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Abstract 28 

 29 

We document the ability of the new generation Oslo chemistry-transport model, OsloCTM3, to 30 

accurately simulate present-day aerosol distributions. The model is then used with the new 31 

Community Emission Data System (CEDS) historical emission inventory to provide updated time 32 

series of anthropogenic aerosol concentrations and consequent direct radiative forcing (RFari) 33 

from 1750 to 2014.  34 

Overall, the OsloCTM3 performs well compared with measurements of surface concentrations and 35 

remotely sensed aerosol optical depth. Concentrations are underestimated in Asia, but the higher 36 

emissions in CEDS than previous inventories result in improvements compared to observations. 37 

The black carbon (BC) treatment in OsloCTM3 gives better agreement with observed vertical BC 38 

profiles relative to the predecessor OsloCTM2. However, Arctic wintertime BC concentrations 39 

remain underestimated, and a range of sensitivity tests indicate that better physical understanding 40 

of processes associated with atmospheric BC processing is required to simultaneously reproduce 41 

both the observed features. Uncertainties in model input data, resolution and scavenging affects 42 

the distribution of all aerosols species, especially at high latitudes and altitudes. However, we find 43 

no evidence of consistently better model performance across all observables and regions in the 44 

sensitivity tests than in the baseline configuration. 45 

Using CEDS, we estimate a total net RFari in 2014 relative to 1750 of -0.17 W m-2, significantly 46 

weaker than the IPCC AR5 2010-1750 estimate. Differences are attributable to several factors, 47 

including stronger absorption by organic aerosol, updated parameterization of BC absorption, and 48 

reduced sulfate cooling. The trend towards a weaker RFari over recent years is more pronounced 49 

than in the IPCC AR5, illustrating the importance of capturing recent regional emission changes.  50 

 51 

 52 
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 60 

 61 

1 Introduction 62 

 63 

Changes in anthropogenic emissions over the industrial period have significantly altered the 64 

abundance, composition and properties of atmospheric aerosols, causing a change in the radiative 65 

energy balance. The net energy balance change is determined by a complex interplay of different 66 

types of aerosols and their interactions with radiation and clouds, causing both positive (warming) 67 

and negative (cooling) radiative impacts. Global aerosols were estimated by the Intergovernmental 68 

Panel on Climate Change fifth assessment report (IPCC AR5) to have caused a total effective 69 

radiative forcing (ERF) of -0.9 W m-2 over the industrial era from 1750 to 2011, but with 70 

considerable uncertainty (-1.9 to -0.1 W m-2) [Boucher et al., 2013].  71 

This large uncertainty range arises from a number of factors, including uncertainties in emissions 72 

and atmospheric aerosol distributions. Historical emission estimates for anthropogenic aerosol and 73 

precursor compounds are key data needed for climate and atmospheric chemistry transport models 74 

in order to examine how these drivers have contributed to climate change. The historical emission 75 

data set used in the Coupled Model Intercomparison Project Phase 5 (CMIP5), important for the 76 

IPCC AR5 forcing estimates, covered the period up to 2000. The Community Emissions Data 77 

System (CEDS) recently published a new time series of emissions from 1750 to 2014, which will 78 

be used in the upcoming CMIP6. CEDS includes several improvements over previous inventories, 79 

including annual temporal resolution with seasonal cycles, consistent methodology between 80 

different species, and extending the time series to more recent years [Hoesly et al., 2018]. During 81 

the period from 2000 to 2014, global emissions of black carbon (BC) and organic carbon (OC) 82 

have increased, while nitrogen oxide (NOx) emissions have been relatively constant after 2008, 83 

and sulfur dioxide (SO2) emissions were back at 2000 levels in 2014, after a temporary increase 84 

[Hoesly et al., 2018]. Furthermore, both CEDS and other recent emission inventories report 85 

considerably higher estimates of global BC and OC emissions in recent years than earlier 86 

inventories [Granier et al., 2011; Klimont et al., 2017; Lamarque et al., 2010; Wang et al., 2014]. 87 

The global trend in emissions is driven by a strong increase in emissions from Asia and Africa, 88 

and a decline in North America and Europe. Capturing such geographical differences is essential, 89 

as the distribution, lifetime and radiative forcing of aerosols depend on their location.  90 

The diversity in radiative forcing (RF) estimates also stems from uncertainties in the simulated 91 

spatiotemporal distribution of aerosols, their chemical composition and properties. After emission 92 

or formation, particles undergo transport, mixing, chemical aging and removal by dry and wet 93 

deposition, resulting in a short atmospheric lifetime, and a highly heterogeneous distribution in 94 

space and time. Consequently, accurate representation of the observed aerosol distributions 95 

remains challenging. Previous studies have shown that considerable diversity exist between global 96 

models. Bian et al. [2017] found that the atmospheric burden of nitrate aerosols differ by a factor 97 

of 13 between the models in AeroCom Phase III, caused by differences in both chemical and 98 
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deposition processes. A smaller, but still considerable, model spread in the simulated burden of 99 

organic aerosols (OA) from 0.6-3.8 Tg was found by Tsigaridis et al. [2014]. It was also shown 100 

that OA concentrations on average were underestimated. There has been particular focus on BC 101 

aerosols over recent years. Multi-model studies have shown variations in global BC burden and 102 

lifetime up to a factor of 4-5 [Lee et al., 2013; Samset et al., 2014]. Previous comparisons of 103 

modeled BC distributions with observations have also pointed to two distinct features common to 104 

many models: an overestimation of high altitude concentrations at low- to mid-latitudes and 105 

discrepancies in the magnitude and seasonal cycle of high-latitude surface concentrations (e.g., 106 

[Eckhardt et al., 2015; Lee et al., 2013; Samset et al., 2014; Schwarz et al., 2013].  107 

Changes to one or more of the abovementioned processes may have considerable impact on the 108 

simulated concentrations, and propagates to uncertainties in estimates of both RF and climate 109 

impact. A number of recent studies have investigated possible factors controlling the BC 110 

distribution, focusing on aging and wet scavenging processes (e.g., [Bourgeois and Bey, 2011; 111 

Browse et al., 2012; Fan et al., 2012; Hodnebrog et al., 2014; Kipling et al., 2013; Lund et al., 112 

2017; Mahmood et al., 2016]), resulting in notable improvements, at least for specific regions or 113 

observational data sets. With a few notable exceptions (e.g., [Kipling et al., 2016]), fewer studies 114 

have focused on a broader set of aerosol species or the combined impact in terms of total aerosol 115 

optical depth (AOD).  116 

Here we use the CEDS historical emission inventory as input to the chemistry-transport model 117 

OsloCTM3 to quantify the change in atmospheric concentrations over the period of 1750 to 2014. 118 

The OsloCTM3 is an update of the OsloCTM2, and includes several key changes compared to its 119 

predecessor. The significant existing model spread and sensitivity to process parameterizations 120 

underlines the need for careful and updated documentation of new model versions, and the 121 

increasing amount of available measurement data allows for improved evaluation. Before the 122 

model is used to quantify historical time series, we therefore evaluate the simulated present-day 123 

aerosol concentrations and optical depth against a range of observations. To get a first-order 124 

overview of how uncertainties in key processes and parameters affect the atmospheric abundance 125 

and distribution of aerosols in the OsloCTM3, we perform a range of sensitivity simulations. In 126 

addition to changes in the scavenging (solubility) assumptions, runs are performed with different 127 

emission inventories, horizontal resolution, and meteorological data. The impact on individual 128 

species and total AOD, as well as on the model performance compared with observations, is 129 

investigated. Finally, we present updated estimates of the historical evolution of radiative forcing 130 

due to aerosol-radiation interactions from pre-industrial to present, taking into account recent 131 

literature on aerosol optical properties. Section 2 describes the model and methods, while results 132 

are presented in Sect. 3 and discussed in Sect. 4. The conclusions are given in Sect. 5.  133 

 134 

2 Methods 135 

 136 
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2.1 OsloCTM3 137 

 138 

The OsloCTM3 is a global 3-dimensional chemistry-transport model driven by 3-hourly 139 

meteorological forecast data [Søvde et al., 2012]. The OsloCTM3 has evolved from its predecessor 140 

OsloCTM2 and includes several updates to the convection, advection, photodissociation and 141 

scavenging schemes. Compared with OsloCTM2, the OsloCTM3 has a faster transport scheme, an 142 

improved wet scavenging scheme for large scale precipitation, updated photolysis rates and a new 143 

lightning parameterization. The main updates and subsequent effects on gas-phase chemistry were 144 

described in detail in Søvde et al. [2012]. Here we document the aerosols in OsloCTM3, including  145 

BC, primary and secondary organic aerosols (POA, SOA), sulfate, nitrate, dust and sea salt. The 146 

aerosol modules in OsloCTM3 are generally inherited and updated from OsloCTM2. The 147 

following paragraph briefly describes the parameterizations, including updates new to this work.  148 

 149 

The carbonaceous aerosol module was first introduced by Berntsen et al. [2006] and has later been 150 

updated with snow deposition diagnostics [Skeie et al., 2011]. The module is a bulk scheme, with 151 

aerosols characterized by total mass and aging represented by transfer from hydrophobic to 152 

hydrophilic mode at a constant rate. In the early model versions, this constant rate was given by a 153 

global exponential decay of 1.15 days. More recently, latitudinal and seasonal variation in transfer 154 

rates based on simulations with the microphysical aerosol parameterization M7 were included 155 

