mean climate, the response to doubling of the CO_2 concentration, and different
778 scenarios with CO_2 or solar radiation forcings. The GREB model is a simple climate
779 model that does not simulate internal weather variability, circulation, or cloud
780 cover changes (feedbacks). It provides a simple and fast null hypothesis for the
781 interactions in the climate system and its response to external forcings.

782 The GREB model without flux corrections simulates the mean observed climate
783 well and has an uncertainty of about $10^\circ C$. The model has larger cold biases in the
784 polar regions indicating that the meridional heat transport is not strong enough.
785 Relative to a bare world without any climate processes the RMSE is reduced to
786 about 20-30% relative to observed. Further, the GREB models emissivity function
787 reaches unphysical negative values when water vapour, CO_2 and cloud cover is set
788 to zero. This is a limitation of the log-function parametrization, that can potentially
789 be revised if a new parameterization is developed that considers these cases.
790 However, it is beyond the scope of this study to develop such a new
791 parameterization and it is left for future studies.

792 The MSCM experiments for the conceptual deconstruction of the observed mean
793 climate provide a good understanding of the processes that control the annual
794 mean climate and its seasonal cycle. The cloud cover, atmospheric water vapour,
795 and the ocean heat capacity are the most important processes that determine the
796 regional difference in the annual mean climate and its seasonal cycle. The
797 observed seasonal cycle is strongly damped not only by the ocean heat capacity,
798 but also by the water vapour feedback. In turn, ice-albedo and cloud cover amplify
799 the seasonal cycle in higher latitudes.

800 The conceptual deconstruction of the response to a doubling of the CO_2
801 concentration based on the MSCM experiments has mostly been discussed in
802 DF11, but some additional results shown here focused on the local forcing in
803 response without horizontal interaction. It has been shown here that the CO_2
804 forcing has a clear land-sea contrast, supporting the land-sea contrast in the T_{surf}
805 response. The water vapour feedback is wide-spread and most dominant over the
806 subtropical oceans, whereas the ice-albedo feedback is more localized over
807 Northern Hemispheric continents and around the sea ice border.

808 The series of scenario simulations with CO_2 and solar forcing provide many useful
809 experiments to understand different aspects of the climate response. The RCP and
810 idealized CO_2 forcing scenarios give good insights into the climate sensitivity,
811 regional differences, transient effects, and the role of CO_2 forcing at different
812 seasons or locations. The solar forcing experiments illustrate the subtle
813 differences in the warming pattern to CO_2 forcing and the orbital solar forcing
814 experiments illustrated elements of the climate response to long term, paleo,
815 climate forcings.

816 In summary, the MSCM provides a wide range of experiments for understanding
817 the climate system and its response to external forcings. It builds a basis on which
818 conceptual ideas can be tested to a first-order and it provides a null hypothesis for
819 understanding complex climate interactions. Some of the experiments presented
820 here are similar to previously published simulations. In general, the GREB model
821 results agree well with the results of more complex GCM simulations. It is beyond

822 the scope of this study to discuss all aspects of the experiments and their results.
823 This will be left to future studies. Here we need to keep in mind the limitation that
824 the GREB model does not consider atmospheric or ocean circulation changes nor
825 does it simulate cloud cover feedbacks. Such processes will alter this picture
826 somewhat. The concept of the GREB model may allow to include simple models of
827 atmospheric circulation changes and or formation of cloud cover, and therefore
828 cloud feedbacks. It however, would require further developments of the GREB to
829 include such processes. Currently, studying more detailed regional information of
830 future climate change or social-economical impact studies require more complex
831 climate models.

Deleted: and need to be studied with

Deleted: , which may in particular be important for more
detailed regional information of future climate change or
social-economical impact studies

832 Future development of this MSCM database will continue and it is expected that
833 this database will grow. The development will go in several directions: the GREB
834 model performance in the processes that it currently simulates will be further
835 improved. In particular, the simulation of the hydrological cycle needs to be
836 improved to allow the use of the GREB model to study changes in precipitation.
837 Simulations of aspects of the large-scale atmospheric circulation, aerosols, carbon
838 cycle, or glaciers would further enhance the GREB model and would provide a
839 wider range of experiments to run for the MSCM database.

