
We thank the reviewer for discussing our manuscript. We hope that we can
convince him of the benefit of our methods.

1 Replies to specific issues

1.1 The aim univariate summary measures..

• The first main result was to show the relation of the ESS to basic well
established scores correlation and ANOVA with time as treatment.
The standardization we introduced is also called marginal calibration and
is a standard procedure in regression analysis. For standardized variables
the correlation coefficient is the regression coefficient.
Assuming Gaussian distribution of the variables the same terms are in-
volved in the ES score (Christensen et al 2015 ) - to which we were made
aware by the other reviewer - if used with standardized variables and as-
suming Gaussian distributions and thus zero skewness.
This standardization leads to a reliability measure that is rid of marginal
calibration errors.
The result shows further that the optimal ensemble spread is equal to
1 − CORR2 and equivalently the RPC=1. The RPC is defined and dis-
cussed in Eade et al, 2014. We simply repeat this discussion.

• The second result was that we could show that the ANOVA ratio is
very close to the mean utility defined by Kleeman (2002). This connects
ANOVA analysis and relative entropy.
The mutual information (MI), which is a special integrated relative en-
tropy between the joint and the marginals of two variables, is directly
related to correlation this comes from the literature. Together this shows
that the classic tools used for the analysis of forecast ensembles are directly
related to relative entropy.

• The third concern was to use a similar method for categorical forecasts.

1.2 Why not CRPS?

The CRPS has been shown to be beneficial for evaluating ensemble prediction of
financial portfolios where always the complete pdf matters. In case of Gaussian
distributed time series it can happen that an EPS with incorrect marginal cali-
bration like too large variance but medium correlation has a larger CRPS than a
second ensemble prediction system (EPS) with nearly zero correlation but well
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adapted variance. Thus the uninformed second system wins in comparison to
the informed first system.
If we perform marginal calibration then the only thing that remains from the
orignal ensembles is the relative spread (1-ANOVA) and the ensemble mean.
The CRPS is important to evaluate large ensembles of financial portfolios be-
cause here always the complete pdf materializes. The CRPS is also well suited
to compare two mean climate projections including their uncertainty.

1.3 The rank histogram can have different forms others
than U-shaped and inverse U-shaped

The asymmetric forms of the rank histogram would be due to positive or neg-
ative mean biases of the EPS but in our case the data have been standardized
(= marginal calibration see above) before the analysis. The rank histograms of
these data will be generally U-shaped or inverse U-shaped. Overlays of these
shapes are imagineable in case the ensemble sharpness varies with the initial
state of the prediction. We guess that the time series of such systems will not
have Gaussian pdf as is assumed here.

1.4 Under which conditions eq. 8 holds ...

We will further underline that also the relations to the rank histogram analysis
in eq. 8 hold for standardized Gaussian variables. If the ESS for these scaled
variables is equal to one or equally the ES be zero the distance of the ensemble
members from the mean is the same as the mean distance between the observa-
tion and the ensemble mean. Thus the observation behaves like an additional
ensemble member and therefore the rank histogram would be flat.
On the other hand if the ESS is less than one the ensemble members are gen-
erally closer to the ensemble mean than the observations. As we have scaled
the variables to have zero overall mean, this means that the rank histogram is
U-shaped. Analogously in case of an ESS greater than one the smaller distances
of the observations from the ensemble means leads to an inverse U-shaped rank
histogram.

1.5 How is the RPC defined?

The ratio is defined by Eade et al 2014 as a lower bound for the actual ratio
of predictable components (RPC) which might be improved by future model
developements. We took the definition directly from the paper. However the
authors did not use the term ANOVA for the ratio of mean ensemble spread to
total spread. They claim that the ratio CORR√

ANOV A
should ideally be equal to one

without giving any proof.

2



1.6 Are the ESS and the RPC just equal to one for cali-
brated predictions?

The ESS can also be equal to one if the variables are not normalized. If this
happens for model and the observational data with equal marginal calibration
then the model ensemble is indeed reliable. On the other hand differences in
the marginal calibration of observations and model can lead to an ESS = 1 but
without having a reliable forecast ensemble.

Reliability of an EPS implies that the ensemble spread is equal to the mean
square errror between observations and ensemble means and thus ESS = 1. In
case of standardized variables this further implies that the correlation is equal
to the square root of the ANOVA. This means that the claim of Eady et al.
(2014) is equivalent to reliability of an EPS after standardization of the data.

1.7 Does the RPC need calibration

The ratio of correlation to the square root of ensemble mean to total variance
depends on standardized variables. Thus the marginal calibration is inherent.

1.8 How have the predictive densities been derived?

Assuming that both forecasts and observations are Gaussian distributed an
overall mean has been determined and the variance is an average variance with
respect to that mean. The ensembles here do not show systematic differences.
The pdf at a special forecast time is directly determined from the ensemble
mean and the ensemble variance.

1.9 The paradigm of Gneiting et al. (2007) “increase
sharpness subject to calibration” is not appropriately
applied by the authors.

The sharpness measured here with ANOVA is an attribute of the forecasts only
as is demanded by Gneiting et al (2007). It is calculated without any reference
to observations, it can be generated right after the EPS prediction is available.

Measuring the reliability with standarized/marginally calibrated variables is
intended to give an indication whether the sharpness - measured with ANOVA
- is indeed associated with calibration (exceedance + probabilistic)/reliability.
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1.10 A calibrated prediction can be very sharp or not
sharp at all

The ESS analysis includes that forecasts can be reliable/calibrated (beyond
marginal calibration) but not sharp at all. If the model sharpness/ANOVA
is zero then the forecast is reliable or probabilistic and exceedance calibrated
in any case (eq 8). For low correlation the model sharpness/anova should be
correspondingly low then the forecast is also calibrated(exceedance + probabilis-
tic)/reliable. Therefore as sharpness is increased the reliability/calibration(beyond
marginal calibration) can only be hold (ESS = 1) if the resolution/correlation
increases accordingly. Thus the reliability/calibration (beyond marginal cali-
bration) is indeed a balance between sharpness and resolution.

1.11 Why is the optimal value of ESS=1

Optimal is meant in the sense that the ensemble spread is equal to the mean
square error between observations and ensemble means. The same is demanded
in the ES score of Christensen et al (2015) and citations therein in case of Gaus-
sian distributions and thus zero skewness. Your co reviewer pointed us out to
this article, we will cite it in our revised version. They have the same two terms
- without standardizing the data - but take the squared difference. Thus the
ES of standardized variables should be zero in case the ESS is one. The ES is
a proper scoring rule. If you perform the same transformations the ES equally
only depends on correlation and ANOVA. From the squared difference it can
however no longer be determined whether the EPS is over- or underdispersive
which we think is important.

1.12 Rank histogram does not assess sharpness

The rank histogram is as the ESS a measure of reliability of the forcast ensem-
ble. In case one uses marginally calibrated data also for the rank histogram
a U/inverse-U-shaped rank histogram is indicative of under/over-dispersion.
This means on the one hand that the data must have also resolution because
otherwise the rank histogram of a marginally calibrated data set of observa-
tions and prediction ensemble would be flat. On the other hand the underdis-
persion/overdispersion is indicative of too large/low sharpness of the forecasts
compared to resolution. The rank histogram gives however no quantitative in-
formation for this missing balance and is no absolute measure of sharpness. The
latter depends on the forecasts only. Such numbers are given by the triplet of
ESS, correlation and anova. The relation between rank histogram and ESS only
holds for Gaussian distributions and if standardization/marginal calibration is
performed.

4