[Lund and Berntsen, 2012; Skeie et al., 2011]. Previous to this study, additional M7 simulations 156 

have been performed to include a finer spatial and temporal resolution in these transfer rates. In 157 

OsloCTM3 the carbonaceous aerosols from fossil fuel and biofuel combustion are treated 158 

separately, allowing us to capture differences in optical properties in subsequent radiative transfer 159 

calculations (Sect. 2.4). In contrast to the OsloCTM2, OsloCTM3 treats organic matter (OM) 160 

instead of OC. If emissions are given as OC, a factor of 1.6 for anthropogenic emissions and 2.6 161 

for biomass burning sources is used for the OC-to-OM conversion. Upon emission, 20% of BC is 162 

assumed to be hydrophilic and 80% hydrophobic, while a 50/50 split is assumed for OM. An 163 

additional update in this work is the inclusion of marine primary organic aerosols following the 164 

methodology by Gantt et al. [2015], where emissions are determined by production of sea spray 165 

aerosols and oceanic chlorophyll A. Monthly concentrations of chlorophyll A from the same year 166 

as the meteorological data is taken from the Moderate Resolution Imaging Spectroradiometer 167 

(MODIS; available from https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php ), while sea spray 168 

aerosols are simulated by the OsloCTM3 sea salt module. The climatological annual mean total 169 

emission of marine OM is scaled to 6.3 Tg based on Gantt et al. [2015].  170 

The formation, transport and deposition of SOA are parameterized as described by Hoyle et al. 171 

[2007]. A two product model (Hoffmann et al., 1997) is used to represent the oxidation products 172 

of the precursor hydrocarbons and their aerosol forming properties. Precursor hydrocarbons which 173 

are oxidized to form condensable species include both biogenic species such as terpenes and 174 

isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, 175 
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methylbenzene and other aromatics). The gas/aerosol partitioning of semi-volatile inorganic 176 

aerosols is treated with a thermodynamic model [Myhre et al., 2006]. The chemical equilibrium 177 

between inorganic species (ammonium, sodium, sulfate, nitrate and chlorine) is simulated with the 178 

Equilibrium Simplified Aerosol model (EQSAM) [Metzger et al., 2002a; Metzger et al., 2002b]. 179 

The aerosols are assumed to be metastable, internally mixed and obey thermodynamic gas/aerosol 180 

equilibrium. Nitrate and ammonium aerosols are represented by a fine mode, associated with sulfur, 181 

and a coarse mode associated with sea salt, and it is assumed that sulfate and sea salt do not interact 182 

through chemical equilibrium [Myhre et al., 2006]. The sulfur cycle chemistry scheme and 183 

aqueous-phase oxidation is described by Berglen et al. [2004].  184 

 185 

The sea salt module originally introduced by Grini et al. [2002] has been updated with a new 186 

production parameterization following recommendations by Witek et al. [2016]. Using satellite 187 

retrievals, Witek et al. (2016) evaluated different sea spray aerosol emission parametrizations and 188 

found the best agreement with the emission function from Sofiev et al. [2011] including the sea 189 

surface temperature adjustment from Jaeglé et al. [2011]. Compared to the previous scheme, the 190 

global production of sea salt is reduced, while there is an increase in the tropics. This will have an 191 

impact on the uptake of nitric acid in sea salt particles, consequently affecting NOx, hydroxide 192 

(OH) and ozone levels. However, here we limit the scope to aerosols. The Dust Entrainment and 193 

Deposition (DEAD) model v1.3 was implemented into OsloCTM2 by Grini et al. [2005] and is 194 

also used in OsloCTM3. As a minor update, the DEAD energy budget calculation now uses 195 

radiative surface properties and soil moisture from the meteorological fields.  196 

 197 

Wet scavenging of aerosols is calculated based on European Center for Medium-Range Weather 198 

Forecast (ECMWF) data for convective activity, cloud fraction and rain fall, and on the solubility 199 

of individual species. For large-scale precipitation, OsloCTM3 has a more complex cloud model 200 

that accounts for overlapping clouds and rain (Neu and Prather 2012). Convective scavenging is 201 

based on the Tiedtke mass flux scheme (Tiedtke 1989) and is unchanged from the OsloCTM2. The 202 

solubility of aerosols is given by constant fractions, given for each species and type of precipitation 203 

(i.e., large-scale rain, large-scale ice, and convective) (Table 2). Dry deposition rates are 204 

unchanged from OsloCTM2, but the OsloCTM3 includes a more detailed land use dataset (18 land 205 

surface categories at 1°x1° horizontal resolution compared to 5 categories at T42 resolution), 206 

which affects the weighting of deposition rates for different vegetation categories. 207 

 208 

 209 

2.2 Emissions  210 

 211 

The baseline and historical simulations use the CEDS anthropogenic [Hoesly et al., 2018; Smith et 212 

al., 2015] and biomass burning (BB4CMIP) [van Marle et al., 2017] emissions. The CEDS 213 

inventory provide monthly gridded emissions of climate-relevant greenhouse gases, aerosols and 214 

precursor species from 1750 to 2014 using a consistent methodology over time. Anthropogenic 215 
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CEDS emissions are comparable to, but generally higher than, other existing inventories [Hoesly 216 

et al., 2018]. Biogenic emissions are from the inventory developed with the Model of Emissions 217 

of Gases and Aerosols from Nature under the Monitoring Atmospheric Composition and Climate 218 

project (MEGAN-MACC) [Sindelarova et al., 2014] and are held constant at the year 2010 level. 219 

Here we use the CEDS version released in 2016 (hereafter CEDSv16). In May 2017, after 220 

completion of our historical simulations, an updated version of the CEDS emission inventory was 221 

released after users reported year-to-year inconsistencies in the country/sector level gridded data. 222 

The emission totals were not affected, but there were occasional shifts in the distribution within 223 

countries (http://www.globalchange.umd.edu/ceds/ceds-cmip6-data/). The potential implications 224 

for our simulations are discussed below.  225 

Two other emission inventories are also used. The ECLIPSEv5 emission dataset was created with 226 

the Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) model [Amann et al., 227 

2011] and provides emissions in 5 year intervals from 1990 to 2015, as well as projections to 2050 228 

[Klimont et al., 2017]. The 1990-2015 emission series was recently used to simulate changes in 229 

aerosols and ozone and their RF [Myhre et al., 2017]. Here we only use emissions for 2010 in the 230 

sensitivity simulation.  231 

The Representative Concentration Pathways (RCPs) [van Vuuren et al., 2011] were developed as 232 

a basis for near- and long-term climate modeling and were used in CMIP5 and Atmospheric 233 

Chemistry and Climate Model Intercomparison Project (ACCMIP) experiments. While the four 234 

RCPs span a large range in year 2100 RF, emissions of most species have not diverged 235 

significantly in 2010 and we select the RCP4.5 for use here [Thomson et al., 2011]. Table S1 236 

summarized total global emissions of BC, OC, NOx and SO2 in 2010 in each of the three scenarios.    237 

In the simulations with the ECLIPSEv5 and RCP4.5 inventories, biomass burning emissions are 238 

from the Global Fire Emission Database Version 4 (GFED4) [Randerson et al., 2017]. The 239 

BB4CMIP emissions are constructed with GFED4 1997-2015 emissions as a basis [van Marle et 240 

al., 2017] and emissions in 2010 are similar in both datasets. Hence, any difference between the 241 

sensitivity simulations stems from differences in the anthropogenic inventory.  242 

 243 

 244 

2.3 Simulations  245 

 246 

Time slice simulations with CEDSv16 emissions for 1750, 1850 and from 1900 to 2014 are 247 

performed (every ten years from 1900-1980, thereafter every five years), including six months 248 

spin-up. The model is run with year 2010 meteorological data and a horizontal resolution of 249 

2.25x2.25 degrees (denoted 2x2), with 60 vertical layers. While Søvde et al. [2012] used 250 

meteorological data from the ECMWF IFS model cycle 36r1, we apply here meteorology from the 251 

ECMWF OpenIFS cycle 38r1 (https://software.ecmwf.int/wiki/display/OIFS/).  252 

 253 
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Additional model runs are performed to investigate the importance of differences in key processes 254 

for the aerosol distributions and model performance (Table 1). In addition to the CEDSv16 255 

emissions, the model is run with ECLIPSEv5 and RCP4.5 emission inventories for anthropogenic 256 

emissions and GFEDv4 biomass burning emissions. Additionally, we perform simulations with 257 

1.125x1.125 degrees (denoted 1x1) horizontal resolution. To investigate the importance of 258 

meteorology, the simulation with CEDSv16 emissions is repeated with meteorological data for 259 

year 2000 instead of 2010. Year 2000 is selected due to its opposite El Niño–Southern Oscillation 260 