840 5. Code and data availability

841 The MSCM model code, including all required input files, to do all experiments
842 described on the MSCM homepage and in this paper, can be downloaded as
843 compressed tar archive from the MSCM homepage under

844
845 <http://mscm.dkrz.de/download/mscm-web-code.tar.gz>

846 or from the bitbucket repository under

847
848 <https://bitbucket.org/tobiasbayr/mscm-web-code>

849
850 The data for all the experiments of the MSCM can be accessed via the MSCM
851 webpage interface (DOI: 10.4225/03/5a8cadac8db60). The mean deconstruction
852 experiments file names have an 11 digits binary code that describe the 11 process
853 switches combination: 1=ON and 0=OFF. The digit from left to right present the
854 following processes:

855
856 1. Model corrections
857 2. Ice albedo
858 3. Cloud cover
859 4. Advection of water vapour
860 5. Diffusion of water vapour
861 6. Hydrologic cycle
862 7. Ocean
863 8. CO₂
864 9. Advection of heat
865 10. Diffusion of heat
866 11. Atmosphere

873 For example, the data file *greb.mean.decon.exp-1011111111.gad* is the
874 experiment with all processes ON, but ice albedo is OFF. The 2x CO₂ response
875 deconstruction experiments file names have a 10 digits binary code that describe
876 the 10 process switches combination. The digit from left to right present the
877 following processes:

878

- 879 1. Ocean heat uptake
- 880 2. Advection of water vapour
- 881 3. Diffusion of water vapour
- 882 4. Hydrologic cycle
- 883 5. ice albedo
- 884 6. Advection of heat
- 885 7. Diffusion of heat
- 886 8. Humidity (climatology)
- 887 9. Clouds (climatology)
- 888 10. Topography (Observed)

889

890 For example, the data file *response.exp-011111111.2xCO2.gad* is the experiment
891 with all processes ON, but ocean heat uptake is OFF. The individual experiments
892 can be chosen from the webpage interface by selecting the desired switch
893 combinations. Alternatively, all experiments can be downloaded in a combined
894 tar-file from the webpage interface.

895 For all experiments, the datasets includes five variables: surface, atmospheric and
896 subsurface ocean temperature, atmospheric humidity (column integrated water
897 vapor) and snow/ice cover.

898 **Acknowledgments**

899 This study was supported by the ARC Centre of Excellence for Climate System
900 Science, Australian Research Council (grant CE110001028). The development of
901 the MSCM webpages was support by a number of groups (see [MSCM webpages](#)).
902 Special thanks go to Martin Schweitzer for his work on the first prototype of the
903 MSCM webpages.

904 **References**

905 Berger, A., and M. F. Loutre, 1991: Insolation Values for the Climate of the Last
906 10000000 Years. *Quaternary Sci Rev*, **10**, 297-317.

907 Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate
908 change feedback processes? *Journal of Climate*, **19**, 3445-3482.

909 Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R.,
910 Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M.,
911 and Webb, M. J., 2015: Clouds, circulation and climate sensitivity, *Nature*
912 *Geosci*, **8**, 261-268.

913 Boucher, O., D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M.
914 Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S.
915 Sherwood, B. Stevens and X.Y. Zhang, 2013: Clouds and Aerosols. In:
916 Climate Change 2013: The Physical Science Basis. Contribution of
917 Working Group I to the Fifth Assessment Report of the Intergovernmental
918 Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor,
919 S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)].
920 Cambridge University Press, Cambridge, United Kingdom and New York,
921 NY, USA.

922 Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the
923 Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-
924 scale features. *Clim Past*, **3**, 261-277.

925 Cess, R. D., and Coauthors, 1993: Uncertainties in Carbon-Dioxide Radiative
926 Forcing in Atmospheric General-Circulation Models. *Science*, **262**, 1252-
927 1255.

928 Cubasch, U., R. Voss, G. C. Hegerl, J. Waszkewitz, and T. J. Crowley, 1997:
929 Simulation of the influence of solar radiation variations on the global
930 climate with an ocean-atmosphere general circulation model. *Climate*
931 *Dynamics*, **13**, 757-767.

932 Donohoe, A., D. M. W. Frierson, and D. S. Battisti, 2014: The effect of ocean mixed
933 layer depth on climate in slab ocean aquaplanet experiments. *Clim. Dyn.*, **43**,
934 1041-1055, doi:10.1007/s00382-013-1843-4.

935 Dommenget, D., 2012: Analysis of the Model Climate Sensitivity Spread Forced
936 by Mean Sea Surface Temperature Biases. *Journal of Climate*, **25**, 7147-
937 7162.

938 Dommenget, D., and J. Flotter, 2011: Conceptual understanding of climate change
939 with a globally resolved energy balance model. *Climate Dynamics*, **37**,
940 2143-2165.