(ENSO) index compared to 2010. Finally, three model runs are performed with increased and 261 

decreased scavenging efficiency by large-scale ice clouds and decreased aerosol scavenging by 262 

liquid (large-scale and convective) precipitation. The efficiency with which aerosols are scavenged 263 

by precipitation is determined by a fixed fraction representing the fraction of the grid box that is 264 

available for removal, while the rest is assumed to be hydrophobic. Table 2 summarizes the 265 

fractions in the baseline configuration and the assumptions in the three sensitivity tests.  266 

 267 

2.4 Radiative transfer  268 

 269 

We calculate the radiative forcing of anthropogenic aerosols due to aerosol-radiation interactions 270 

(RFari) [Myhre et al., 2013b]). The radiative transfer calculations are performed with a multi-271 

stream model using the discrete ordinate method [Stamnes et al., 1988]. The model includes gas 272 

absorption, Rayleigh scattering, absorption and scattering by aerosols, and scattering by clouds. 273 

The aerosol optical properties have been updated from earlier calculations using this radiative 274 

transfer model [Myhre et al., 2007; Myhre et al., 2009], in particular those associated with aerosol 275 

absorption. The Bond and Bergstrom [2006] recommendation of a mass absorption coefficient 276 

(MAC) for BC of around 7.5 m2 g-1 for freshly emitted BC and an enhancement factor of 1.5 for 277 

aged BC was used previously. In the present analysis, we apply a parametrization of MAC from 278 

observations over Europe [Zanatta et al., 2016], where MAC depends on the ratio of non-BC to 279 

BC abundance. The mean MAC of BC from the observations over Europe is around 10 m2 g-1 at 280 

630 nm [Zanatta et al., 2016]. For low aerosol concentrations we apply the approach from Bond 281 

and Bergstrom [2006]. The absorption by organic matter is uncertain [Bond et al., 2013]. Here, we 282 

have implemented absorbing organic matter according to refractive indices from Kirchstetter et al. 283 

[2004] to 1/3 of the biofuel organic matter and ½ of the SOA from anthropogenic volatile organic 284 

carbon (VOC) precursors. The remaining fractions of biofuel, fossil fuel and marine POA and 285 

SOA (anthropogenic and all natural VOCs) are assumed to be purely scattering organic matter.  286 

 287 

2.5 Observations 288 

 289 

A range of observational datasets are used to evaluate the model performance in the baseline 290 

simulation. Note that we use the term “black carbon” in a qualitative manner throughout the 291 

manuscript to refer to light-absorbing carbonaceous aerosols. However, when comparing with 292 

measurements, we use either elemental carbon (EC) or refractive BC (rBC), depending on whether 293 
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the data is derived from methods specific to the carbon content of carbonaceous aerosols or 294 

incandescence methods, in line with recommendations from Petzold et al. [2013]. 295 

Measured surface concentrations of EC, OC, sulfate and nitrate are obtained from various 296 

frameworks. For the US, measurements from IMPROVE (Interagency Monitoring of Protected 297 

Visual Environments) and CASTNET (Clean Air Status and Trends Network) are used. For 298 

Europe, data from EMEP (European Monitoring and Evaluation Programme) [Tørseth et al., 2012] 299 

and ACTRIS (Aerosols, Clouds and Trace gases Research InfraStructure) [Cavalli et al., 2016; 300 

Putaud et al., 2010] is used. EMEP and ACTRIS sites are all regional background sites, 301 

representative for a larger area. To broaden the geographical coverage we also compare the model 302 

output against additional observations from the CMA Atmospheric Watch Network (CAWNET) 303 

in China [Zhang et al., 2012] and those reported in the literature from India (see Kumar et al. [2015] 304 

for more details). CASTNET, IMPROVE, EMEP and ACTRIS data is from year 2010, while 305 

CAWNET observations were sampled in 2006-2007 and the observational data base from India 306 

compiled by Kumar et al. [2015] cover a range of years. IMPROVE provides mass of aerosols 307 

using filter analysis of measurements of particulate matter with diameter of less than 2.5 308 

micrometers (PM2.5), while CASTNET uses an open-face filter pack system with no size restriction 309 

to measure concentrations of atmospheric sulfur and nitrogen species [Lavery et al., 2009]. Mass 310 

of individual species from the CAWNET network is obtained from aerosol chemical composition 311 

analysis performed on PM10 samples [Zhang et al., 2012]. EMEP and ACTRIS measurements of 312 

EC and OC are in the PM2.5 range, whereas nitrate and sulfate measurements are filter-based with 313 

no size cutoff limit. Data resulting from EMEP and ACTRIS are archived in the EBAS data base 314 

((http://ebas.nilu.no) at NILU - Norwegian Institute for Air Research, and are openly available (see 315 

also Data availability).  316 

 317 

Modeled AOD is evaluated against the Aerosol Robotics Network (AERONET). AERONET is a 318 

global network of stations measuring radiance at a range of wavelengths with ground-based sun-319 

photometers, from which aerosol column burden and optical properties can be retrieved [Dubovik 320 

and King, 2000; Holben et al., 1998]. The AERONET data was processed through the validation 321 

tools available from the AeroCom data base hosted by Met Norway 322 

(http://aerocom.met.no/data.html). We also compare against AOD retrievals from MODIS-Aqua 323 

and Terra (level 3 atmosphere products, AOD550 combined dark target and deep blue, product 324 

version 6) [MOD08, 2018] and the Multi-angle Imaging SpectroRadiometer (MISR) (level 2 325 

aerosol product, product version 4) [MISR, 2018].  326 

 327 
Figure S1 depicts the locations of all the stations. For comparison with surface concentrations and 328 

AERONET AOD, the model data is linearly interpolated to the location of each station using 329 

monthly mean or 3-hourly output. In the case of AERONET, high mountain stations (here defined 330 

as having an elevation higher than 1000 meter above sea level) are excluded following Kinne et 331 

al. [2013]. For comparison with observed OC surface concentrations, modeled OA is converted to 332 

OC using factor of 1.6 for POA and 1.8 for SOA. Unless measurements are restricted to the PM2.5 333 

size range, the comparison includes both fine and coarse mode modeled nitrate (Sect. 2.1). Several 334 
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statistical metrics are used to assess the model skill, including correlation coefficient (R), root 335 

mean square error (RMSE), variance and normalized mean bias (NMB).  336 

The modeled vertical distribution of BC is compared with aircraft measurements of refractory BC 337 

(rBC) from the HIAPER Pole-to-Pole Observations (HIPPO) campaign [Wofsy et al., 2011]. 338 

Vertical profiles of BC from OsloCTM2 have been evaluated in several previous studies (e.g., 339 

Samset et al. [2014]) and a more thorough comparison of OsloCTM3 results against a broader set 340 

of campaigns is provided by Lund et al. [2018]. In the present analysis we focus on data from the 341 

third phase (HIPPO3) flights, the only phase that was conducted in 2010, i.e., the same year as our 342 

sensitivity simulations. Model data is extracted along the flight track using an online flight 343 

simulator. The data is separated into five latitude regions and vertical profiles constructed by 344 

averaging observations and model output in 13 altitude bins.  345 

 346 

3 Results  347 

 348 

We first document the aerosol distributions simulated in the baseline model configuration, 349 

focusing on the anthropogenic contribution, and compare with observations, multi-model studies 350 

and results from the sensitivity tests. With the present-day model performance evaluated, we then 351 

present the updated historical development of RFari of anthropogenic aerosols.  352 

 353 

3.1 Evaluation of present-day aerosol distributions  354 

 355 

The global mean aerosol burdens in the baseline simulation are summarized in Table 3 (top row), 356 

with spatial distribution shown in Fig. S2. Table S3 also shows the split of OA between secondary 357 

and primary sources. Compared to results from the AeroCom III experiment, the OsloCTM3 358 

sulfate burden of 5.4 mg m-2 estimated here is about 50% higher than the multi-model mean of 3.5 359 

mg m-2 and 35% higher than OsloCTM2 [Bian et al., 2017]. The nitrate burden is nearly a factor 360 

three higher than both the AeroCom multi-model mean and OsloCTM2 burden, and higher than 361 

all nine models contributing in AeroCom III [Bian et al., 2017]. This is mainly due to a higher 362 

burden of coarse mode nitrate aerosols, associated with less efficient scavenging of sea salt in 363 

OsloCTM3 than OsloCTM2. The global budgets of OA simulated by the AeroCom II models was 364 

analyzed by Tsigaridis et al. [2014]. The burden of OA in the OsloCTM3 of 3.4 mg m-2 is close 365 

to their multi-model mean of 3.1 mg m-2 and 25% higher than the OsloCTM2. The OsloCTM3 366 

estimate includes the contribution from marine OA emissions (Sect. 2.1). This was included in 367 

only some of the AeroCom II models and not in OsloCTM2, which may partly explain the slightly 368 

lower OsloCTM2 OA burden in Tsigaridis et al. [2014]. However, the marine POA only 369 

contributes around 3% to the total OA (Table S3). The global BC burden of 0.23 mg m-2 is also 370 

close to the mean of the AeroCom II models of 0.25 mg m-2 [Samset et al., 2014]. We note that 371 

different emission inventories were used in the AeroCom experiments and the present analysis, 372 
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however, the comparison shows that the aerosol burdens simulated by OsloCTM3 fall within the 373 

range of existing estimates from global models.  374 

 375 

Figure 1 shows annual mean measured surface concentrations of EC, OC, sulfate and nitrate in 376 

Europe, North America and Asia against output from the baseline OsloCTM3 simulation. Overall, 377 

the OsloCTM3 shows a high correlation of 0.8-0.9 with measured surface concentrations. There 378 

is a general tendency of underestimation by the model, with the lowest NMB and RMSE for BC 379 

and nitrate (-23%) and the highest for sulfate (-52%). There are, however, notable differences in 380 

model performance between data sets in different regions, as seen from Table S2. For all species, 381 

the NMB and RMSE are highest for measurements in China. For instance, excluding the 382 

CAWNET measurements, reduces the NMB for sulfate in Fig. 1 from -52% to -31% (not shown). 383 

In contrast, the correlation is generally similar to, or higher than, other regions. In the case of BC 384 

and nitrate, the model slightly overestimates concentrations in Europe and North America, but 385 

underestimates Asian measurements. The best overall agreement is generally with IMPROVE 386 

observations in North America. Differences in instrumentation between different networks can 387 

affect the evaluation. Lavery et al. [2009] found that measurements from CASTNET typically gave 388 

higher nitrate surface concentrations than values obtained from co-located IMPROVE stations, 389 

which could partly explain the NMB of opposite sign in these two networks in Table S2. For BC, 390 

we also include measurements from across India compiled by Kumar et al. [2015]. This is a region 391 

where emissions have increased strongly, but where evaluation of the model performance so far 392 

has been limited due to availability of observations. The model underestimates concentrations with 393 

a NMB of -43%, however, the correlation of 0.60 is similar to the comparison with data from 394 

China and higher than the other regions. An examination of the monthly concentrations (Fig. S3) 395 

shows that the largest discrepancies occur during winter, with the largest bias found for 396 

measurements in North East India. One possible reason could be missing or underestimated 397 

emission sources. This finding is similar to the comparison of measurements against WRF-chem 398 

by Kumar et al. [2015]. The seasonality of BC concentrations has also been an issue at high 399 

northern latitudes, where earlier versions of the OsloCTM strongly underestimated winter and 400 

springtime surface concentrations at Arctic stations [Lund et al., 2017; Skeie et al., 2011], similar 401 

to many other models [Eckhardt et al., 2015]. This Arctic underestimation persists in the current 402 

version of the model. Seasonal differences exist also in other regions, but not consistently across 403 

measurement networks. Compared with EC measurements from EMEP/ACTRIS the correlation 404 

is poorer during winter and spring, and the model underestimate concentrations in contrast to a 405 

positive NMB in summer and fall. However, due to the relatively low number of stations, these 406 

values are sensitive to a few stations with larger measurement-model discrepancies. For both 407 

IMPROVE and EMEP/ACTRIS, the model underestimation of sulfate is larger during summer 408 

and fall, but with opposite seasonal differences in correlation. In general, the number of stations 409 

and evaluation of data from only one year limits the analysis of seasonal variations.  410 

We do not evaluate ammonium concentrations in the present analysis, as that requires a detailed 411 

discussion of the nitrate and sulfate budgets, which has been covered by the recent multi-model 412 
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nitrate evaluation study by Bian et al. [2017], in which the OsloCTM3 participated. Results 413 

showed that the OsloCTM3 is close to the multi-model mean and similar to the other models in 414 

terms of agreement with observed ammonium concentrations across USA, Europe and East Asia, 415 

with an average correlation of 0.47.  416 

In May 2017, after completion of our historical simulations, an updated version of the CEDS 417 

emission inventory was released after an error in the code was reported (see Sect. 2.2). This 418 

resulted in occasional shifts in the spatial distribution of emissions within countries with large 419 

spatial extent (e.g., USA and China). Since the emission totals were not affected, the impact on 420 

our RFari estimates is likely to be small, but shifts in the emission distribution could impact the 421 

model evaluation, in particular for surface concentrations. While repeating all simulations require 422 

more resources than available to us, we have performed a limited investigation for the US, which 423 

is one of the regions affected by the emission distribution bug (Fig. S4a). We limit the analysis to 424 

BC, using a model data from one year, but note that emissions of other species are also affected. 425 

The comparison against measurements from the IMPROVE network (Fig. S4b-d) shows an 426 

increase in correlation from 0.33 to 0.43 and a 25 percent reduction in the RMSE when using the 427 

May 2017 version of emissions.  428 

As shown in Table S2, the model overestimate surface concentrations in some regions and 429 

underestimate them in others. Compensating biases can influence the evaluation of total AOD. 430 

Moreover, the biases differ in magnitude between different species. Moving one step further, we 431 

therefore examine the average aerosol composition in the three regions where this is possible with 432 

our available measurements. Figure 2 shows the relative contribution from different aerosols 433 

species to the total mass in the IMPROVE, EMEP, ACTRIS and CAWNET measurements and the 434 

corresponding model results. The number of available aerosol species varies between the 435 

measurement networks and we include sea salt from IMPROVE and ammonium from CAWNET. 436 

Additionally, the number of stations where simultaneous measurements of all species were 437 

available also differ substantially, with 16 for CAWNET, 5 for EMEP/ACTRIS and 172 for 438 

IMPROVE. Overall, the relative composition is well represented by the model. The agreement is 439 

particularly good for the IMPROVE network. Compared to measurements from CAWNET, the 440 

model has a lower relative contribution from OC and more sulfate. In the case of Europe, nitrate 441 

aerosols also constitute a significantly larger fraction in the model than in the observations. The 442 

evaluation of nitrate is complicated by possible differences in the detection range of 443 

instrumentation compared to the size of the two nitrate modes in the model (Sect. 2.1). The 444 

comparison against EMEP nitrate data includes both coarse and fine mode modeled nitrate. 445 

Excluding the coarse mode, the fraction of total mass attributable to nitrate decreases from 43% to 446 

28%, which is much closer to the observed 30% contribution. However, this affects the comparison 447 

in Figure 1, resulting in a negative NMB of -34%, compared to -23% when including both coarse 448 

and fine mode. This suggest that part, but not all, of the nitrate represented as a coarse mode in the 449 

model is measured by the instrument, pointing to a need for a more sophisticated size distribution 450 
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in the model to make better use of available observations. The low number of available stations 451 

from EBAS could also an important factor. 452 

Next, we examine total AOD. Figure 3 shows modeled AOD and aerosol absorption optical depth 453 

(AAOD), AOD retrieved from MODIS-Aqua and comparison of modeled AOD with AERONET 454 

observations. Modeled global, annual mean AOD and AAOD is 0.13 (Fig. 3a) and 0.0051 (Fig. 455 

3b), respectively. The overall spatial pattern of modeled AOD agrees well with MODIS (Fig. 3c), 456 

however, the latter gives a higher global mean of 0.16 and clearly higher values in North India and 457 

parts of China, as well as Central Africa. These peak values are similar to MODIS-Terra, but less 458 

pronounced in the AOD retrieved from MISR (Fig. S5), illustrating important differences between 459 

different remote sensing products. Nevertheless, an underestimation of modeled AOD in Asia is 460 

consistent with results from the evaluation of surface concentrations and can also be seen in the 461 

comparison against AERONET, as discussed below. The OsloCTM3 shows a good agreement 462 

with measured AOD from the AERONET network, with an overall correlation of 0.82 and RMSE 463 

of 0.11, when using monthly mean data from 266 stations (Fig. 3d). Note that the modeled global 464 

mean AOD is 0.13, but the model mean at the AERONET stations is 0.175 (Fig 3d) and has only 465 

a NMB of -11.8%. Many of the AERONET stations tend not to be regional background sites, but 466 

can be influenced by local pollution (e.g., Wang et al. [2018]) 467 

However, as for surface concentrations, there are notable regional differences. Fig. S6 compares 468 

modeled AOD against AERONET stations in Europe, North America, India and China separately. 469 

The best agreement is found for Europe and North America, with NMB of -0.4% and -13%, 470 

respectively, and RMSE of approx. 0.05. The correlation is higher for North America (0.71) than 471 

Europe (0.63). A relatively high correlation of 0.71 is also found for stations in China. However, 472 

the NMB and RMSE is higher (-34.5% and 0.25). There are significantly fewer observations for 473 

comparison with modeled AOD over India, but the ones available give NMB and RMSE on the 474 

same order of magnitude as for China, but a lower correlation (0.45).  475 

Ground-based measurements can also provide information about column absorption aerosol 476 

optical depth (AAOD). Such information has been used to constrain the absorption of BC and 477 

provide top-down estimate of the direct BC RF (e.g., [Bond et al., 2013]). However, retrieval and 478 

application of AERONET AAOD is associated with a number of challenges and uncertainties (e.g., 479 