941 Forster, P. M., T. Andrews, P. Good, J. M. Gregory, L. S. Jackson, and M. Zelinka,
942 2013: Evaluating adjusted forcing and model spread for historical and
943 future scenarios in the CMIP5 generation of climate models. *Journal of*
944 *Geophysical Research-Atmospheres*, **118**, 1139-1150.

945 Goosse, H., and Coauthors, 2010: Description of the Earth system model of
946 intermediate complexity LOVECLIM version 1.2. *Geosci Model Dev*, **3**, 603-
947 633.

948 Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response.
949 *Journal of Geophysical Research-Atmospheres*, **102**, 6831-6864.

950 Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. R. Zeng, and G. K. Vallis, 2010: Probing the Fast and Slow Components of Global Warming by Returning
951 Abruptly to Preindustrial Forcing. *Journal of Climate*, **23**, 2418-2427.

952 Huybers, P., 2006: Early Pleistocene glacial cycles and the integrated summer
953 insolation forcing. *Science*, **313**, 508-511.

954 Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project.
955 *Bulletin of the American Meteorological Society*, **77**, 437-471.

956 Kang, S. M., R. Seager, D. M. W. Frierson, and X. Liu, 2015: Croll revisited: Why is
957 the northern hemisphere warmer than the southern hemisphere? *Clim. Dyn.*,
958 **44**, 1457-1472, doi:10.1007/s00382-014-2147-z.

959 Kasting, J. F., D. P. Whitmire, and R. T. Reynolds, 1993: Habitable Zones around
960 Main-Sequence Stars. *Icarus*, **101**, 108-128.

961 Kiehl, J. T., and V. Ramanathan, 1982: Radiative Heating Due to Increased CO₂ -
962 the Role of H₂O Continuum Absorption in the 12-18 Mu-M Region. *Journal*
963 *of the Atmospheric Sciences*, **39**, 2923-2926.

964 Knutti, R., G. A. Meehl, M. R. Allen, and D. A. Stainforth, 2006: Constraining
965 climate sensitivity from the seasonal cycle in surface temperature. *Journal*
966 *of Climate*, **19**, 4224-4233.

967 Lorbacher, K., D. Dommange, P. P. Niiler, and A. Kohl, 2006: Ocean mixed layer
968 depth: A subsurface proxy of ocean-atmosphere variability. *Journal of*
969 *Geophysical Research-Oceans*, **111**, -.

970 Meehl, G. A., J. M. Arblaster, K. Matthes, F. Sassi, and H. van Loon, 2009:
971 Amplifying the Pacific Climate System Response to a Small 11-Year Solar
972 Cycle Forcing. *Science*, **325**, 1114-1118.

973 Myhre, G., E. J. Highwood, K. P. Shine, and F. Stordal, 1998: New estimates of
974 radiative forcing due to well mixed greenhouse gases. *Geophysical*
975 *Research Letters*, **25**, 2715-2718.

976 Peixoto, J. P. and A. H. O., 1992: *Physics of Climate*. Springer US.,

977 Petoukhov, V., A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, and
978 S. Rahmstorf, 2000: CLIMBER-2: a climate system model of intermediate
979 complexity. Part I: model description and performance for present
980 climate. *Climate Dynamics*, **16**, 1-17.

981 Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model
982 ECHAM 5. Part I: Model description. *Reports of the Max-Planck-Institute*
983 *for Meteorology*, **349**.

984 Rossow, W. B., and R. A. Schiffer, 1991: Isccp Cloud Data Products. *Bulletin of the*
985 *American Meteorological Society*, **72**, 2-20.

986 Rossow, W. B., and Y. C. Zhang, 1995: Calculation of Surface and Top of
987 Atmosphere Radiative Fluxes from Physical Quantities Based on Isccp
988 Data Sets .2. Validation and First Results. *Journal of Geophysical Research-*
989 *Atmospheres*, **100**, 1167-1197.

990 Smith, R. S., J. M. Gregory, and A. Osprey, 2008: A description of the FAMOUS
991 (version XDBUA) climate model and control run, *Geosci. Model Dev.*, **1**,
992 53-68.

993 Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An Overview of Cmip5 and the
994 Experiment Design. *Bulletin of the American Meteorological Society*, **93**,
995 485-498.

996

997 van Vuuren, D. P., and Coauthors, 2011: The representative concentration
998 pathways: an overview. *Climatic Change*, **109**, 5-31.