[Samset et al., 2018]), hence such an evaluation is not performed here.  480 

Recent literature has pointed to important representativeness errors arising when constraining 481 

models using observations due to the coarse spatial and temporal scales of global models compared 482 

with the heterogeneity of observations. Schutgens et al. [2016a] found differences in RMSE of up 483 

to 100% for aerosol optical thickness when aggregating high resolution model output over grid 484 

boxes representative of the resolution of current global models compared to small areas 485 

corresponding to satellite pixels. Smaller, but notable, differences of up to 20% were found when 486 

monthly mean model data was used, as in the present analysis. However, that did not account for 487 

issues related to temporal collocation, which can also introduce considerable errors [Schutgens et 488 
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al., 2016b]. In a recent study, Wang et al. [2018] found a spatial representativeness error of 30% 489 

when constraining AAOD modeled at a 2°x2° horizontal resolution against AERONET retrievals. 490 

However, further work is needed to investigate whether similar biases exist for AOD.  491 

 492 

3.2 Sensitivity of aerosols distributions to model input and process parameterization 493 

 494 

As shown in the section above, the OsloCTM3 performs well compared against observed AOD. 495 

Still, a number of factors influence the simulated distributions of individual aerosol species. To 496 

assess the importance of key uncertainties for modeled distributions and model performance, we 497 

perform a range of sensitivity simulations to examine the importance of emission inventory, 498 

scavenging assumptions, meteorological data and resolution for the modeled aerosol distributions 499 

and model performance. 500 

 501 

Global aerosol burdens and AOD in each sensitivity run are summarized in Table 3. The BC 502 

burden is particularly sensitive to reduced scavenging by large-scale ice clouds (LSIDEC), 503 

resulting in a 40% higher burden compared to the baseline. In contrast, an equal increase in the 504 

scavenging efficiency (LSIINC) result in a decrease in burden of only 9%, while decreased 505 

scavenging by liquid precipitation (SOLDEC) gives a 13% higher burden. The lower BC emissions 506 

in the ECLv5 and CMIP5 inventories give a global BC burden that is 9 and 22% lower, respectively. 507 

For sulfate, ammonium and OA, we also find the largest burden changes in the LSIDEC case, 508 

followed by SOLDEC. The change in the LSIDEC is particularly large for OA and is driven by 509 

changes in SOA. For SOA, the changes are determined not only by modifying the scavenging, but 510 

also by changes in POA concentrations, which gas-phase secondary organics can partition onto. 511 

Increasing the horizontal resolution results in a slightly higher burden for all species, except sea 512 

salt.  513 

While sensitivity tests may give similar changes in the total global burdens, the spatial distribution 514 

of changes can differ substantially. Figure 4 shows the ratio of AOD and total burden by species 515 

and altitude in each sensitivity simulation to the baseline. As expected, varying the emission 516 

inventories results in changes that are largely confined to the main source regions (Figs.4a,b). 517 

Using the CMIP5 inventory results in considerably lower concentrations over Asia, the Middle 518 

East and North Africa, reflecting the higher emissions in the more recent inventory. Over Europe 519 

and most of North America there is an increase, particularly for sulfate, nitrate and ammonium. A 520 

similar pattern is found when using ECLv5, but the differences are smaller. Reducing the large-521 

scale ice cloud scavenging increases aerosol burdens the most at high latitudes, while changes in 522 

the solubility assumption for liquid clouds affects burdens mostly over Asia, where emissions are 523 

highest, and around the equator where convective activity is stronger. Changes in burdens when 524 

using meteorological data from a different year are more heterogeneous and mainly occur in 525 

regions where the influence of differences in the ENSO is expected to be the main factor, e.g., 526 

west coast of South America, South East Asia and Australia.  527 
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For BC, OA and dust, the largest impact relative to the baseline are seen above 600 hPa in the 528 

LSIDEC case. Change in LSIDEC are also important in the case of sulfate and sea salt, but occur 529 

at lower altitudes. In contrast to the other aerosol species, differences in emission inventories are 530 

most important for nitrate. In a recent study, Kipling et al. [2016] investigated factors controlling 531 

the vertical distribution of aerosols in the HadGEM3-UKCA. It was found that in-cloud 532 

scavenging was very important in controlling the vertical mass concentration of all species, except 533 

dust. For dust, it was also found that dry deposition and sub-cloud processes played key roles, 534 

processes not examined in the present analysis. Moreover, Kipling et al. [2016] performed 535 

sensitivity simulations by switching transport and scavenging on and off to get the full effect of a 536 

given process, while we perform smaller perturbations to investigate uncertainties. Here we find 537 

significant impacts of changes in ice-cloud removal efficiency on the vertical distribution of BC, 538 

OA and dust, while large-scale liquid and convective precipitation is more important for sea salt 539 

and nitrate  540 

With the exception of different emission inventories, there is generally a small impact on surface 541 

concentrations in source regions compared to the changes in remote areas. This is important to 542 

note due to the role of aerosols in air quality perspectives, where uncertainties in near-source 543 

concentrations are vital.  544 

Our sensitivity tests show that changes in input data, resolution or scavenging can lead to notable 545 

changes in the aerosol distributions. The next question is then how these changes affect model 546 

performance compared to observations. Figure 5a compares modeled and measured surface 547 

concentrations of BC, OC, sulfate and nitrate in each simulation using all observations in Fig. 1. 548 

For BC, the sensitivity tests have little or no impact on correlation, but there is a markedly better 549 

agreement in terms of standard deviation (i.e., model becomes closer to observations) for 550 

CEDSv16/CMIP6 compared to RCP/CMIP5, reflecting the higher emissions in the former. Similar, 551 

but smaller, effects are also found for the other species. The improvement from RCP/CMIP5 to 552 

CEDSv16/CMIP6 is especially seen for measurements in Asia. A higher resolution is also found 553 

to reduce the bias, in particular for BC. Figure 5b shows the comparison against AERONET AOD 554 

in each sensitivity simulation. Again, there is a higher correlation and lower bias in the 1x1RES 555 

run than in the baseline, while the opposite is found in the RCP/CMIP5 and ECLv5 cases. The 556 

most pronounced changes results from using meteorological data from year 2000, in which case 557 

the correlation is reduced from around 0.8 to 0.7.  558 

For both observables, the difference in model performance between the baseline and scavenging 559 

sensitivity tests is small. This may partly be an effect of the geographical coverage of stations; the 560 

majority of measurements are from stations in more urban regions, whereas simulated burden 561 

changes occur in remote regions, particularly at high latitudes and altitudes (Fig. 4). We therefore 562 

also perform evaluations against AOD from regional sub-sets of AERONET stations. Ten of the 563 

AERONET stations used in the present analysis are located north of 65°N (Fig. S1). A comparison 564 

of monthly mean simulated AOD in each of the sensitivity runs against observations in this region 565 

shows the best agreement with the baseline simulation and with the ECLv5 emission inventory, 566 
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with a considerably higher bias when scavenging parameters are modified (Fig. S7a). This is 567 

particularly the case in the LSIDEC run, where concentrations of all species increase at high 568 

latitudes compared to the baseline (Fig. 4). In contrast, the reduced concentrations in LSIINC, 569 

results in a negative bias. We note that most of these stations have missing values in the winter 570 

months, which is when the model underestimate BC concentrations in the Arctic, hence limiting 571 

the evaluation. Decreased scavenging efficiency also leads to a higher bias than in the baseline for 572 

observations in Europe and North America (not shown). In Asia, where the model already 573 

underestimates aerosols in the baseline configuration, the bias is reduced since concentrations 574 

increase. However, differences are smaller than north of 65°N. Moreover, given the notable 575 

exacerbation in model performance in other regions, it is likely that other sources of uncertainty 576 

(e.g., emissions) are more important for the model-measurement discrepancies in Asia. A similar 577 

comparison is performed for 15 AERONET stations located in North Africa and the Middle East 578 

(Fig. S7b), where the dust influence is strong. Changing the meteorological year and reducing 579 

scavenging results in higher dust burdens (Table 3). Again, the agreement is better in the baseline 580 

run than in these sensitivity runs. In particular, the METDATA run result in a higher bias and a 581 

lower correlation, which is not surprising as dust production depends also on meteorological 582 

conditions. The changes compared to the baseline CEDSv16/CMIP6 simulation cannot be entirely 583 

attributed to differences in dust concentrations, as seen from the RCP/CMIP5 and ECLv5 584 

simulations where the dust production is equal to the baseline. Several studies have pointed to the 585 

importance of spatial resolution for improved model performance compared to observations (e.g., 586 

[Sato et al., 2016; Schutgens et al., 2017; Schutgens et al., 2016a; Wang et al., 2016]). Wang et al. 587 

[2016] found significant reductions in NMB of BC AAOD relative to AERONET when using a 588 

high resolution (10 km) emission data and model output. In our analysis, moving from 2°x2° to 589 

1°x1° horizontal resolution also results in a slightly higher correlation and reduced bias and errors 590 

when compared to all AERONET stations (Fig. 5b).  The impact is largest for AOD in China and 591 

India, the NMB is reduced (from -34% and -24% (Fig. S6) to -20% and -10%, respectively). 592 