999 Weaver, A. J., M. Eby, F. F. Augustus, and E. C. Wiebe, 1998: Simulated influence of
1000 carbon dioxide, orbital forcing and ice sheets on the climate of the Last
1001 Glacial Maximum. *Nature*, **394**, 847-853.

1002 Weaver, A. J., and Coauthors, 2001: The UVic Earth System Climate Model: Model
1003 description, climatology, and applications to past, present and future
1004 climates. *Atmosphere-Ocean*, **39**, 361-428.

1005 Willson, R. C., and H. S. Hudson, 1991: The Suns Luminosity over a Complete
1006 Solar-Cycle. *Nature*, **351**, 42-44.

1007 Yang, H., Q. Li, K. Wang, Y. Sun, and D. Sun, 2015: Decomposing the meridional
1008 heat transport in the climate system. *Clim. Dyn.*, **44**, 2751-2768,
1009 doi:10.1007/s00382-014-2380-5.

1010

1011

1012 **Appendix A1: GREB model equations**

1013 The GREB model has four primary prognostic equations given below and all
 1014 variable names are listed and explained in Table A1. The surface temperature,
 1015 T_{surf} , tendencies:

1016

$$1017 \gamma_{surf} \frac{dT_{surf}}{dt} = F_{solar} + F_{thermal} + F_{latent} + F_{sense} + F_{ocean} + F_{correct} \quad [A1]$$

1018 The atmospheric layer temperature, T_{atmos} , tendencies:

1019

$$1021 \gamma_{atmos} \frac{dT_{atmos}}{dt} = -F_{sense} + F_{a_{thermal}} + Q_{latent} \\ 1022 + \gamma_{atmos} (\kappa \cdot \nabla^2 T_{atmos} - \vec{u} \cdot \nabla T_{atmos}) \quad [A2]$$

1024 The subsurface ocean temperature, T_{ocean} , tendencies:

1025

$$1027 \frac{dT_{ocean}}{dt} = \frac{1}{\Delta t} \Delta T_{ocean} - \frac{1}{\gamma_{ocean} - \gamma_{surf}} F_{o_{sense}} + F_{o_{correct}} \quad [A3]$$

1028 The atmospheric specific humidity, q_{air} , tendencies:

1029

$$1032 \frac{dq_{air}}{dt} = \Delta q_{eva} + \Delta q_{precip} + \kappa \cdot \nabla^2 q_{air} - \vec{u} \cdot \nabla q_{air} + q_{correct} \quad [A4]$$

1033 It should be noted here that heat transport is only within the atmospheric layer
 1034 (eq. [A2]). Together with the moisture transport in eq. [A4] these transports are
 1035 the only way in which grid points of the GREB model interact with each other in
 1036 the horizontal directions.

1037 The surface layer heat capacity, γ_{surf} , is constant over land points. For ocean
 1038 points it follows the ocean mixed layer depth, h_{mld} , if T_{surf} is above a temperature
 1039 range near freezing. Within a range below freezing it is a linear increasing function
 1040 of T_{surf} and for T_{surf} below this range γ_{surf} the same as over land points. (see
 1041 DF11).

1042 The absorbed solar radiation, F_{solar} , is a function of the cloud cover, CLD , boundary
 1043 condition and the surface albedo, α_{surf} :

1044

$$1046 F_{solar} = (1 - \alpha_{clouds}) \cdot (1 - \alpha_{surf}) \cdot S_0 \cdot r \quad [A5]$$

1047 with the atmospheric albedo, $\alpha_{clouds} = 0.35 \cdot CLD$. α_{surf} is a global constant if
 1048 T_{surf} is below or above a temperature range near freezing. Within this range it is
 1049 a linear decreasing function of T_{surf} , (see DF11). The thermal radiation at the
 1050 surface is

1051

$$1053 F_{thermal} = -\sigma T_{surf}^4 + \varepsilon_{atmos} \sigma T_{atmos-rad}^4 \quad [A6]$$

1054 and the thermal radiation from the atmosphere is

1055

1057 $F_{atmos} = \sigma T_{surf}^4 - 2\epsilon_{atmos} \sigma T_{atmos-rad}^4$ [A7]

1058
1059 The emissivity of the atmosphere, ϵ_{atmos} , is a function of the cloud cover, CLD ,
1060 the atmospheric water vapour, $viwv_{atmos}$, and the CO_2 , CO_2^{topo} , concentration
1061