However, the opposite effect is found for AERONET stations in Europe and North America. Of 593 

course, the 1°x1° resolution is still very coarse compared to the grid sizes used in the 594 

abovementioned studies.  595 

Changes away from near-source areas are also evaluated in terms of BC concentrations by a 596 

comparison with observed vertical distribution from the HIPPO3 campaign, where remote, marine 597 

air over the Pacific was sampled across all latitudes (Sect. 2.5).  To limit the number of model runs, 598 

we focus on only one phase of the HIPPO campaign here, but a more comprehensive evaluation 599 

of OsloCTM3 vertical BC distribution against aircraft measurements was performed by [Lund et 600 

al., 2018]. Figure 6 shows observed average vertical BC concentration profiles against model 601 

results from each sensitivity test. The OsloCTM3 reproduces the vertical distribution well in low 602 

and mid-latitudes over the Pacific in its baseline configuration, although near-surface 603 

concentrations in the tropics are underestimated. This is a significant improvement over the 604 

OsloCTM2, where high-altitude concentrations in these regions typically were overestimated. The 605 

baseline configuration of OsloCTM3 includes updates to the scavenging assumptions based on 606 
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previous studies investigating reasons for the high-altitude discrepancies (e.g., [Hodnebrog et al., 607 

2014; Lund et al., 2017]. At high northern and southern latitudes, the model underestimates the 608 

observed vertical profiles in the baseline. Increasing the model resolution does not have any 609 

notable impact on the vertical profiles. There is a notable increase in high-latitude concentrations 610 

when large-scale ice cloud scavenging is decreased. However, there is a simultaneous exacerbation 611 

of model performance in the other latitude bands, pointing to potential tradeoffs when tuning 612 

global parameters, as also illustrated by Lund et al. [2017]. Due to the significant altitude 613 

dependence of the radiative effect of BC (e.g., [Samset et al., 2013]), high altitude overestimations 614 

will contribute significantly to uncertainties in BC RFari. We also note that HIPPO3 was 615 

conducted in March/April: Comparison with aircraft measurements from other seasons show a 616 

smaller underestimation at high latitudes ([Lund et al., 2018].  617 

3.3 Pre-industrial to present-day aerosols 618 

 619 

With confidence in the model ability to reasonably represent current aerosol distributions 620 

established, we next present an updated historical evolution of anthropogenic aerosols from pre-621 

industrial to present-day, and the consequent direct radiative effect (RFari). Figure 7 shows the net 622 

change in total aerosol load from 1750 to 2014. Full times series by species are given in Table S4. 623 

To keep in line with the terminology used in the IPCC AR5, we now separate out biomass burning 624 

BC and POA in a separate species “biomass”. To illustrate the contributions from additional 625 

emissions during the past 14 years, we also include the 2000-1750 difference. The values from the 626 

present study are also compared with results from the AeroCom II models [Myhre et al., 2013a], 627 

where emissions over the period 1850 to 2000 from Lamarque et al. [2010] were used.  628 

The most notable difference compared to the AeroCom II results is seen for biomass aerosols. 629 

Biomass burning emissions have high interannual variability and this affects the analysis. While 630 

the 1750-2014 difference is 0.23 mg m-2, taking the difference between year 1750 and 2000 (black 631 

asterisk) results in a net change of only 0.03 mg m-2. There is also a much larger change in the 632 

burden of biomass aerosols in the AeroCom experiments, reflecting a more than 100% higher 633 

emissions in 2000 compared to 1850 Lamarque et al. [2010] inventory. However, biomass aerosols 634 

comprises both scattering OA and absorbing BC and, as seen below, these nearly cancel in terms 635 

of RFari. Changes in sulfate and OA from pre-industrial to 2000 are slightly higher in the present 636 

analysis than in AeroCom II, and the influence of additional emissions since 2000 is seen. The 637 

OsloCTM3fast is well below the AeroCom multi-model mean for nitrate. The OsloCTM2 was 638 

found to be in the low range, but the multi-model was also influenced by some models giving high 639 

estimates [Myhre et al., 2013a]  640 

Using the CEDSv16 emissions, we estimate a total net RFari from all anthropogenic aerosols in 641 

2014 relative to 1750 of -0.17 W m-2. The RFari from sulfate is -0.30 W m-2, while the 642 

contributions from OA (combined fossil fuel plus biofuel POA and SOA), nitrate and biomass 643 

aerosols  are smaller in magnitiude of -0.09, -0.02 and -0.0004 W m-2, respectively. The RFari due 644 

to fossil fuel and biofuel BC over the period is 0.31 W m-2. The sum over the individual 645 
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contributions is non-linear with the total RFari, as found in previous studies (e.g., Myhre et al. 646 

2013a). 647 

Figure 8a shows the time series of RFari by component, as well as the total net, in the present 648 

analysis (solid lines), and corresponding results reported in the IPCC AR5 (dashed lines). The net 649 

RFari over time is mainly determined by the relative importance of compensating BC and sulfate 650 

RFari. The most rapid increase in BC RFari is seen between 1950 and 1990, as emissions in Asia 651 

started to grow, outweighing reductions in North America and Europe [Hoesly et al., 2018]. After 652 

a period of little change between 1990 and 2000, the rate of change increases again over the past 653 

two decades, following strong emission increases in Asia and South Africa. Similarly, cooling 654 

contribution from sulfate aerosols strenghtened from around mid-century. However, in contrast to 655 

BC, the evolution is fairly flat after 1990. The last 20 years has seen a continuous reduction in 656 

sulfur dioxide (SO2) emissions in Europe, from around 30 to 5 Tg yr-1 in CEDSv16, with a similar 657 

trend in North America. While emissions in China continue to increase well into the 2000s, a 658 

stabilization is seen after 2010, following introduction of stricter emission limits as part of a 659 

program to desulfurize power plants [Klimont et al., 2013]. During the same period, emissions in 660 

India have risen. However, the net global SO2 emission trend over the past few years is a slight 661 

decline [Hoesly et al., 2018]. This development is reflected in the net RFari, which reaches its peak 662 

(i.e., strongest negative value) around 1990 and gradually becomes weaker thereafter. This trend 663 

is more pronounced in the present analysis that in the IPCC AR5 estimates, where the forcing due 664 

to sulfate is more flat in recent decades, suggesting that projected emission estimates 665 

underestimated recent decreases in SO2. The minimum net RFari value is also reached later in the 666 

latter. Moreover, a recent study suggests that current inventories underestimate the decline in 667 

Chinese SO2 emissions and estimate a 75% reduction since 2007 [Li et al., 2017]. In this case, the 668 

weakening trend could be even stronger than estimated here. The insert in Fig. 8a focuses on recent 669 

estimates of total RFari over the period 1990-2015. Using the ECLv5 emission inventory, Myhre 670 

et al. [2017] found a global mean RFari due to changes in aerosol abundances over the period 671 

1990-2015 of 0.05 (±0.04) W m-2. Our results using CEDSv16 emissions are in close agreement 672 

with these findings.  673 

 674 

The geographical shift in emissions is clearly reflected in zonally averaged RFari over time in Fig. 675 

8b. RFari declined in magnitude north of 40°N after 1980, with particularly large year-to-year 676 

decreases between 1990 and 1995, and from 2005 to 2010. The RFari has strengthened in 677 

magnitude between 20°-30° in both hemispheres, although the peak around 35°N is considerably 678 

weaker in 2014 than in 1980. The past decade, the net RFari has switched from negative to positive 679 

north of 70°N, due to a combination of stronger positive RF of BC and from biomass burning 680 

aerosols.  681 

 682 

Here we have used an updated parameterization of BC absorption based on Zanatta et al. [2016] 683 

(Sect. 2.4), which takes into account the ratio of non-BC-to-BC material and results in a MAC of 684 
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12.5 m2 g-1 at 550 nm. This is 26% higher than the 9.94 m2 g-1 using the approach from Bond and 685 

Bergstrom [2006]. Using the latter, we estimate a BC RFari in 2014 relative to 1750 of 0.23 W m-686 
2, 25% lower than the 0.31 W m-2 calculated based on Zanatta et al. [2016]. These results 687 

emphasize the importance of assumptions related to the BC absorption.  688 

The magnitude of RFari by scattering aerosols is sensitive to assumptions about absorption by 689 

organic aerosols, so-called brown carbon (BrC). Observational studies have provided evidence for 690 

the existence of such particles, and modeling studies suggest they could be responsible for a 691 

substantial fraction of total aerosol absorption, although the spread in estimates is wide (e.g., Feng 692 

et al. [2013] and reference therein). In the present study we assume a considerable fraction of 693 

absorption by OA (Sect. 2.4). Assuming purely scattering aerosols, the RFari from OA is  -0.13W 694 

m-2; acounting for BrC absorption this is weakened to -0.09 W m-2. Splitting total OA RFari into 695 

contributions from primary and secondary aerosols, we find that purely scattering POA gives a 696 

RFari of -0.07 W m-2 compared to -0.06 Wm-2 with absorption. The corresponding numbers for 697 

SOA are -0.06 and -0.03 W m-2. This indicates that in OsloCTM3, the absorbing properties of SOA 698 

are relatively more important than for POA. This is likely due to the generally higher altitude of 699 

SOA than POA (Fig. S8) in combination with the increasing radiative efficiency of absorbing 700 

aerosols with altitude [Samset et al., 2013]. However, due to the weaker overall contributions from 701 

OA, our results indicate that differences in parameterization of BC absorption can be more 702 

important than uncertainties in absorption by BrC for the total net RFari.  703 

 704 

4 Discussion 705 

 706 

Our estimate of total net RFari in 2014 relative to 1750 is weaker in magnitude than the best 707 

estimate for the 1750-2010 period reported by IPCC AR5. The difference is due to a combination 708 

of factors, including weaker contributions from both cooling aerosols and BC. A significant range 709 

from -0.6 to -0.13 W m-2 surrounds the central RFari estimate of -0.35 W m-2 from IPCC AR5 710 

[Boucher et al., 2013], due to the large spread in underlying simulated aerosol distributions. As 711 

shown in Sect. 3, the OsloCTM3 generally lies close to or above the multi-model mean of 712 

anthropogenic aerosol burdens from recent studies and performs reasonably well compared with 713 

observations and other global models, with improvements over the predecessor OsloCTM2. 714 

In particular, recent progress towards constraining the vertical distribution of BC concentrations 715 

has resulted in improved agreement between modeled and observed vertical BC profiles over the 716 

Pacific Ocean with less of the high-altitude overestimation seen in earlier studies. However, as 717 

shown by Lund et al. [2018], discrepancies compared to recent aircraft measurements over the 718 

Atlantic Ocean remain. The higher emissions in the CEDSv16 inventory also results in an 719 

improved agreement with BC surface concentrations over Asia. Despite these considerably higher 720 

emissions compared to older inventories, we calculate a weaker BC RFari than reported in AR5, 721 

hence going in the opposite direction of explaining the difference to IPCC AR5 total RFari. The 722 

IPCC AR5 best estimate for fossil fuel and biofuel BC of 0.4 (0.05 to 0.8) W m-2 [Boucher et al., 723 

2013] was based mainly on the two studies by Myhre et al. [2013a] and Bond et al. [2013], who 724 
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derived estimates of BC RFari of 0.23 (0.06 to 0.48) W m-2 and 0.51 (0.06 to 0.91) W m-2, 725 

respectively. The spread between the two is largely attributed to methodological differences: Bond 726 

et al. [2013] used an observationally weighted scaling of results to match those based on 727 

AERONET AAOD, which was not adopted by Myhre et al. [2013a]. Such ad-hoc adjustments 728 

typically result in higher estimates (Wang et al. [2018] and references therein). Moreover, a recent 729 

study by Wang et al. [2018] suggest that representativeness error arising when constraining coarse 730 

resolution models with AERONET AAOD could result in a 30% overestimation of BC RFari, 731 

which explains some of the differences between bottom-up and observationally constrained 732 

numbers. The BC RFari estimate from the present study is around 20% higher than the AeroCom 733 

multi-model mean from Myhre et al. [2013a] when calculated over the same period 1850-2000. 734 

This reflects the higher emissions in the CEDSv16 emission inventory than in Lamarque et al. 735 

[2010], as well as a higher MAC. 736 

In general, we find lower surface sulfate concentrations in the model compared with measurements. 737 

This could contribute to an underestimation of the sulfate RFari, which is weaker in the present 738 

study than in IPCC AR5. We also note that the global mean sulfate burden is higher in the 739 

OsloCTM3 than in most of the global models participating in the AeroCom III experiment (Sect. 740 

3.1, Bian et al. [2017]). Compared with other AeroCom Phase III models, the OsloCTM3 performs 741 

similarly or better in terms of nitrate and sulfate surface concentrations from CASTNET [Bian et 742 

al., 2017]. Nevertheless, the model diversity in simulated nitrate and sulfate remains large and, 743 

although all models capture the main observed features in concentrations, further work is needed 744 

to resolve the differences and improve model performance for these species.   745 

While a comprehensive quantitive uncertainty analysis of the updated RFari estimate is not 746 

possible within the scope of this study, we explore the order of magnitude uncertainties due to 747 

“internal” factors such as scavenging parameterizations and model resolution by performing 748 

sensitivity tests. Changes in global burden on the order of 10-20%, and up to 65%, were found 749 

(Sect. 3.2). However, compared to observations of surface concentrations in near-source regions, 750 

total AOD and vertical distribution of BC concentrations, we saw that the model generally 751 

performed the best in its baseline configuration. Furthermore, the largest changes in the simulated 752 

AOD and aerosol distributions were found in high-latitude regions, whereas changes over land 753 

where the concentrations, and hence subsequent RF is localized, were smaller. For certain regions 754 

and observables, there were notable differences between the baseline and sensitivity simulations. 755 

For instance, an improvemet in the baseline compared to using the CMIP5 emission inventory was 756 

seen for BC surface concentrations, in particular in Asia, while the NMB of AOD compared to 757 

AERONET stations in the same region was reduced in the simulation with higher spatial resolution. 758 

The importance of using the correct meteorological year was also seen. Such uncertainties will 759 

translate to the RFari estimates, along with uncertainties in optical properties such as absorption 760 

by organic aerosols and parameterization of BC absorption (Sect. 3.3).  761 

 762 

Estimates of radiative impacts depend critically on the confidence in the emission inventories. A 763 

detailed discussion of uncertainties in the CEDS inventory is provided by Hoesly et al. [2018]. On 764 

a global level, the uncertainty in SO2 emissions tend to be relatively low, although there is an 765 
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indication of missing SO2 sources in particular in the Persian Gulf [McLinden et al., 2016], whereas 766 

emission factors for BC, OC, NOx, CO and VOCs have higher uncertainties. Uncertainties in 767 

country-specific emissions can also be much larger, which is particularly true for carbonaceous 768 

aerosols. In future CEDS versions, a quantitative uncertainty analysis is planned [Hoesly et al., 769 

2018], which will provide valuble input to modeling studies.  770 

 771 

Our study does not include anthropogenic dust, i.e., wind-blown dust from soils disturbed by 772 

human activities such as land use practices, deforestation and agriculture, and fugitive combustion 773 

and industrial dust from urban sources. These sources could contribute an important fraction of 774 

emissions and ambient PM2.5 concentrations in some regions [Paul et al., 2012; Sajeev et al., 2017], 775 

but are missing from most models today. For instance, a recent study found a 2–16 mg m-3 increase 776 

in PM2.5 concentrations in East and South Asia from anthropogenic fugitive, combustion, and 777 

industrial dust emissions. However, the transport processes and optical properties, and hence, 778 

radiative impact, is poorly known. We also do not include the effect of aerosol-cloud interactions, 779 

which are crucial for the net climate impact of aerosols. For instance, recent studies suggest that 780 

the impact of BC on global temperature response is small due to largely compensating direct and 781 

semi-direct effects [Samset and Myhre, 2015; Stjern et al., 2017]. The composition and distribution 782 

of aerosols and oxidants in the pre-industrial atmosphere is uncertain and poorly constrained by 783 

observations. However, while this is an important source of uncertainty in estimates of RF due to 784 

aerosol-induced cloud albedo changes, it is less important for RFari because the forcing scales 785 

quite linearly with aerosol burden [Carslaw et al., 2017].  786 

 787 

 788 

5 Conclusions 789 

 790 

In this study, we have documented the third generation of the Oslo chemical transport model 791 

(OsloCTM3) and evaluated the simulated distributions of aerosols, including results from a range 792 

of simulations to investigate the sensitivity to uncertainties in scavenging processes, input of 793 

emissions and meteorological data and resolution. We have then used the new historical CEDS 794 

emission inventory (version 2016; CEDSv16), which will also be used in the upcoming CMIP6, 795 

to simulate the temporal evolution of atmospheric concentrations of anthropogenic aerosols, and 796 

quantified the temporal evolution of the subsequent radiative forcing due to aerosol-radiation 797 

interactions (RFari).  798 

 799 

The total AOD from the OsloCTM3 is in good agreement with observations from the AERONET 800 

network with a correlation of 0.82 and a normalized mean bias (NMB) of -11.8%. Regionally, the 801 

underestimation of observed AOD is higher for stations in China and India than in Europe and 802 

North America, as also reflected from the comparison against measured aerosol surface 803 

concentrations. High correlations 0.80-0.90 are also found for surface concentrations of BC, OC, 804 

sulfate and nitrate aerosols compared with all measurements across Europe, North America and 805 
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Asia. The corresponding NMB range from -23% for BC and nitrate to -46% and -52% for OC and 806 

sulfate, respectively. The OsloCTM3 performs notably better than its predecessor OsloCTM2 in 807 

terms of high-altitude BC distribution as compared with observed BC concentration profiles over 808 

the Pacific Ocean from the HIPPO3 campaign. In constrast, the model continues to underestimate 809 

observed surface levels of BC during winter and spring. Compared with other recent estimates of 810 

aerosol burdens, the OsloCTM3 generally lies close to or above the mean of other global models.  811 