1062 $\epsilon_{atmos} = \frac{pe_8 - CLD}{pe_9} \cdot (\epsilon_0 - pe_{10}) + pe_{10}$ [A8]

1063
1064 with
1065

1066 $\epsilon_0 = pe_4 \cdot [pe_1 \cdot CO_2^{topo} + pe_2 \cdot viwv_{atmos} + pe_3]$
1067 $+ pe_5 \cdot [pe_1 \cdot CO_2^{topo} + pe_3] + pe_6 \cdot [pe_2 \cdot viwv_{atmos} + pe_3] + pe_7$ [A9]

1068 The first three terms in the eq. [A9] represent different spectral bands in which
1069 the thermal radiation of water vapour and the CO_2 are active. In the first term both
1070 are active, in the second only CO_2 and in the third only water vapour. The
1071 combined effect of eqs. [A8] and [A9] is that the sensitivity of the emissivity to CO_2
1072 is depending on the presents of cloud cover and water vapour.

1073
1074 It is important to note that this log-function parametrization of the emissivity is
1075 an approximation developed in DF11 for 2x CO_2 -concentration experiments. While
1076 the parametrization may be a good approximation for a wide range of the
1077 greenhouse gasses, it is likely to have limited skill in extreme variation of the
1078 greenhouse gasses. For instance, if all greenhouse gasses (CO_2 and water vapour)
1079 concentrations and cloud cover are zero then the emissivity of the atmospheric
1080 layer in eq. [A9] becomes -0.26. This is not a physically meaningful value and
1081 experiments in which all greenhouse gasses (CO_2 and water vapour) and cloud
1082 cover are zero need to be analysed with caution. The analysis section will discuss
1083 these limitations in these experiments.

1084 **Tables**

1085

1086 **Table 1:** Processes (switches) controlled in the sensitivity experiment for the
1087 mean climate deconstruction. Indentation in the left column indicates processes
1088 switches are dependent on the switches above being ON.

Mean Climate Deconstruction	
Name	Description
Ice-albedo	controls surface albedo (α_{surf}) and heat capacity (γ_{surf}) at sea ice points as function of T_{surf}
Clouds	controls cloud cover climatology. OFF equals no clouds.
Oceans	controls F_{ocean} term in eq. [A1] and the heat capacity (γ_{surf}) off all ocean points. OFF equals no F_{ocean} and as γ_{surf} over land.
Atmosphere	controls sensible heat flux (F_{sense}) and the downward atmospheric thermal radiation term in eq. [A6].
Diffusion of Heat	controls diffusion of heat
Advection of Heat	controls advection of heat
CO ₂	controls CO ₂ concentration
Hydrological cycle	controls atmospheric humidity. OFF equals zero humidity
Diffusion of water vapour	controls diffusion of water vapour
Advection of water vapour	controls advection of water vapour
Model Corrections	controls model flux correction terms

1089

1090

1091

1092
1093
1094
1095
1096

Table 2: Processes (switches) controlled in the sensitivity experiment for the 2xCO₂ response deconstruction. Indentation in the left column indicates processes switches are dependent on the switches above being ON.

2xCO ₂ Response Deconstruction	
Boundary Conditions	
Name	Description
Topography (Observed)	controls topography effect on thermal radiation. OFF equals all land point on sea level.
Clouds (climatology)	controls cloud cover climatology. OFF equals 0.7 cloud cover everywhere.
Humidity (climatology)	controls the humidity constraint. OFF equals a control humidity 0.0052 [kg/kg] everywhere. Humidity can still respond to forcings.
Feedbacks/Processes	
Diffusion of Heat	controls diffusion of heat
Advection of Heat	controls advection of heat
Ice-albedo	controls surface albedo (α_{surf}) and heat capacity (γ_{surf}) at sea ice points as function of T_{surf}
Ocean heat uptake	controls F_{ocean} term in eq. [A1] and the heat capacity (γ_{surf}) off all ocean points. OFF equals no F_{ocean} and γ_{surf} of a 50m water column.
Hydrological cycle	controls atmospheric humidity. OFF equals zero humidity
Diffusion of water vapour	controls diffusion of water vapour
Advection of water vapour	controls advection of water vapour

1097
1098
1099
1100

1101 **Table 3:** List of scenario experiments.