Increasing or reducing the scavenging efficiency, moving to a finer resolution, and using the wrong 812 

meteorological year or a different emission inventory results in changes in the global mean aerosol 813 

burdens of up to 65%. The burdens of BC, OC and sulfate are particularly sensitive to a reduced 814 

efficiency of removal by large-scale ice clouds; a 10 percentage point reduction increases the 815 

global burden by 40%, 65% and 20%, respectively. A corresponding increase in the efficiency 816 

gives around 10% lower burdens. A significantly better agreement with BC surface concentrations 817 

is found when using the CEDSv16 emission inventory compared with the RCP4.5. Furthermore, 818 

a notable reduction in the bias of AOD compared to AERONET observations in Asia is found 819 

when increasing the horizontal resolution, while the correlation is reduced when using the wrong 820 

meteorological year. However, we find no clear evidence of consistently better model performance 821 

across all observables and regions in the sensitivity tests than in the baseline configuration. This 822 

may in part be influenced by the geographical coverage of observations, as the largest differences 823 

in concentrations and AOD from the baseline is found at high altitudes and latitudes where the 824 

availability of constraining measurements is limited. 825 

Using the CEDSv16 historical emission inventory we estimate a total net RFari from all 826 

anthropogenic aerosols, relative to 1750, of -0.17 W m-2. This is significantly weaker than the best 827 

estimate reported in the IPCC AR5, due to a combination of factors resulting in weaker 828 

contributions from both cooling aerosols and BC in our simulations. Our updated RFari estimate 829 

is based on a single global model. As shown by previous studies, there is a large spread estimates 830 

of RFari due to the spread in modeled aerosol distributions. The present analysis shows that 831 

uncertainties in emissions, scavenging and optical properties of aerosols can have important 832 

impacts on the simulated AOD and subsequent forcing estimates within one model. Additional 833 

studies to place our estimates in the context of multi-model spread and provide a comprehensive 834 

uncertainty analysis are needed ahead of the IPCC Sixth Assessment Report.  835 

 836 

 837 

Data availability  838 

The CEDS anthropogenic emissions data is published within the ESGF system https://esgf-839 

node.llnl.gov/search/input4mips/. Surface observations used in this study are collected from the 840 

following publicly available databases: the EBAS database (http://ebas.nilu.no/) hosted by NILU 841 

– Norwegian Institute for Air Research. The US national Clean Air Status and Trends monitoring 842 

network (CASTNET), available at http://www.epa.gov/castnet. The Interagency Monitoring of 843 
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Protected Visual Environments (IMPROVE), a collaborative association of state, tribal, and 844 

federal agencies, and international partners, with the US EPA as the primary funding source and 845 

support from the National Park Service. Data available from 846 

http://vista.cira.colostate.edu/Improve/. MODIS and MISR AOD retrievals are downloaded from 847 

https://giovanni.gsfc.nasa.gov/giovanni/. Aircraft measurements from the HIPPO3 flights 848 

available from https://www.eol.ucar.edu/node/524. Model output available upon request from 849 

Marianne T. Lund (m.t.lund@cicero.oslo.no).  850 
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Tables 1211 

 1212 

Table 1: Summary and description of simulations in this study 1213 

Name  Athropogenic 

emissions 

Year Res Description 

CEDSv16/CMIP6  CEDS, version 

released in 2016 

2010 2x2 Baseline simulation, 2.25x2.25 degree resolution 

ECLv5 ECLIPSEv5 2010 2x2 As baseline, but with ECLIPSEv5 emissions 

RCP/CMIP5 RCP4.5 2010 2x2 As baseline, but RCP4.5/CMIP5 emissions 

LSIDEC CEDS 2010 2x2 Reduced scavenging of all aerosols by large-scale ice 

clouds 
LSIINC CEDS 2010 2x2 Increased scavenging of all aerosols by large-scale ice 

clouds 
SOLDEC CEDS 2010 2x2 Decreased scavenging of all aerosols by convective and 

large-scale liquid preciptation 
1x1RES CEDS 2010 1x1 Same as baseline, but on 1.125x1.125 degree resolution 

METDTA CEDS 2010 2x2 Year 2010 emissions, but 2000 meteorology 

Historical CEDS/  1750-

2014 

2x2 Time-slice simulations for year 1750, 1850, 1900, 1910, 

1920, 1930, 1940, 1950, 1960, 1970, 1980, 1985, 1990, 

1995, 2000, 2005, 2010, 2014 

 1214 

 1215 

 1216 

 1217 

 1218 

Table 2: Fraction of aerosol mass available for wet scavenging by convective, large-scale liquid 1219 

and large-scale ice precipitation in baseline setup and in the three sensitivity tests. 1220 

Phil=hydrophilic, phob=hydrophobic. 1221 

 1222 

Simulation Precipitation 

type 

Sulfate OM 

phil 

OM 

phob 

BC 

phil 

BC 

Phob 

Nitrate SOA Sea 

salt 

Dust 

CEDSv16/ 

CMIP6 

Convective 1 1 1 1 1 1 0.8 1 1 

LS-liquid 1 1 0 1 0 1 0.8 1 1 

LS-ice 0.1 0.1 0.2 0.1 0.2 0.1 0.16 0.1 0.5 

LSIINC LS-ice 0.3 0.3 0.4 0.3 0.4 0.3 0.32 0.3 0.7 

LSIDEC LS-ice 0.001 0.001 0.1 0.001 0.1 0.001 0.001 0.001 0.1 

SOLDEC Convective 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.8 0.8 

 LS-liquid 0.8 0.8 0 0.8 0 0.8 0.6 0.8 0.8 

 1223 

 1224 

 1225 

 1226 

 1227 

 1228 
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 1230 

 1231 

Table 3: Global, annual mean aerosol burdens [mg m-2] and total AOD in the baseline and 1232 

sensitivity simulations 1233 

Simulation  BC OA Sulfate 

NH4 

(fine+coarse) 

Nitrate 

(fine) 

Nitrate 

(coarse) Sea salt Dust AOD 

CEDSv16/CMIP6 0.23 3.4 5.4 0.68 0.17 3.9 12 39 0.13 

ECLv5 0.21 3.1 5.1 0.65 0.15 3.7 12 39 0.13 

RCP/CMIP5 0.18 3.2 5.3 0.63 0.13 3.7 12 39 0.13 

LSIINC 0.21 2.8 4.9 0.63 0.17 3.4 11 39 0.12 

LSIDEC 0.32 5.3 6.5 0.79 0.16 4.7 14 43 0.16 

SOLDEC 0.26 3.6 6.1 0.78 0.16 5.2 15 42 0.15 

1x1RES 0.24 3.4 5.6 0.71 0.19 3.6 12 38 0.14 

METDTA 0.22 3.0 5.5 0.69 0.16 3.8 12 42 0.13 

 1234 

 1235 

 1236 

 1237 

 1238 

 1239 

 1240 

 1241 

 1242 

 1243 

 1244 

 1245 

 1246 

 1247 

 1248 

 1249 
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 1252 

 1253 

 1254 
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 1256 

 1257 

 1258 
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 1261 

 1262 

Figures 1263 

 1264 

 1265 

Figure 1: Annual mean modeled versus measured aerosol surface concentrations of a) EC, b) 1266 

OC, c) sulfate and d) nitrate from the IMPROVE, EMEP, ACTRIS, CASTNET and CAWNET 1267 

measurements networks. 1268 
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 1269 

 1270 

Figure 2: Aerosol composition (fraction of total aerosol mass) derived from the IMPROVE, EMEP, 1271 

ACTRIS and CAWNET networks (left column) and corresponding OsloCTM3 results (right 1272 

column).  1273 

 1274 
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 1276 

Figure 3: Annual mean (year 2010) modeled a) AOD and b) AAOD, c) MODIS-Aqua AOD 1277 

retrieval and d) scatter density plot of comparison of simulated AOD against monthly mean 1278 

AERONET observations. 1279 

 1280 

 1281 
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 1283 

Figure 4: Ratio of each sensitivity simulation relative to the baseline for AOD (columns 1 and 3) 1284 

and total burden by species in each model layer (columns 2 and 4).  1285 
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  1288 

 1289 

Figure 5: Taylor diagram of modeled and measured aerosol surface concentrations in the baseline 1290 

simulation and sensitivity tests using all observations in Fig. 1.  1291 
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 1294 

 1295 

 1296 

 1297 

 1298 

 1299 

Figure 6: Modeled vertical BC profiles against rBC aircraft measurements in five different 1300 

latitudes bands over the Pacific Ocean from the HIPPO3 flight campaign. Model data is extracted 1301 

along the flight track using an online flight simulator. Black lines: mean of observations (solid), 1302 

mean + plus 1 standard deviation (dashed). Colored lines: OsloCTM3 baseline (CEDSv16/CMIP6) 1303 

(solid), sensitivity simulations (dashed).  1304 

 1305 

 1306 

 1307 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-133
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 23 July 2018
c© Author(s) 2018. CC BY 4.0 License.



40 
 

 1308 

Figure 7: Change in anthropogenic aerosol load over the period 1750 to 2014 using CEDSv16 1309 

emissions. Black symbols show the 1750 to 2000 difference and red symbols show multi-model 1310 

mean and OsloCTM2 results from the AeroCom II experiments [Myhre et al., 2013a].   1311 
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 1316 

Figure 8: a) Time evolution of RFari. Solid lines show OsloCTM3 results from the current study, 1317 

while dashed lines show results from IPCC AR5[Myhre et al., 2013b]. The inset shows the change 1318 

in total RFari between 1990 and 2015 in the current study compared with IPCC AR5 and multi-1319 
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model mean and OsloCTM2 results from Myhre et al. [2017] using ECLv5 emissions. b) zonal 1320 

mean RFari 1750-2014.  1321 
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