RCP CO ₂ -scenarios		
Name	length	Description
Historical	1850-2000	CO ₂ -concentration following the historical scenario
RCP8.5	2001-2100	CO ₂ -concentration following the RCP8.5 scenario
RCP6	2001-2100	CO ₂ -concentration following the RCP6 scenario
RCP4	2001-2100	CO ₂ -concentration following the RCP4 scenario
RCP3PD	2001-2100	CO ₂ -concentration following the RCP3PD scenario
A1B	2001-2100	CO ₂ -concentration following the A1B scenario
Idealized CO ₂ concentrations		
Zero-CO ₂	100yrs	zero CO ₂ concentrations
0.5xCO ₂	50yrs	140ppm CO ₂ concentrations
2xCO ₂	50yrs	560ppm CO ₂ concentrations
4xCO ₂	100yrs	1120ppm CO ₂ concentrations
10xCO ₂	100yrs	2800ppm CO ₂ concentrations
2xCO ₂ abrupt reverse	100yrs	as 2xCO ₂ with an abrupt reverse to control after 30yrs
2xCO ₂ wave	100yrs	CO ₂ concentration oscillating with 30yrs period
Partial CO ₂ concentrations		
CO ₂ -N-hemis	50yrs	2xCO ₂ only in the northern hemisphere
CO ₂ -S-hemis	50yrs	2xCO ₂ only in the southern hemisphere
CO ₂ -tropics	50yrs	2xCO ₂ only between 30°S and 30°N
CO ₂ -extra-tropics	50yrs	2xCO ₂ only poleward of 30°
CO ₂ -oceans	50yrs	2xCO ₂ only over ice-free ocean points
CO ₂ -land	50yrs	2xCO ₂ only over land and sea ice points
CO ₂ -winter	50yrs	2xCO ₂ only in the month Oct. to Mar.
CO ₂ -summer	50yrs	2xCO ₂ only in the month Apr. to Sep.
Solar radiation		
solar+27W/m ²	50yrs	solar constant increased by +27W/m ²
11yrs-solar	50yrs	solar idealized solar constant 11yrs cycle
Orbital parameter		
Solar-231Kyr	100yrs	incoming solar radiation according to orbital parameters 231Kyrs ago.
Solar-231Kyr-200ppm	100yrs	as Solar-231Kyr, but with CO ₂ concentrations decreased from 280ppm to 200ppm.
Orbit-radius	40steps	equilibrium response to different Earth orbit radius from 0.8AU to 1.2AU.
Obliquity	45steps	equilibrium response to different Earth axis tilt from -25° to 90°
Eccentricity	60steps	equilibrium response to different Earth orbit eccentricity from 0.3 to 0.3

1102

1103

1104

Table A1: Variables of the GREB model equations.

Variable	Dimensions	Description
T_{surf}	x, y, t	surface temperature
T_{atmos}	x, y, t	atmospheric temperature
T_{ocean}	x, y, t	subsurface ocean temperature
q_{air}	x, y, t	atmospheric humidity
γ_{surf}	x, y, t	heat capacity of the surface layer
γ_{atmos}	x, y, t	heat capacity of the atmosphere
γ_{ocean}	x, y, t	heat capacity of the subsurface ocean
F_{solar}	x, y, t	solar radiation absorbed at the surface
$F_{thermal}$	x, y, t	thermal radiation into the surface
$F_{a_{thermal}}$	x, y, t	thermal radiation into the atmospheric
F_{latent}	x, y, t	latent heat flux into the surface
Q_{latent}	x, y, t	latent heat flux into the atmospheric
F_{sense}	x, y, t	sensible heat flux from the atmosphere into the surface
$F_{o_{sense}}$	x, y, t	sensible heat flux from the subsurface ocean into the surface layer
F_{ocean}	x, y, t	sensible heat flux from the subsurface ocean
$F_{correct}$	x, y, t	heat flux corrections for the surface
$F_{o_{correct}}$	x, y, t	heat flux corrections for the subsurface ocean
$q_{correct}$	x, y, t	mass flux corrections for the atmospheric humidity
$\Delta T_{o_{entrain}}$	x, y, t	subsurface ocean temperature tendencies by entrainment
Δq_{eva}	x, y, t	mass flux for the atmospheric humidity by evaporation
Δq_{precip}	x, y, t	mass flux for the atmospheric humidity by precipitation
α_{surf}	x, y, t	albedo of the surface layer
ε_{atmos}	x, y, t	emissivity of the atmosphere
$T_{atmos-rad}$	x, y, t	atmospheric radiation temperature
$viwv_{atmos}$	x, y, t	atmospheric column water vapour mass
κ	constant	isotropic diffusion coefficient
pe_i	constant	empirical emissivity function parameters
\vec{u}	x, y, t_j	horizontal wind field
α_{clouds}	x, y, t_j	albedo of the atmosphere
h_{mld}	x, y, t_j	Ocean mixed layer depth
r	y, t_j	fraction of incoming sunlight (24hrs average)
CO_2^{topo}	x, y	CO_2 concentration scaled by topographic elevation
S_0	constant	solar constant
σ	constant	Stefan-Bolzman constant
t_j	-	day within the annual calendar
Δt	constant	model integration time step
σ	constant	Stefan-Boltzmann constant

1107 **Figures**

1108

1109 **Figure 1.** MSCM interface running the deconstruction of the mean climate
1110 experiments. The experiment A, on the left, has all processes turned ON
1111 and experiment B, on right, has all turned OFF. The T_{surf} of Experiment A is
1112 shown in the upper left map, Exp. B in the upper right and the difference
1113 between both in the lower map. The example shows the values for the
1114 October mean.

1115

1116 **Figure 2.** MSCM interface running the deconstruction of the response to a
1117 doubling of the CO_2 concentration experiments. The experiment A, on the
1118 left, has all processes turned ON and experiment B, on right, has all turned
1119 OFF. The T_{surf} response of Experiment A is shown in the upper left map, Exp.
1120 B in the upper right and the difference between both in the lower map. The
1121 example shows the annual mean values after 28yrs.

1122

1123 **Figure 3.** Examples of the MSCM scenario interface. (a) presenting a single
1124 scenario (here RCP 8.5 CO_2 forcing) and (b) the comparison of two different
1125 scenarios (here a CO_2 forcing is compared against a change in the solar
1126 constant by $+27W/m^2$).

1127

1128 **Figure 4.** T_{surf} annual mean (upper row) and seasonal cycle (half the
1129 difference between mean of July to September minus January to March;
1130 middle row) for the GREB experiment with all processes turned OFF (Bare
1131 Earth), only the correction term OFF (GREB) and observed (identical to
1132 GREB with all processes on) are shown. The zonal mean of the annual mean
1133 (g) and seasonal cycle (h) of the experiments and observations in
1134 comparison with the zonal mean RMSE of the GREB model without
1135 correction terms relative to observed are shown.

1136

1137 **Figure 5.** Changes in the annual mean T_{surf} in the GREB model simulations
1138 with different processes turned OFF as described in section 2a relative to
1139 the complete GREB model without model correction terms: (a) Ice/Snow,
1140 (b) clouds, (c) oceans, (d) heat advection, (e) heat diffusion, (f) CO_2
1141 concentration, (g) hydrological cycle, (h) diffusion of water vapour and (i)
1142 advection of water vapour. Global mean differences are shown in the
1143 headings. Differences are for the control minus the sensitivity experiment
1144 (positive indicates the control experiment is warmer). All values are in $^{\circ}C$.
1145 In some panels, the values are scaled for better comparison: (b), (c) and (f)
1146 by a factor of 2, (a), (d) and (e) by a factor of 3, and (h) and (i) by a
1147 factor of 6.

1148

1149 **Figure 6.** As in Fig. 5, but for the seasonal cycle. The mean seasonal cycle is
1150 defined by the difference between the month [JAS] - [JFM] divided by two.
1151 Positive values on the North hemisphere indicate stronger seasonal cycle
1152 in the sensitivity experiments than in the full GREB model. Vice versa for
1153 the Southern Hemisphere. Global root mean square differences are shown
1154 in the headings. All values are in $^{\circ}C$. In some panels, the values are scaled
1155 for better comparison: (b), (d) and (e) by a factor of 2, and (h) and (i) by a

1156 factor of 10. (g) is the mean for the hydrological cycle experiments with and
1157 without the ice-albedo process active.

1158
1159 **Figure 7.** Zonal mean values of the annual mean (a) and seasonal cycle
1160 differences (b) for the experiments as shown in Figs. 5 and 6. g) The mean
1161 for the hydrological cycle is for the experiments with and without the ice-
1162 albedo process active.

1163
1164 **Figure 8.** Conceptual build-up of the annual mean climate: starting with all
1165 processes turned OFF (a) and then adding more processes in each row: (b)
1166 atmosphere, (d) CO₂, (f) oceans, (h) heat diffusion, (j) heat advection, (l)
1167 hydrological cycle, (n) ice-albedo, (p) clouds and (r) water vapour
1168 transport. The panels on the right column show the difference of the left
1169 panel to the previous row left panel. Global mean values are shown in the
1170 heading. All values are in °C. In some panels in the right column the values
1171 are scaled for better comparison: (e), (g) and (q) by a factor of 2, (i) by a
1172 factor of 3 and (k), (o) and (s) by a factor of 4. For details see on the
1173 experiments see section 2a.

1174
1175 **Figure 9.** As in Fig. 8, but conceptual build-up of the seasonal cycle. The
1176 seasonal cycle is defined by the difference between the month [JAS] - [JFM]
1177 divided by two. Global mean absolute values are shown in the heading. In
1178 some panels in the right column the values are scaled for better
1179 comparison: (c), (i), (m) and (o) by a factor of 2, (k), (q) and (s) by a factor
1180 of 5 and for (e) by a factor of 30.

1181
1182 **Figure 10.** Local T_{surf} response to doubling of the CO₂ concentration in
1183 experiments without atmospheric transport (each point on the maps is
1184 independent of the others). (a) GREB with topography, humidity and cloud
1185 processes and all other processes OFF. (b) Difference of (a) to GREB with
1186 topography and all other processes OFF scaled by a factor of 10. (c) GREB
1187 model as in (a), but with ice-albedo process ON. (d) Difference of (c)-(a)
1188 scaled by a factor of 2. (e) GREB model as in (a), but with hydrological cycle
1189 process ON. (f) Difference of (e)-(a) scaled by a factor of 2. For details see
1190 on the experiments see section 2b.

1191
1192 **Figure 11.** Global mean T_{surf} response to idealized forcing scenarios: (a)
1193 different RCP CO₂ forcing scenarios. (b) Scaled CO₂ concentrations. (c)
1194 idealized CO₂ concentration time evolutions (dotted lines) and the
1195 respective T_{surf} responses (solid lines of the same colour) for the 2xCO₂
1196 abrupt reverse (red) and the 2xCO₂ wave (blue) simulations. (d) idealized
1197 11yrs solar cycle. List of experiments is given in Table 3.

1198
1199 **Figure 12.** T_{surf} response to partial doubling of the CO₂ concentration in:
1200 Northern (a) and Southern (b) hemisphere, tropics (d) and extra-tropics
1201 (e), oceans (g) and land (h), and in boreal winter (j) and summer (k). The
1202 right column panels show the difference between the two panels two the
1203 left in the same row.

1205
1206 **Figure 13.** T_{surf} response to changes in the solar constant by +27W/m²
1207 (middle column) versus a doubling of the CO₂ concentration (left column)
1208 for the annual mean (upper) and the seasonal cycle (lower). The seasonal
1209 cycle is defined by the difference between the month [JAS] - [JFM] divided
1210 by two. The right column panels show the difference between the two
1211 panels two the left in the same row scaled by 4 (c) and 3 (f).

1212 **Figure 14.** Orbital parameter forcings and T_{surf} responses: (a) incoming
1213 solar radiation changes in the Solar-231Kyr experiment relative to the
1214 control GREB model. T_{surf} response in Solar-231Kyr (b) and Solar-231Kyr-
1215 200ppm (c) relative to the control GREB model. Annual mean T_{surf} in Orbit-
1216 radius (d), Obliquity (e) and Eccentricity (f). The solid vertical line in (d)-
1217 (f) marks the control (today) GREB model.

1218 **Supplementary Figures**

1219 **SFigure 1.** Changes in the annual mean T_{surf} in the GREB model
1220 simulations with different processes turn OFF as in Fig. 5 but relative to the
1221 complete GREB model without model correction terms and without
1222 Ice/Snow: (a) undefined, (b) clouds, (c) oceans, (d) heat advection, (e) heat
1223 diffusion, (f) CO₂ concentration, (g) hydrological cycle, (h) diffusion of
1224 water vapour and (i) advection of water vapour. Global mean differences
1225 are shown in the headings. All values are in °C. In some panels, the values
1226 are scaled for better comparison: (a), (d) and (e) by a factor of 2, and (h)
1227 and (i) by a factor of 5.

1228 **SFigure 2.** Conceptual build-up of the annual mean climate as in Fig. 8.
1229 Panels (a) to (c) as in fig.8. (d) with the atmospheric emissivity set to zero,
1230 and (f) with the emissivity set 0.01. The panels on the right column show
1231 the difference of the left panel to (a). Global mean values are shown in the
1232 heading. All values are in °C. In the right column, the values are scaled by a
1233 factor of 2 for better comparison. For details see on the experiments see
1234 section 2a.